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Abstract

This article investigates the acoustic and articulatory correlates of vowel contrasts in

bilingual speakers. We analyse data from bilingual speakers of Twi (Akan) and Ghana-

ian English, with the aim of examining how the production of the advanced tongue

root vowel contrast in Twi relates to the production of the tense/lax vowel contrast in

Ghanaian English. These data are compared to tense/lax vowel data from monolingual

British English speakers. The acoustic results show that Twi and Ghanaian English

mainly rely on F1 for distinguishing [ATR] and [TENSE] vowels, whereas British En-

glish uses F1, F2, F3 and duration for the [TENSE] contrast. The ultrasound tongue

imaging data show tongue root distinctions across all languages, while there are consis-

tent tongue height distinctions in British English, no height distinctions in Ghanaian

English, and small height distinctions for some vowels in Twi. Twi has the weakest

correlation between F1 and tongue root advancement, which suggests that the [ATR]

contrast may involve additional strategies for pharyngeal cavity expansion that are not

present in [TENSE] vowels. In doing so, we show that bilinguals produce similar con-

trasts in similar ways across their two languages, but that language-specific differences

also persist, which may reflect different articulatory goals in each language.

Keywords: advanced tongue root; tense/lax vowels; ultrasound tongue imaging; bilin-

gualism; Akan; Twi; Ghanaian English

Highlights

• We compare the Twi [ATR] contrast to the Ghanaian English [TENSE] contrast

in bilingual speakers

• We also report data from a control group of British English speakers producing

the [TENSE] contrast

• We analyse acoustic and articulatory (ultrasound tongue imaging) data

• Bilingual speakers produce the Twi [ATR] and English [TENSE] contrasts in

similar ways, but with some language-specific differences

• The Ghanaian English [TENSE] contrast is more similar to Twi [ATR] than to

British English [TENSE]
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• Bilingual speakers may have different articulatory goals for similar contrasts across

their two languages

1 Introduction

Across the world, languages come into contact with one another on a daily basis due

to widespread multilingualism. In West Africa, which is the focus of our study, English

has been in contact with other languages for several centuries, and mass acquisition of

English has led to the development of distinctive varieties that have been influenced by

surrounding languages. This context is one where Thomason (2003) refers to ‘imperfect

learning’ taking place (i.e. societal second language acquisition) and then a second

language variety of English is passed on as a nativised variety to future generations.

Matras (2009, 225) suggests that in such contexts, speakers adjust word forms in the

target language to patterns of their native language. These adjusted forms are then

passed on to form an emerging new variety.

Cross-linguistically similar sounds represent a locus of potential contact-induced

change because listeners are more likely to make perceptual links between similar L1

and L2 categories. Models of L2 learning, such as the perceptual assimilation model

(PAM; Best 1995; Best & Tyler 2007), predict that an L2 contrast may be perceived as

similar to an L1 contrast, which may lead to a pair of L2 phonemes being assimilated

to a pair of phonetically similar L1 phonemes. This suggests that cross-linguistically

similar contrasts should be easily acquired, because speakers can use similar phonetic

strategies for implementing similar contrasts across their two languages. However, one

implication of using similar strategies is that bilinguals may not sound monolingual in

either language. Flege’s (1995) speech learning model (SLM) proposes that speakers

may assign cross-linguistically similar sounds to a shared L1-L2 category. Language-

specific category formation may eventually take place as learning progresses (Flege,

Schirru & MacKay, 2003), but many speakers, even those who are highly proficient

L2 users, retain some degree of ‘foreign accent’ in their L2 even after many years of

learning (Flege, 1995; Piske, Mackay & Flege, 2001; Mennen, 2004). These findings have

been used to support the idea that bilinguals have a shared L1-L2 phonological space

(Flege, 1995). Other models, such as the Second Language Linguistic Perception model

(L2LP; Escudero 2005; van Leussen & Escudero 2015), instead claim that bilinguals

have separate perception grammars. This facilitates the learning and eventual use of
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language-specific production and perception strategies, with speakers potentially able

to achieve monolingual-like performance in both languages.

Research into the acoustic behaviour of proficient bilingual speakers has demon-

strated that while crossover between languages does occur (Queen, 2001; Mennen,

2004; Fowler, Sramko, Ostry et al., 2008), speakers may develop separate phonetic

strategies for similar sounds in their two languages (Sundara, Polka & Baum, 2006).

However, while contact varieties also typically arise from individual bilingualism, the

timescale of this influence can problematise straightforward predictions regarding L1-

L2 interactions. In relation to the above models of L2 learning, it may be the case

that there are no monolingual speakers in many language contact scenarios, so the

language varieties being acquired may already be heavily L2-influenced. To this end,

studies of contact varieties show varying degrees of convergence between sound systems

(O’ Rourke, 2005; Simonet, Rohena-Madrazo & Paz, 2008; O’ Rourke, 2012; Simonet,

2011; Mennen, Mayr & Morris, 2015), with systems that are typologically similar pre-

contact becoming even more similar as a result of contact (Colantoni & Gurlekian, 2004;

Amenguala & Chamorro, 2015). In cases where the L2 has undergone intense contact

with the L1, such as the relationship between English and various Celtic languages

within the United Kingdom, there may be very few differences between bilingual and

monolingual speakers of the same language. For example, Mayr, Morris, Mennen et al.

(forthcoming) examine the effects of bilingualism and long-term contact between Welsh

and English and find no effects of language (Welsh/English) or linguistic background

(bilingual/monolingual) on the acoustic realisation of vowels in South Wales. They

argue that long-term contact has lead to a very high degree of convergence between the

two vowel systems, leaving little space for individual bilingualism to exert an influence.

While the majority of research to date has focused on the acoustic and perceptual di-

mensions of bilingualism and language contact, there is also a growing body of research

focusing on speech articulation. Mennen, Scobbie, de Leeuw et al. (2010) review work

on language-specific articulatory settings, while Gick, Wilson, Koch et al. (2004) and

Wilson & Gick (2014) show that proficient French-English bilinguals in Canada may

have distinct interspeech postures for each language. The use of articulatory data raises

questions about how we define ‘similarity’ between cross-linguistic contrasts. Cross-

linguistic similarity tends to be operationalised in a number of different ways (Chang,

2015), with the SLM and L2LP models defining similarity in acoustic and auditory

terms (Flege, 1995; Escudero, 2005), and PAM defining similarity at the articulatory-

gestural level (Best & Tyler, 2007). While there is often parity between acoustics and
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articulation, this relationship is nevertheless complex and non-linear (Stevens, 1997).

As such, the use of articulatory data can help to further illuminate the kinds of simi-

larity that may be involved in cross-linguistic influence, such as whether speakers use

different articulatory mechanisms to produce similar acoustic contrasts and whether

this information could be available to the listener.

In this study, we investigate the articulatory and acoustic mechanisms behind bilin-

gual speech production in a long-term language contact context. In particular, we

focus on whether speakers use the same acoustic and articulatory cues in order to pro-

duce cross-linguistically similar vowel contrasts. In doing so, we report acoustic and

ultrasound data from bilingual speakers of Twi, an Akan language of West Africa, and

Ghanaian English, a variety that originally developed from L2 learning but has sta-

bilised into a societal speech variety. We examine what has been called the ‘advanced

tongue root’ vowel contrast in Twi and compare it to the so-called ‘tense/lax’ vowels of

Ghanaian English in order to examine whether bilingual speakers use similar articula-

tory strategies for classes of sounds that may be considered similar (but not equivalent)

across their two languages. We compare these data to a control group of monolingual

British English speakers in order to assess whether the articulatory strategies used in

Ghanaian English are more similar to Twi or British English. By comparing within-

language contrasts that share some similarity across languages, we examine whether

these contrasts are produced in similar or language-specific ways, and explore what this

can tell us about L1-L2 phonetic convergence in a language contact scenario.

1.1 Twi and Ghanaian English

In order to shed light on these questions, our study analyses data from bilingual speakers

of English and Akuapem Twi, a Kwa (Niger-Congo) language of Ghana. Akuapem Twi

is a variety of Twi, which along with Fante and Asante Twi, make up the Akan language

group. Akan is the most widely spoken Ghanaian language group, and is the L1 of about

43% of the population of Ghana (Huber, 2004). Akan, usually Twi, is often used as a

non-English Lingua Franca in Ghana, and around 30% of Ghanaians additionally speak

Akan as an L2 making it comprehensible to the majority of the population. Ghana

is a highly multilingual and multicultural country with around 70 ethnic groups and

languages. As such, it is not uncommon for children to grow up speaking two or three

languages in addition to English in the home. Early schooling may be conducted in

a non-English language based on teacher availability and local social conditions, while
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secondary schooling is conducted in English (Huber, 2004, 844).

Ghanaian English has developed over a number of centuries of contact between En-

glish and other Ghanaian languages (Huber, 2004). In what is now Ghana, English was

used in education much earlier than in other West African countries, meaning that a

large proportion of the population has been able to speak English for several hundred

years. After the initial acquisition of English as an L2, this variety of the language has

been passed on as a nativised variety to subsequent generations meaning that in Ghana

there are three possible kinds of English: (1) Pidgin English; (2) English learnt as an L2;

and (3) Ghanaian English (Todd, 1982), which may also vary depending on the ethnic

background of the speakers (Huber, 2008; Akpanglo-Nartey, 2011). Huber (2008, 90)

sees these varieties as points on a continuum and further distinguishes between ‘Cul-

tivated Ghanaian English’, spoken in formal settings by highly educated speakers and

modelled extensively on British English pronunciation, and ‘Conversational Ghanaian

English’, which is further removed from British English and used in less formal settings.

Huber (2008) reports that the 12 monophthongs of Standard Southern British En-

glish may be merged to seven in Conversational Ghanaian English and L2 English, with

length distinctions neutralised and some categories collapsed: /i e E a O o u/. However,

the ‘Cultivated’ variety spoken by highly-educated speakers maintains the contrast be-

tween tense and lax vowels found in Southern British English. The speakers in the

present study are highly-educated university staff and students, which means that we

expect the tense/lax distinction to be present in our Ghanaian English data. In terms

of the dynamics of bilingual and contact-influenced speech production, we expect our

Ghanaian English data to have two possible levels of influence. The first concerns the

effects of transfer in bi- or multi-lingual speakers, who may behave differently from

monolingual speakers. The second is that Ghanaian English has been in long-term

contact with a range of Ghanaian languages. Our study examines phonemic contrasts

in Ghanaian English and similar contrasts in Twi, and considers the impact of these

two possible levels of influence.

1.2 Advanced tongue root vowels

Within this multilingual context, our study investigates the realisation of what has

been called the ‘advanced tongue root’ contrast in Twi, and what has been called the

‘tense/lax’ contrast in English (we use the notation [ATR] and [TENSE] as descriptive

shorthand for these terms). Along with a number of languages in Africa and elsewhere,
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Twi engages in a harmonic alternation between [+ATR] and [−ATR] vowels (see Casali

2008 for a thorough review of tongue root harmony in African languages). Twi (in-

cluding Akuapem and some Asante dialects) has a 10 vowel system, where vowels in a

particular word must all belong to Set 1 /i e u o æ/ or Set 2 /I E U O A/ (Dolphyne,

1988, 2). Much of the previous phonetic and phonological literature on Akan and other

languages has referred to the distinguishing feature between these two sets as primarily

a tongue root phenomenon, using the feature [+ATR] for set 1, and [−ATR] for set

2 (Ladefoged, 1968; Perkell, 1971; Hess, 1992; Tiede, 1996; Casali, 2003, 2008; Hudu,

Miller & Pulleybank, 2009). There is some disagreement in the literature about the

phonemic status of [æ] and [A] in Akan. Some authors consider there to be one phoneme

/a/ with allophonic variants depending on dialect, such as in some varieties similar to

Asante and Fante (Clements, 1981; Lindau-Webb, 1987; Westermann & Ward, 1990;

Abakah, 2013). As a result, phonetic studies of these dialects tend not to include these

vowels in their analysis (Hess, 1992; Tiede, 1996). However, Akuapem Twi (the variety

in our study) is reported to have a ten vowel system with /æ A/ participating in the

[ATR] contrast. For instance, Ladefoged (1968, 37) reports that ‘some forms of Twi’

have the full ten vowel set, while Dolphyne (1988, 2) describes the tenth vowel quality

/æ/ as occurring in the Akuapem dialect. Therefore, our study also aims to provide

phonetic data on /æ A/ in Akuapem Twi and provide an initial examination of whether

the distinction between these vowels is similar to other [ATR] pairs.

The primary acoustic correlate of [ATR] is F1 frequency, with [+ATR] vowels being

produced with lower F1 values than [−ATR] vowels due to the larger pharyngeal cavity

in [+ATR] (Halle & Stevens, 1969; Jacobson, 1978; Lindau, 1979; Hess, 1992; Fulop,

Kari & Ladefoged, 1998; Local & Lodge, 2004; Casali, 2008; Starwalt, 2008; Kang & Ko,

2012). Some studies also find differences in F2, but the significance and direction of this

effect may vary according to language and vowel quality (Lindau, 1979; Jacobson, 1980;

Fulop, Kari & Ladefoged, 1998). [+ATR] vowels are also typically longer in duration

than [−ATR] vowels (Hess, 1992). Another acoustic correlate of [ATR] is spectral slope

or timbre (Fulop, Kari & Ladefoged, 1998; Guion, Post & Payne, 2004). [+ATR] vowels

tend to be described as more ‘breathy’, whereas [−ATR] vowels are described as more

‘creaky’ (Stewart, 1967; Halle & Stevens, 1969; Jacobson, 1980; Edmonson & Esling,

2006). This may correspond with a steeper spectral slope in [+ATR] vowels, which

has been characterised by calculating the difference between the amplitudes (Fulop,

Kari & Ladefoged, 1998) or bandwidths (Hess, 1992) of the first and second formants.

For example, in their study of Degema, a Niger-Congo language of Nigeria, Fulop,
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Kari & Ladefoged (1998) find that [+ATR] vowels in the /i I/ and /o O/ sets have

higher normalised A1–A2 than [−ATR] vowels, but that the other vowel pairs are not

distinguished by this measure.

While the phonological label ‘[ATR]’ has become common usage, articulatory data

shows that the ‘advanced’ tongue root set also involves lowering of the larynx in order to

expand the pharyngeal cavity (Lindau, 1975). Lindau considers pharyngeal expansion

to be the primary correlate of the alternation, rather than just tongue root activity,

leading her to advocate the feature [EXPANDED] in place of [ATR]. This distinction

also recognises that the tongue root is not completely independent of tongue height

due to the tongue’s hydrostatic properties. Lindau’s analysis is supported by a number

of instrumental studies, which also show that the [ATR] contrast may involve more

than just tongue root advancement (Stewart, 1967; Ladefoged, 1968; Lindau, Jacobson

& Ladefoged, 1972; Painter, 1973; Lindau, 1979; Lindau-Webb, 1987; Tiede, 1996).

For example, Tiede (1996) reports MRI data on an Akan speaker and shows that the

[+ATR] vowels not only involve larynx lowering and tongue root advancement, but also

lateral expansion of the pharynx. Alongside Lindau’s findings, this suggests that the

speech production target in Akan is better characterised in terms of pharyngeal cavity

expansion, and that tongue root advancement is just one potential contributor towards

this goal. While we recognise that [EXPANDED] better captures this phenomenon,

in this study we use the more widely recognised [ATR] notation as shorthand for this

contrast, but with full recognition that the contrast is likely to be realised using more

than just tongue root advancement.

1.3 The tense/lax contrast

Some early approaches towards English phonology equated the English contrast between

‘tense’ and ‘lax’ vowels with the same mechanisms as the Akan [ATR] contrast (Halle

& Stevens, 1969; Perkell, 1971), which continued into some foundational textbooks on

English phonology (Giegerich, 1992; Kenstowicz, 1994). However, articulatory studies

such as Ladefoged (1972) and Tiede (1996) demonstrate that tense and lax vowels in

American English are distinguished using a variety of tongue height and tongue root

differences and that their articulation is somewhat different from languages such as Twi.

The primary acoustic cue to the English [TENSE] contrast is more peripheral formant

frequencies for tense vowels (Hillenbrand, Getty, Clark et al., 1995). Tense vowels also

have longer duration (Lehiste & Peterson, 1961; Leung, Jongman, Wang et al., 2016),
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but this may only be a secondary perceptual cue for listeners (Hillenbrand, Clark &

Houde, 2000).

Previous research on bilinguals and the tense/lax contrast shows that speakers from

different language backgrounds may rely on different cues for distinguishing vowels in

the L2. While the American English listeners in Hillenbrand, Clark & Houde (2000)

rely mainly on spectral cues in distinguishing these vowels, Spanish learners may use

temporal and spectral information equally (Bohn, 1995). However, this may vary ac-

cording to the target dialect of the language that is being learned. Escudero & Boersma

(2004) find that Spanish learners of Scottish English can use their L1 strategies to accu-

rately perceive the English /i I/ contrast, whereas Spanish learners of Southern British

English are forced to develop new strategies due to phonetic differences in how the two

varieties of English implement this contrast. In doing so, this study demonstrates the

importance of considering the phonetic makeup of the target dialect in cross-language

sound acquisition.

1.4 The present study

This study investigates the production of the [ATR] contrast in Twi and the [TENSE]

contrast in Ghanaian English. We have chosen these contrasts due to the hypothe-

sised similarity between them, which we predict will lead to greater transfer between

languages in bilingual speakers. The [ATR] pairs in Twi and tense/lax pairs in En-

glish have some acoustic similarity and the [−ATR] vowels in Twi are represented

orthographically using the IPA symbols for lax vowels, presumably due to perceived

similarity when a writing system was derived for Twi. We therefore consider them an

interesting testing ground for what happens in terms of the production of perceptually

similar sounds in contexts of language contact. The above literature would suggest

that speakers in a contact situation initially equate similar sounds across languages

and may then disambiguate them as learning develops, or might instead pass on an L2-

accented variety to future generations. In order to investigate the mechanisms behind

the development of a contact-induced variety, our study investigates the acoustic and

articulatory mechanisms in the production of contemporary Ghanaian English and Twi

vowels, comparing them to monolingual British English speakers as a control. Section

2 details the methods for the study, while Section 3 reports an acoustic analysis of

vowel productions in Twi, Ghanaian English and British English, focusing on formant

frequencies, formant amplitudes, and duration. Section 4 reports an analysis of the ul-
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trasound data, including measurements of tongue root position and maximum tongue

height, as well as correlations between tongue root/height and tongue root/F1. Section

5 discusses the implications of the results for accounts of bilingual speech production

and the articulatory correlates of [ATR] and [TENSE] vowels.

2 Methods

2.1 Speakers

Speech production data were recorded from six Twi-English bilinguals (4 female, 2 male)

in a classroom at the University of Ghana in Accra, Ghana, and six British English

monolinguals (4 female, 2 male) in a sound-attenuated booth in Lancaster University

Phonetics Lab. The Ghanaian speakers were aged 21–35 and were bilingual in Twi and

English. One female speaker additionally spoke Ga, a language of the Accra region.

All of the British English speakers were aged between 19–21 years old and grew up

within a 15 mile radius of each other in West Yorkshire, England, before moving away

to attend university at the age of 18. For the purposes of reference, each speaker is

given an alphanumeric code, such as ‘GF01’ or ‘BM01’ (where G = Ghanaian, B =

British, F = female, M = male).

2.2 Data recording

Both groups of speakers were recorded using identical hardware and software in their

respective locations. Midsagittal B-mode ultrasound images were generated using a

Mindray DP-2200 scanner with a 5 MHz probe set to image at 8.62 cm depth and 114◦

field of view. The ultrasound probe was stabilised using an Articulate Instruments head-

set (Articulate Instruments, 2008). One drawback of this headset is that jaw movement

is constrained due to the fixed placement of the probe under the chin, which may in-

hibit the use of jaw movement for varying tongue position. Noiray, Iskarous, Bolaños

et al. (2008) find that the tongue makes a greater contribution to vowel distinctions

such as /i I/ than the jaw for most speakers, but we nevertheless note that the headset’s

constraining effect on jaw movement may have had an effect on some aspects of vowel

production in these data. Ultrasound images were recorded at ∼30 frames per second to

a laptop computer via a PCIe frame grabber, and then deinterlaced to achieve a frame

rate of ∼60 frames per second. The acoustic signal was recorded at 22.05 kHz using a
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BeyerDynamic Opus 55 Mk II omnidirectional microphone attached to the ultrasound

headset. The signal was preamplified and high-pass filtered at 75 Hz (12 dB/octave

slope) using a Grace m101 preamplifier to reduce any hum or low frequency rumble,

and then passed to a Sound Devices USBPre2 audio interface connected to the laptop

computer. Audio-video synchronisation was achieved by a tone that was triggered at

the onset of each recording, which was then passed to a unit that imposed a bright

flash on the corner of the ultrasound image in real-time, and also recorded the tone

on a separate audio channel (see Wrench & Scobbie 2008 for this method). The audio

tone and the video flash were then aligned in post-processing. All prompt presentation

and data recording was handled by the Articulate Assistant Advanced software package

(Articulate Instruments, 2014).

Two female Ghanaian speakers had to be excluded from the ultrasound analysis for

the following reasons. Speaker GF04 imaged very poorly on the ultrasound display,

with the hyoid bone shadow obscuring most of the tongue back and root. This meant

that the data were of insufficient quality for analysing tongue root contrasts. Speaker

GF03 was removed from the data because the synchronisation signal (described above)

failed to record during the experiment, and there were few sounds from which we could

have inferred possible audio-video alignments, such as lingual consonant closures. As

a result, we report data on six Twi speakers in the acoustic analysis, but only four of

these speakers in the ultrasound analysis.

2.3 Stimuli

The vowels analysed and the words used to elicit them are provided in Table 1. Note

that Ghanaian English typically has monophthongal realisations of the vowels in made,

sewed and hoard (Huber, 2004), which is similar to our variety of British English (West

Yorkshire), where vowels that are typically diphthongs in Southern British English

are produced as monophthongs (Hughes, Trudgill & Watt, 2012). Both varieties are

also reported to show very little contrast between /æ/ and /A/, although durational

differences may exist for some speakers (Huber, 2004; Hughes, Trudgill & Watt, 2012).

Due to the contested status of /æ/ and /A/ in Twi (see Section 1.2) we do not include

this vowel pair in our statistical modelling for any language variety, a decision that was

also motivated by the noticeably different acoustic and articulatory values between these

vowels in comparison to other [ATR] vowel pairs (e.g. see Section 3). We anticipate that

this could also be a consequence of our materials, which may have induced lexically-
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specific productions. However, we do report descriptive data on these vowels in all

varieties by including them in plots of the various measurements that we discuss.

Table 1: Words used for eliciting vowels in Twi and English.

Twi English

Phoneme Word IPA Translation Word IPA

i pi pi many heed hid
I fI fI to vomit hid hId
e hwie S4e empty made med
E pE pE to like head hEd
u bu bu to break who’d hud
U bU bU to be drunk hood hUd
o mo mo well done sewed sod
O bO bO to strike hoard hOd
æ patu pætu pretend had hæd
a/A daa dA everyday hard hAd

Each word was elicited three times in a randomised order. Two Twi tokens (from

speaker GF03) and five Ghanaian English tokens (one from speaker GF01, four from

speaker GF03) were removed from the data due to recording problems. The Ghanaian

speaker GF01 also mispronounced all of her English /o/ vowels in the word sewed, so we

removed her English /o/ and /O/ vowels from all statistical analyses (but we show these

vowels in the relevant F1∼F2 plot for illustrative purposes). This resulted in 525 tokens

in total for the acoustic analysis (178 Twi, 167 Ghanaian English, 180 British English).

As ultrasound data was discarded from two of the six Twi-English bilinguals (GF03

and GF04) there are 413 tokens in the articulatory analyses (120 Twi, 113 Ghanaian

English, 180 British English).

2.4 Acoustic analysis

We examine five acoustic parameters, which are detailed below. This includes the first

three formant frequencies (F1; F2; F3), normalised A1–A2, and duration.
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2.4.1 Segmentation

All vowels were segmented by hand by a paid student research assistant and every token

was checked by the authors. The onset of the vowel was defined as the first period of

quasi-periodic energy following the preceding segment, or the onset of a steady period

of F2 if the preceding segment was an approximant or nasal. The offset of the vowel

was defined as the offset of F2 as visible on the wide-band spectrogram. Duration was

calculated as the duration of the labelled vowel portion and then converted to z-scores.

2.4.2 Formant frequencies

F1, F2 and F3 values were estimated using Praat from a 25 ms Gaussian window at the

temporal midpoint of the vowel. We plotted formant trajectories by vowel pair for each

speaker in order to determine the validity and comparability of examining the vowel

midpoint and we found that this was comparable across the respective vowel pairs. For

instance, while the /e/ in a Twi word such as hwie is preceded by /S4/, there was only

a visible influence of labialisation in around the first 25% of the vowel’s duration, with

the formants after this point being comparable to those in the vowel in /pE/. Praat’s

LPC Burg method was used for formant estimation, which was set to find 5 formants

up to the maximum formant value. The maximum formant value varied according to

vowel identity. This was carried out in order to optimise the LPC procedure and reduce

erroneous estimates, which are more likely when a single LPC order is used for all vowels

(Vallabha & Tuller, 2002, 2004; Escudero, Boersma, Rauber et al., 2009). We specified

different values for each vowel/gender, which were roughly based on the median values

in Escudero, Boersma, Rauber et al. (2009), and we automatically implemented this

procedure via a custom Praat script. Visual inspection of vowel plots and manual

measurement of a subset of tokens revealed no obvious estimation errors. All formant

values were then converted to z-scores to better facilitate speaker comparison.

2.4.3 Formant amplitudes

The difference between the first and second formant amplitudes (A1–A2) was measured

because this has previously been reported as a correlate of phonatory differences in the

[ATR] contrast, such as breathiness (see Section 1.2 for further details). However,

it is not possible to compare formant amplitudes in [ATR] vowel pairs with different

formant frequencies, because formant amplitude and frequency are correlated (Fant,
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1960, 56). This makes it impossible to determine whether formant amplitude differences

in vowel pairs are the result of phonatory differences or formant frequency differences

(Ladefoged & Fant, 1997). Therefore, we implemented a normalisation procedure in

order to account for this using the method in Ladefoged & Fant (1997) and Fulop,

Kari & Ladefoged (1998). The normalisation procedure involves generating a model

of the spectrum using the measured formant frequencies but fixed formant bandwidths

and a fixed glottal pulse. This allows us to compare the model’s formant amplitudes,

which assumes no variation in bandwidth or glottal pulse across different vowels, to

the measured amplitudes. If the two sets of values differ then we can assume that any

differences between vowel pairs may be a consequence of phonatory differences.

We modelled the spectral peaks of a vowel L(f) over 100–4000 Hz based on the

modelling in Fant (1960). This comprised the sum of the effect of the first three formants

on the spectrum H1(f) + H2(f) + H3(f), plus the contribution of higher poles above

the specified number of formants Kr(f), plus the combined effects of the glottal source

and lip radiation function S(f). The general form of the model is represented in (1).

L(f) =
∑

Hn(f) +Kr(f) + S(f) (1)

The contribution of each of the first three formants to the spectrum Hn(f) is defined

in (2). We used the model bandwidths specified by Fulop, Kari & Ladefoged (1998):

B1 = 30 Hz, B2 = 80 Hz and B3 = 150 Hz.

Hn(f) = 20log10
F 2
n + (Bn/2)2√

(f − Fn)2 + (Bn/2)2
√

(f + Fn)2 + (Bn/2)2
(2)

The contributions of the higher formants is defined in (3). The coefficients Ar and

Br represent the higher pole corrections. For a spectrum with three formants, r = 3,

A3 = 0.72 and B3 = 0.0033. F1 is calculated as c/4le where c = 35 000 cm/s (speed of

sound in the vocal tract) and le = 17.5 cm (effective vocal tract length), giving a value

of F1 = 500 Hz.

Kr(f) = Ar

(
f

F1

)2

+Br

(
f

F1

)4

(3)

Finally, we model the combined effects of the −12 dB/octave slope of the glottal

spectrum and the +6 dB/octave slope of the lip radiation function, which is defined in
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(4).1 The coefficient g is nominally used to represent phonation type, where g = 1.0.

S(f) = g

(
20log10

(
2

f/100

1 + (f/100)2

))
(4)

The model was implemented as a function in the R programming language, with

measured formant frequencies for each vowel token as inputs and the modelled formant

amplitudes (A1–A2) as outputs. The measured A1–A2 values were estimated automat-

ically using Praat’s LPC Burg algorithm with equivalent settings to those described

for the formant frequency analysis. A frequency bin of 10 Hz was defined around the

measured formant for each token and the amplitude value within this bin was taken to

represent the formant amplitude. The model A1–A2 values were then subtracted from

the measured A1-A2 values in order to obtain the normalised values. These normalised

values were then converted to z-scores.

2.5 Ultrasound analysis

Ultrasound tongue imaging was used in order to estimate the position of the tongue

root and the maximum height of the tongue during vowel production. The ultrasound

method used here images tongue root advancement in the midsagittal plane, but is

not able to simultaneously capture movements in other planes, nor obtain information

about lateral expansion of the pharynx. Accordingly, our analysis is limited to mid-

sagittal data on tongue position. Splines were automatically fitted to the surface of the

tongue across the vowel’s labelled duration using the Articulate Assistant Advanced

software (Articulate Instruments, 2014). Palate traces were largely unreliable for the

majority of the Twi-English bilinguals so these are not discussed any further. Splines

were hand corrected where necessary, which was particularly the case for the Twi and

Ghanaian English data due to our inability to pre-screen subjects for imaging quality.

We exported the fitted splines at the temporal midpoint of each vowel token and plotted

them by vowel pair for each speaker for visual inspection. After checking that all splines

adequately represented tongue shape, we modelled tongue root and height differences

by extracting parameters based on the coordinates of the labelled tongue splines.

Previous research finds that the point of narrowest constriction between the tongue

and hard palate may be a better predictor of vowel height in front vowels than the

1Note that in equation (4) we use 20log10 whereas Fulop, Kari & Ladefoged (1998) use −20log10.
The latter appears to be a typesetting error because the negative value produces a positive slope rather
than a negative slope (compare also with Fant 1960, 49–51).
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Figure 1: Example ultrasound images of /E/ (left) and /e/ (right) produced by the
same speaker with overlaid tongue spline (in red) and fiducial measurement line (in
yellow). Tongue root position was calculated in terms of the distance of the yellow
line from the origin of the ultrasound image to the point where it intersects the tongue
spline. The tongue root measurements for this speaker across all vowels ranged between
29.08–56.69 mm (all distance measurements were converted to z-scores for analysis; see
text for details).

highest point of the tongue (Whalen, Noiray & Bolaños, 2010), which is unsurprising

given that vocal tract narrowing is the main contributor to acoustic resonances (Wood,

1982). However, we were not able to implement a measure of constriction degree for

the current data due to the lack of reliable palate traces for Twi and Ghanaian English.

Also, while we obtained data on the location of the occlusal plane for the British English

speakers, this was not available for the Ghanaian speakers, so we were unable to rotate

the tongue splines to an anatomically standardised landmark. As a consequence, tongue

height was estimated using a simple measure corresponding to the highest point of the

tongue along the y-axis of the ultrasound spline at the temporal midpoint of the vowel.

Tongue root position was estimated by drawing a fiducial line from the origin of the

ultrasound image (representing the transducer underneath the surface of the chin) to

the left-hand edge of the ultrasound image. The line was positioned at an angle that

appropriately captured the tongue root position across all tokens of a respective vowel

pair within a given speaker, while also avoiding regions of the image where the tongue

root could not be reliably identified (Gick, Pulleybank, Campbell et al., 2006). This line

was initially positioned at 45◦ for all speakers as a guideline, but was modified in each
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case to fit individual speakers. We then extracted the radial distance from the origin

of the ultrasound image to the point where the labelled tongue spline intersected the

fiducial line for each token. Example ultrasound frames with overlaid tongue spline and

measurement line are presented in Figure 1. All distance measurements were calculated

in millimetres at the temporal midpoint of the vowel and then converted to z-scores. The

sign of the tongue root distance measurements was flipped for ease of interpretation, so

that higher values indicate greater tongue root advancement and lower values indicate

greater tongue root retraction.

2.6 Statistical analysis

Linear mixed-effects regression models were fitted in R using the lme4 package (Bates,

Maechler, Bolker et al., 2015). We fitted separate models to the F1, F2, F3, A1–A2, du-

ration, tongue root position and maximum tongue height values. All numerical values

were z-scored to better facilitate speaker comparison. The predictor variables are each

token’s binary [ATR] or [TENSE] value, each vowel’s identity as ‘front’ or ‘back’, and

an interaction between [ATR/TENSE] and vowel frontness. We include vowel frontness

because exploratory analysis showed that this was the biggest axis of variation in the

vowel data and that [ATR/TENSE] pairs sometimes pattern differently between front

and back vowels. Front vowels are defined as /i I e E/ and back vowels are defined as /o

O u U/. As discussed previously, we did not include /æ A/ in the statistical modelling,

because it is clear that they do not behave in a similar way to the rest of the vowels in

Twi or either variety of English (see Section 3). We additionally tested all models with

these vowels included and the results were identical in terms of the significance and

direction of effects, except for a very small difference in the Twi tongue height model,

which we discuss in Section 4.2. However, we believe it to be more theoretically justifi-

able to leave these vowels out of the models, especially because a classification of /æ A/

into front/back is problematic in Twi and we do not have not enough data to include a

third ‘mid’ category without losing statistical power. In order to account for patterns in

the production of /æ A/ within each variety we include these vowels in all of the acoustic

and articulatory plots. All of our regression models include speaker as a random inter-

cept, and we obtained p-values using the lmerTest package in R (Kuznetsova, Brockhoff

& Christensen, 2016). We model the data for each language/variety separately because

we are primarily interested in comparing within-language effects rather than between-

language comparisons. Note that the acoustic analysis includes six Ghanaian and six
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British speakers, whereas the articulatory analysis contains four Ghanaian speakers and

six British speakers, due to the ultrasound imaging problems mentioned in Section 2.2.

3 Acoustic results

In this section we report the results of the acoustic analysis for each group, which

includes formant frequencies (F1, F2, F3), normalised A1–A2, and duration.

3.1 Twi

Figure 2 shows mean F1∼F2 values for each speaker in the Twi data. The vowel plot

shows that all speakers differentiate most of the vowel pairs in F1, with the exception of

GF03’s /o O/, GM01’s /u U/ and GF01’s /æ A/. F2 differences mainly appear amongst

the front vowels, with the [+ATR] vowels generally showing higher F2. The /æ A/

contrast was not included in the statistical model so we briefly discuss it here. The

vowel plots show that /æ/ has distinctly lower F1 and higher F2 values than /A/ for

5/6 speakers, with GF02 and GF03 producing /æ/ with similar values to /e/ or /I/.

GF01 is the only speaker who does not follow this trend, producing both vowels with

more similar formant values. Overall, this suggests that /æ A/ are acoustically distinct

for most Twi speakers, but the very large F1 differences show that they seems to behave

differently from the other [ATR] vowel pairs.

The statistical models for each acoustic parameter in the Twi data are reported

in Table 2. There is a significant effect of [ATR] on F1, with [−ATR] vowels being

produced with higher F1 values, which supports previous findings on correlates of [ATR]

contrasts (Lindau, 1979; Hess, 1992; Fulop, Kari & Ladefoged, 1998). There is also a

significant interaction between [ATR] and vowel frontness, with front [−ATR] vowels

having slightly higher F1 than back [−ATR] vowels. Regarding the F2 results, we find

a significant effect of vowel frontness, with front vowels having higher F2, as well as a

signifiant interaction between [ATR] and frontness. This interaction can be explained

with reference to Figure 2, which shows that there is no F2 difference for [ATR] back

vowels, but that the [+ATR] series has higher F2 than the [−ATR] series in front vowels

only.

In terms of F3, an interaction between [ATR] and frontness shows that the [+ATR]

series has higher F3 than the [−ATR] series in front vowels only. There is no signifi-

cant effect of [ATR] on A1–A2, but front vowels have higher values than back vowels.
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Figure 2: Plot of mean F1∼F2 values for Twi vowels by speaker. Formant values are
in z-scores.
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Table 2: Separate linear mixed-effects regression models for the effect of [ATR] and
vowel frontness on F1, F2, F3, A1–A2 and duration in Twi. Baseline variables are
‘[+ATR]’ and ‘back’ vowels. All variables are in z-scores. Speaker is included in the
model as a random intercept. N = 141 for each model.

Model Variable β SE t p

F1 Intercept −0.74 0.08 −9.26 < .001
−ATR 0.82 0.11 7.35 < .001
Front vowel −0.31 0.11 −2.76 .007
−ATR*front vowel 0.36 0.16 2.29 .023

F2 Intercept −1.18 0.04 −29.61 < .001
−ATR 0.02 0.04 0.51 .611
Front vowel 2.48 0.04 57.05 < .001
−ATR*front vowel −0.46 0.06 −7.39 < .001

F3 Intercept −0.14 0.11 −1.22 .223
−ATR −0.09 0.16 −0.59 .553
Front vowel 1.48 0.16 9.52 < .001
−ATR*front vowel −0.94 0.22 −4.25 < .001

A1–A2 Intercept −0.92 0.16 −5.95 < .001
−ATR 0.12 0.21 0.59 .556
Front vowel 1.39 0.21 6.70 < .001
−ATR*front vowel −0.23 0.29 −0.77 .445

Duration Intercept −0.60 0.10 −6.14 < .001
−ATR −0.07 0.13 −0.55 .584
Front vowel 1.96 0.13 15.23 < .001
−ATR*front vowel −2.17 0.18 −11.90 < .001
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Finally, there is an interaction between [ATR] and frontness on duration, with [−ATR]

vowels showing shorter durations in the front vowel series only. There are no signifi-

cant durational differences between any back vowel pairs. In summary, Twi robustly

produces the [ATR] contrast using F1. However, we also find that other acoustic cues

may distinguish [ATR] pairs in the front vowels, such as F2, F3 and duration, but not

in the back vowels, where F1 is the only significant cue.

3.2 Ghanaian English

Figure 3 shows the mean F1∼F2 values for the Ghanaian English vowels for each

speaker. Note that while we excluded GF01’s /o/ and /O/ vowels from the statistical

model due to mispronunciations, we have retained them in this plot for the purposes

of illustration. The overall patterns are relatively similar to Twi, with F1 distinctions

for most vowel pairs. However, the /u U/ vowels are produced with similar F1 and F2

values for almost all speakers, with some showing merger (GF01, GF02, GF03, GM02),

which Huber (2004, 850) reports as characteristic of Ghanaian English. The /i/ and

/e/ vowels are also realised with similar F1∼F2 values for some speakers, which has

previously been reported by Mutonya (2008). While /æ A/ were not included in the

statistical models, Figure 3 shows that some speakers produce /æ/ with lower F1 than

/A/ (GM01, GF04), while others produce /æ/ with higher F1 than /A/ (GM02, GF02,

GF03), accompanied by some variation in F2. However, these two vowels are produced

with much more similar formant values than in Twi.

The statistical models for each acoustic parameter in the Ghanaian English data are

reported in Table 3. There is a significant effect of [TENSE] on F1, with [−TENSE]

vowels being produced with higher F1 values than [+TENSE] vowels. There is also

a significant interaction between [TENSE] and vowel frontness, with the F1 contrast

being more robust for front vowels due to the /u U/ vowels being merged or near-merged

for some speakers (see Figure 3). The F2 results show that front vowels have higher

F2 than back vowels, while an interaction between [TENSE] and vowel frontness shows

that the [+TENSE] set has higher F2 than the [−TENSE] set in the front vowel series

only.

In terms of F3, front vowels have higher F3 than back vowels, while an interaction

between [TENSE] and vowel frontness shows that the [+TENSE] set has higher F3 than

the [−TENSE] set in front vowels only. There is no significant effect of [TENSE] on A1–

A2, but front vowels have higher values than back vowels. Finally, there is a signification

21



æɑ

e

ɛ

i

ɪ

o

ɔ

uʊ

æ
ɑ

e

ɛ

i

ɪ
o

ɔ

uʊ

æɑ

e

ɛ

i

ɪ
o

ɔ

uʊ

æ

ɑ

e

ɛ

i

ɪ o

ɔ

uʊ

æ
ɑ

e

ɛ

i

ɪ
o

ɔ

uʊ

æ
ɑ

e

ɛ

i

ɪ
o

ɔ

uʊ

GF01 GF02 GF03

GF04 GM01 GM02

-2

-1

0

1

2

-2

-1

0

1

2

-2-1012 -2-1012 -2-1012

F2 (z-scores)

F
1

 (
z
-s

c
o

re
s
)

TENSE
a
a

+TENSE

-TENSE

Figure 3: Plot of mean F1∼F2 values for Ghanaian English vowels by speaker. Formant
values are in z-scores. Note that GF01’s /o/ tokens are mispronunciations of the vowel
in sewed and presumably not representative of her /o/ category.
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Table 3: Separate linear mixed-effects regression models for the effect of [TENSE] and
vowel frontness on F1, F2, F3, A1–A2 and duration in Ghanaian English. Baseline
variables are ‘[+ATR]’ and ‘back’ vowels. All variables are in z-scores. Speaker is
included in the model as a random intercept. N = 133 for each model.

Model Variable β SE t p

F1 Intercept −0.88 0.09 −9.55 < .001
−TENSE 0.48 0.12 4.06 .< .001
Front vowel −0.11 0.12 −0.91 .365
−TENSE*front vowel 0.61 0.16 3.69 < .001

F2 Intercept −1.05 0.04 −24.30 < .001
−TENSE −0.01 0.05 −0.10 .920
Front vowel 2.46 0.05 49.71 < .001
−TENSE*front vowel −0.49 0.07 −7.02 < .001

F3 Intercept −0.29 0.09 −3.23 .005
−TENSE −0.02 0.10 −0.19 .850
Front vowel 1.65 0.10 15.92 < .001
−TENSE*front vowel −1.01 0.15 −6.91 < .001

A1–A2 Intercept −0.57 0.16 −3.57 < .001
−TENSE −0.03 0.23 −0.14 .888
Front vowel 1.23 0.23 5.67 < .001
−TENSE*front vowel −0.07 0.32 −0.23 .819

Duration Intercept 0.20 0.11 1.85 .092
−TENSE −0.03 0.10 −0.27 .792
Front vowel 0.09 0.10 0.87 .385
−TENSE*front vowel −0.97 0.14 −6.97 < .001
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interaction between [TENSE] and vowel frontness on duration, with [−TENSE] showing

shorter durations than [+TENSE] in the front vowels but not in the back vowels. In

summary, the Ghanaian English results show very similar patterns to the Twi [ATR]

results, with a clear [TENSE] contrast in F1, while F2, F3 and duration distinguish

[TENSE] pairs in the front vowel series only.

3.3 British English

Figure 4 shows the mean F1∼F2 values for the British English vowels for each speaker.

In contrast to Twi and Ghanaian English, there are much clearer F2 distinctions be-

tween [TENSE] pairs, as well as the expected F1 distinctions. Speaker BM02 is the only

one who produces /u/ with lower F2 values than /U/, but otherwise all speakers show

very similar patterns. There is some variability in the production of the /æ A/ contrast,

with some speakers showing merger (BF01, BF04, BM02), others showing slight raising

and backing of /A/ relative to /æ/ (BF02, BF03), and one speaker showing the reverse

pattern (BM01). Otherwise, we generally see clear distinctions in all vowel pairs along

the F1 and F2 axes, with [−TENSE] vowels being produced with higher F1 values and

lower F2 values.

The statistical models for each acoustic parameter in the British English data are

reported in Table 4. There is a significant effect of [TENSE] on F1, with [−TENSE]

vowels being produced with higher F1 values than [+TENSE] vowels. The F2 results

show that [−TENSE] vowels have lower F2 values than [+TENSE] vowels, which is

expected for the tense/lax contrast in English (Hillenbrand, Getty, Clark et al., 1995).

British English is the only variety that shows a main effect of [TENSE/ATR] on F2

and this contrast holds across front and back vowels. This stands in contrast to Twi

and Ghanaian English, which only showed a small distinction in F2 amongst the front

vowels.

In terms of F3, [−TENSE] vowels have higher F3 than [+TENSE] vowels, and front

vowels have higher F3 than back vowels. An interaction between [TENSE] and vowel

frontness shows that the [+TENSE] vowels have slightly higher F3 in front vowels but

slightly lower F3 in back vowels. Unlike Twi and Ghanaian English, British English

shows a significant effect of [TENSE] on A1–A2, with [−TENSE] vowels having lower

A1–A2 values, but an interaction between [TENSE] and vowel frontness shows that

the distinction only holds for the back vowels, with no distinction between front vowel

pairs. This suggests that the [+TENSE] back vowels have breathier phonation than

24



æɑ

e

ɛ

i

ɪ o

ɔ

u

ʊ

æ

ɑ

e

ɛ

i

ɪ o

ɔ

u ʊ

æ
ɑ

e

ɛ

i

ɪ
o

ɔ

u

ʊ

æɑ

e

ɛ

i

ɪ

o
ɔ

u
ʊ

æɑ

e

ɛ

i

ɪ
o

ɔ

u

ʊ

æɑ

e

ɛ

i

ɪ
o

ɔ

u

ʊ

BF01 BF02 BF03

BF04 BM01 BM02

-2

-1

0

1

2

-2

-1

0

1

2

-2-1012 -2-1012 -2-1012

F2 (z-scores)

F
1

 (
z
-s

c
o

re
s
)

TENSE
a
a

+TENSE

-TENSE

Figure 4: Plot of mean F1∼F2 values for British English vowels by speaker. Formant
values are in z-scores.
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Table 4: Separate linear mixed-effects regression models for the effect of [TENSE]
and vowel frontness on F1, F2, F3, A1–A2 and duration in British English. Baseline
variables are ‘[+ATR]’ and ‘back’ vowels. All variables are in z-scores. Speaker is
included in the model as a random intercept. N = 144 for each model.

Model Variable β SE t p

F1 Intercept −0.76 0.11 −6.64 < .001
−TENSE 0.75 0.16 4.56 < .001
Front vowel −0.12 0.16 −0.74 .458
−TENSE*front vowel 2.23 0.23 0.99 .323

F2 Intercept −0.38 0.08 −4.74 < .001
−TENSE −0.53 0.12 −4.55 < .001
Front vowel 1.97 0.11 17.20 < .001
−TENSE*front vowel −0.16 0.16 −1.00 .320

F3 Intercept −0.61 0.12 −5.05 < .001
−TENSE 0.75 0.17 4.32 < .001
Front vowel 1.65 0.17 9.56 < .001
−TENSE*front vowel −1.56 0.25 −6.37 < .001

A1–A2 Intercept −0.03 0.13 −0.21 .831
−TENSE −0.80 0.18 −4.33 < .001
Front vowel 0.87 0.18 4.74 < .001
−TENSE*front vowel 0.87 0.26 3.32 .001

Duration Intercept 0.81 0.10 8.21 < .001
−TENSE −1.00 0.14 −7.09 < .001
Front vowel −0.26 0.14 −1.85 .067
−TENSE*front vowel −0.77 0.20 −3.88 < .001
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the [−TENSE] back vowels. Finally, [−TENSE] vowels have shorter durations than

[+TENSE] vowels (Lehiste & Peterson, 1961), but an interaction between [TENSE]

and frontness shows that this effect is much stronger in the front vowels due to most

speakers producing a duration contrast between one back vowel pair /u U/ but not the

other /o O/. In summary, British English generally produces the [TENSE] distinction

using F1, F2, F3, and duration, and this distinction may also involve A1–A2 in the

back vowel series only.

3.4 Summary

Overall, the results suggest that the Twi [ATR] contrast and Ghanaian English [TENSE]

contrast are produced in very similar ways, with a very clear distinction in F1 for all

vowels. We note that the F1 distinctions are larger in Twi than in Ghanaian English, as

reflected by a larger regression coefficient (β = 0.82 compared with β = 0.48). Notably,

this effect is present without the inclusion of the /æ A/ vowels, which would only

further increase the size of the F1 contrast in Twi but not in either variety of English.

Smaller distinctions amongst front vowel [ATR/TENSE] pairs are apparent in F2, F3

and duration for both Twi and Ghanaian English, with the F2 results in front vowels

being similar to other studies of [ATR] languages (Fulop, Kari & Ladefoged, 1998;

Guion, Post & Payne, 2004). In contrast, British English clearly relies more heavily on

F2 in cueing the [TENSE] contrast, with this effect present across all vowels for most

speakers (except for /æ A/, which appear merged for at least three speakers). We find

no significant effect of [ATR] or [TENSE] on A1–A2 in Twi or Ghanaian English, which

suggests a lack of consistent phonatory differences, such as breathiness. This contrasts

with data on other [ATR] languages, such as Degema, which shows A1–A2 differences in

some vowel pairs, such as /i I/ and /o O/ (Fulop, Kari & Ladefoged, 1998). In contrast,

British English does show an effect of [TENSE] on A1–A2 in the back vowel series, with

the [+TENSE] vowels showing breathier phonation. Finally, we observed that the /æ

A/ contrast is variable between speakers in all varieties, but most distinct in Twi, where

/æ/ is produced relatively high and front by 5/6 speakers. Ghanaian English and our

British English variety both produce /æ/ and /A/ with more similar F1 and F2 values.
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4 Articulatory and acoustic-articulatory results

We report four separate analyses in order to examine the articulation of vowel contrasts

and how these relate to the acoustic data. The first two analyses are measurements

of tongue root position and maximum tongue height, which are used to determine the

extent to which each language/dialect uses tongue root advancement and tongue height

to cue the [ATR] or [TENSE] contrast. The third analysis examines the correlation

between tongue root and tongue height in order to assess how independent they are of

one another in each variety. We expect them to be least correlated in Twi and most

correlated in British English, which would suggest that Twi is actively counteracting

the dorsum raising effects that accompany tongue root advancement (Tiede, 1996).

Finally, we examine the correlation between tongue root advancement and F1 in order

to quantify how much of the variation in F1 is accounted by tongue root position and,

therefore, how much might be potentially attributable to other articulatory mechanisms,

such as tongue height or lateral expansion of the pharyngeal cavity (Lindau, 1979; Tiede,

1996).

4.1 Tongue root position

The statistical models for tongue root position in each group are presented in Table 5,

with higher values indicating greater tongue root advancement. The model shows that

[−ATR] vowels in Twi have a significantly more retracted tongue root when compared

with [+ATR] vowels. A similar effect is found for the [TENSE] contrast in Ghana-

ian and British English, whereby [−TENSE] vowels are produced with a significantly

more retracted tongue root. There are no consistent effects of vowel frontness in Twi

or Ghanaian English, but front vowels have a more advanced tongue root in British

English.

To explore these differences in more detail, Figure 7 shows tongue root position for

each vowel within each group. This shows that Twi generally produces [+ATR] vowels

with a more advanced tongue root, and that Ghanaian English and British English

also produce [+TENSE] vowels with a more advanced tongue root. Twi produces the

biggest distinction between /æ A/, which reflects the acoustic results and suggests that

/æ A/ may potentially be part of the [ATR] system for Twi. However, there is consid-

erable variability between other vowels in Twi, such as /e E/, which are produced with

an overlapping range of tongue root values. An examination of individual speaker data
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Table 5: Separate linear mixed-effects regression models for the effect of [ATR] or
[TENSE] on tongue root position in Twi (N = 96), Ghanaian English (N = 89) and
British English (N = 144). Baseline variables are ‘[+ATR]’ and ‘back’ vowels. All
variables are in z-scores, with higher values indicating greater tongue root advancement.
Speaker is included in the model as a random intercept.

Group/model Variable β SE t p

Twi Intercept 0.75 0.18 4.09 < .001
−ATR −1.03 0.26 −3.97 < .001
Front vowel −0.13 0.26 −0.52 .606
−ATR*front vowel 0.11 0.36 0.30 .765

Ghanaian English Intercept 0.96 0.21 4.57 < .001
−TENSE −1.20 0.25 −4.79 < .001
Front vowel −0.05 0.24 0.21 .835
−TENSE*front vowel −0.06 0.34 −0.18 .856

British English Intercept 0.60 0.11 5.52 < .001
−TENSE −1.02 0.16 −6.41 < .001
Front vowel 0.63 0.16 4.01 < .001
−TENSE*front vowel −0.22 0.23 −0.99 .326
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Figure 5: Plot of tongue root position by vowel for Twi, Ghanaian English, and British
English.
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shows two divergent patterns amongst the Twi speakers: GF01 and GF02 produce /e/

slightly more advanced than /E/, whereas GM01 and GM02 produce /e/ slightly more

retracted than /E/. These patterns remain the same whether we use values extracted

from the vowel midpoint or values extracted 80% into the vowel. There is also no clear

correspondence between the use of these two articulatory strategies and any patterns

in tongue height, which suggests that the Twi speakers may be particularly variable

in the articulation of the /e E/ contrast, despite greater acoustic consistency between

speakers. Furthermore, it is notable that there is generally greater overlap between the

distributions of vowel pairs in Twi: compare /o O/ and /u U/ in Twi to those distribu-

tions in Ghanaian and British English. In summary, all groups generally produce the

relevant contrasts using tongue root position, but the tongue root distinctions appear

to be slightly larger in Ghanaian English and British English than in Twi.

4.2 Maximum tongue height

The statistical models for maximum tongue height in each group are presented in Table

6. There is no significant effect of [ATR] on tongue height in Twi, nor any effect of

[TENSE] on tongue height in Ghanaian English, although we note that the value of

p = .058 for Twi [ATR] is very close to the statistical significance threshold of .05.

If we include the /æ A/ vowels in this model then the p-value changes to p = .049.

Neither value is particularly conclusive, so we refer to the descriptive results in Figure

6 for a more comprehensive evaluation. In contrast to Twi and Ghanaian English,

British English displays the expected height contrast, with [−TENSE] vowels having

lower tongue height. Twi and Ghanaian English both produce front vowels with lower

tongue height than back vowels, whereas this effect is not significant in British English.

There is no significant interaction between [ATR/TENSE] and vowel frontness in any

variety.

Figure 6 shows maximum tongue height for each vowel within each group. This

shows that there are some tongue height differences between /i I/ and /u U/ in Twi,

while there are relatively fewer differences in /e E/, /æ A/ and /o O/. Interestingly, /æ

A/ very clearly pattern with the front vowels in terms of tongue height. In contrast, no

vowel pairs in Ghanaian English appear to be distinguished in tongue height, although

/e E/ and potentially /u U/ show very minor differences, with the [−ATR] vowel having

a slightly higher tongue position. British English produces visible contrasts across all

vowel pairs, with the exception of /æ A/. Overall, the results suggest that Ghanaian
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Table 6: Separate linear mixed-effects regression models for the effect of [ATR] or
[TENSE] on maximum tongue height in Twi (N = 96), Ghanaian English (N = 89)
and British English (N = 144). Baseline variables are ‘[+ATR]’ and ‘back’ vowels. All
variables are in z-scores, with higher values indicating greater maximum tongue height.
Speaker is included in the model as a random intercept.

Group/model Variable β SE t p

Twi Intercept 0.96 0.19 4.93 < .001
−ATR −0.48 0.25 −1.92 .058
Front vowel −1.13 0.25 −4.48 < .001
−ATR*front vowel −0.06 0.36 −0.17 .867

Ghanaian English Intercept 0.50 0.20 2.49 .026
−TENSE 0.07 0.24 0.28 .780
Front vowel −0.65 0.23 −2.82 .006
−TENSE*front vowel 0.08 0.33 0.23 .818

British English Intercept 0.50 0.14 3.50 .001
−TENSE −0.59 0.20 −2.89 .004
Front vowel 0.26 0.20 −1.28 .204
−TENSE*front vowel −0.38 0.29 −1.32 .188

31



English does not use tongue height as a cue to the [TENSE] contrast, and that British

English distinguishes all vowel pairs except /æ A/ via tongue height. Twi produces

some small tongue height differences in /i I/ and /u U/, but not for other [ATR] pairs.
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Figure 6: Plot of maximum tongue height by vowel for Twi, Ghanaian English, and
British English.

4.3 Correlation between tongue root and tongue height

The previous two sections analysed tongue root advancement and maximum tongue

height separately, but in this section we analyse the correlation between them in order

to assess the extent to which they are independent of one another. Our prediction

is that they should be most correlated in British English and least correlated in Twi

(Tiede, 1996). Figure 7 shows tongue root position plotted against maximum tongue

height, with a linear regression line and confidence intervals fitted to the data.

Twi and British English both show a significant correlation between tongue root and

height, but this correlation is considerable stronger in British English (r = 0.79, p <

.001) than in Twi (r = 0.27, p = .003), therefore supporting our hypothesis. However,

we find no significant correlation between tongue root and height in Ghanaian English

(r = 0.11, p = .238). This suggests that tongue root and height appear to be correlated

in British English, very weakly correlated in Twi, and not significantly correlated in

Ghanaian English. This patterns with the analysis of the tongue height results in

Section 4.2, where the effects of [TENSE] on tongue height in Ghanaian English seem

to be even weaker than the effects of [ATR] on tongue height in Twi. However, we

note this result with some caution, as Figure 7 also suggests that Twi does not have a

particularly strong correlation between tongue root and height. Overall, it is clear that
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Figure 7: Plot of tongue root position against maximum tongue height for Twi, Ghana-
ian English, and British English. The blue line represents a linear regression line and
the shaded area represents 95% confidence intervals.

British English shows a strong correlation between tongue root and height, whereas

Twi and Ghanaian English show a small or no correlation. This suggests that tongue

root and height are significantly more independent in Twi and Ghanaian English than

in British English.

4.4 Correlation between tongue root and F1

Our final analysis examines the relationship between tongue root advancement and F1.

Our results so far show that Twi produces some vowel contrasts, such as /e E/, with

consistent F1 values but variable tongue root positions. Previous research suggests

that the [ATR] contrast in Akan languages may be better characterised in terms of

pharyngeal cavity expansion (Lindau, 1979; Tiede, 1996). This leads us to predict that

the correlation between tongue root advancement and F1 should be weaker in Twi than

in British English, given that other strategies such as lateral pharyngeal expansion and

larynx lowering may also be contributing towards the lower F1 values in [+ATR] vowels.

Figure 8 shows tongue root position plotted against F1, with a linear regression line

and confidence intervals fitted to the data.

There is a significant correlation for all groups, with greater tongue root advance-

ment resulting in lower F1 values. Notably, the size of this correlation is substantially

larger in British English (r = −0.87, p < .001) than in Twi (r = −0.40, p < .001). This

confirms our hypothesis and suggests that the Twi speakers are deploying additional

articulatory strategies in order to achieve the acoustic effect of lower F1 in [+ATR]
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Figure 8: Plot of tongue root position against F1 for Twi, Ghanaian English, and
British English. The blue line represents a linear regression line and the shaded area
represents 95% confidence intervals.

vowels. This is evidenced by observing some of the acoustic and articulatory results,

such as the fact that the Twi [ATR] contrasts are robustly distinguished by F1 (Figure

2) but with greater variability in tongue root position (Figure 8).

The correlation coefficient for Ghanaian English (r = −0.62, p < .001) is almost

exactly at the midpoint between the Twi and British English values. We note that

the weaker correlation between F1 and tongue root in Twi does not appear to be

compensated for by a stronger correlation between tongue height and F1, given that

the coefficient for Twi (r = −0.38, p < .001) is near-identical to Ghanaian English

(r = −0.39, p < .001) and weaker than British English (r = −0.79, p < .001). The

fact that Twi and Ghanaian English show a weaker root/F1 correlation than British

English points towards additional articulatory strategies for maintaining the respective

contrasts, which could involve lateral expansion of the pharyngeal cavity. However, the

existence of a weaker correlation in Twi than in Ghanaian English suggests that the

bilingual speakers may use different articulatory strategies in their two languages, with

Twi potentially involving additional pharyngeal cavity expansion when compared with

Ghanaian English.

4.5 Summary

The overall articulatory results broadly pattern with the acoustic findings, but there

are also some differences between the varieties. Twi produces the [ATR] contrast using

tongue root position, but /i I/ and /u U/ are also slightly distinct in tongue height.
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Ghanaian English produces the [TENSE] contrast using tongue root advancement only,

while British English uses both tongue root and tongue height. The tongue root dif-

ferences are also of a greater magnitude in Ghanaian English than in Twi, despite the

greater acoustic differences between [ATR] pairs in Twi. Our correlation analysis shows

greater indepenence of tongue root and height in Twi and Ghanaian English than in

British English, which suggests that the Twi-English bilinguals are counteracting the

dorsum raising effects of tongue root advancement in both languages for most vowels.

Finally, the correlation between tongue root advancement and F1 is strongest in British

English and weakest in Twi. Combined with the above results, this suggests that Twi

may be using other articulatory strategies in order to expand the pharyngeal cavity

and achieve lower F1 values in [+ATR] vowels. We anticipate that these strategies are

more present in Ghanaian English than in British English, but to a significantly lesser

extent than in Twi.

5 Discussion

5.1 Bilingual speech production and language contact

Our study aimed to investigate speech acoustics and articulation in a context of bilin-

gualism and long-term language contact. We hypothesised that since Twi and Ghana-

ian English have been in contact for centuries there may be some convergence effects

(e.g. O’ Rourke 2005; Simonet 2011; Mayr, Morris, Mennen et al. forthcoming). Overall,

the results show that there may be some transfer of strategies from Twi to Ghanaian

English in terms of acoustics and articulation, possibly as a result of mass L2 acquisition

of English historically, where speakers classified ‘similar’ sounds as equivalent (Flege,

1987; Matras, 2009). However, this transfer, or relationship between systems, does not

occur in a universal or straightforward manner. Both varieties produce the respective

contrasts using F1 and tongue root position, and both show little or weak correlation

between tongue root and tongue height when compared with British English. This

suggests that the Twi [ATR] contrast and the Ghanaian English [TENSE] contrast are

implemented in similar ways. However, there are some important differences between

languages that support the idea of language-specific articulatory strategies (Wilson &

Gick, 2014). For example, Twi makes small tongue height distinctions in high vowel

[ATR] pairs, whereas Ghanaian English does not. Accordingly, Twi demonstrates less

independence between tongue root and height than Ghanaian English, but Twi also
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shows a significantly weaker correlation between tongue root advancement and F1.

This is despite Twi showing bigger F1 differences between [ATR] vowel pairs than we

see in Ghanaian English. This suggests that other articulatory strategies may be used

to achieve the acoustic effect of lower F1 in Twi [+ATR] vowels, such as lateral expan-

sion of the pharynx, which are not present to the same extent in Ghanaian English.

In summary, while the Twi-English bilinguals implement the [ATR] and [TENSE] con-

trasts in similar ways, they are far from identical and it seems to be the case that they

use language-specific articulatory strategies to achieve relatively similar acoustic effects.

There are a number of factors that prevent a straightforward assessment of whether

these results represent the outcome of separate or shared phonological systems. How-

ever, the existence of language-specific articulatory strategies in bilinguals is significant

in light of three factors. First, our data were collected in a bilingual ‘language mode’

(Grosjean, 2001) with both languages used in the same session. This may have caused

parallel activation of both languages, leading to greater convergence between produc-

tions. Second, the contrasts we investigated are phonetically and phonologically similar

between the two languages, which should also lead to greater convergence. Third, we

expect the Twi and Ghanaian English vowel systems to have already significantly con-

verged due to long-term contact. Despite these factors, we still find language-specific

differences in both the magnitude of the acoustic contrast and the articulatory imple-

mentation of the contrast. While a more rigorous testing of language modes and per-

ceptual data would allow for more systematic testing, the existence of these language-

specific differences can be interpreted as evidence for separate phonological systems

within bilinguals (Paradis, 2001; Escudero, 2005). Under this view, different sets of

motor routines are mapped to the phonetic representations of each language, with an

expanded pharyngeal cavity and greater F1 difference specified more strongly for the

Twi [ATR] contrast than for the Ghanaian English [TENSE] contrast.

It is difficult to properly say whether our Ghanaian English results are a conse-

quence of synchronic category overlap in bilingual speakers or due to the historical

development of Ghanaian English as a nativised variety. Solving this issue is likely to

be difficult within the context of Ghanaian English, given that there are few completely

monolingual speakers who have not experienced exposure to a range of West African

languages. Language dominance is known to influence the production of vowel contrasts

in bilinguals (Amenguala & Chamorro, 2015), but we are unable to test such effects in

the present study. Other approaches could include the use of different languages modes,

and comparing Ghanaian speakers with different L1s to test for language-specific ef-
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fects on Ghanaian English. Another promising way to address the relationship between

individual bilingualism and long-term contact could be the study of contact varieties

that develop from L2 learning but may be stabilising into nativised varieties spoken by

functional monolinguals (e.g. Wormald 2016; Kirkham 2017).

5.2 Phonetic characteristics of Twi vowels

Previous research suggests that the /æ A/ contrast may be present in Twi as part of the

[ATR] system (Ladefoged, 1968; Dolphyne, 1988). Our data show that this contrast is

produced by five of the six Twi speakers, with /æ/ having much lower F1 and slightly

higher F2 values, as well as a more advanced tongue root and slightly higher tongue

position. This effect does not appear to be transferred to Ghanaian English, where

the distinction between /æ A/ ranges between small and non-existent. However, it is

possible that these results may represent lexically-specific vowel productions, especially

given that the Twi /æ/ vowel in patu is produced similar to /e/ or /E/ for all speakers,

except for one speaker who produces /æ/ with similar F1/F2 values to /A/. Given that

we only elicited a single monosyllabic word for each vowel, we are obviously unable to

comment upon whether our reported /æ A/ distinction constitutes part of the phono-

logical [ATR] system. It is also the case that the acoustic and articulatory differences

between /æ A/ in Twi are slightly different from those seen in other [ATR] pairs. How-

ever, the acoustic and articulatory differences reported here are at least suggestive of a

lexically-specific or allophonic difference in Twi and we anticipate that future research

will shed greater light on these issues.

More generally, it is clear that Twi does distinguish most [ATR] pairs using tongue

root differences, although some vowel contrasts, such as /e E/, show different patterns

between speakers despite similar acoustic output. We find some small F2 differences

in [ATR] pairs amongst the front vowels only, which is in line with previous acoustic

research on [ATR] languages (Guion, Post & Payne, 2004). However, we did not predict

tongue height differences in Twi, which we find only in the high vowels /i I/ and /u U/.

These height distinctions are much smaller than those involved in the British English

[TENSE] contrast, but are not apparent in Ghanaian English. Again, we must proceed

with caution given that there could be some effect of the materials, which were not

phonetically identical between Twi and Ghanaian English. Nonetheless, these results

suggest that tongue root position and tongue height are more variable in Twi than in

Ghanaian English. We discuss the implications of this in the following section, with
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reference to different articulatory goals in each language.

5.3 The production of tongue root vowel contrasts

Our data show that all groups use tongue root advancement to produce the respective

contrasts, with tongue height only playing a significant role in British English, and

a lesser role amongst some high vowels in Twi. The finding that British English uses

both tongue root and height is not surprising as the hydrostatic properties of the tongue

mean that contraction of the posterior genioglossus (GGp) muscle advances the tongue

root and also advances and raises the tongue body (Baer, Alfonso & Honda, 1988;

Takano & Honda, 2007). Tiede (1996) hypothesises that Akan languages do not show

this tongue raising due to active contraction of the anterior genioglossus (GGa). GGa

and GGp activity tend to be correlated in English (Honda, Takano & Takemoto, 2010),

but Tiede (1996) proposes that Akan uses greater active control of the GGa in order

to pull the tongue dorsum forwards and downwards, thus counteracting some of the

dorsum raising effect. Our finding of a weaker correlation between tongue root and

height in Twi compared to British English supports the proposal that Akan languages

may involve articulatory strategies that reduce raising of the tongue dorsum.

While our study has focused entirely on midsagittal tongue shape, X-ray and MRI

studies show that the Akan [ATR] contrast may be better characterised in terms of pha-

ryngeal volume differences (Lindau, 1979). Midsagittal tongue shape is highly correlated

with midsagittal pharynx shape in English vowels (Whalen, Kang, Magen et al., 1999),

but this is highly unlikely for languages that use [ATR] contrasts. For instance, Tiede

(1996) shows that larynx lowering and lateral expansion of the pharyngeal walls are

used in the production of [+ATR] vowels by a speaker of Akan, but that these strate-

gies are not used by a speaker of American English in the production of [+TENSE]

vowels. While we are unable to comment upon non-midsagittal or non-lingual articula-

tions, we believe that our data offer tentative support to Tiede’s findings based on our

larger sample of speakers. The fact that Twi shows the weakest correlation between

tongue root advancement and F1 suggests that other articulatory strategies could be

responsible for changes in F1. These could include larynx lowering, lateral expansion

of the pharynx, and greater muscular tension in the pharynx walls. Therefore, Ghana-

ian English appears to rely more on tongue root advancement for achieving lower F1,

whereas Twi must be engaged in additional strategies that actively expand the pha-

ryngeal cavity in order to lower F1. These results suggest language-specific speech
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production goals, with an expanded pharyngeal cavity specified more strongly for the

Twi [ATR] contrast, and an advanced tongue root specified for the Ghanaian English

[TENSE] contrast. This would also explain why we see more consistent tongue root

differences in Ghanaian English and greater tongue root variability in Twi.

6 Conclusions

This study investigated the acoustics and articulation of the advanced tongue root vowel

contrast in Twi, and the tense/lax vowel contrast in Ghanaian English and British En-

glish. We have shown that Twi and Ghanaian English both produce the respective

[ATR] and [TENSE] contrasts mainly using F1 and tongue root advancement, and that

British English produces the [TENSE] contrast using F1, F2, F3, duration, tongue root

advancement and tongue height. However, we find further differences between Twi and

Ghanaian English, with Twi showing small tongue height differences for high vowels

and Ghanaian English showing larger tongue root differences between vowel pairs. Twi

also displays the weakest correlation between F1 and tongue root advancement, which

suggests that additional articulatory mechanisms beyond tongue root advancement may

be used in order to enhance the F1 contrast in Twi. We propose that these mechanisms

involve strategies to increase pharyngeal volume and, accordingly, that pharyngeal cav-

ity expansion could represent the primary goal of speech production in the Twi [ATR]

contrast (Lindau, 1979; Tiede, 1996). In doing so, we show that bilingual speakers

show some similarities in how they implement similar contrasts across their two lan-

guages, but that language-specific mechanisms also persist, which may reflect different

articulatory goals in each language.
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