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ABSTRACT: Graphene and related two-dimensional (2D) materials possess outstanding electronic 

and mechanical properties, chemical stability and high surface area. However, to realize graphene’s 

potential for a range of applications in materials science and nanotechnology there is a need to 

understand and control the interaction of graphene with tailored high-performance surfactants 

designed to facilitate the preparation, manipulation and functionalization of new graphene systems. 

Here we report a combined experimental and theoretical study of the surface structure and 

dynamics on graphene of pyrene-oligoethylene glycol (OEG) -based surfactants, which have 

previously been shown to disperse carbon nanotubes in water. Molecular self-assembly of the 

surfactants on graphitic surfaces is experimentally monitored and optimized using a graphene 

coated quartz crystal microbalance in ambient and vacuum environments. Real-space nanoscale 

resolution nanomechanical and topographical mapping of sub-monolayer surfactant coverage, using 

ultrasonic and atomic force microscopies both in ambient and ultra-high vacuum, reveals complex, 

multi-length-scale self-assembled structures. Molecular dynamics simulations show that at the 

nanoscale these structures, on atomically-flat graphitic surfaces, are dependent upon the surfactant 

OEG chain length and are predicted to display a previously unseen class of 2D self-arranged ‘starfish’ 

micelles (2DSMs). Whilst three-dimensional micelles are well known for their widespread uses 

ranging from microreactors to drug-delivery vehicles, these 2DSMs possess the highly desirable and 

tunable characteristics of high surface affinity coupled with unimpeded mobility, opening up 

strategies for processing and functionalizing 2D materials. 
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Surfactants are essential1-4 for the efficient separation, dispersion and functionalisation of graphitic 

materials5 in aqueous solution and provide enabling steps in the production of graphene devices.6 

Surfactants play an essential role in promoting, via ultrasonic or chemically-driven exfoliation 

techniques,2 the creation of large graphene flakes with better defined geometries and reduced 

defect densities7 that are vital for the realization of device architectures in fields such as energy 

storage and generation,8 flexible displays9 and sensors.10 Whilst the behavior of surfactants in 

aqueous environments, where they self-assemble into supramolecular assemblies such as three-

dimensional spherical micelles with hydrophobic moieties shielded by a hydrophilic shell,11-13 is well 

understood, their behavior as (sub) monolayers on surfaces, has received limited attention.14-16 3D 

micelles may be transferred to solid-liquid or solid-air interfaces resulting in hemispherical or, it has 

been proposed, disk-like structures,13 depending on the interplay between cohesive and adhesive 

energies, with height in both cases of the same order as the lateral size. However, for sensing and 

energy storage applications, separation of graphene sheets by surface-stable surfactant structures 

with a smaller thickness is highly desirable.17,18 We now report a combined experimental and 

theoretical study of the molecular assembly of a tailored class of surfactants on graphitic surfaces. 

The resulting nano-microscale structuring is shown to derive from the formation of flat 2D starfish 

micelles (2DSMs), whose height is much smaller than their lateral surface dimensions. These 2DSMs 

are not formed by transferring pre-formed 3D micelles onto surfaces, but instead arise from the 

post-deposition aggregation of surfactant molecules on the surface.  

 

RESULTS AND DISCUSSION: The recently-synthesized family of surfactants19 (see Figure 1) contain 

pyrene groups for stable planar anchoring to the graphene surface, connected by oligoethylene 

glycol (OEG) chains to hydrophilic head groups derived from Newkome dendrons.20 Pyrene is known 

to bind to graphene with a binding energy of -1.09 eV, and to experience a low energy barrier of ca. 

0.01 eV to sliding and rotation parallel to the sheet.21-24 This results in a desirable combination of i) 

strong adsorption of the surfactants onto graphitic surfaces, and ii) free lateral movement over 

them. Surfactants 1-4 were synthesized as described previously.19
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Figure 1. Left: The structures of the homologous series of surfactants 1-3, which vary only in the length n of 

the oligoethylene glycol (OEG) linker chain. Right: The structure of surfactant 4, an analogue without an OEG 

linker. The anchoring unit derived from pyrenebutanol (in 1-3) or pyrenebutyric acid (in 4) is indicated in 

blue, the OEG linker unit (in 1-3) is shown in green, and the hydrophilic head group based on a first 

generation Newkome dendron is shown in red. 

 

Experimentally, molecular assembly of 2 was monitored by adsorbed molecular layer formation on a 

quartz crystal microbalance (QCM) sensor surface, on both Au and graphene,25 from aqueous 

solutions in the concentration range of 0.001 – 0.1 mg/ml. A Sauerbrey analysis26 of the frequency 

change during assembly was used to determine the area per molecule at frequency plateaus 

corresponding to stable sub-monolayer, mono- and multi-layer structures. As pyrene is expected to 

dominate binding between the surfactants and both Au27 and graphene,28 we used the 

pre-characterized Au coated crystals to benchmark assembly prior to graphene deposition. 

Molecular concentration and exposure times were modified over several orders of magnitude 

allowing fine control over the assembly process. Even for the lowest studied concentration of 0.001 

mg/ml and a brief 10 s deposition, the QCM measurements reveal the presence of added mass in 

the molecular system due to both surfactant and substrate bound water. Whilst deposition on Au 

consistently followed a clear two-stage mechanism (see Figure 2a for example), equivalent 

conditions resulted in a more stochastic process on graphene (see Figure 2b). This disorder is 

attributed to the higher surface mobility of the surfactant on graphene24 compared to Au.27  
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Figure 2. QCM monitored molecular area as a function of the total 

dipping time of 2 on a 5 MHz QCM with either a (a) gold or (b) 

graphene surface under ambient condition (inserts - typical Au and 

graphene coated QCMs).  

 

We were able to differentiate between water bound directly to QCM surface and bound surfactant-

structural water, (i.e. that associated with the surfactant layer on the surfaces) by analyzing QCM 

response at the elevated temperatures and vacuum. The QCM response was first calibrated to 

eliminate temperature dependence of the crystal frequency itself, detailed in SI 1.3. The application 

of vacuum led to an increase in frequency (indicating decrease in surface mass) of 7.7 ± 2.2 Hz and 

6.5 ± 1.5 Hz for the Au and graphene systems, respectively. This change in frequency is opposite and 

smaller than the ca. 30 Hz frequency decrease (showing mass increase) due to assembly of 2 on the 

surfaces and is independent of the number of vacuum cycles applied. Ab-initio calculations24,29 

suggest that the binding strength of 2 through the pyrene moiety to both Au and graphene is 

sufficient to ensure that surfactant molecules remain anchored throughout the vacuum and heating 

cycles. We therefore ascribe the initial vacuum induced mass decrease to removing of loosely bound 

physisorbed water on the highly hydrophilic surfactant surface.30 Frequency changes arising from 

20→60→20 °C heaQng and cooling cycles under vacuum show a 7 Hz difference for Au and a 4 Hz 

difference for graphene and, as would be expected without the system being returned to ambient, 

are again independent of number of heating cycles and indicates all water is removed on the first 

heat cycle and that no surfactant is removed on subsequent cycles. These changes are assumed to 

correspond to ‘structural’ water. Based on mass loss calculations we find the removal of 14 water 

molecules per 2 molecule for Au surfaces and 17 water molecules per 2 molecule for graphene 

surfaces. If the extra physisorbed water is taken into account, a total of 28 water molecules per 2 

molecule for the gold surface and 40 molecules per 2 molecule for the graphene surface are 

removed. This corresponds with the number of water molecules calculated within our MD 
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simulations, discussed in detail below, suggesting excellent agreement between simulation and 

experiment for these systems. 

 

MOLECULAR IMAGING: Direct nanoscale imaging was performed after assembly of surfactant layers 

on graphene-like freshly-cleaved highly ordered pyrolytic graphite (HOPG) surfaces. Intermittent 

contact (tapping mode) atomic force microscopy (AFM) was used in both ambient and UHV 

conditions and ultrasonic force microscopy (UFM)31,32 was used in ambient conditions. Freshly-

cleaved HOPG was exposed to 0.001 mg/ml solutions of 1-4 for 10 seconds, rinsed with deionized 

(DI) water, dried with dry nitrogen and imaged in ambient conditions (Figure 3). 

4 (n = 0) 1 (n = 2) 2 (n = 4) 3 (n = 6) 

    

Figure 3. Tapping mode AFM topography images of assembled molecular-structures of surfactants (1-4) on HOPG in 

ambient conditions where a) the shortest chain surfactant (4) forms elongated chain-like structures. b) For 1 a 

combination of short chain-like and “island” structures are formed. c) For 2 large, low surface density, islands of the 

surfactant are formed. d) For 3 similar island features to 2 are observed. In all cases, at these large scan sizes, section 

analysis shows that the maximum island height is <4 nm which is an order of magnitude less than their typical 

diameter (see table 1). 

 

The typical ‘island’ structure of these surface features remains unchanged when the coated HOPG is 

washed with copious amounts of water and rescanned, confirming the high affinity of the 

surfactants to the graphene-like surfaces. The features did not appear in control images of HOPG 

exposed to DI water alone. Although the structures formed vary significantly between surfactants, 

there are several consistent features. Firstly, the height profiles of all ‘islands’ are typically <4 nm, 

which is small relative to the lateral dimension of the features, and, secondly, there are indications 

of internal structure within these 2D features. Finally, these island features are of very different 

length scales to the 3D micelles observed in bulk solution as shown in Table 1 below (see also SI-3). 
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Surfactant Typical 2D dimension from 

AFM (nm) 

Typical 3D dimension  

from DLS (nm) 

1 44.65 ± 11.60 384 ± 4 

2 54.44 ± 25.50 435 ± 4 

3 46.43 ± 18.09 498 ± 3 

Table I. Typical diameters of circular features formation by surfactants 1-3 

as observed via tapping AFM on the HOPG surface and via DLS in bulk. 

 

This fine structure within the islands was subsequently investigated using UFM and small area 

tapping mode topography, shown in Figure 4 d and e, respectively. UFM eliminates the friction due 

to vertical ultrasonic oscillation of the sample,33 while preserving the nanoscale nanomechanical 

contrast to both stiff and soft objects.32,34  

   

  

 

Figure 4. High resolution SPM imaging of surfactant nano-structure in ambient conditions showing a) contact 

mode AFM topography and in b) the simultaneously acquired UFM nanomechanical response (where darker 

areas correspond to lower stiffness) of a densely packed film of 2 on HOPG. Topography image c) and 

corresponding UFM image in d) show zoomed-in details of molecular clusters shown within red dashed 
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boxes in a) and b) respectively. e) The small scan size tapping mode topography of 2 on HOPG and f) the 

corresponding image height distribution histogram. Exposed areas of HOPG, indicated with a green dashed 

line, are clearly visible in both the topography and UFM nanomechanical images.  

 

The UFM scan in Figure 4b shows the compliant (darker contrast) areas corresponding to higher 

protrusions observed in contact mode topography (Figure 4a) – typical for UFM nanomechanical 

contrast of small organic systems.35 The area shows a surface region of high molecular coverage – 

the HOPG substrate can be seen on the right hand edge of the image, indicated by circular green 

dashes. The small scale (120 x 120 nm) tapping mode scan of Figure 4e shows distinct populations 

within the surfactant structures; with height distribution analysis (Figure 4f) indicating typical 

heights of these features at 0.60 ± 0.21 nm (with typical diameters obtained by section analysis of 

12.79 ± 2.93 nm) and lower frequency higher features in the range 1.1 – 1.4 nm (16.77 ± 1.99 nm 

diameter), matching well with the UFM nanomechanical maps. Blurring and step-like shifts in the 

fast scan (horizontal) axis in Figure 4e are due to tip-induced disruption of the film, despite the 

extremely small lateral forces inherent to tapping mode AFM. This is consistent with the high lateral 

mobility of the surfactants on the substrate which also precluded clear imaging with scanning 

tunneling microscopy (STM) even in UHV at 77 K. Some elongation in the slow (vertical) scan axis is 

believed to be due to thermal drift arising from the slow scan speeds necessary for tapping mode 

imaging of soft objects. Comparable imaging of 2 was performed in the absence of surface water 

(Figure 5) by imaging in UHV at 77 K. Sample preparation for UHV measurements followed exactly 

the same protocol as the ambient samples, with only the addition of a further annealing step under 

vacuum (50 °C for ~11 hours) before being introduced into the main scan chamber.  As with ambient 

scanning conditions, multi-length scale structures were observed with smallest feature sizes 

corresponding to lateral dimensions of ~10 nm (Figure 5, line profile 2) and a height of 1-2 nm. In the 

UHV measurements a second layer structure was also observed confirming a layer height of ~ 1 nm 

between the first and second molecular layers (Figure 5, line profile 1).  This removes any possibility 

that the molecular layer appears with a lower height due to possible compression by the AFM tip 

compared to the practically incompressible HOPG surface.  
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Figure 5. High resolution frequency modulation FM-AFM imaging under 

UHV conditions with a qPlus sensor. (a) Constant Δf feedback image 

showing mono and bilayer molecular structures. Scan size: 250 x 250 nm, 

Δf set point = +10Hz, a0 = 225 pm, f0 = 23.7 kHz.  Line profiles show (b) a 

molecular height profile varying from ~1-2 nm and (c) smallest lateral 

feature sizes of ~ 10 nm. 

 

2DSM SIMULATIONS: To understand the nature of the observed structures, in both ambient and 

UHV conditions, we performed molecular dynamic (MD) simulations (see S4 1-3: for details), initially 

investigating the assembly of the surfactants on a disordered graphene sheet both in the absence 

and presence of water. In both cases the non-bonded Na+ counterions of the hydrophilic head group 

were free to escape and re-coordinate with the three carboxylate moieties during the simulation; 

however, in the absence of water, none of were observed to do so. Upon introduction of water the 

Na+ counterions were able to escape from the vicinity of the head group (see SI) Figure 6 shows the 

resultant structures for surfactants 1, 2 and 3. The first six snapshots (Figure 6 a-c) show that for all 

three surfactants, in the absence of water, structures form in which the hydrophilic charge-neutral 

Newkome Dendron head groups aggregate via van der Waals forces in the interior with the 

hydrophobic pyrene anchors on the exterior. However, upon the introduction of water to the 

simulation, as shown in panels g-i of Figure 6, the hydrophobic pyrene anchors flip from the exterior 

to the interior of the structures, where they aggregate by van der Waals forces and are surrounded 

by the OEG linkers and head groups. In this case, the Newkome dendrons can extend into the water 

layers above the graphene. This is a 2D analogue of the well-known spherical micelle. These 2D 

micelles possess a ‘starfish-like’ structure (2DSM) with thicknesses two orders of magnitude smaller 

than their typical lateral diameter corresponding with the dimensions of the features observed by 

SPM imaging. In the MD simulations at low coverage of surfactant 1 in water (see S4: Cluster Sizes) 

the surfactant has a lateral diameter of 43.8 Å with an extension from the graphene surface of 8 Å. 

The lateral diameter increases with the surfactant concentration and levels out at 56.4 Å at the 

maximum surface coverage predicted to occur when m=15. At higher concentrations the surfactants 

cluster to form conical structures. See S4:4 Cluster Sizes for details. Starfish 2DSMs are distinct from 
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conventional micelles or lipid membranes36 as surface interactions and topological steric hindrance, 

determined by the length of the OEG bridges separating the hydrophobic and hydrophilic moieties, 

play a major role in determining their dynamics and shapes, as do their local environment. One such 

environmental effect can be seen in the snapshot shown in Figure 6 panel g for surfactant 1 (chain 

length n=2 and density m=12 molecules), which shows examples of Na+ ions (colored blue) both 

coordinated to the carboxylate moieties and dissociated into the water. As a cross-check to the 

robustness of the prediction of 2-D micelle formation the graphene sheet was increased fourfold so 

that the simulation area is increased to 170.32 nm2. This avoids periodic effects as the lower 

concentrations now do not interact between unit cells. There was no change to the quantitative 

observation of 2-D micelle formation (see SI S4.2). 
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Figure 6. The MD simulations of 2DSM assembly formed by surfactants 1, 2, and 3 (with chain lengths n = 2, 

4 and 6 respectively and containing m = 6 or m = 12 surfactant molecules) on a 42.58 nm2 defective 

graphene surface at 300 K and 1 atmosphere. Panels a-f show snapshots of the 2DSM assembly in the 

absence of water and panelsg-i show snapshots in the presence of water. The snapshots show four periodic 

duplicate cells of the graphene sheet with the water not shown for clarity. The integer m denotes the 

number of surfactant molecules / 42.58 nm2 sheet. The sheet carbon atoms are shown in light grey with 

other carbons in dark grey/black, oxygen in red, hydrogen in white, nitrogen in purple and sodium in blue.  
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The details of the distribution of the Na+ ions are revealed by the pair correlation function for the 

separation of Na+ and the O- ions in the carboxylate (COO-) moieties. Figure 7 for surfactant 2 

compares the pair correlation function in the absence and presence of water. Clearly in the absence 

of water (shown by the black curve) the Na+ ions are coordinated to the O- ion in the (COO-) moiety 

at a separation of 2.5 Å and also associated with the neighboring carboxylate moieties at a 

separation of ~ 5.0 Å. In the presence of water (shown by the red curve) the Na+ ions spend much 

less time coordinated with an O- ion and are more randomly distributed over the simulation cell. This 

result is also demonstrated in Figure S10 for surfactant 1. The anchor units remain strongly adsorbed 

onto the graphene surface; however, in the presence of water, as the Na+ ions leave the initially 

charge-neutral head groups, the anionic dendrons repel each other and are attracted into the lower 

layers of water by van der Waals forces. This effect can be seen by comparing Figure S9 panel 3 

where at a high concentration of surfactant 2 in the absence of water the molecules spread out over 

the surface but in the presence of water in panel 6 conical structures form. 

 

 

In Figure 7 the pair correlation function over the production run of the simulation for the surfactant 2 is 

shown. In the absence of water (shown by the black curve) the Na+ ions are coordinated to the O- ion in the 

(COO-) moiety at a separation of 2.5 Å and also associated with the neighboring carboxylate moieties at a 

separation of ~ 5.0 Å. In the presence of water (shown by the red curve) the Na+ ions spend much less time 

coordinated with an O- ion and are more randomly distributed over the simulation cell.  

 

The structures of the 2DSMs depend not only upon the length n of the OEG linker, but also the 

coverage, which we quantify by the number m of molecules on the 42.58 nm2 sheet. For example as 

m increases from 6 to 12 surfactant 1 tends to form linear structures, whereas surfactant 2 forms a 

12 legged 2DSM and surfactant 3 starts to develop a conical structure as some of the head groups 

and the pyrene anchor units extend away from the graphene surface.  Increasing m to 24 for 
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surfactant 2 (shown in Figure S9 panels 1-3) results in 12 of the pyrene anchors forming a base which 

further molecules stack on top of. Thus the graphene surface remains only partially covered and 

complete surface coverage is not observed. The trends observed for the surfactants in the absence 

of water in Figure 6 are very similar to those observed in the presence of water. Surfactant 1 tends 

to form 2D linear micelles but in this case with the pyrene units sandwiched between the hydrophilic 

units. Surfactant 2 forms a more circular 12 legged 2DSM as the hydrophilic groups surround the 

pyrene units. Surfactant 3 again starts to develop a conical structure as some of the head groups and 

pyrene anchor units extend away from the graphene surface. Figure S9 panels 4-6  for surfactant 2 

with m=24 in the presence of water also shows that 12 of the pyrene anchors form a base with 

further molecules stacking on top. This again results in incomplete surface coverage and as the cone 

extends into the water layers we can estimate the number of water molecules associated with the 

surfactant outer layers as approximately 40 per molecule of 2. This is in excellent agreement with 

the number measured by QCM, above. 

 

CONCLUSIONS: The assembly and behavior of a series of tailored surfactant molecules on graphitic 

surfaces has been investigated in both ambient and high vacuum conditions. In both cases multi-

length scale surfactant features are observed with the smallest observable feature possessing a near 

2D profile. Assembly of such 2D structures is supported by MD simulations; furthermore MD 

calculated the same ratio of surfactant to water molecules on the graphene surface as direct QCM 

quantitative molecular adsorption experiments. MD confirms that these 2D structures behave as 

planar micelles on the surface, with a structure dependent on the presence or absence of water. MD 

also shows that the strongly surface-attached pyrene anchor units are located at the periphery of 

the structures in the absence of water, but at the core in the presence of water. The existence and 

manipulation of 2DSMs on graphene will be important for the control of surface functionalisation 

and a range of associated technologies. The realization of 2DSM opens routes to developing 2D 

microreactors which could lead to important advances, including control of the size and shape of 2D 

nano-islands grown on surfaces, with applications to nano-scale circuitry and biosensing. The 

chemical tunability of surfactants could enable the engineering of tailored structural molecular 

features in multi-functional graphene-based materials. Furthermore the ability to use scanning 

probe technologies to image 2DSMs in solution is likely to have ramifications for our understanding 

of the fundamental science of micelle formation and control. A mechanism for non-covalent 

molecular capture can be postulated where a molecule in solution is captured non-covalently by van 

der Waals forces within the Newkome dendrons and as the surfactant is dried so the molecule is 

held as the micelle reverses. Unwanted ions in solution can also exchange with the Na+ ions 
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associated with the carboxylate moieties and can be removed after drying. If the surfactants can be 

repeatedly dried and rehydrated the captured molecules or ions could then be repeatedly captured 

and released. The tendency for surfactant 3 to extend into the water environment can be exploited 

as a device design mechanism. A layer of the surfactant on graphene forms conical structures and 

depositing another graphene layer over the cones would result in the two graphene layers being 

separated by discrete pillars. This could have applications for thermoelectrics as the soft micelle 

pillars would inhibit phonon transport across the graphene layers. 

 

METHODS: 

Quartz crystal microbalance: Segregation grown graphene37 was transferred onto the top Au 

electrode of the QCM liquid handling head resulting in films of 1-2 graphene layers thickness, with 

continuous coverage over the entire QCM electrode area resulting in maximal sensitivity (more 

details in SI-1).38 QCMs were dip-coated in surfactant solution, in the range 0.001 – 0.1 mg/ml for 10 

s, prior to washing with DI water and nitrogen drying. The QCM frequency was measured and then 

the process repeated. No change in frequency was observed for the subsequent DI water 

washing/dry nitrogen drying stages suggesting these steps did not remove the surfactant. A custom 

vacuum chamber comprising a high thermal conductivity aluminum base in a direct thermal contact 

with a large area Peltier heater/cooler was used to ensure rapid thermal equilibrium in the system, 

further details are given in SI-1.3. A relevant temperature range of 20 – 60 °C was used with a 

pressure varied alternated between ambient and 10-1 torr. Continuous vacuum pumping ensures 

that water removed by heating was efficiently evacuated from the chamber. Both Au and graphene 

QCMs were calibrated for temperature induced frequency changes; the frequency changes solely 

due to water evaporation as a function of vacuum and temperature on graphene are given in Figure 

S3.  

Ambient SPM imaging: Contact mode, tapping mode atomic force microscopy and ultrasonic force 

microscopy were all performed using a Multimode Nanoscope IV AFM (Bruker AXS). For tapping 

mode high stiffness k = 40 Nm-1 and 300 kHz resonance (Tap300-G, Budget Sensors) probes were 

used. Topography and phase (shown in SI) were captured simultaneously. As UFM is essentially a 

modification of contact mode imaging albeit with eliminated friction, probes with k = 0.2 Nm-1 

(Contact-G, Budget Sensors) were used. A thin plate piezoceramic actuator (4 MHz thickness mode 

resonance, PI) was bonded to the sample substrate and used to generate ultrasonic vibrations,  

resulting in efficient ultrasonic excitation at frequencies up to 10 MHz.32 The piezoceramic actuator 

was excited by a function generator (LXI Keithley) at 4.2 MHz ultrasonic frequency modulated at 2.3 
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kHz; the cantilever deflection at this modulation frequency corresponds to the nonlinear UFM 

response, which is highly dependent on the local nanomechanical properties of the sample, and was 

detected via a lock-in amplifier (Stanford Research Systems, SRS-830) as described in detail 

elsewhere.39,40 

 

High vacuum SPM imaging: Frequency modulation atomic force microscopy (FM-AFM) 

measurements collected under ultra-high vacuum (UHV) were obtained using an Omicron 

Nanotechnology GmbH LT STM-AFM system operating at liquid nitrogen temperature (77 K) and an 

Omicron Nanotechnology GmbH VT STM-AFM operating at room temperature.  Both systems were 

kept under ultrahigh vacuum conditions with a base pressure of 5 x 10-11 mbar or better.  FM-AFM 

measurements at LT were collected using a commercial qPlus sensor41 supplied by Omicron GmbH 

with a resonant frequency of ~23.7 kHz and a stiffness of ~2000 Nm-1.  For all FM-AFM 

measurements images were acquired under feedback by maintaining a constant Δf set point. Prior to 

all measurements on the micelle samples, images were collected on clean Ag(111) surfaces where 

the tip was conditioned (via standard voltage pulsing and tip-indentation methods) until atomically 

sharp steps were observed, thus confirming the presence of an atomically sharp probe.  We have 

therefore neglected any contribution of tip dilation from quoted dimensions for these 

measurements. Unusually, imaging in the conventional attractive mode (i.e. maintaining a negative 

value of Δf) was found to be exceptionally challenging and snap-to-contact was often observed.  We 

therefore instead performed the majority of measurements using positive Δf set points where 

images were found to be more stable.   

 

Molecular modelling: Molecular dynamic (MD) simulations were performed to investigate the 

assembly of the surfactants on the surface of a disordered graphene sheet in water. The simulations 

were computed by using the MD package DLPOLY_4.42 The system was modelled as a periodic 

cuboid of water (parameterized to the TIP3P water model at 300 K, 1 atmosphere and a density of 

1000kg/m3) of side 60 x 60 x 75 Å which contained a number, m, of surfactant units placed over a 

periodic, disordered sheet of graphene of side 60 x 75 Å. Each calculation was relaxed for 8 ns prior 

to obtaining the snapshots shown in Figure 6 of the main text using the Nosé-Hoover (npt) 

thermostat with barostat ensemble. An adapted force field was constructed using the Dreiding force 

field scheme with the parameters found in Mayo et al.
43 and charges allocated to each atomic 

species calculated by the DFT package SIESTA44 using the van der Waals density functional45-47 where 

extended double zeta polarized basis sets of the pseudo atomic orbitals were used to optimize the 

geometries by relaxing the atomic forces to less than 20 meV/Å. Importantly, the force field charges 
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were carefully tuned to allow the Na+ ions coordinated to the three carboxylate moieties in the head 

group shown in Figure 1, to disperse into the water environment and recombine during the 

simulation. The overall system charge was neutral. 
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