
A

Defining Emergent Software using Continuous Self-Assembly,
Perception and Learning

Roberto Rodrigues Filho, Lancaster Univeristy
Barry Porter, Lancaster Univeristy

Architectural self-organisation, in which different configurations of software modules are dynamically as-
sembled based on the current context, has been shown to be an effective way for software to self-optimise
over time. Current approaches to this rely heavily on human-led definitions: models, policies and processes
to control how self-organisation works. We present the case for a paradigm shift to fully emergent computer
software which places the burden of understanding entirely into the hands of software itself. These sys-
tems are autonomously assembled at runtime from discovered constituent parts and their internal health
and external deployment environment continually monitored. An online, unsupervised learning system then
uses runtime adaptation to continuously explore alternative system assemblies and locate optimal solutions.
Based on our experience over the last three years, we define the problem space of emergent software and
present a working case study of an emergent web server as a concrete example of the paradigm. Our re-
sults demonstrate two main aspects of the problem space for this case study: that different assemblies of
behaviour are optimal in different deployment environment conditions; and that these assemblies can be
autonomously learned from generalised perception data while the system is online.

ACM Reference Format:
Roberto Rodrigues Filho, Barry Porter, 2016. Defining Emergent Software using Continuous Self-Assembly,
Perception and Learning. ACM Trans. Autonom. Adapt. Syst. V, N, Article A (January YYYY), 25 pages.
DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Modern software is increasingly complex, and is deployed into increasingly dynamic
environments. In recent years this trend has driven research in autonomic, self-
adaptive and self-organising software systems [Salehie and Tahvildari 2009; Tomforde
et al. 2013; Faniyi et al. 2014]; these research efforts aim to move selected responsi-
bility for system management into the software itself, thereby reducing the burden of
complexity on human developers or administrators, and increasing the responsiveness
of software to dynamic deployment environments.

One promising approach in this domain is the use of self-adaptive runtime software
architectures, in which different software components are dynamically composed into
the running system according to its current context. In these systems, there are mul-
tiple valid configurations of components that form a working system, but particular
configurations perform better or worse in different deployment conditions. Recent ex-
amples of this approach from the research literature include [Elkhodary et al. 2010;
Chen et al. 2014; Ewing and Menascé 2014; Kouchnarenko and Weber 2014].

In state of the art work, however, the way in which these self-adaptive systems are
orchestrated relies on various forms of explicit control: models that describe adaptation

This work was partly supported by the UK’s EPSRC in the Deep Online Cognition project, grant number
EP/M029603/1, and by CAPES Brazil via PhD scholarship grant BEX 13292/13-7.
Author’s addresses: B. Porter and R. Rodrigues-Filho, School of Computing and Communications, Lancaster
University, Lancaster, UK.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© YYYY ACM. 1556-4665/YYYY/01-ARTA $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 R. Rodrigues and B. Porter

states; architecture description extensions to specify autonomy; and policies to express
runtime choices. We argue that these approaches continue to require substantial, de-
tailed understanding of systems by humans, so that corresponding control strategies
can be specified. This requirement is fundamentally opposed to the core ideas behind
autonomic computing, which are borne of the increasing difficulty for humans to un-
derstand modern software systems in dynamic environments.

We present a novel approach of continuous online self-assembly of software, in which
the understanding and control of that assembly is pushed deeply into software itself.
We assemble software from a diverse palette of small building blocks that each pro-
vide a different piece of functionality, where each such block has a pool of available
micro-variations (the same behaviour implemented differently, such as memory cache
components with different replacement algorithms, or stream processors that do or
do not make use of a caching component). While the system is running we continu-
ally experiment with, and perceive the effectiveness of, different possible assemblies
of the system in various runtime conditions; as a result of this process we see emergent
designs of software autonomously appearing over time as external stimuli change.

Rather than focusing on human modeling of autonomy, we thus enable machines
to develop their own models, understanding, and methods of control. By los-
ing human control, we lose the ability to understand exactly how a given system works;
what we gain, however, are software systems that are truly responsive to their envi-
ronments, including to the completely unexpected. In other words, instead of explicitly
programming software in how to behave, and rather empowering it to learn how to
behave, we achieve a level of freedom for systems to locate their own solutions in any
conditions. We present two contributions to this goal:

— A definition of emergent software systems, in which software is abstracted into
the key elements needed for machines to model, understand and control it. To test the
limits of this we take a pure approach in which everything is learned by the system
from experience, even if occasional mistakes are made in doing so. By giving away
control to this extent, we correspondingly gain maximum responsiveness of software
to actual deployment conditions – including intelligent responses to the completely
unexpected, with no explicit programming to do so.

— A framework to orchestrate emergent software, using pluggable units for as-
sembly, perception and learning. We present our experience to date on using this
framework in the context of an emergent web server, a system that is autonomously
assembled from small, dynamically-discovered component parts. We evaluate the re-
sulting responsiveness of this system in a range of different conditions and we discuss
which aspects of our emergent software definition we have met in doing so.

Our work is the first to examine full behavioural emergence, learning how to form
single systems from small components, with no prior models, policies or knowledge.
This paves the way to significantly reducing human involvement in the complex de-
tails of software development, and to increasing software responsiveness to the actual
conditions encountered by a system at runtime.

Our work is strongly grounded in reality: our prototype implementation is open-
source and comprises over 3,000 lines of well-modularised and extensible code, includ-
ing a working emergent web server system. The specific version used for this paper is
at [Filho 2016], complete with instructions on how to reproduce all of the experimental
results reported here. The original version of this paper was presented at IEEE SASO
2016 [Porter and Rodrigues Filho 2016]; in this extended version we provide an up-
dated and more complete definition of emergent software as a concept, extended details
on our prototype emergent software framework, and further evaluation results that
consider concurrency, test our real-time classifier in detail, examine the effects of ob-

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Defining Emergent Software using Continuous Self-Assembly, Perception and Learning. A:3

servation window sizes, and provide results from experiments on alternative hardware
platforms which demonstrate autonomous learning of the host platform’s strengths.

The remainder of this paper is structured as follows. In Sec. 2 we discuss related
work, and in Sec. 3 we present our definition of emergent software and our corre-
sponding framework design and implementation. In Sec. 4 we then evaluate the sys-
tem’s ability to continually assemble optimal software as external stimuli change. We
conclude the paper and consider future work in Sec. 5.

2. RELATED WORK
While autonomic, self-adaptive and self-organising computing are now well estab-
lished, there is relatively little work in runtime software composition (compared to
far more work on autonomous parameter tuning). The majority of this work is model-
driven, relying either on substantial human-specification; offline training regimes with
historical data; or simple online heuristic search algorithms within a specified model.
We survey the most closely related work here.

In [Grace et al. 2008], Grace et al. propose human-specified adaptation policies to se-
lect between different communication interfaces in a flood monitoring scenario. While
the use of such policies is viable in simpler systems, this becomes infeasible in more
complex systems where the set of component interactions is much larger. By contrast
we use an online learning approach to discover an adaptation policy at runtime.

In [Chen et al. 2014], Chen et al. propose a weighted decision graph of service levels
to generate model transformations in an online shopping system. Wang et al. [Wang
and Mylopoulos 2009], meanwhile, propose a framework that exploits variability of
software configurations to deliver self-repair capabilities through reconfiguration, us-
ing a goal model based on requirements to drive this reconfiguration. We opt for a
model-free approach in which components generate their own current service levels
from which we infer global properties – an approach that reduces the burden of com-
plexity on humans by avoiding the need to specify the initial system models and asso-
ciated parameters.

In [Bencomo et al. 2013], Bencomo et al. propose dynamic decision networks (a form
of state machine), alongside a models@runtime approach to software construction, to
decide at runtime between different network topologies for a remote data mirroring
system based on resilience levels. This requires pre-specification of the decision net-
work to model configuration options, rather than the online learning approach we take
for emergent software. In [Bencomo and Belaggoun 2014] the same authors use this
example system to explore Bayesian prior/posterior differences as a trigger for when
adaptation policies (encoded in dynamic decision networks built for the target system)
do not match online experience. Our approach differs by building a model of under-
standing of the target software from scratch and at runtime, starting from no infor-
mation, by assembling software from a pool of available building blocks and learning
their characteristics.

In [Hassan et al. 2015], Hassan and Bencomo use probability functions with Pareto
analysis as a design-time tool in the software development process to help understand
potential adaptation cases. Again, we avoid this need by using emergence from a set
of building blocks, the characteristics of which are learned online according to the
actual experience of the software in its deployment. By using small building blocks
of relatively general behaviour we are able to view the adaptation problem as one of
continuously forming beliefs from online learning to emerge a system, rather than
discretely specified points of adaptation as part of a design process.

In [Kouchnarenko and Weber 2014], Kouchnarenko and Weber propose temporally-
dependent logic to control software configuration, with a domain specific notation to
model temporal dependencies between reconfiguration actions, using a self-driving ve-

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 R. Rodrigues and B. Porter

hicle control system as a case study. While the inclusion of such temporal models may
be a useful addition for constraining adaptation, the models are again specified by
human developers at design time rather than learned at runtime.

In FUSION [Elkhodary et al. 2010], a feature-model framework is presented that
uses offline training combined with online tuning to activate and deactivate selected
feature modules at runtime (such as security or logging). Dynamic Software Product
Lines [Hinchey et al. 2012] generalise the feature model approach as part of the soft-
ware development process, typically using a pre-specified set of rules to trigger feature
activation / deactivation at runtime. Our approach does not use a feature model, in-
stead self-organising a pool of components into a working system; additionally we use
pure online learning to make decisions, avoiding offline training or pre-crafted rules.

In SASSY [Menasce et al. 2011], a self-adaptive architecture framework for service-
oriented software is presented, using a set of model-based notations to describe soft-
ware architecture and its quality of service traits. Further work by Ewing and Menascé
[Ewing and Menascé 2014] applies runtime heuristic search algorithms within these
models to locate optimal configurations. Our work differs in using a model-free ap-
proach to emergent software, in which system composition is autonomously driven
by discovering and continually experimenting with usable components and perceiving
their contribution to the system across different environments.

The idea of ‘organic computing’ assumes scenarios in which many identical agents
need to self-organise. Work in this area has attempted to define a theoretical frame-
work to measure emergent behaviour [Fisch et al. 2010], and to define a framework
for incrementally adding autonomous control to a given system [Tomforde et al. 2013].
Our work is fundamentally different to this in seeking emergent design of individual
software systems through their autonomous assembly from many small (and different)
building blocks to form desired behaviour.

Multi-agent systems [Ferber 1999] are a broader category of work with similar goals
to organic computing, again based upon many identical or similar agents acting inde-
pendently (but able to communicate with one another) to achieve a macro-level goal
that is more complex than the individual behaviour of any one agent. Our work can
be positioned as the emergent design of an individual agent, given many options from
which its behaviour can be assembled. As a result, our systems have a clear and di-
rectly specified goal (such as ‘be a web server’) but the way in which they achieve that
goal – their composition of behaviour, or their ‘design’ – is the emergent property for
each environment in which the system finds itself.

We seek a radically different approach to all of the above by pushing understand-
ing and control deep into software itself: we provide a sandbox of possibilities from
which systems can emerge, and we expect particular designs to be learned for each
environment that is encountered.

3. EMERGENT SOFTWARE SYSTEMS
In this section we first define our concept of emergent software systems and the major
challenges that they entail, based on our experience of building these systems. We
then present our design and implementation of a generalised framework to realise our
approach, using an emergent web server as an example.

3.1. Problem definition
We define emergent software systems as follows. There exists a goal G that is ex-
pressed in a particular form (goal definition is beyond our scope here). A set of small
software units SU exists that can be composed together into systems to achieve this
goal, where each u ∈ SU has one or more behavioural variations (implementations
that offer the same functionality but using different techniques). In our work to date,

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Defining Emergent Software using Continuous Self-Assembly, Perception and Learning. A:5

each u is around 200 lines of source code, implementing concepts such as search algo-
rithms or memory caches; this small size makes it relatively easy to create variations
and yields a high number of possible combinations of those variations. We require one
or more u to emit a stream of metrics describing selected aspects of the current health
of u, and one or more u to emit a stream of events describing selected aspects of the
software’s current external stimuli (i.e. inputs being received or deployment environ-
ment characteristics such as the available remaining memory or current CPU load of
the host system). This implies there is a fixed number of valid assemblies from SU that
each result in a working system for G, where different assemblies perform differently.

The aim of an emergent software system is then to continually maximise its satis-
faction of G by assembling the most optimal collection of u in each set of deployment
environment conditions which the software finds itself at runtime, where the satis-
faction degree is a result of the combined health of all selected u as reported by met-
rics and potentially weighted by non-functional qualifiers on the system goal, and the
current deployment environment conditions are captured by the reported events. A
functioning, optimal system should be able to emerge effectively with no prior infor-
mation about its goal, nor about the population of SU or the runtime characteristics
of any particular u, or the set of environments to which the system may be subjected
at runtime. The population of SU is also expected to change dynamically, allowing the
introduction of new behaviours at any time.

We assume that all activities undertaken by an emergent software system occur on
the ‘live’ system, while that system is operating in its normal production environment,
such that it learns from what actually happens in execution. As such, we assume that
there exist automated unit tests by which any assembly candidate from SU can first
be autonomously verified as being functional according to the system goal before such
an assembly becomes a valid option for the live emergent system to use at runtime.

The challenges involved in achieving emergent software primarily relate to the way
that we design the learning systems that orchestrate emergence – i.e. the way in which
a system builds its own self-understanding and correspondingly controls itself. This
includes the existence of divergent optimality, relative and moving performance base-
lines, autonomous abstraction of the environment, learning techniques and challenges,
and implications for the software design process.

3.1.1. Divergent optimality. To move toward optimality in an emergent software system,
the application domain should be such that the behavioural variations of each u offer
differing levels of performance in response to different external stimuli (i.e., different
input data or deployment environment conditions). Depending on the environment
conditions actually observed by a system over time, this may mean that the emergent
system either finds one overall optimal solution from SU and uses that solution per-
manently, or that it finds different optimal solutions to match different environment
conditions as they are encountered. In either case, the emergent system continually
remains ready to react to the unexpected, learning new environments and new ways
of assembling the system as and when they become apparent.

To facilitate the autonomous learning of divergent optimality, when metrics or
events are offered by a given u, the same metrics and events should be offered by
each variant of u to serve as an equivalent basis for comparison.

3.1.2. Everything is relative. Performance differences of various available compositions
of behaviour from SU are all relative: there is no available baseline for comparison
at the point of system inception. The system must therefore construct its own mov-
ing baseline from its own observations, where the benchmark of what is ‘good’ is up-
dated whenever something better is found. This implies that the emergent system
must actively explore the available set of compositions during operation if it is to gain

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 R. Rodrigues and B. Porter

a complete understanding of the available search space. This online exploration to gain
new knowledge must of course be appropriately balanced with exploitation of existing
knowledge in order to maintain good overall performance.

Additionally, what is known to be ‘good’ under one set of external stimuli may be
entirely different under other sets of external stimuli. These stimuli may therefore
need to be characterised as and when they occur, so that moving performance baselines
can be kept for each case, avoiding constant re-learning whenever a change occurs.

3.1.3. Abstracting the environment. To measure the effectiveness of different composi-
tions in different operating environment ranges as stated above, we must first be able
to characterise the features of each such range as and when they occur. The optimal
composition of behaviours for each operating range can then be found. Online feature
extraction is a difficult problem in machine learning [Glocer et al. 2005], with the fur-
ther problem that we do not know in advance what ranges of values we may encounter
and therefore how best to define the boundaries between each detected environment
range. Further, the way in which environment ranges are detected and distinguished
from one another should strive to avoid the classic control loop problem of oscillation
between two nearby choices which can expend unnecessary adaptation effort.

3.1.4. Data quality and perception errors. Because we assume that the software emits
metrics that describe its health, and events that describe its operating environment,
it is possible that the data reported by the software for these purposes is sub-optimal
for effective machine learning. As an example, it may be the case that the software
finds its performance significantly degrading when nothing about the system’s exter-
nal stimuli has apparently changed, a situation that can occur if the kinds of events
reported by u do not measure the kinds of changes that have occurred in the software’s
operating environment to cause this. These are perception errors indicating blind spots
in what the machine learning system can observe relative to what it is trying to un-
derstand; ideally it should be possible for the machine learning system to detect when
it experiences likely perception errors so that adjustments can be made to the kinds of
events or metrics that it sees from the software.

3.1.5. Online and offline learning. The key requirement of learning for emergent software
is that the system must learn according to what it actually experiences in its normal
environment. The main problem with this is that a system may experience different
external stimuli erratically, making it difficult to draw comparisons between differ-
ent possible compositions of behaviour under consistent external conditions. In this
context there are two main methods by which an emergent system can learn.

One is to perform online experimentation, where the live, running system is re-
assembled into its different available compositions while executing, so that the relative
performance of each such composition can be determined under the different external
stimuli that are experienced. When the system observes environment conditions for
which it does not have enough information on the behaviour of a particular software
assembly, it may therefore trial that assembly to gather more data. When doing so, it
is particularly important to be sensitive to bad compositions as they have real effects;
a simple approach here may be a sliding scale in which a composition is experimented
with for an increasingly small amount of time proportional to how relatively ‘bad’ it is.

The other option is to perform offline experimentation, where the online system re-
mains in its most optimal form as currently predicted by this experimentation. This
requires external stimuli seen by the online system to be repeatable in offline exper-
imentation. While capturing input patterns for this purpose may be viable (if poten-
tially expensive), other characteristics such as available system memory or CPU load-

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Defining Emergent Software using Continuous Self-Assembly, Perception and Learning. A:7

ing experienced in the online system may be more difficult to replicate offline. Further,
the use of such offline learning is not ‘free’ and comes with its own resource costs.

Hybrid solutions may also be possible which fuse combinations of online and offline
learning – such as experimenting with individual components using different input
ranges, rather than experimenting with entire system compositions.

3.1.6. Search space complexity. Whichever kind of learning is used, the size of the
search space grows rapidly as more u variants are added to SU . This is a combina-
torial problem as each additional u variant composes with many other possible u vari-
ants around it. This requires creative solutions to learning which, as a system grows
in complexity, ideally avoid the need to exhaustively trial every possible combination
of components. This is an open challenge that demands novel solutions – with one
avenue being to selectively share learned information across different software compo-
sitions in cases where those compositions have some common elements from SU . This
may help to avoid the need to test compositions that are (either heuristically or from
prior experience) sufficiently similar to other compositions that they can be considered
equivalent under particular external stimuli. This has been explored to some extent in
[Porter et al. 2016] but further work is needed to find fully generalised solutions.

3.1.7. Self-referential fitness landscapes. As reported by Cakar et al. in the context of
parametric self-optimisation [Cakar et al. 2011], it is likely that changes to the cur-
rently chosen composition of u that make up a running system can impact upon the
external stimuli that the system experiences. As an example, the performance of two
different variants of u may be compared when subjected to equal external stimuli. If
we define this external stimulus as a stream of requests, one variant of u may be more
efficient and thus cause a higher rate of requests to be serviced, changing the appar-
ent request pattern and so making it difficult to compare both variants of u under the
‘same’ conditions (as each u changes those apparent conditions when it is used).

3.1.8. Propagating errors as degraded health. We are used to handling errors and catching
exceptional behaviour in code by using appropriate constructs available in a program-
ming language. In an emergent software system, however, the system itself must be
able to learn from errors, especially when the existence of certain errors depends on the
current environment context. As an example, imagine that we have a sorting algorithm
implemented in a given u, and we have a variant of u which uses a GPU-accelerated
algorithm instead the regular CPU-based implementation. If we experience a GPU
failure, this would usually be an error propagated internally by the software system.

To propagate this to an emergent system controller, the metrics emitted by a given
u must reflect the error – for example if metrics report sorting speed, this may mean
reporting extremely slow sorting speeds so that the emergent system can detect the
change in performance and re-learn an optimal composition of behaviours for that
machine (in this case using the CPU-based version of u).

3.1.9. Unexpected properties. As reported by Fisch et al. [Fisch et al. 2010], perhaps
the ultimate aim of emergent software systems is to demonstrate the unexpected: that
autonomous learning activities produce an unexpected solution to a problem that is
more than the sum of the individual parts available. While this is of interest, we also
note that it is useful for emergent software to locate designs that are unexpectedly
good for a given set of external stimuli. This is different from ‘unexpectedly complex
behaviour’ as we expect the overall behaviour of a system to match our goal. Instead
this reflects the finding of designs for that behaviour, from among available fragments
of behaviour in SU , which are unexpectedly good and therefore lead to new design
knowledge for the target system under the conditions that it has experienced.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 R. Rodrigues and B. Porter

3.1.10. Developer interaction. Finally, we look beyond emergent software as ‘finding
good solutions to a goal’ to state that they are a natural way to invert the software de-
velopment paradigm: that emergent software should, based on its actual experience,
be able to make suggestions to human developers (or even machine agents) for new
units of SU to be generated for particular criteria of external stimuli. This leads to a
process wherein software itself plays an active role in its own development, suggesting
improvements and testing them out, and further reducing the burden of complexity on
human developers in systems building.

3.2. Prototype and case study
To realise our approach we have developed a prototype emergent software framework,
along with a case study of an emergent web server. We implement the building blocks of
our web server using a runtime component model, where each component has a range
of micro-variations. These variations are trivial to create because each component is
itself very small: examples are different caches with various cache replacement algo-
rithms, and stream handlers that do or do not use caching. More detail on this is given
in Sec. 3.2.2. We specifically use Dana [Porter 2014] as our runtime component plat-
form due to its affinity for fine-grained components and very fast runtime adaptation.
Other component models offering runtime adaptation could also be used, however.

Our emergent software framework is divided into three major modules: an assem-
bly module, responsible for discovering and assembling / re-assembling the target sys-
tem from available components; a perception module, responsible for perceiving the
current wellbeing of the target system and the state of its operating environment; and
a learning module, responsible for inferring correlations between the software’s cur-
rent assembly, its perceived wellbeing, and the perceived conditions of its operating
environment. The learning module is also responsible for characterising the various
conditions of the operating environment, and for balancing exploration of untested
software compositions with exploitation of compositions known to perform well.

Using the terminology of Sec. 3.1, our goal G is expressed in terms of a ‘main com-
ponent’ that encodes the overall task of the web server and has a set of ‘required inter-
faces’ that express further components that are needed. We assume that a set of unit
tests is available that can verify whether or not this component (and therefore the
system as a whole) is delivering the expected functionality. Starting from this main
component, our framework dynamically discovers all other possible components SU
from which to build the rest of the system. Our framework then begins to experiment
with these components to locate optimal assemblies of a system for each set of exter-
nal stimuli that are experienced, perceiving any events and metrics that are emitted.
Throughout this process a fully functioning web server is maintained.

In the remainder of this section we first describe our emergent software framework
in detail, and then how we apply it to our emergent web server example.

3.2.1. Emergent software framework. Our emergent software framework is a generalised
system capable of performing three main tasks: assembling a piece of software from a
collection of available components, perceiving its performance and external stimuli at
runtime, and learning about how that performance relates to its external stimuli.

These three elements, illustrated in Fig. 1, are arranged in two tiers. The perception
and assembly modules sit at the lower tier and provide a simple API to the learning
module at the upper tier, allowing the learning module to control and perceive complex
software systems using simple primitives. We now describe the general role of each
module in detail, along with the details of our learning module implementation as
used in our evaluation in Sec. 4.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Defining Emergent Software using Continuous Self-Assembly, Perception and Learning. A:9

Perception

Pool of available components

Assembly

Learning

setMain | getConfigs | selectConfig | getPerception
API

Fig. 1. Architecture of the emergent software framework.

Assembly module This component is responsible for discovering and assembling
the target system’s components to present a set of candidate configurations, each of
which functionally meets the goal of the system. There are various different ways in
which an assembly module can perform this discovery of candidate configurations, de-
pending on how the library of available components is organised. In our current imple-
mentation, the assembly module is provided with the ‘main’ component of the target
system and examines this component’s set of required interfaces, scanning the local
system for all components that declare matching provided interfaces. These compo-
nents are themselves examined to discover their required interfaces, and so on, until
the assembly module has a complete map of all possible compositions of the target sys-
tem (including all available variants of each provided interface, for example different
memory cache or ADT implementations). During this process, recursive dependencies
must be identified as they would otherwise lead to an infinite set of candidate config-
urations; in our current implementation we stop our discovery process for any branch
at the first point at which we detect recursion.

The result of this process is a set of possible configurations of components. A unique
string is assigned to each one so that they can be referred to by other parts of the
framework. This string contains a (compressed) list of all components of the configu-
ration and their inter-connections. The list of configuration strings is accessed via the
getConfigs() API call shown in Fig. 1.

The assembly module can then be instructed to adapt the target emergent system to
one of these configurations using the selectConfig() operation. If the target system
is not yet assembled, this simply involves loading all of the necessary components into
memory, interconnecting them, and calling the ‘main method’ of the main component
to start the system. If the target system is already assembled, this involves comparing
the currently assembled configuration and the new target configuration to build a min-
imal differential graph between the two. Each point in that graph is then adapted by
loading the alternative component, using the runtime component model’s adaptation
protocol to replace the existing component at that location with the new one, and then
unloading the existing component at that location.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 R. Rodrigues and B. Porter

data Event {

 char name[]

 char label[]

 int value

}

data Metric {

 char name[]

 int value

 bool preferHighValue

}

interface Recorder {

 void addEvent(Event e)

 void addMetric(Metric m)

 PerceptionData getMetrics()

}

Fig. 2. The Event and Metric data types and the Recorder interface, using the syntax notation of the com-
ponent model that we use [Porter 2014].

Perception module This component perceives the behaviour and performance of
the currently assembled configuration of components, and also the characteristics of
the system’s operating environment.

To do this, our framework uses a Recorder interface, which is shown in Fig. 2. Any
component can declare a required interface of this type, which will be connected to a
corresponding component implementing the Recorder interface. The interface provides
functions for components to log the emission of metrics and events when they occur.

Metrics are used to describe the way that the software ‘feels’, and have a standard
format including a name, a value and a boolean flag indicating whether a high or low
value is considered to be better. When a metric is logged at a recorder, a timestamp is
also added. An example metric would be ‘response time’, with a value in milliseconds,
and a boolean flag indicating that lower is better in this case.

Events describe the way that the software’s deployment environment ‘looks’, with a
standard format including a name and a value. As with metrics, a timestamp is added
when an event is logged at a recorder. An example event would be ‘request’, with a
request type as a label, and a numerical characteristic (e.g. request size) as the value.

Whenever a new configuration of the target system is assembled, the percep-
tion module scans all of its components for any with a Recorder required interface.
The Recorder component attached to each one is then periodically polled to collect
the latest batch of events and metrics generated by the associated component. The
getPerception() call can then be used on the perception module, returning a Percep-
tionData structure containing all events and metrics that have been collected along
with their timestamps.

Learning module This component uses the API provided by the assembly and per-
ception modules to experiment with, understand and control the target emergent sys-
tem. This is done with no prior knowledge of what that target system is, or knowledge
of the operating environment conditions that may occur (including no knowledge of
what kinds of events / metrics may be emitted). The task of the learning module is
to understand the correlations between the currently assembled collection of compo-
nents (i.e. the software system’s current behaviour), and how the system is currently
perceived to be feeling, in each set of perceived operating environment conditions. The
learning module is able to experiment with behavioural changes, by asking the assem-
bly module to select a different configuration, to understand how different behaviours
then affect the software’s perception of self in different operating environments.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Defining Emergent Software using Continuous Self-Assembly, Perception and Learning. A:11

signal
(event stream)

time

le
ve

l

observation window
a

b

c

d e f
g

h

i

a {n.3, q.2, t.9} 100

architecture environment performance

b {n.14, q.4, t.1} 120

c {n.26, q.9, t.0} 60

d {n.26, q.7, t.3} 170

e {n.24, q.0, t.5} 34

f {n.26, q.4, t.5} 82

Fig. 3. The emergent software online learning problem. On the left we illustrate the way in which the
environment changes over time, and the quantisation occurs over this signal due to the use of learning
observation windows. On the right we illustrate the data collected at the end of each observation window,
including the environment description and the performance level of the configuration used during that time.

As identified in Sec. 3.1.5, there is a range of possible approaches to learning in emer-
gent software – any of which could be used by the learning module, including hybrid
strategies. Here we focus on a purely online learning approach in which all learning
must be done based on observations and experimentation with the live system. The
general form on online learning is to select a configuration for use, using selectConfig(),
wait a period of time, and then collect perception data to interpret how well the config-
uration performed. Within this category of learning we can use two strategies, based on
observed perception data: reactive and/or predictive. To help understand these strate-
gies we illustrate the online learning problem in its abstract form in Fig. 3. On the
left of this figure is the environment (event stream) to which the system is subjected,
which is generally outside the control of our system. We make periodic observations
over time, resulting in a quantised view of the environment. On the right of Fig. 3 we
then show the data collected via the perception module at each periodic observation.
In our example here we have assumed here that the configuration being used changes
in each successive observation window, either due to exploration or to the exploitation
of existing knowledge. From this example a number of challenges are clear:

— Comparison difficulty: It is difficult to make comparisons across different configu-
rations in different observation windows as the environment is likely to change over
time. During the use of configuration (a), for example, the environment is in a dif-
ferent state compared to the use of configuration (b), making it hard to compare the
performance levels of (a) and (b) to decide which is best in each environment range.

— Mid-window changes: The environment may change during an observation win-
dow, as is the case when using architecture (g) where the environment transitions
from a flat signal to an upward slope. Depending on the level of perception detail
from the system, in the events that describe the environment, this transition may or
may not be visible, causing this environment change to be seen as a simple average.

— Self-referentiality: While the environment state is generally outside our control, it
is still possible that our choice of configuration can have an apparent impact. This
is exemplified in the use of configuration (e) which coincides with an apparent dip
in environment signal. If this signal is the number of requests seen by the system,
the dip could actually be caused by configuration (e) having poorer performance and
so a lower throughput in this environment range. The true environment signal may
therefore have frequent perturbations caused by the use of different configurations.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 R. Rodrigues and B. Porter

— Observing the past: It is clear that an emergent system is only able to observe
what has recently happened rather than knowing what is currently happening in the
environment. A purely reactive online learning system, which chooses architectures
based on what it has most recently seen, thus assumes that the environment will
generally continue to behave as it recently did, at least for a short time. A predictive
strategy, by contrast, may consider the general upwards or downwards trends and be
able to infer whether or not these trends will continue, thereby making decisions on
where the environment is potentially going rather than where it has recently been.

— Hidden trends: The environment signal shown in Fig. 3 shows clear trends. In real-
ity, however, the kinds of events that the software is reports may not show the trends
that are actually key to the way in which the system behaves. Instead the signal of
interest may require processing of the primary signal to reveal the way in which the
perceived environment really maps onto the perceived performance of the system.
An example of this is events that report how many of each kind of request have been
seen, where the signal of interest is actually the variation level of these requests.

— Multi-dimensionality: Finally, we note that Fig. 3 shows a single environment di-
mension, as would be reported by a single type of event from the perception module.
In reality, event streams tend to be multi-dimensional, reporting multiple different
kinds of events that each describe an aspect of the environment, therefore making
all of the above challenges themselves multi-dimensional in nature.

As a useful baseline, in this paper we use a simple reactive online learning approach
which starts with no prior information about the system. Using this approach our
learning module has two main tasks. First, it must be able to characterise and classify
features in the software’s operating environment (derived from the stream of events
being emitted) so that the performance of different configurations can be compared in
equivalent environments, and so that the learning module can remember which config-
urations work best in each environment (i.e. to save re-learning each time a recurring
environment is encountered). And second, as in any online learning system, the learn-
ing module must balance the tradeoff between exploring options about which there is
insufficient information and exploiting options known to be good [Sutton and Barto
1998]. Because our emergent software framework operates on live software, this bal-
ance is particularly important because operating sub-optimally has real consequences.

As discussed above, performing both tasks online is highly challenging: the software
is not in control of its operating environment and so cannot know in advance when it
may be able to reliably compare any two software configurations against the same set
of external stimuli; in addition there are complex interactions between the process of
exploration itself and the environment, where e.g. selecting a ‘good’ configuration can
increase throughput and so change the perceived environment. We use an approach
inspired by reinforcement learning [Sutton and Barto 1998], modified for our particu-
lar problem space. Our solution, shown in Algorithm 1, continually locates the optimal
configuration by incrementally exploring the configuration search space while simulta-
neously characterising observed external stimuli into discrete labelled environments.

The algorithm uses a standard ‘exploration activity’ in which to both characterise
the current environment and also identify the best configuration for that environment,
shown on lines 3-6. The system triggers this exploration whenever it encounters suf-
ficiently high uncertainty about its current choices – where this uncertainty comes
either from (i) having no information at all (i.e. system startup); (ii) the current envi-
ronment characteristics deviating outside of expected ranges from existing experience,
or (iii) current system performance deviating beyond its expected range.

The exploration activity tries every possible configuration for a fixed-length ‘obser-
vation window’ wt, such that the total time spent exploring is wt∗length(getConfigs()).

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Defining Emergent Software using Continuous Self-Assembly, Perception and Learning. A:13

Algorithm 1 Learning Algorithm
1: while running do
2: //perform exploration activity
3: for each c in assembly.getConfigs() do
4: assembly.selectConfig(c)
5: wait for wt

6: store perception.getPerception() for c
7: end for
8:
9: //select the new configuration to use

10: store environment ep as max : min of event types
11: assembly.selectConfig(best known for ep)
12:
13: //wait for conditions to change
14: newExploration = false
15: while newExploration == false do
16: wait until (different environment ep detected) or
17: (performance degrades) for >= wt ∗ 3
18: if different ep and ep is previously known then
19: assembly.selectConfig(best known for ep)
20: else
21: newExploration = true
22: end if
23: end while
24: end while

We define wt as 10 seconds for this paper. Having tried every configuration, the learn-
ing module then characterises what happened over the entire exploration time period
to determine the best course of action as a result of that exploration activity. This
characterisation works by considering all events and metrics that were reported dur-
ing exploration, and for each distinct event type (qualified by having a unique event
name) a max-min range is determined by extracting the minimum cumulative ‘value’
of this event type from all wt within that exploration activity, and a maximum cumu-
lative value of this event type from all wt. The environment is then labelled as the set
of these max-min ranges for all event types perceived during this exploration activity.
The best performing configuration within this environment is then chosen (line 11) as
that with the best set of perceived metrics during its wt; this configuration becomes
the ‘rule’ for use whenever this environment is encountered.

The use of ranges to classify an environment addresses the self-referential fitness
landscape issue, in which some configurations may be better and thus appear to alter
their own environment by (for example) consuming more data at a higher rate – our
ranges capture the highest and lowest levels of environment perceived during an explo-
ration activity, abstracting these details. The main problem with our approach comes
when the environment changes significantly during an exploration activity, meaning
that the configurations used were not really compared in the same conditions. This is
addressed by our second two uncertainty clauses, captured on lines 14-23.

Specifically, after an exploration activity, the learning module selects the best-
performing configuration for use and enters its exploitation state. The selected action
continues to be monitored every wt and analysed for its suitability. A change may occur
if either (i) perceived events during wt show that this is a different event pattern (i.e.
they fall outside the range of the current pattern), or (ii) perceived metrics during wt

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 R. Rodrigues and B. Porter

show degraded performance. To avoid frequent oscillation, in either case the algorithm
waits for wt∗3 of consistently observed behaviour before changing its current course. In
case (i), if the detected event pattern is one that has been previously seen, the match-
ing best configuration is simply selected. In all other cases a new exploration activity
is triggered. This process of exploration / exploitation repeats continually, where the
amount of exploration will reduce as fewer new environments are seen.

3.2.2. An emergent web server. To test our framework we use a web server as an ex-
ample emergent system. This is a pertinent example because web servers are known
to be difficult to optimally configure, particularly when subjected to different client
workloads over time [Zheng et al. 2011]. In this section we first describe the main com-
ponents of our web server and their available variants, and then we discuss the events
and metrics that we chose to generate from these components.

App <interface>

WebServer

RequestHandler <interface>

RequestHandler RequestHandlerPT

HTTPHandler <interface>

HTTPHandler

HTTPHandlerCMP HTTPHandlerCHCMP HTTPHandlerCH

Compressor <interface>

GZip

Deflate

Cache <interface>

Cache

CacheLFU

CacheLRU

CacheFS

CacheMRU

CacheRR

Thread pool
implementation

Thread per client
implementation

Implementation without
caching or compression

Implementation with
compression

Implementation with
caching

Main method: opens a server socket
and accepts client connetions, each
of which is passed to a request handler.

Takes a client socket and
applies a concurrency
approach, then passes the
socket to a http handler.

Takes a client socket,
examines the HTTP
request headers and
formulates a response.

Implementation with
caching and compression

Fig. 4. The set of components from which our web server can emerge. Boxes with dotted lines are interfaces,
and those with solid lines are components implementing an interface. Arrows show required interfaces of
particular components. The general purpose of each interface’s implementations is noted by the interface,
and a description of how the available implementation variations of that interface work is also indicated.

Architecture The main components from which our web server can emerge are
shown in Fig. 4, indicating the pool of behaviours from which our framework can choose
to assemble a system. Note that the actual set of components used is much larger than
this, including string utilities, file system and TCP socket APIs, abstract data type
implementations, etc. Here we focus on the components that have variation.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Defining Emergent Software using Continuous Self-Assembly, Perception and Learning. A:15

There is a single main component which is passed to our framework to start the
system. This component simply opens a TCP server socket and then accepts new client
connections, passing each one to a ‘request handler’. Our request handlers introduce
concurrency to the system and we have two different variants: one that creates a new
thread for every client, and one that uses a pool of threads on which to enqueue clients.
From the request handler, a client socket is then passed to a ‘HTTP handler’ which
parses the request and forms a response. We have four variants of this component,
which do or do not use caching / compression. We then have various versions of cache
and compressor components for HTTP handlers that use them.

These components can be used to create a wide range of valid web server architec-
tures at runtime, and the component population can be added to over time as new
components become available. All such components, and the ways in which they can
be combined, are dynamically discovered by our framework, and provide a wealth of
micro-variation where different collections of behaviours may provide different levels
of performance under different conditions. In total there are 42 possible configurations
of our web server that can be formed from these components.

Events and metrics The events and metrics generated by these components de-
termine how our emergent software framework perceives and understands the system
and its environment, and learns to best control the system in operation. We currently
use one metric type and one event type.

Our metric type is generated by all ‘request handler’ variants, and reports the total
response time to each request. Our event type is generated by all ‘http handler’ vari-
ants, and reports the request types that arrive at the server and their sizes. Because
we generate a lot of metrics, our Recorder implementation aggregates their values over
time, storing only the sum of response times and the number of metrics that have been
collected (allowing us to calculate an average without storing each individual metric).

4. EVALUATION
In this section we evaluate our emergent software framework, using our web server as
an example emergent system. Our evaluation was conducted with a real implementa-
tion of our web server, and our emergent software framework, running on rackmount
servers in a production datacentre. These servers have an Intel Xeon E3-1280 v2 Quad
Core 3.60 GHz CPU, 16 GB of RAM, and run Ubuntu 14.04. Similar specification ma-
chines were used as clients to generate workloads; these client machines were on a
different subnet to the servers (in a different building). We use a mixture of custom-
built workload patterns designed to explore our system’s characteristics in targeted
ways, and a real-world trace from NASA [NASA 1995]. Our evaluation covers four
major aspects of the design space for machine learning.

First, we present a detailed analysis of the ground truth for our system, showing
that different web server configurations (i.e. different compositions of the available
components) perform better in different operating environments. More specifically we
show that there exist cases in which one configuration A is best in some environments,
while another configuration B is best in others. We refer to this phenomena as ‘diver-
gent optimality’, which motivates our approach. We also show that this phenomena
exists not just under different workloads on a single platform, but is also observable
as a result of different hardware platforms, where elements such as the relative speed
of secondary storage access affect the corresponding performance levels of different
compositions of behaviour under varying workloads.

Second, we show that our approach can correctly select the optimal configuration,
from all those available, using only online learning and with no human input or prior
knowledge. This occurs continually such that if the operating environment changes
our platform will identify the optimal configuration for that new set of conditions.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 R. Rodrigues and B. Porter

0

2

4

6

8

10

12

14

16

18

0

8
0

1
6
0

2
4
0

3
2
0

4
0
0

4
8
0

5
6
0

6
4
0

7
2
0

8
0
0

8
8
0

9
6
0

R
e

sp
o

n
se

 T
im

e
 (

m
s)

Time (s)

None
Compression
Cache
Both

0

20

40

60

80

100

120

140

0

8
0

1
6
0

2
4
0

3
2
0

4
0
0

4
8
0

5
6
0

6
4
0

7
2
0

8
0
0

8
8
0

9
6
0

R
e

sp
o

n
se

 T
im

e
 (

m
s)

Time (s)

None
Compression
Cache
Both

Fig. 5. This graph illustrates the performance of four different configurations with the request pattern of
small text files when running on a high-performance server (left) and a Raspberry Pi (right).

Third, we present a deeper experimental evaluation of the issues involved in per-
forming real-time environment classification in combination with a reinforcement ma-
chine learning approach. We evaluate our existing approach to classification, using a
set of additional tests designed to stress the classifier, and from this we draw lessons
for future design directions in this area.

Finally, we examine the effects of observation window sizes on real-time machine
learning for emergent software. Here we configure the observation window of our
learning algorithm to different sizes and observe the results on convergence time and
relative stability of exploitation periods. Again we draw key lessons from this for de-
sign directions in real-time machine learning algorithms for emergent software.

All code used in our evaluation, along with instructions on how to repeat all of our
experiments, is available at [Filho 2016].

4.1. Divergent optimality
In this section we show how different web server configurations perform differently
when subjected to different request patterns. Results from custom-defined request pat-
terns are shown in Fig. 5–7; while results from the NASA trace are shown in Fig. 8.
For these graphs we have selected four specific configurations, from the 42 available,
that are most different in terms of the behaviour that they include.

Fig. 5 and Fig. 6 show the average response time of the web server for request pat-
terns in which the same file is repeatedly requested. When this is a text file, Fig. 5
shows that configurations with in-memory caching and without compression have bet-
ter average response times than configurations with both caching and compression.
However, for image files, Fig. 6 shows that the opposite of this is true. Compared to the
results from a Raspberry Pi, shown on the left side of the same figures, we see similar
trends but with different separations between each configuration, indicating that the
hardware differences are reflected in the relative performance of each configuration. As
an example, in Fig. 5 we see a significant separation between the cache+compression
configuration and the default configuration when running on a rackmount server plat-
form, while there is almost no separation on the Raspberry Pi platform.

In Fig. 7 and Fig. 8 we show the average response time of the web server for request
patterns in which many different files are requested, again illustrating the results on
both a rackmount server and Raspberry Pi platform. In detail, Fig. 7 shows results
from a custom request pattern in which each request is for a different small (∼3KB)
text file; while Fig. 8 shows results from replaying the NASA trace (which also has a

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Defining Emergent Software using Continuous Self-Assembly, Perception and Learning. A:17

0

5

10

15

20

25

30

0

8
0

1
6
0

2
4
0

3
2
0

4
0
0

4
8
0

5
6
0

6
4
0

7
2
0

8
0
0

8
8
0

9
6
0

R
e

sp
o

n
se

 T
im

e
 (

m
s)

Time (s)

None
Compression
Cache
Both

0

50

100

150

200

250

300

350

400

450

0

8
0

1
6
0

2
4
0

3
2
0

4
0
0

4
8
0

5
6
0

6
4
0

7
2
0

8
0
0

8
8
0

9
6
0

R
e

sp
o

n
se

 T
im

e
 (

m
s)

Time (s)

None
Compression
Cache
Both

Fig. 6. This graph illustrates the performance of four different configurations with the request pattern of
small image files when running on a high-performance server (left) and a Raspberry Pi (right).

0

5

10

15

20

25

30

0

8
0

1
6
0

2
4
0

3
2
0

4
0
0

4
8
0

5
6
0

6
4
0

7
2
0

8
0
0

8
8
0

9
6
0

R
e

sp
o

n
se

 T
im

e
 (

m
s)

Time (s)

None
Compression
Cache
Both

0

100

200

300

400

500

600

700

800

900

0

8
0

1
6
0

2
4
0

3
2
0

4
0
0

4
8
0

5
6
0

6
4
0

7
2
0

8
0
0

8
8
0

9
6
0

R
e

sp
o

n
se

 T
im

e
 (

m
s)

Time (s)

None
Compression
Cache
Both

Fig. 7. This graph illustrates the performance of four different configurations with the request pattern of a
variation of small text files when running on a high-performance server (left) and a Raspberry Pi (right).

0

20

40

60

80

100

120

0

8
0

1
6
0

2
4
0

3
2
0

4
0
0

4
8
0

5
6
0

6
4
0

7
2
0

8
0
0

8
8
0

9
6
0

R
e

sp
o

n
se

 T
im

e
 (

m
s)

Time (s)

None

Compression

Cache

Both

0

500

1000

1500

2000

2500

3000

0

8
0

1
6
0

2
4
0

3
2
0

4
0
0

4
8
0

5
6
0

6
4
0

7
2
0

8
0
0

8
8
0

9
6
0

R
e

sp
o

n
se

 T
im

e
 (

m
s)

Time (s)

None

Compression

Cache

Both

Fig. 8. This graph illustrates the performance of four different configurations with the request pattern of
the NASA trace [NASA 1995] when running on a high-performance server (left) and a Raspberry Pi (right).

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 R. Rodrigues and B. Porter

0

10

20

30

40

50

60

70

0

2
0

0

4
0

0

6
0

0

8
0

0

1
0

0
0

1
2

0
0

1
4

0
0

1
6

0
0

1
8

0
0

2
0

0
0

2
2

0
0

2
4

0
0

2
6

0
0

2
8

0
0

R
e

sp
o

n
se

 T
im

e
 (

m
s)

Time (s)

Learning
Cache (CH)
Both (FS, Gzip)

TEXT TEXT IMAGE

Fig. 9. Performance comparison between fixed web server architectures and our emergent platform, using
two different request patterns over time.

high degree of variation). In both of these graphs we see that the best configurations
from Fig. 5 and Fig. 6 are in fact the worst two configurations for these request pat-
terns. Both the server and Raspberry Pi results reveal the same general trend, but
again the hardware differences put the various web server configurations at vastly
different performance points relative to one another.

This clearly demonstrates that different configurations of our web server will per-
form differently when subjected to different request patterns at runtime. In particu-
lar, request patterns with high variation do not benefit from configurations that use
caching, whereas request patterns with low variation do. Additionally, the performance
of architectures that include compression is impacted by the compression ratio of the
files being requested in that pattern. While this may be intuitive to a human, in the
next section we demonstrate the feasibility of autonomously learning this information
from no prior experience – the basis of emergent software systems whose design is
a product of their environment. Furthermore, this environment includes the physical
hardware platform on which the system is running as demonstrated by our Raspberry
Pi experiments, a factor which is automatically accounted for by emergent software
systems in continually forming the most ideal composition of that software over time.

4.2. Online learning of emergent software
We now evaluate emergent software systems: continual, autonomous selection of the
optimal component compositions for the web server, by analysing the currently avail-
able perception data (events and metrics) and exploring how the various available
compositions of behaviour affect the perception of metrics across different environ-
ments. We achieve this using only unsupervised online learning, with no human input
and with no application-specific aids.

Fig. 9 shows a request pattern consisting of sequential requests for small (∼ 3KB)
text files for 700 seconds, followed by sequential requests for small (∼ 1MB) image
files for 1200 seconds, and finally returning to small text files. This experiment was
chosen as it contains two distinct kinds of request pattern for which different web
server architectures are known to be optimal, as shown in Sec. 4.1.

The graph shows the performance of our online learning approach, exploring avail-
able compositions, compared to the performance of two different static web server
configurations that are known to be optimal for the different phases of this request
pattern. At the beginning of the experiment, the learning system starts with no infor-

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Defining Emergent Software using Continuous Self-Assembly, Perception and Learning. A:19

0

10

20

30

40

50

60

70

80

0

8
0

1
6
0

2
4
0

3
2
0

4
0
0

4
8
0

5
6
0

6
4
0

7
2
0

8
0
0

8
8
0

9
6
0

R
e

sp
o

n
se

 T
im

e
 (

m
s)

Time (s)

Learning
None

Fig. 10. Performance comparison between a fixed web server architecture and our self-adaptive platform
when using the NASA request pattern [NASA 1995].

mation and so must go through the entire learning process to discover the architecture
most suited for the currently observed conditions.

In detail, when a new pattern is detected, the learning module performs an explo-
ration activity to find the best configuration for that pattern. This takes 420 seconds
(each configuration runs for wt = 10 seconds) and is clearly visible on the graph as two
large spikes; each spike shows experimentation with a particularly poorly-performing
configuration for this pattern. When learning is complete, our platform converges on
the optimal configuration. This can be seen at two times, one at time 250, and the
other at time 1200. At time 1900 we see another request pattern transition but, in
this case, to a pattern that the learning system has already seen; this does not trigger
a further learning phase and instead simply picks the best configuration from prior
experience. Comparing this against the two static configurations we can see that our
framework maintains optimal performance for the longest period of time, while both
static configurations are optimal at some times but not others.

Fig. 10 shows an experiment with our learning system using the NASA trace, which
is characterised by having small files (< 20MB) with a high degree of variation, mean-
ing that the same file is rarely requested consecutively. This trace was chosen as a rep-
resentation of a real-world scenario. Starting from no information at the beginning of
the experiment, the learning process maintains the same time of 420 seconds to learn
the most suitable configuration – again needing to experiment with each available con-
figuration for 10 seconds. We compare this to the performance of a fixed architecture
that had the best performance for this pattern, showing that after 420 seconds the
learning system converges to an architecture with an equivalent level of performance.
We note that, when compared to the results in Fig. 9, both the learning and static
architectures in this case have a relatively erratic level of performance caused by a
relatively high degree of variation in this request pattern.

These results demonstrate that, starting with no information at all, we can learn
and converge on an optimal configuration in real-time. As more data is collected by the
learning algorithm, more experience is gained and less learning takes place – but the
approach always maintains the ability to detect new conditions and react to them.

4.3. Real-time classification of environment
In this section we examine our range-based classification approach in more detail. As
described in Sec. 3.2.1, we took this approach to mitigate against self-referential fitness
landscape issues as well as mid-exploration environment changes.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 R. Rodrigues and B. Porter

te
xt

 v
ol

.
(M

B
)

im
ag

e
vo

l.
 (

M
B
)

vi
d
eo

 v
ol

.
(M

B
)

to
ta

l
re

q
u
es

ts

re
sp

on
se

 t
im

e
(m

s)

0.3 0 0 171

1880

5.7

min

max

High text / low variation

0 7.3 0 119

686

High image / low variation

53.9

0.1 0 0 70

1339

4.9

High text / high variation

0 0.3 0.2 111

6862.2

NASA trace

54.5

0.5

51.9

0.4

139.9

0.8

7.2

3.0

79.5

1.4

Fig. 11. Classification results: environment ranges detected for each workload.

0
100
200
300
400
500
600

re
sp

o
n

se
 t

im
e

 (
m

s)

Workload A Workload B A B A

Exploration ExplorationExploitation Exploitation

convergenceconvergence

instabilityinstability

convergence

Fig. 12. Classification experiment using request patterns that are difficult to distinguish.

We first examine the classified ranges that were identified for the workloads de-
scribed in Sec. 4.1. These ranges are shown in Fig. 11, and demonstrate that our clas-
sifier is able to detect most of the differences between our example workloads, but
not all. Specifically, the low-variation text, low-variation image, and NASA workloads
all have different classified environment ranges, allowing their corresponding opti-
mal architectures to be easily distinguished. By contrast, the low-variation text and
high-variation text workloads have very similar classified ranges, lacking a clear dis-
tinguishing feature; this is because the events that are generated by the web server
do not capture the idea of variation (the ratio of adjacent files in a request sequence
that are different) within a single media type. Developing ways to infer this kind of
attribute from the primary event stream, or otherwise report that additional event
detail would be useful to distinguish ranges, are interesting directions for future work.

Next we examine our learning system under difficult environment classification con-
ditions to further highlight the challenges involved. We do this in two different ways.
In Fig. 12 we show the possible effects of being unable to distinguish between two en-
vironment ranges, as is the case with high- and low-variation text scenarios. At the
beginning of this experiment we subject our system to a low-variation text workload
(Workload A) and allow the learning system to converge on an optimal configuration

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Defining Emergent Software using Continuous Self-Assembly, Perception and Learning. A:21

0

100

200

300

400

500

600

Mixed Workloads

Optimal Baseline

re
sp

o
n

se
 t

im
e

 (
m

s)

A A Workload AWorkload B Workload B

Fig. 13. Classification experiment using mid-exploration workload changes.

(a configuration using caching, in this case). We then change the workload to high-
variation text (Workload B). At this point (time 67) the learning algorithm observes a
degradation in performance, indicated by the large spike in response time, and waits
for three consecutive observations in this performance change. The learning algorithm
then triggers a new exploration activity, which finishes learning at time 111 and con-
verges on an optimal configuration for this workload (a configuration that does not use
caching, in this case). We then see an undesirable effect: the system oscillates between
two configurations, one of which performs very poorly and the other which performs
very well. This is because, having chosen the non-caching configuration, this brings
response time back down to a low level, within the limits of the response time used
in the classified range of Workload A. This triggers the system to assume that the en-
vironment is now Workload A, and so selects the best known configuration for that
environment, which is a configuration that uses caching. However, this configuration
performs very badly under the high variation workload, which in turn pushes response
time back into the range constructed for Workload B. This causes the system to assume
that the environment is now Workload A, and so selects the configuration that does not
use caching. This cycle then repeats until the workload changes at time 140.

The inability to appropriately distinguish environment ranges from one another,
combined with the use of response times to help trigger current environment range
checks, in this case causes a continuous cycle of poor decisions that need to be con-
stantly corrected. This demonstrates the critical nature of environment classification
in emergent software, and the challenge in doing this when the environment’s effects
are partially coupled with the performance characteristics of the system itself.

In Fig. 13 we show the possible effects of the workload changing during an explo-
ration activity. Here we start the system in Workload A, then during the exploration
activity we move to Workload B, then back to A and finally B again. Once the explo-
ration activity finishes we transition back to Workload A. When exploration finishes,
we see that the system converges on a configuration that is not quite as good as the
known optimal configuration for Workload A, having been unable to accurately com-
pare all architectures under the same conditions during exploration. This highlights
the need to better distinguish environment ranges during exploration activities; we
also note, however, that the end result of this experiment does still leave the system
relatively close to the optimal solution, despite our simple approach to classification,
suggesting that this is not as significant an issue as that highlighted in Fig. 12.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 R. Rodrigues and B. Porter

0

50

100

150

200

250

300

1 sec
2 sec

Fig. 14. Observation window experiments of 1 and 2 seconds.

0

20

40

60

80

100

120

140

160

180

5 sec
10 sec
20 sec

Fig. 15. Observation window experiments of 5, 10 and 20 seconds.

4.4. Window size effects in online learning
In all of the above results we use a common observation window size of 10 seconds.
In this section we investigate the use of alternative window sizes to see their affect on
learning behaviour. To do this we run our system against the NASA trace using five dif-
ferent observation window sizes, from 1 second up to 20 seconds. The effects of this are
shown in Fig. 14 and Fig. 15, with further extracted details shown in Fig. 16. In each
experiment we run our system for the same portion of the NASA trace and observe the
resulting response time behaviour of the system, the total number of adaptations that
are carried out over time, and the number of exploration activities that are triggered.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Defining Emergent Software using Continuous Self-Assembly, Perception and Learning. A:23

1sec 2sec 5sec 10sec 20sec

of classes 7 6 3 2 2

of
adaptations

480
(186)

376
(124)

141
(15)

104
(20)

84
(0)

Experiment
duration

1
hour

1
hour

50
min

39
min

48
min

Fig. 16. Adaptation details of observation window experiments, showing total number of adaptations per-
formed, and adaptations performed under exploitation shown in brackets.

The picture here is relatively complex, with a set of interacting features. Overall we
see that the experiment using a 10 second observation window size completes the trace
fastest, indicating that it had the best overall response times. There are two different
reasons for this. First, the use of smaller observation windows causes over-reaction
to the variations in the workload, and an unnecessarily large number of adaptations.
These adaptations, while cheap, do momentarily impact the response time of the web
server, resulting for example in the 5 second experiment having far higher peaks than
the 10 second experiment shown in Fig. 15. The data for the 1 and 2 second window
sizes, in Fig. 14, show even more volatility as the system attempts to over-fit to the en-
vironment. Second, the use of larger observation windows causes under-reaction to the
variations in the workload. This is exemplified by the 20 second observation window
experiment, which has two exploration phases, but never performs any adaptations
outside of those phases during exploitation, indicating that it has classified environ-
ment ranges that are very broad and so miss important details.

This demonstrates that the configuration of the optimal observation window size is
itself a challenge, and may have a different ideal setting across different types of appli-
cation, different workload characteristics, and different hardware platforms. Beyond
the static observation windows used here, it may also be useful to explore dynamic
observation window sizes, which continually balance both over- and under-reaction.

5. CONCLUSION
We have presented a definition of emergent software, based on our experience of im-
plementing emergent systems, along with our framework for orchestrating emergent
software and an example of a web server that exhibits these properties. From our def-
inition of emergent software, our implementation demonstrates divergent optimality
from different compositions (Sec. 3.1.1); addresses the issue that ‘everything is rela-
tive’ (Sec. 3.1.2) by implementing a moving baseline of optimality; presents a solution
to abstracting the environment in real time (Sec. 3.1.3) using sets of quantified min-
max event ranges; and uses a purely online approach to learning (Sec. 3.1.5) that takes
into account the self-referential fitness landscape issue (Sec. 3.1.7).

In future work we plan to investigate further points in the design space for each of
these concerns, as well as examining the topics of search space complexity, error prop-
agation, unexpected properties and developer interaction. In addition we will explore
further case studies of emergent software systems to help generalise our work to date
– including distributed federations of locally emergent systems.

ACKNOWLEDGMENTS

This work was supported by the UK’s EPSRC in the Deep Online Cognition project, grant number
EP/M029603/1. Roberto Rodrigues Filho would like to thank his sponsor, CAPES Brazil, for the scholar-
ship grant BEX 13292/13-7.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 R. Rodrigues and B. Porter

REFERENCES
Nelly Bencomo and Amel Belaggoun. 2014. A World Full of Surprises: Bayesian Theory of Surprise to Quan-

tify Degrees of Uncertainty. In Proc. of the 36th International Conference on Software Engineering (ICSE
Companion 2014). ACM, New York, NY, USA, 460–463.

Nelly Bencomo, Amel Belaggoun, and Valerie Issarny. 2013. Dynamic decision networks for decision-making
in self-adaptive systems: A case study. In Software Engineering for Adaptive and Self-Managing Sys-
tems (SEAMS), 2013 ICSE Workshop on. 113–122.

Emre Cakar, Sven Tomforde, and Christian Müller-Schloer. 2011. A role-based imitation algorithm for the
optimisation in dynamic fitness landscapes. In IEEE Symposium on Swarm Intelligence (SIS). 1–8.

Bihuan Chen, Xin Peng, Yijun Yu, Bashar Nuseibeh, and Wenyun Zhao. 2014. Self-adaptation Through In-
cremental Generative Model Transformations at Runtime. In Proc. of the 36th International Conference
on Software Engineering (ICSE 2014). ACM, New York, NY, USA, 676–687.

Ahmed Elkhodary, Naeem Esfahani, and Sam Malek. 2010. FUSION: A Framework for Engineering Self-
tuning Self-adaptive Software Systems. In Proc. of the 18th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. ACM, New York, NY, USA, 7–16.

John M. Ewing and Daniel A. Menascé. 2014. A Meta-controller Method for Improving Run-time Self-
architecting in SOA Systems. In Proc. of the 5th ACM/SPEC International Conference on Performance
Engineering (ICPE ’14). ACM, New York, NY, USA, 173–184.

Funmilade Faniyi, Peter R. Lewis, Rami Bahsoon, and Xin Yao. 2014. Architecting Self-Aware Software
Systems. In Proceedings of the IEEE/IFIP Conference on Software Architecture (WICSA). 91–94.

Jacques Ferber. 1999. Multi-agent systems: an introduction to distributed artificial intelligence. Vol. 1.
Addison-Wesley Reading.

Roberto Rodrigues Filho. 2016. Source code from this paper with instructions:
http://research.projectdana.com/taas2016rodrigues. (2016).

Dominik Fisch, Martin Janicke, Bernhard Sick, and Christian Muller-Schloer. 2010. Quantitative Emer-
gence – A Refined Approach Based on Divergence Measures. In Proceedings of the 4th IEEE Interna-
tional Conference on Self-Adaptive and Self-Organizing Systems. 94–103.

Karen Glocer, Damian Eads, and James Theiler. 2005. Online Feature Selection for Pixel Classification. In
Proceedings of the 22nd International Conference on Machine Learning (ICML ’05). ACM, New York,
NY, USA, 249–256.

Paul Grace, Danny Hughes, Barry Porter, Gordon Blair, Geoff Coulson, and Francois Taiani. 2008. Expe-
riences with open overlays: a middleware approach to network heterogeneity. In Proc. of the 3rd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2008. 123–136.

Sara Hassan, Nelly Bencomo, and Rami Bahsoon. 2015. Minimizing Nasty Surprises with Better Informed
Decision-Making in Self-Adaptive Systems. In IEEE/ACM 10th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems. 134–145.

Mike Hinchey, Sooyong Park, and Klaus Schmid. 2012. Building Dynamic Software Product Lines. IEEE
Computer 45, 10 (Oct 2012), 22–26.

Olga Kouchnarenko and Jean-Francois Weber. 2014. Adapting component-based systems at runtime via
policies with temporal patterns. In Formal Aspects of Component Software. Springer, 234–253.

D. Menasce, H. Gomaa, S. Malek, and J.P. Sousa. 2011. SASSY: A Framework for Self-Architecting Service-
Oriented Systems. IEEE Software 28, 6 (Nov 2011), 78–85.

NASA. 1995. NASA web server trace: http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html. (1995).
Barry Porter. 2014. Runtime Modularity in Complex Structures: A Component Model for Fine Grained

Runtime Adaptation. In Component-Based Software Engineering. ACM, 26–32.
Barry Porter, Matthew Grieves, Roberto Rodrigues Filho, and David Leslie. 2016. REX: A Development

Platform and Online Learning Approach for Runtime Emergent Software Systems. In Symposium on
Operating Systems Design and Implementation. USENIX, 333–348.

Barry Porter and Roberto Rodrigues Filho. 2016. Losing Control: The Case for Emergent Software Systems
using Autonomous Assembly, Perception and Learning. In International Conference on Self-Adaptive
and Self-Organizing Systems. IEEE, 40–49.

Mazeiar Salehie and Ladan Tahvildari. 2009. Self-adaptive software: Landscape and research challenges.
ACM Transactions on Autonomous and Adaptive Systems (TAAS) 4, 2 (2009), 14.

Richard S. Sutton and Andrew G. Barto. 1998. Reinforcement Learning: An Introduction. Bradford Book.
Sven Tomforde, Jörg Hähner, and Christian Müller-Schloer. 2013. Incremental Design of Organic Comput-

ing Systems - Moving System Design from Design-Time to Runtime. In Proc. of the 10th International
Conference on Informatics in Control, Automation and Robotics. 185–192.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Defining Emergent Software using Continuous Self-Assembly, Perception and Learning. A:25

Yiqiao Wang and John Mylopoulos. 2009. Self-repair through reconfiguration: A requirements engineering
approach. In Proceedings of the 2009 IEEE/ACM International Conference on Automated Software En-
gineering. IEEE Computer Society, 257–268.

Wei Zheng, Ricardo Bianchini, and Thu D Nguyen. 2011. MassConf: automatic configuration tuning by
leveraging user community information. In ACM SIGSOFT Software Engineering Notes, Vol. 36. ACM,
283–288.

ACM Transactions on Autonomous and Adaptive Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

