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Abstract

We propose a new non-iterative, very simple but accurate, Bayesian inference procedure for the stochastic

volatility model. The only requirement of our approach is to solve a large, sparse linear system which we avoid

by iteration.
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1 Introduction

Suppose θ ∈ Θ ⊆ <k is a parameter, the observed data is Y and there is a vector of latent variables Z ∈ Z ⊆ <n.

Following a landmark contribution by Tan, Tian and Ng (2003, 2009) we know that

p(θ|Y ) ∝ p(θ|Y, Zo)

p(Zo|θ, Y )
, ∀Zo ∈ Z. (1)

A similar formula holds for the latent variables:

p(Z|Y ) ∝ p(Z|Y, θo)
p(θo|Z, Y )

, ∀θo ∈ Θ. (2)

Tan, Tian and Ng (2003, 2009) have proposed the following method of recovering the posterior distribution of

the parameters known as IBF (Inverse Bayes Formula). Since p(θ|Y ) ∝ p(θ|Y, Zo)p(Zo|Y ) it is clear that if

we can obtain a random sample, say {z(j), j = 1, ..., J} from Zo|Y and we can obtain another random sample,

{θ(j), j = 1, ..., J} ∼ θ|Y, z(j), j = 1, ..., J , then {θ(j), j = 1, ..., J} is actually a random sample from the posterior

p(θ|Y ). The major difficulty is to draw z(j) from p(Zo|θ, Y ). Tan, Tian and Ng (2003, 2009) have proposed the

following approach. First, Z∗ = {z(j), j = 1, ..., J} is drawn from z|Y, θo for some θo ∈ Θ. The value of θo should

be close to the posterior mean or mode. Second, z(j)s are drawn from Z∗ without replacement and probabilities

wj =
1/p(θo|Y, z(j))∑J
j=1 1/p(θo|Y, z(j))

, j = 1, ...,M, (3)

where M < J .

Another alternative is to use

p(θ|Y ) ∝ p(θ|Y, zo)
p(zo|Y, θ)

, ∀θ ∈ Θ, (4)

and for some zo ∈ Z. If we can draw random samples from the “complete data” posterior, p(θ|Y, zo), which is often

possible, and the random sample is, say, {θ(j), j = 1, ..., J}, then we can use sampling without replacement using

probabilities

wj =
1/p(zo|Y, θ(j))∑J
j=1 1/p(zo|Y, θ(j))

, j = 1, ...,M. (5)

In this paper we consider a stochastic volatility model (Jacquier, Polson and Rossi, 1994) for which a number of

Markov Chain Monte Carlo (MCMC) algorithm has been proposed.1

yt = eht/2ξt, ξt ∼ i.i.d.N (0, 1), t = 1, ..., n,

ht = α+ ρht−1 + εt, εt ∼ i.i.d.N (0, σ2),

h0 ∼ N
(

α
1−ρ ,

σ2

1−ρ2

)
.

(6)

The stochastic volatility model is based on the stylized fact that returns are unpredictable but squared returns

are autocorrelated. One of the first approaches to model this dependence has been the Autoregressive Conditional

Heteroskedasticity (ARCH) model in which we assume:

ht = α0 + α1y
2
t−1, α0, α1 ≥ 0. (7)

The ARCH model predicts that the conditional variance depends on lagged squared returns. The Generalized

1See Kim, Shephard and Chib (1998), Pitt and Shephard (1999), Chib, Nardari and Shephard (2002). A less popular choice is
simulated maximum likelihood (Danielsson, 1994).
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ARCH or GARCH model assumes:

ht = α0 + α1y
2
t−1 + α2ht−1, α0, α1, α2 ≥ 0, (8)

and incorporates lagged conditional variances into the model. Of course, the model can be extended easily to the

GARCH(p,q) model given by:

ht = α0 +

p∑
l=1

αly
2
t−l +

q∑
l=1

αp+lht−l, α0, αl ≥ 0, l = 1, ..., p+ q. (9)

In practice, it has been found that stochastic volatility of the form ht = α+ρht−1+ εt, εt ∼ i.i.d.N (0, σ2) performs

best but it is not used very often due to complexities associated with constructing the likelihood function. These

difficulties were mitigated by using MCMC methods in Jacquier et al. (1994) and since then a large literature has

emerged on implementing statistical inference in stochastic volatility models.

Suppose that the prior is p(α, ρ, σ) ∝ σ−1. The complete data posterior is:

p(θ,h|Y ) ∝ σ−(n+1) exp

{
− 1

2

n∑
t=1

[
ht + y2t e

−ht +
(ht − α− ρht−1)

2

σ2

]}
, (10)

where the parameter is θ = [α, ρ, σ]′, h = [h1, ..., hn]
′, and Y = [y1, ..., yn]

′. The posterior of the parameters

p(θ|Y ) =

∫
Θ

p(θ,h|Y )dh, (11)

cannot be computed in closed form as the integral is not available analytically, and, even worse, it cannot be

expressed as a product of univariate integrals. Relative to the class of problems considered by Tan, Tian and Ng

(2003, 2009), (11) is more difficult due to the presence of the multivariate integral. The only available techniques to

perform posterior inference use Markov Chain Monte Carlo (MCMC) methods which can be difficult to converge due

to inherent autocorrelation. Therefore, a non-iterative technique is needed. Standard MCMC techniques (Jacquier,

Polson and Rossi, 1994) are based on Gibbs sampling using θ|h, Y which is trivial and ht|ht−1, ht+1, θ, Y which

slows down considerably the Gibbs sampler.

Adapting (1) we have:

p(θ|Y ) ∝ p(θ|Y,ho)

p(ho|θ, Y )
, ∀ho ∈ <n. (12)

Additionally, we have:

p(h|θ, Y ) ∝ p(h|Y, θ)
p(θ|h, Y )

, ∀θ ∈ Θ. (13)

The posterior in (12) is low dimensional and therefore we can use numerical integration techniques to obtain

marginal posterior densities of α, ρ and σ or direct Monte Carlo:

[α, ρ]′|σ, Y ∼ N
(
β̂, V

)
,∑n

t=1(h
o
t−α−ρho

t−1)
2

σ2 |α, ρ, Y ∼ χ2
n,

(14)

where β̂ = (X ′X)−1X ′ho, V = σ2(X ′X)−1, X = [1, ht−1, t = 1, ..., T ], ho = [ho
1, ..., h

o
n]

′.2

2For simplicity we drop terms related to α, ρ and σ that come through the prior of h0 in (6). These terms are accommodated via
rejection sampling.
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2 Model and Bayesian procedures

The problem is to select appropriately the vector of volatilities ho. We can, for example, use realized volatility. An

alternative3 is to solve for h∗
t the following system of equations:

(1− y2t e
−ht) + 2

σ2

[
(1 + ρ2)ht − α(1− ρ)− ρ(ht−1 + ht+1

]
= 0, t = 1, ..., T − 1,

(1− y2T e
−hT ) + 2

σ2 [hT − α− ρhT−1] = 0, t = 1, ..., T − 1,
(15)

which comes from maximizing (10) with respect to h. If we linearize the term e−ht ' 1 − ht, the approximate

solution is given as follows:{
y2t +

2(1+ρ2)
σ2

}
ht = −(1− y2t ) +

2
σ2 {α(1− ρ)− ρ(ht−1 + ht+1)} , t = 1, ..., T − 1,{

y2T + 2(1+ρ2)
σ2

}
hT = −(1− y2T ) +

2
σ2 {α+ ρhT−1} .

(16)

The system in (15) can be solved iteratively.4 starting from the solution of (16) which must also be obtained after

a few iterations or just a single iteration away from h = 0. The single iteration produces the estimates:{
y2t +

2(1+ρ2)
σ2

}
ĥt = −(1− y2t ) +

2α(1−ρ)
σ2 , t = 1, ..., T,{

y2T + 2(1+ρ2)
σ2

}
ĥT = −(1− y2T ) +

2α
σ2 ,

(17)

which can be used as starting values for the iterations in (15).

If we use (13) there seems to exist another way to proceed. The numerator of this expression is:

p(h|Y, θ) ∝ σ−(n+1) exp

{
− 1

2

n∑
t=1

[
ht + y2t e

−ht +
(ht − α− ρht−1)

2

σ2

]}
, (18)

and the denominator is

p(θ|h, Y ) ∝ σ−(n+1) exp

{
− 1

2σ2

n∑
t=1

(ht − α− ρht−1)
2

}
. (19)

which holds for arbitrary θ ∈ Θ. Taking the ratio of the two we have from (13):

p(h|Y ) ∝ exp

{
− 1

2

n∑
t=1

(
ht + y2t e

−ht
)}

. (20)

This is clearly unimodal with a mode at h∗
t = log y2t . Effectively, we can just use this simple solution to obtain the

values of {ho
t} needed in (14). This approximation does not turn out to perform very well in the application that

we consider in the next section, so we do not give it further consideration.

3 Application

We apply the new techniques to a series of daily exchange rates of British pound versus the US dollar (1/1/2011-12/19/2015)

for a total of 1,811 observations. The results are reported in Table 1 and Figure 1. MCMC results were obtained

from a Gibbs sampler (see Chib et al., 2002) using 15,000 iterations discarding the first 5.000 to mitigate possible

start up effects. Results from MCMC and the non-iterative methods (both exact and linearized) are quite close

suggesting that accurate inferences can be produced at a fraction of the cost required for MCMC.

3The realized volatility was not found to work well in artificial data so we do not recommend it in practice.
4The iterative solution is not necessary since the system is sparse. Using sparse solvers is possible but we did not implement the

computation in this paper. Apparently, by non-iterative in the title of the paper we mean that the approach does not use MCMC.
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Table 1: Empirical results
parameter OLS(a) MCMC(b) Non-iterative(b) Non-iterative

(linearized)(b)

α -11.491
(0.324)

-12.030
(0.0838)

-12.029
(0.0830)

-12.028
(0.0835)

ρ 0.107
(0.025)

0.2658
(0.0404)

0.2651
(0.0401)

0.2655
(0.0422)

Notes: (a) OLS estimates of log y2
t on a constant and log y2

t−1. (b) Posterior means and posterior standard deviations in parentheses. Monte
Carlo errors were 0.0027 for the constant term and 0.0011 for parameter ρ.

Figure 1. Comparison of marginal posterior distributions

Although the approximation in (17) does not perform well it does provide excellent initial conditions for the iterative

solution of (15) or the iterative solution of (16).

4 Monte Carlo evidence

In this section we consider the stochastic volatility model in (6) with α = −0.7, ρ = 0.9 and σ = 0.1. The sample

size is T = 2, 000 and, alternatively, T = 10, 000. We compare our results with MCMC methods described in Chib
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Table 2: Monte Carlo results
T = 2, 000 T = 10, 000

Bias RMSE Bias RMSE
MCMC IBF MCMC IBF MCMC IBF MCMC IBF

α -0.0032 -0.0030 0.0081 0.0081 -0.00012 -0.00012 0.00045 0.00045
ρ -0.0017 -0.0016 0.0030 0.0030 -0.000015 -0.000015 0.00021 0.00021
σ 0.0015 0.0015 0.0044 0.0045 0.00032 0.00032 0.00043 0.00043

Notes: MCMC denotes Markov Chain Monte Carlo implemented as in Chib, Nardari and Shephard (2006). IBF denotes results from the Inverse
Bayes Formula, see (1) and (3).

et al. (2002). Their MCMC techniques are based on the fact that, based on (6), we have:

log y2t = ht + et, (21)

where et = log ξ2t . The distribution of et can be approximated using a mixture-of-normals as described in Chib,

Nardari and Shephard (2006). As ht follows a first-order autoregressive model, MCMC can be implemented easily

using the Kalman filter. To implement MCMC we use 15,000 iterations discarding the first 5,000 to mitigate

possible start up effects. To implement our technique we use J = 2, 500 and M = 2000. Moreover, we do not use

linearization as in the previous section although the results are quite close and it can be recommended in practice.

We use 5,000 replications to provide Monte Carlo evidence, reported in Table 2.

From the results in Table 2 it turns out that the behavior of MCMC and IBF is quite similar although IBF can

be implemented using less computing effort and much less computing time, especially when the sample size is large

(T = 10, 000).

Conclusions

We propose a new non-iterative, very simple, Bayesian inference procedures for the stochastic volatility model.

Certain of our results turn out to be good only as initial conditions in solving a large linear system, in terms of

volatilities. The only requirement of our approach is to solve this linear system. The marginal posterior distributions

of the parameters can be computed easily using direct Monte Carlo yielding independent samples from the joint

posterior. We illustrate the performance of our method in a time series of GBP-USD exchange rates. We believe that

this approximation will be essential in stochastic volatility models with leverage (Omori et al, 2007) and multivariate

stochastic volatility models (Harvey et al, 1994 and Chib et al., 2006). This line of research is currently under

investigation by the author. In particular, our construction is relevant because multivariate stochastic volatility

models can be reduced to a sequence of univariate stochastic volatility models (e.g. Lopes et al, 2012).
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