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Abstract 9 

The combined indirect and direct impacts of land use change and climate change on river water 10 

quality were assessed. A land use allocation model was used to evaluate the response of the 11 

catchment land use to long-term changes in precipitation and temperature. Its results were used to 12 

drive a water quality model and assess the impact of the same climatic alterations on freshwater 13 

nitrate and phosphorus concentration. A scenario-neutral framework was used to evaluate the system 14 

response to changes in annual precipitation and annual temperature, and probabilistic climatic 15 

projections were employed to estimate the likelihood of such response. The River Thames catchment 16 

(UK) was used as a case-study, given the widespread presence of agriculture and its importance for 17 

freshwater supply. If land use is considered as static parameter, according to the model results, 18 

climate change alone should reduce the average nitrate concentration, although just by a small 19 

amount,by the 2050s in the Lower Thames, due to reduced runoff (and lower export of nitrate from 20 

agricultural soils) and increased instream denitrification, and should increase the average phosphorus 21 

concentration by 12% by the 2050s in the Lower Thames, due to a reduction of the effluent dilution 22 

capacity of the river flow. However, the results of this study also show that these long-term climatic 23 

alterations are likely to lead to a reduction in the arable land in the Thames, replaced by improved 24 

grassland. This change is mainly driven by a decrease in agriculture profitability in the UK in 25 

comparison to other areas of Europe. Taking into account the dynamic co-evolution of land use with 26 

climate, the average nitrate concentration is expected to be decreased by around 6% by the 2050s in 27 

both the upper and the lower Thames, following the model results, and the average phosphorus 28 

concentration incerased by 13% in the upper Thames and 5% in the lower Thames. This study shows 29 

the importance of incorporating the indirect impacts of climate change, through considering the 30 

response of the whole catchment, into assessments of future water quality. 31 

 Keywords: water quality, land use change, scenario-neutral, INCA model, River Thames. 32 

1 Introduction 33 

Human action has considerably modified the Earth’s environments and landscape, and continues to 34 

do so. Between one-third and one-half of the Earth’s land has been transformed by human 35 

interventions (Vitousek et al., 1997). Human-induced land use/land cover changes alter processes 36 

such as runoff generation, nutrient cycles and soil erosion to a similar or greater extent than other 37 

major drivers, such as climate change (Sterling et al., 2013). In recent centuries, land use change has 38 

had much greater effects on ecological processes than climate change (Dale, 1997).  39 
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Although land use is widely acknowledged as a key driver of change in catchment processes and 40 

properties, it is challenging to predict how it will change in the future subject to stressors such as 41 

climate change, technology change and human population increases. Its future evolution is uncertain 42 

(Mehdi et al., 2015), as land use and land management are changed to adjust to changes in climate, 43 

policy, food demand etc. Natural vegetation also responds dynamically to climatic variations (Ruiz-44 

Pérez et al., 2016). These adaptations can have hydrological and ecological effects (Dale, 1997). 45 

One example of widespread human-induced land use change is agriculture. Modern agriculture is 46 

recognised as one of the most significant non-point sources of water pollution (Johnes, 1996), 47 

especially for nutrients like nitrogen and phosphorus (Tong and Chen, 2002). At the global scale, 48 

agriculture is the economic sector that is likely to suffer the greatest financial impact as a result of 49 

climate change (Lobell et al., 2011). Farmers are expected to adapt to climate change by switching 50 

activities to those that are most profitable, given the new conditions they will face (Fezzi et al., 2015). 51 

This adaptation is likely to have a strong effect on river water quality (Fezzi et al., 2015), for example 52 

by increasing/decreasing nitrogen leaching to the aquifer, or by altering the nutrient export from 53 

agricultural soils. 54 

Scenarios are commonly used as tools to examine plausible developments of change (Mehdi et al., 55 

2015). Nevertheless, scenarios are usually characterised by a high degree of subjectivity and do not 56 

describe the response of the land use to climatic changes. An alternative to understand the response 57 

of land use to drivers such as climate variability is through the use of spatially-explicit land use 58 

allocation models. These models estimate the future evolution of land use/land cover through land 59 

use conversion, based on climate, population and peoples’ responses to economic opportunities, as 60 

mediated by institutional factors (Lambin, 1997; Lambin et al., 2001). 61 

Despite the importance of climatic and socio-economic changes on water resources and water quality 62 

management, there is still a strong need for quantitative approaches that can evaluate the impact of 63 

these drivers of change and assist catchment and river management, compensating for the lack of 64 

objectivity that socioeconomic and emission scenarios holds. Moreover, only a few studies so far 65 

have presented integrated assessments of the joint impact of climate and land use change on water 66 

quality. Other studies evaluated the impacts of climate change and/or land use change in the Thames 67 

catchment or in other catchments in the UK, although none assessed the impact of the dynamic co-68 

evolution of land use with long-term climatic changes, to the authors’ knowledge. The findings of this 69 

study in terms of phosphorus substantially agree with the ones of Crossman et al. (2013) 70 

concentration, who used the same model (INCA – INtegrated CAtchment model) but a different 71 

methodology, with a set of static land use scenarios. Bussi et al. (2016b) also provided estimates of 72 

the impacts of climate and land use change on total phosphorus concentration using the INCA model 73 

and a scenario-neutral methodology (i.e. a methodology that does not use emission scenarios or 74 

socio-economic scenarios to drive a hydrological model, but rather makes a sensitivity analysis on the 75 

model input), but employing a set of static land use change scenarios that were not linked to 76 

agricultural supply and demand. 77 

The objectives of this study are: 78 

- To develop a methodology for the combined evaluation of direct and indirect impacts of 79 

climate change on river water quality, taking into account the response of land use and 80 

agriculture to changes in climate. 81 

- To understand the relative importance of the direct and indirect impacts of climate change on 82 

nitrate and phosphorus concentration in the River Thames 83 

A land use allocation model, embedded within an integrated modelling platform, is coupled to a 84 

hydrological and water quality model to assess the impact of a changing climate on water quality 85 

taking into account the land use/land cover response to changing crop suitability and profitability 86 

under the same climatic variations. This is done by means of a scenario-neutral methodology (Bussi 87 
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et al., 2016a, 2016b; Prudhomme et al., 2010), which allows the system response to changes in 88 

climate to be assessed without having to rely on specific climate and/or land use scenarios. The water 89 

quality model used is the INCA model for nitrogen and phosphorus (Wade et al., 2002a, 2002b, 90 

Whitehead et al., 1998a, 1998b). This model is applied to the River Thames catchment (UK). 91 

2 Study area 92 

This paper focuses on River Thames catchment upstream of London (Figure 1, 9,927 km
2
), located in 93 

southern England and draining toward the city of London. This river provides freshwater supply to 94 

fourteen million people (Whitehead et al., 2013), most of whom live downstream within London, and 95 

receives treated wastewater from approximately three million people (Kinniburgh and Barnett, 2009). 96 

The climate is temperate with Atlantic and continental influences. The average annual precipitation is 97 

730 mm (1960-2014, with a minimum of 538 mm in 1973 and a maximum of 974 mm in 2000) and the 98 

annual average temperature is 10.7°C (1960-2014, minimum: 8.6°C in 1963, maximum 12.1°C in 99 

2014), with a difference of around 1.5-2°C between the interfluve and the valleys. The average 100 

summer temperature is 16.5 °C and the average winter temperature is 4.7°C. The average daily flow 101 

is 67 m
3
 s

-1
 at the catchment outlet in London, with a daily Q5 (discharge exceeded only 5% of the 102 

time) of 206 m
3
 s

-1
. High flows usually occur in winter to early spring and low flows in summer to late 103 

autumn (Bussi et al., 2016a).  104 

The catchment geology is dominated by chalk, with limestone in the headwaters, and clay/mudstone 105 

and sandstone also present both upstream and downstream of the chalk area (Bloomfield et al., 106 

2011). The catchment is dominated by arable land alternated with grassland in its upper part (around 107 

80% of the catchment draining to reach 4 in Figure 1 is dedicated to arable agriculture or improved 108 

grassland), with little urban land in the headwaters. The urban land portion increases in the Western 109 

part of the catchment (up to 30% of the lowermost sub-catchments in Figure 1). Around 13% of the 110 

catchment is covered by woodland.  111 

 112 

Figure 1 – Location of the River Thames catchment (UK). The INCA model sub-catchments are also shown. The grey 113 
areas show the location of the urban areas. 114 

The results of this study are shown at two reaches: reach 4, representative of the upper Thames, and 115 

reach 19, representative of the lower Thames. Reach 4 drains sub-catchments 1 to 4, which have an 116 

extension of 1610 km
2
. The land use is predominantly agricultural, with 50% of arable land and 28% 117 

of improved grassland. Forest land is 6% of the total area. Only 5% of the catchment is occupied by 118 

urban land, with less than 300,000 population equivalent discharging effluents into the river. Reach 19 119 
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drains sub-catchments 1 to 19. The part of the Thames catchment drained by reach 5 to 19 has an 120 

extension of 6540 km
2
. The land use is also dominated by agriculture, with a portion of arable land of 121 

42% and 28% of improved grassland. Forest land is 11% and urban land is also 11%. The population 122 

equivalent of this portion of catchment is slightly less than 3,000,000. 123 

Meteorological inputs for the INCA model, namely daily precipitation and temperature time series, 124 

were obtained from the UK Met Office (Met Office, 2012). More details can be found in Bussi et al. 125 

(2016a). Records of continuous daily water discharge at the several sections of the river were 126 

obtained from the National River Flow Archive (NRFA, ceh.ac.uk/data/nrfa/). Weekly nutrient data, in 127 

particular nitrate concentration and total phosphorus concentration, were obtained from the Thames 128 

Initiative (TI) research platform dataset (Bowes et al., 2012). Intermittent nutrient data, collected with a 129 

frequency of around four weeks, were also obtained from the Environment Agency of England and 130 

Wales. 131 

3 Methodology 132 

3.1 Land use allocation model 133 

Land use allocation was simulated using the IMPRESSIONS Integrated Assessment Platform (IAP), 134 

which is an update of the CLIMSAVE IAP (Harrison et al., 2016, 2015, 2014; Holman et al., 2016). 135 

The platform integrates a suite of models to assess the impacts of, and adaptation to, climate and 136 

socio-economic change across a range of sectors including urban development, coastal and fluvial 137 

flooding, agriculture, forests, water resources and biodiversity (see Figure 2). The computationally 138 

efficient models within the IAP (details of which can be found in Holman and Harrison (2011) have 139 

been validated and subject to extensive sensitivity (Kebede et al., 2015) and uncertainty (Brown et al., 140 

2014; Dunford et al., 2014) analyses. The platform is run across the European Union countries plus 141 

Norway and Switzerland on a 10’x10’ grid (approximately 16km x 16km) of over 23,000 gridcells (with 142 

each grid cell containing multiple soil types), and over 4 time slices (baseline, 2011-2040, 2041-2070 143 

and 2071-2100).  144 
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 145 

Figure 2 –Schematic showing the structure of the linked models within the IMPRESSIONS IAP2. 146 

The rural land use allocation metamodel in the IAP (Audsley et al., 2014) is based on the Silsoe 147 

Whole Farm Model (SFARMOD-LP - Annetts and Audsley, 2002) a constrained optimising linear 148 

programming model of long-term land use. The model spatially allocates land uses (intensive arable, 149 

intensive grassland, extensive grassland, managed forest, unmanaged forest and unmanaged land), 150 

and associated rainfed and irrigated crops and tree species, based on relative economic profitability 151 

and subject to a range of constraints. These include areas subject to urban development, flood risk, 152 

environmentally protected areas (such as Natura 2000 sites) and water resource availability. The 153 

model works iteratively to find a spatial land use allocation solution that meets demand for the 154 

commodities of timber, meat, milk, fibre, protein, roots, oils and cereals across Europe, in response to 155 

spatial simulated changes in profitability driven by changing crop yields, fodder production (influencing 156 

milk and meat production) and timber yield. Price factors are used to stimulate or reduce production of 157 

a given commodity across Europe to meet demand (by making its production more/less economically 158 

advantageous). In the context of the current study, land use in the Thames catchment can change as 159 

a result of intra- and inter-catchment changes in crop and timber yields and profitability, reflecting the 160 

large-scale markets of such commodities where prices and supply are driven by national and 161 

international demand. For this study, the baseline socio-economic conditions within the IAP were 162 

maintained, so that European food demand (driven by population, GDP and dietary preferences and 163 

net imports) and agricultural technology (crop breeding, mechanisation, etc.) remained constant. The 164 

simulated baseline land use for the River Thames catchment (i.e., the current land use) is shown in 165 

Figure 3. 166 
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 167 

Figure 3 – Simulated percentage land use of the River Thames catchment per sub-catchment under current climate 168 
(i.e., no alterations of precipitation and temperature).  169 

3.2 Water quality model 170 

The INCA hydrological and water quality model was employed to reproduce the water quality 171 

dynamics of the River Thames (UK). This model was chosen because it combines the simplicity 172 

required to reproduce water quality processes at the catchment scale with the accuracy that is 173 

necessary to produce estimates of flow and nutrient concentration. Furthermore, it is a very well-174 

known water quality model, used in several catchments in the UK and in the rest of the world since 175 

the late 90s, with an extensive body of publications to support it (some of which are detailed below). 176 

The INCA model is particularly suitable for the scale of this study, as it was developed as a 177 

catchment-scale model, with the possibility of disaggregating the catchment in several sub-178 

catchments. Furthermore it offers the possibility of analysing the effect of land use change on water 179 

quality, given that different land use units with different characteristics and parameters can be defined 180 

within each sub-catchment. 181 

The INCA model was initially developed as a nitrogen (Whitehead et al., 1998a) and phosphorus 182 

(Wade et al., 2002b) model, although several other sub-models were added later, such as a soil 183 

erosion and sediment transport sub-model (Lázár et al., 2010), a faecal indicator model (Whitehead et 184 

al., 2016) and an organic contaminant model (Lu et al., 2016). The hydrological and water quality sub-185 

models of INCA have been applied to several basins across the UK and Europe, and, in particular, to 186 

the River Thames catchment (Bussi et al., 2016b; Crossman et al., 2013b; Jin et al., 2012; Lu et al., 187 

2016; Whitehead et al., 2016, 2013). INCA is a semi-distributed process-based model which 188 

simulates the transformation of rainfall into runoff and the propagation of water through a river 189 

network (Wade et al., 2002a). Its inputs are daily time series of precipitation, temperature, 190 

hydrologically effective rainfall, and soil moisture deficit. The latter two are estimated using another 191 

semi-distributed hydrological model, called Precipitation, Evapotranspiration and Runoff Simulator for 192 

Solute Transport model - PERSiST (Futter et al., 2014), which is specifically designed to provide input 193 

series for the INCA family of models. It is based on a user-specified number of linear reservoirs which 194 

can be used to represent different hydrological processes, such as snow melt, direct runoff 195 

generation, soil storage, aquifer storage and stream network movement. The description of its 196 

application to the river Thames can be found in Futter et al. (2014). 197 

The nitrogen sub-model of INCA (Wade et al., 2002a; Whitehead et al., 1998a, 1998b) reproduces the 198 

cycle of nitrogen from its main sources (atmospheric deposition, fertilisers, wastewater, etc.) to the 199 

river. The most important soil processes are included, such as denitrification, nitrification, 200 

immobilisation, mineralisation and leaching towards the aquifer. Nitrification and denitrification 201 

processes in the streams are also taken into account. The phosphorus sub-model of INCA (Wade et 202 

al., 2002b) incorporates the main sources of phosphorus, both diffuse (fertilisers) and point 203 

(wastewater), as well as the main processes involving phosphorus, such as sorption/desorption. The 204 

phosphorus sub-model of the INCA model also includes a sediment sub-model, which computes the 205 

detachment of soil particles from the hillslopes and their transport towards the catchment outlet. The 206 

INCA model has already been applied to the River Thames catchment (Crossman et al., 2013b; Jin et 207 

al., 2012; Lu et al., 2016; Whitehead et al., 2016, 2013). In this study, the same model structure is 208 
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used, where the catchment is divided into 22 sub-catchments and the river into 22 corresponding 209 

reaches (Figure 1). The land uses of the Thames catchment were categorised as follows: forest 210 

(including both managed and unmanaged forest), unfertilised grassland (i.e., extensive grassland), 211 

fertilised grassland (i.e., intensive grassland), arable (i.e., intensively farmed land) and urban. The 212 

land use configuration used for model calibration was obtained from the IAP model rather than from 213 

land use maps to ensure consistency between the baseline and the scenario results. 214 

Based on a prior general sensitivity analysis of the INCA model of the River Thames (Spear and 215 

Hornberger, 1980; Whitehead et al., 2015) and the modeller’s knowledge, the following 22 parameters 216 

were identified as the most influential:  217 

- Hydrology (Bussi et al., 2016a; Jackson-Blake and Starrfelt, 2015): rainfall excess proportion 218 

(the proportion of excess rain that is converted into direct runoff), soil water and ground water 219 

residence times (i.e., flow velocity for sub-superficial flow and base flow), maximum infiltration 220 

rate, flow-velocity coefficient (the coefficient of a power law used to calculate channel flow 221 

velocity from discharge), flow threshold for saturation excess direct runoff. (,  222 

- Nitrogen (Jin et al., 2012; Wade et al., 2002a): soil denitrification coefficient, nitrification, 223 

mineralisation and immobilisation rates in the soil, nitrogen uptake rate by crops, groundwater 224 

nitrate concentration, instream nitrification rate and instream denitrification rate,  225 

- Sediment,( Bussi et al., 2016a; Lázár et al., 2010):,splash and flow erosion parameters 226 

(defining the erodibility fo soils), flow erosion direct runoff threshold (defining the threshold 227 

above which flow erosion occurs), transport capacity scaling factor (which adjusts the 228 

transport capacity on the hillslopes), transport capacity non-linear coefficient (which adjusts 229 

the transport capacity on the hillslopes), instream sediment transport parameters (which 230 

adjust the transport capacity in the channel)  231 

- Phosphorus (Bussi et al., 2016a; Jackson-Blake and Starrfelt, 2015): soil matrix sorption 232 

coefficient (which adjusts the sorption capacity of the soils),water column sorption coefficient 233 

(which adjusts the sorption capacity of the water column), stream bed sorption coefficient 234 

(which adjusts the sorption capacity of the be sediment).  235 

More information on INCA model sensitivity analysis and Monte Carlo calibration can be found in 236 

Jackson-Blake and Starrfelt (2015) and Bussi et al. (2016a). 237 

The feasible ranges of variation of these influential model parameters, informed by previous studies, 238 

were sampled randomly, and 10,000 different parameter sets were generated. Subsequently, the 239 

INCA model was run with each of these parameter sets, and its performance was assessed based on 240 

observed values of flow and water quality at two stations (reach 4 and reach 19), using data from 241 

2010 to 2014. The metric used for model assessment was the Nash and Sutcliffe Efficiency (NSE - 242 

Nash and Sutcliffe, 1970) for the flow and the percent bias (PBIAS - Bennett et al., 2013) for nitrate 243 

and sediment on the daily results. The best model was selected and used in the rest of the study. The 244 

results are shown in Figure 4, where the grey-shaded area represents the calibration period (2010-245 

2014), which was chosen to ensure that the model reflects current, rather than historical, catchment 246 

conditions, in particular, wastewater treatment standards, fertiliser and manure use and stocking 247 

densities. The performance indices for calibration and validation are shown in Table 1. 248 
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 249 

Figure 4 – INCA model calibration and validation results at two locations on the River Thames. Observed data: NRFA 250 
(National River Flow Archive, daily flow, 2000-2015), TI (Thames Initiative dataset, weekly nitrate and total phosphorus, 251 
2009-2014) and WIMS (Water Information Management System database, monthly nitrate and total phosphorus, 2000-252 

2015). The grey-shaded area represents the calibration time period. 253 

 
Reach Flow NSE Flow PBIAS Nitrate R2 

Nitrate 

PBIAS 

Phosphorus 

R2 

Phosphorus 

PBIAS 

Calibration 

2010-2014 

Reach 4 0.81 3 0.49 -1 0.30 12 

Reach 19 0.85 7 0.49 0 0.18 31 

Validation 

2000-2010 

Reach 4 0.73 1 0.56 -4 0.28 22 

Reach 19 0.79 11 0.56 2 0.42 53 

Table 1 – Performance indices of the INCA model (calibration and validation). NSE: Nash and Sutcliffe Index, R2: 254 
correlation coefficient, PBIAS: percent bias. 255 

As Figure 4, the model results can be considered generally satisfactory in terms of reproduction of the 256 

system response to climatic variations, given the uncertainty that characterises both model results 257 

and measured data values. It is important to note that this model is not used to provide daily forecasts 258 

of nitrate and phosphorus concentrations in the River Thames, but rather to disentangle the average 259 

catchment response to long-term changes in the climatic conditions and its consequent modifications 260 

of the land use. 261 

Concerning the phosphorus simulation reach 19, the PBIAS is slightly unsatisfactory, especially for 262 

validation, although the R2 shows acceptable values (0.42 for validation). The interpretation of this is 263 

likely to be the impact of phosphorus effluent concentrations on the river concentration. At this 264 

location in the river, a large amount of wastewater effluent is discharged into the river and impacts 265 

greatly the phosphorus concentration. In this study, we used a constant phosphorus concentration for 266 

the effluent as input to the water quality model, due to the lack of better data. However, this 267 

concentration is likely to vary in time, and it was probably higher in the early years of the 2000s and 268 

lower in the present, due to the improvements in phosphorus stripping techniques (as the decreasing 269 

trend in the observed concentration seems to show). Using an average concentration as model input 270 

can therefore introduce an important bias. Although this is likely to affect the results of this study, the 271 

phosphorus model results for reach 19 are shown anyway, since the methodology employed in this 272 

paper is still valid. 273 
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3.3 Scenario-neutral methodology for climate variability impact assessment 274 

A scenario-neutral approach was used to assess the impact of long-term climate change and climate 275 

variability on land use and water quality. As opposed to top-down approaches, which use climate 276 

model outputs to drive hydrological and environmental models, the scenario-neutral methodology is 277 

based on a bottom-up approach. Environmental vulnerability indicators (in this case, river water 278 

quality) are used as end-variable, and a response surface of these indicators to changes in some 279 

climatic features is built using environmental models (Singh et al., 2014). The likelihood of these 280 

climatic changes is then assessed by integrating information about future climate (often from climate 281 

models) into the results of this methodology (Prudhomme et al., 2010). The main advantages of this 282 

methodology is that it does not need to choose a specific emission scenario or a specific climate 283 

model from the available tools (which is often a difficult and slightly arbitrary task) and it does not 284 

need a bias-correction procedure (which can also be complex to perform in certain cases).  285 

In this study, the following methodology was set up. First, the climatic stressors most likely to impact 286 

water quality were identified. Alterations in these climatic stressors were then applied to the current 287 

climatic observed series of daily precipitation and temperature from 1960 to 2015. This allowed the 288 

creation of a number of combinations of perturbed input time series (precipitation and temperature) 289 

which were used to drive both the land use model and the water quality model (Figure 5). The final 290 

result was a set of nitrate and phosphorus concentration time series resulting from all the 291 

combinations of the altered climatic time series. The advantages of using this methodology are that 292 

no climate model output is required to drive the land use and water quality models, and therefore no 293 

assumptions have to be made on future greenhouse gas emission/concentration scenarios, and no 294 

bias correction of a climate model output is required (Prudhomme et al., 2010). Furthermore, in this 295 

particular case, this methodology seems even more appropriate because this study focuses on long 296 

term changes, without necessarily having to relate the resulting changes in land use and water quality 297 

with a future time horizon or a prescribed time by which the scenario is thought to occur. 298 
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 299 

Figure 5 – Scheme of the methodology used in this study. 300 

Alterations to average precipitation and average temperature were introduced by means of a uniform 301 

“delta change” transformation (Hay et al., 2000) applied to observed daily precipitation and 302 

temperature values. The alterations were chosen to cover the projected changes in annual 303 

precipitation and temperature by climate models, but also to stress the system further, with the aim of 304 

assessing not only future plausible changes but also the response of the system under very extreme 305 

conditions. Following Christensen et al. (2007), for Northern Europe the annual temperature is 306 

expected to increase up to 5.3°C by 2080-2099, while annual precipitation is expected to vary 307 

between 0  and +16% (although a decrease in summer precipitation is also forecasted, up to 21%). 308 

Therefore, seven alterations were applied to the temperature (from +0°C to +6°C with a 1°C step) and 309 

eight alterations to the precipitation time series (from -30% to +40% with a 10% step), creating in total 310 

56 combinations of manually-altered climate. For each time series, the IAP was first run to compute 311 

the corresponding land use for the Thames catchment given the long-term climatic changes dictated 312 

by the scenario-neutral climatic alterations. Then, the water quality model was run, driven by the 313 

altered precipitation and temperature time series and using the land use map obtained at the previous 314 

step. An additional model run was also carried out for each of the 56 climate alteration combinations, 315 

using altered climate but unaltered land use (i.e., the current land use), in order to isolate the effect of 316 

considering land use as a dynamic variable. The results of the water quality model were analysed in 317 

terms of average nitrate concentration and average total phosphorus concentration (the averages 318 

were computed over all the time period considered, i.e. 1960-2015), at two locations on the River 319 

Thames (reach 4: Thames at Farmoor – i.e., upper Thames, and reach 19: Thames at Runnymede – 320 

i.e., lower Thames). 321 

Although, as said above, this methodology does not require the use of climate model results as inputs 322 

to the modelling, these are used to compute the likelihood of the catchment response to climatic 323 
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alterations by assigning a probability of occurrence to the combinations of climate alterations 324 

considered in this study. The probabilistic change factors from the UK climate projections 09 325 

(UKCP09, Murphy et al., 2009) were used to determine the likelihood of the precipitation and 326 

temperature changes used to drive the land use and water quality models. The UKCP09 scenarios 327 

were developed by the UK Met Office to provide climate change projections over the UK accounting 328 

for uncertainties in global climate models. These projections are based on the results of the HadCM3 329 

coupled ocean-atmosphere Global Circulation model (Gordon et al., 2000), which was run as a 330 

perturbed physics ensemble to sample model and parameter uncertainties (Murphy et al., 2007). 331 

HadCM3 projections were downscaled on a 25 km grid over seven overlapping 30-yr time periods 332 

based on an ensemble of 11 variants of the regional climate model HadRM3, and a statistical 333 

procedure was applied to build local-scale distributions of changes for various climate variables. 334 

UKCP09 gives projections for each of three of the IPCC’s Special Report on Emissions Scenarios 335 

(SRES) scenarios (A1FI - called “high” in UKCP09, A1B – “medium” and B1 – “low”). Among the 336 

available outputs, expected changes in average precipitation and temperature following the different 337 

emission scenarios are given (change factors). The change factors were used to assess the likelihood 338 

of the water quality alterations that follows the climatic alterations detailed above. No daily or monthly 339 

time series were employed, and no downscaling/bias correction is required within the framework of a 340 

scenario-neutral methodology. The likelihood of changes in water quality was computed by 341 

comparison with climatic properties taken from a set of 10,000 change factors for the River Thames 342 

catchment under the A1FI emission scenario (the most severe scenario) for several future time slices 343 

(from the 2020s to the 2080s). These change factors were downloaded from the UK climate 344 

projections website of the Met Office. 345 

4 Results  346 

4.1 Impacts of climate variability on land use 347 

As the IAP model simulates a decrease in arable area across the Thames catchment and the UK with 348 

increasing temperature (Figure 6), it simulates a corresponding significant increase in arable area in 349 

parts of Central and Eastern Europe. Higher crop yields due to increased temperatures result in 350 

greater relative profitability of arable land in these regions. Therefore growing arable crops within the 351 

UK no longer maximises profit so that such land is converted to fertilised (intensive) grassland. 352 

However, the model indicates that a large increase in temperature of +6°C would cause a return of 353 

arable agriculture in the Thames catchment (although not at the current level). Error! Reference 354 

source not found.C illustrates an expansion of the arable area under such conditions in Europe as 355 

increased drought and heat stresses reduce crop yields and productivity across much of Europe. As a 356 

result, demand for arable commodities is not met and increased profitability of arable land within the 357 

UK prompts conversion of grassland to arable land.  358 
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 359 

Figure 6 –Percentage arable area per grid cell simulated by the IAP2 model for A: Baseline (current) climate, B: +3°C, 360 
and C: +6°C and -30% precipitation.  361 

Figure 7 and Figure 8 show the simulated arable, fertilised grassland, non-fertilised grassland and 362 

forest areas of the River Thames catchment across the range of precipitation and temperature 363 

changes, expressed as a percentage of the undeveloped catchment area. Figure 7 shows the 364 

response of the land use to change in climate for the upper Thames, i.e., the sub-catchment drained 365 

by reach 4 (Thames at Farmoor). Figure 8 shows the response of the lower Thames catchment (i.e., 366 

the part of the Thames catchment drained by the River Thames between reach 4 and reach 19 – 367 

Thames at Runnymede). The baseline land use fractions are shown in Figure 3. The results show that 368 

the simulated agricultural land use in the Thames catchment is highly sensitive to small changes in 369 

climate in Europe. In particular, both the arable land and the fertilised grassland fractions of the 370 

Thames catchment appear to be especially sensitive to increases in temperature and to increases in 371 

precipitation under conditions of low temperature increases. 372 

 373 

Figure 7 – Response of the land use in the upper Thames catchment to long-term changes in the climate (sub-374 
catchment drained by reach 4 – Thames at Farmoor), in terms of land use fraction of the catchment. Black lines are 375 

surface contour lines (bold lines every 10% land use fraction, thin lines every 2.5%). 376 

 377 
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Figure 8 – Response of the land use in the lower Thames catchment to long-term changes in the climate (sub-378 
catchments drained by the River Thames from reach 4 to reach 19 – Thames at Runnymead), in terms of land use 379 
fraction of the catchment. Black lines are surface contour lines (bold lines every 10% land use fraction, thin lines 380 

every 2.5%). 381 

Even a small increase in temperature causes a sharp decrease in arable land, and corresponding 382 

increase of fertilised grassland. As temperature increases above ~2C, the arable area decreases to 383 

~0% in most of the catchments under all precipitation scenarios. This does not reflect the inability of 384 

such arable crops to grow under these conditions, but rather that it is more profitable to meet demand 385 

in other parts of Europe.  386 

4.2 Impacts of climate variability on water quality 387 

The INCA model results provided an assessment of the response of the River Thames water quality 388 

to changes in annual precipitation and temperature. In Figure 9 and Figure 10 the response surfaces 389 

are shown for the two different river reaches (Figure 9: reach 4 – Thames at Farmoor, Figure 10: 390 

reach 19 – Thames at Runnymede), and for the two water quality variables analysed in this paper 391 

(nitrate concentration: left part of the plots, total phosphorus concentration: right part of the plots). 392 

Two water quality response surfaces are shown for each variable: the response under fixed (baseline) 393 

land use representing the direct impact of climate change on hydrological functioning, nutrient 394 

transport and in-river processes; and the response under variable land use that also includes the 395 

indirect changes associated with long-term autonomous land use change and associated changed 396 

agricultural nutrient inputs.  397 

Nitrate in the Thames catchment is mainly due to diffuse sources (fertilisers used in agriculture, Jin et 398 

al., 2012), hence its concentration in the river is proportional to runoff. An increase in temperature 399 

increases evapotranspiration and, as a consequence, causes a decrease in runoff (Figure 9 and 400 

Figure 10). In the same way, a decrease in precipitation entails a decrease in runoff and thus a 401 

decrease in nitrate concentration. Furthermore, a decrease stream flow means reduced velocity, 402 

increased residence times and hence enhance the denitrification processes, reducing nitrate 403 

concentration (Jin et al., 2012). On the contrary, the main sources of phosphorus in the Thames are 404 

household effluents discharged by sewage treatment plants (Crossman et al., 2013b; Whitehead et 405 

al., 2013), and therefore phosphorus concentration is inversely proportional to flow (i.e., less flow 406 

means less dilution capacity and higher phosphorus concentration). This means that an increase in 407 

temperature causes an increase in phosphorus concentration, while an increase in precipitation 408 

causes a decrease in phosphorus concentration (Figure 9 and Figure 10). 409 

 410 

Figure 9 – Response to climate variability on the water quality of the River Thames at Farmoor – reach 4. The black 411 
dots represent the space defined by the UKCP09 change factors for the 2040s. The black lines are surface contour 412 

lines (every 0.5 mg l
-1
 for nitrate, every 0.04 mg l

-1
 for phosphorus). 413 
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 414 

Figure 10 – Response to climate variability on the water quality of the River Thames at Runnymede – reach 19. The 415 
black dots represent the space defined by the UKCP09 change factors for the 2040s. The black lines are surface 416 

contour lines (every 0.5 mg l
-1
 for nitrate, every 0.04 mg l

-1
 for phosphorus). 417 

The change in nitrate concentration is inversely proportional to temperature and directly proportional 418 

to precipitation, with a similar pattern of control exerted by both drivers of change (changes in 419 

precipitation and temperature), at least within the range of variations considered in this study. On the 420 

other hand, phosphorus has a different behaviour, with marked increases due to a decrease in 421 

precipitation, and also a direct proportionality with temperature, although weaker than with 422 

precipitation. This is more evident at reach 19 (lower Thames), while for reach 4 (upper Thames) the 423 

pattern is not as clear, and the response surface gradient is not homogeneous. 424 

From Figure 9 and Figure 10 it can also be observed that some important differences in water quality 425 

behaviour arise by allowing the land use to autonomously adjust to the climate rather than remaining 426 

static. The variable land use appears to enhance the proportionality between increase in temperature 427 

and decrease in nitrogen concentration. In terms of phosphorus concentration, considering variable 428 

land use introduces a very significant change in the catchment response, where it appears to offset 429 

the effect of decreasing precipitation in increasing phosphorus concentration. This effect appears 430 

more evident in the rural reach 4, where the relative contribution of diffuse sources of phosphorus is 431 

higher than at reach 19, and thus the catchment is more sensitive to changes in land use. 432 

Figure 9 and Figure 10 also allow analysing the spatial patterns of the catchment response. In terms 433 

of nitrate concentration, the model results suggest that the upper Thames is more sensitive to 434 

changes in climate than the lower Thames, while for phosphorus concentration the opposite effect is 435 

observed. Additionally, the sensitivity of the response to the drivers of change considered in this study 436 

is different depending on the sub-catchment. For example, in the lower Thames nitrate concentration 437 

seems to be less sensitive to changes in precipitation than in the upper Thames, as the gradient of 438 

the response surfaces shows. 439 

4.3 Likelihood of water quality changes 440 

The response surfaces shown in Figure 9 and Figure 10 provide an assessment of the system 441 

sensitivity to some drivers of change, but do not offer any information on the likelihood of the 442 

simulated changes in water quality happening in the future. Nevertheless, climatic model outputs can 443 

provide a value of likelihood of the drivers of change considered. In Figure 9 and Figure 10, a white-444 

shaded area is shown on each of the response surfaces, indicating the area defined by 10,000 445 

combinations of UKCP09 precipitation and temperature change factors for the 2040s, under the A1FI 446 

emission scenario. Computing the catchment response in terms of water quality corresponding to 447 

each of these 10,000 pairs of annual precipitation/temperature changes allows a probability function 448 

of the expected changes in the river water quality to be derived. 449 
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In Figure 11, the empirical probability distribution functions of expected average nitrate concentration 450 

change and expected average total phosphorus concentration changes, corresponding to the 10,000 451 

UKCP09 precipitation and temperature change factors, for both fixed and variable land use are given. 452 

In all cases considering variable land use introduces considerable changes in the final outcome. For 453 

reach 4, the median expected change in the total phosphorus concentration even shifts from positive 454 

to negative, thus highlighting the effect of land use in mitigating climate change. This is reflected also 455 

in Table 2, where the median expected changes and their standard deviations are shown, based on 456 

the results depicted in Figure 11. 457 

 458 

Figure 11 – Probability distribution function of expected changes in water quality (average concentration of nitrate and 459 
total phosphorus), according to the UKCP09 change factors for the 2040s, for two reaches of the River Thames (reach 460 

4 – Thames at Farmoor and by reach 19 – Thames at Runnymead).  461 

Table 2 also shows the model results for 2060s and 2080s. The change of the system response 462 

according to the UKCP09 for different time slices is also represented in Figure 12, for reach 19, and 463 

considering variable land use. The decrease in nitrate concentration and increase in phosphorus 464 

concentration increase in time, due to a stronger signal of warming, which reduces runoff and stream 465 

flow.  466 

   Reach 4 Reach 19 

Water quality 

variable 

Time 

slice 
Land use 

Median 

change 

Standard 

deviation 

Median 

change 

Standard 

deviation 

Average nitrate 

concentration 

2040s Fixed land use -2.2 0.8 -1.4 0.5 

2040s Variable land use -4.9 1.4 -4.8 1.0 

2060s Fixed land use -3.3 1.2 -2.1 0.7 

2060s Variable land use -7.0 2.1 -6.3 1.4 

2080s Fixed land use -4.2 1.5 -2.8 0.9 

2080s Variable land use -8.7 2.3 -7.6 1.5 

Average total 

phosphorus 

concentration 

2040s Fixed land use 6.9 5.9 11.8 8.2 

2040s Variable land use -3.7 5.0 -1.4 7.3 

2060s Fixed land use 10.4 7.6 16.7 9.5 

2060s Variable land use -1.8 6.4 2.6 8.5 

2080s Fixed land use 12.4 9.5 19.1 11.3 

2080s Variable land use 0.0 8.4 4.7 10.2 

Table 2 – Median values and standard deviations of the expected changes (%) in water quality according to the 467 
UKCP09 projections for the 2040s, 2060s and 2080s. 468 
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 469 

Figure 12 – Probability distribution function of expected changes in water quality (% change in average concentration 470 
of nitrate and total phosphorus), according to the UKCP09 change factors for the 2040s, 2060s and 2080s for reach 19 471 

(Thames at Runnymead), with variable land use. 472 

5 Discussion 473 

The results of this study show that market-driven adaptation of land use to climate change and long-474 

term climate variability can lead to significant changes.  An increase in precipitation across Europe 475 

appears to lead to a large expansion of the total agriculture land represented by arable and fertilised 476 

grassland within the Thames catchment, while a decrease in precipitation would not bring very 477 

significant changes to the agricultural fraction of the Thames catchment. In contrast, the non-fertilised 478 

grassland and forest fractions of the catchment are not subject to significant changes, unless both 479 

precipitation and temperature increase sharply. 480 

In the Thames catchment, this translates into an expansion of fertilised grassland at the expense of 481 

arable land. This is in apparent contradictions with the findings of Olesen and Bindi (2002), who 482 

stated that global warming is expected to lead to the expansion of suitable cropping areas in the North 483 

of Europe, although the Thames catchment is situated in the warmest and driest area of the UK, with 484 

Figure 3 showing expansion of arable areas in the Baltic states, Republic of Ireland, Scotland and 485 

southern Scandinavia. However, the IMPRESSIONS IAP used in this study simulates land use based 486 

on a range of trade-offs between multiple sectors and considers production and demand across 487 

Europe as a whole, assigning land use based on resulting profitability. The model results do not 488 

indicate that the Thames catchment (or the UK) becomes unsuitable for crops under warming 489 

scenarios, but that they become less profitable compared to their cultivation in other areas in Europe 490 

or compared to other land use types in the catchment. In the Thames catchment the increase in 491 

arable land in other areas of Europe in response to climate change alone appears to be the main 492 

driver of land use change, leading to a reduction in the profitability of agricultural land within the 493 

catchment. However, studies investigating the combined impacts of climate and socio-economic 494 

change (such as population, dietary preferences, GDP, and the level of food imports) on European 495 

landuse allocation have shown major divergence in land use allocation between socio-economic 496 

scenarios (Harrison et al., 2014) and a significant decrease in certainty of land use change (Holman 497 

et al., In Press). A broader range of land use change outcomes in the Thames catchment would 498 

therefore be likely under future socio-economic scenarios associated with changed European 499 

agricultural productivity, food demand and trade relationships.   500 

Olesen and Bindi (2002) report potential implication of nutrient leaching due to the impact of global 501 

warming on agriculture. Nutrient pollution is the result of the combination of diffuse and point sources 502 

from a variety of land uses and interactions. For example, in the upper Thames fertilised grassland is 503 

the main land use, while intensively cultivated land is secondary; in the lower Thames agriculture is 504 

predominant, but with important proportions of forest land. The co-evolution of this mosaic of land 505 

uses and their implications on water quality could not be evaluated without using mathematical 506 

models (Tong and Chen, 2002). This study shows a methodology that couples a land use model with 507 

a water quality model to assess dynamically the impact of climate change on the nutrient 508 
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concentration of the River Thames. It is clear from Figure 9 and Figure 10 that the co-evolution and 509 

adaptation of land use to changes in climate is a key factor in nutrient export towards the river system, 510 

and must be taken into account. Furthermore, the results of the present study suggest that the impact 511 

of climate change alone will be to enhance phosphorus concentration during low flows, similarly to 512 

what was found by both Crossman et al. (2013) and Bussi et al. (2016b).  513 

In terms of nitrate concentration, Jin et al. (2012) also provided climate change impact estimates in 514 

the River Thames catchment, using the INCA model in a top-down frame (i.e., coupling the water 515 

quality model with climate model projections), reporting increased river nitrate concentration in winter 516 

and decreases in summer, following wetter winters and drier summers. These findings also agree with 517 

the results of the present study, which pointed to a similar response of the Thames catchment to 518 

increases and decreases in precipitation. In another study, Ferrier et al. (1995) found that Climate 519 

change will alter flow regimes, temperature and nitrogen mineralization patterns in the River Don 520 

(Scotland). They found that increased mineralization of nitrogen in the soil will be triggered by climate 521 

change, but also that nitrate concentrations will be reduced slightly by the increased temperatures 522 

and decreased summer flows, both of which enhance denitrification processes. 523 

Concerning land use impacts on nitrate concentration in the Thames, Howden et al. (2010) reported 524 

that the main driver of historical observed change is land use, and that long-term changes in 525 

agricultural land use are more important that recent changes in farming practice. They found that 526 

once a step-change in land use intensification (principally a shift from low intensity grassland to highly 527 

intensive arable agriculture) has occurred, nitrate concentrations remain intractably high despite 528 

large-scale and sustained management intervention. These changes are irreversible unless a 529 

significant area of arable land is converted to low intensity grassland or forest (Howden et al., 2010). 530 

In their paper, Howden et al. (2010) also urged caution before implementing policies (usually market-531 

driven) that encourage massive land conversions as their impact on fresh and marine waters could 532 

persist for many decades. Similarly, Whitehead et al. (2002), after reconstructing the past land use 533 

changes in the River Kennet catchment (a tributary of the Thames), found that a sharp increase in 534 

agricultural land since the 1930s caused a major shift in the short term dynamics of nitrate in the river 535 

with increased river and groundwater concentrations caused by non-point source pollution from 536 

agriculture. In light of these statements, the methodology described in the present study offers a 537 

robust tool to analyse the long-term impact of large changes in arable land extension due to variations 538 

in crop productivity and demand, rather than to short term changes in farming practices. 539 

One of the main contributions of this study is the assessment of the co-evolution of the land use with 540 

changes in climate. Figure 9 and Figure 10 show the differences in the response if the variation of 541 

land use with climate is taken into account or not. In general, there is an inverse relationship between 542 

temperature and nitrate concentration, because an increase in temperature causes increased 543 

evapotranspiration and reduced runoff from agricultural soils, as well as increased instream 544 

denitrification due to lower flows. If variable land use is introduced, this relationship is enhanced, 545 

because with an increase in temperature the total arable area is reduced (Figure 9 and Figure 10), 546 

and thus the sources of nitrate are further reduced. This is a synergistic impact of land use and 547 

warming on nitrate concentration in rivers.  548 

In terms of phosphorus, temperature has the opposite effects, i.e. it increases the phosphorus 549 

concentration in the river, because it reduces the river flow which is used to dilute the effluent coming 550 

from sewage treatment plants. If variable land use is introduced, the reduction of arable agriculture 551 

caused by increased temperature causes a decrease of phosphorus inputs from agriculture 552 

(principally due to erosion and sediment transport from seasonal bare soil surfaces), and partially 553 

compensates for the increase in phosphorus due to lower flows. In this case, the land use adaptation 554 

to climate is mitigating the negative effects of climate change on phosphorus concentration. This is 555 

especially evident for reach 4 under the UKCP09 climate projections (Figure 11, bottom-left plot). In 556 

this sub-catchment, the model results show that land use can reverse the impact of climate change. 557 
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Figure 6 shows that the results of this methodology strongly depend on the location. Different 558 

catchments experience very different alterations in their land use under the same combinations of 559 

precipitation and temperature change. Therefore, the results of this study cannot be extrapolated to 560 

other catchments. Nevertheless, they can be informative of the interplays that can occur between land 561 

use and climate and their effects on agriculture and water quality, such as for example the expansion 562 

or reduction of arable land due to changes in climate in different regions of the world. Additionally, this 563 

paper shows that for catchment like the Thames, where the human-affected land is predominant, 564 

socio-economic drivers of change must be considered, and they need to be taken into account at a 565 

very large (continental or world) scale.  566 

A key limitation of this study is that it did not take into account policy responses to changes in nutrient 567 

concentration, such as for example the implementation of buffer strips to retain the excess of nutrients 568 

moving towards the river network. Buffer strips are taken into account in the INCA parameterisation, 569 

through the in-channel module of the INCA model versions. Some example of its applications are 570 

Crossman et al. (2013), Flynn et al. (2002) and Whitehead et al. (2010). However, the coarse 571 

resolution of the land use model did not allow accounting for variations in the buffer strips to respond 572 

to changes in the river nutrient concentrations. This is surely a very important point that must be 573 

addressed in future investigations.  574 

Although a comprehensive analysis of the model uncertainty was not among the aims of this paper, it 575 

is important to analyse the sources of uncertainty that affects the results of this study. In particular, 576 

the modelling chain employed in this study (a “cascade” of two models: IMPRESSIONS and INCA) 577 

propagates errors from the inputs down to the outputs. The uncertainty of the INCA model was 578 

assessed separately in different studies. For example, the uncertainty of the INCA model has been 579 

assessed in several papers, such as for example Raat et al. (2004), who pointed out the problem of 580 

equifinality and suggested a multi-objective calibration approach, as well as the use of frequent 581 

measurements (fortnightly frequency) as reference values for calibration. Dean et al. (2009) applied a 582 

generalised likelihood uncertainty estimation (GLUE) framework to the INCA-P model, and concluded 583 

that the uncertainty due to the model structure and parameterisation was similar to the uncertainty of 584 

the measured values of total phosphorus in the river. Rankinen et al. (2006) also applied a GLUE 585 

approach to evaluate the uncertainty of the INCA-N model results, integrating “soft data”, or 586 

experimental knowledge of the processes, into the calibration procedure. Bussi et al. (2016) also 587 

showed a sensitivity analysis of the sediment version of INCA (included in INCA-P), providing an 588 

estimation of the parametric uncertainty of the model results. The parametric uncertainty of the whole 589 

combination of these two models was not quantified in this study, although it can be assessed 590 

qualitatively. This modelling combination involves around 25-30 influential parameters, based on 591 

previous uncertainty assessments (Bussi et al., 2016; Dean et al., 2009; Futter et al., 2014; Jackson-592 

Blake and Starrfelt, 2015; Raat et al., 2004; Rankinen et al., 2006; Whitehead et al., 2015). As stated 593 

for example by Skeffington et al. (2007), in a modelling chain the output uncertainty is typically less 594 

than the summed uncertainty in the input parameters. It can be reasonably stated that the final 595 

uncertainty of the modelling chain is of the same order of magnitude than the uncertainty of the single 596 

models. This level of uncertainty is normally considered acceptable for climate change and land-use 597 

change analysis in the literature, in particular when reproducing highly uncertain processes. It is also 598 

worth pointing out that uncertain models can still provide extremely useful information for planners 599 

and managers, especially for scenario analysis where the factors of change in the variable of interest 600 

are used rather than the absolute values of those variables (Cosby et al., 1986). Furthermore, the 601 

model parametric uncertainty must be considered along with other sources of uncertainty, among 602 

which the most important is probably the climate scenarios uncertainty. This is acknowledged to be a 603 

very relevant source of uncertainty in climate change impact assessment studies (Kay et al., 2009; 604 

Prudhomme and Davies, 2009a, 2009b; Wilby and Harris, 2006). Here, climate models were not used 605 

in the modelling cascade, but they were still employed to define the “probable” area of the response 606 

surfaces. UKCP09 projections were developed to include a very broad range of possible future 607 

climate outcomes, given the large uncertainty affecting climate model results. Therefore, it is 608 
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reasonable to think that the ranges of water quality variations due to changes in average precipitation 609 

and temperature include both the uncertainty regarding future climate and the modelling chain 610 

parametric uncertainty (the latter probably being much lower than the former). Nevertheless, as stated 611 

before, a much more comprehensive study is needed to quantify with more accuracy the uncertainty 612 

of the modelling chain results. 613 

Lastly, the methodology used in this study has certain limitations that must be accounted for and 614 

stressed. The scenario neutral methodology, as stated in other studies (Bussi et al., 2016b; 615 

Prudhomme et al., 2010) is based on selecting the main drivers of change given a selected variable. 616 

In this case, the variable is water quality and the drivers of change are changes in annual precipitation 617 

and changes in annual temperature. Other drivers of changes could be considered. For example, 618 

Prudhomme et al. (2010) considered alterations in the seasonality of precipitation, and Bussi et al. 619 

(2016a) took into account changes in extreme precipitation. In this paper we did not address the 620 

changes in nutrients caused by climatic changes other than variations in the average precipitation and 621 

temperature. Clearly, this is a very important limitation, given that changes in extreme events and 622 

seasonality can also cause alterations in the water quality, independently from the variations in the 623 

mean. However, in this paper we only analysed changes in the long-term mean of nutrient 624 

concentration, and thus it seems reasonable to consider only alterations in the average climate. This 625 

limitation should also be assessed in future developments of this study. 626 

 627 

6 Conclusions 628 

An assessment of the impact of long-term climatic changes on land use and water quality was carried 629 

out, using the INCA water quality model within a scenario-neutral framework, for the River Thames 630 

catchment (UK). Contrary to most of the previous studies in the field of climate and land use/land 631 

cover changes impact assessment, in the present study the land use was not treated as a static 632 

parameter of the catchment, but rather as a dynamic variable, which varies depending on the long 633 

term response of European agriculture and forestry to climate change (especially precipitation and 634 

temperature).  635 

Using a land use allocation model coupled with a water quality model, this study demonstrated a 636 

methodological approach to evaluate the joint impact of climate and land use changes on water 637 

quality, taking into account the autonomous adaptation of land use and agriculture to a changing 638 

climate. The European scale of application of the land use allocation reflects an appropriate scale for 639 

the representation of food and timber production systems and markets. This study also proved the 640 

importance of such a dynamical approach in reproducing land use response to climate, showing that 641 

considering this factor can, in some circumstances, lead to results that are completely different than if 642 

the land use adaptation is not considered.  643 

 644 

This study showed how temperature warming is expected to cause a shift from arable land to fertilised 645 

grassland in the River Thames catchment, although this pattern could be slightly altered depending 646 

on the long-term variations of the annual precipitation. Climate change is expected to decrease the 647 

average concentration of nitrate in the River Thames, due to increased evapotranspiration and 648 

reduced runoff from agricultural soils, as well as increased denitrification in the streams caused by 649 

lower flows, while it is expected to increase the average phosphorus concentration, due to a reduction 650 

of the river flow that is necessary to dilute effluents from sewage treatment works. Land use change is 651 

likely to enhance the reduction in nitrate concentration, due to a reduction of the fertilised agriculture 652 

area, and it is likely to mitigate the phosphorus concentration increase, especially in the upper 653 

Thames, although less so in the lower Thames, where the contribution from diffuse sources of 654 
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phosphorus (e.g., agriculture) are relatively small compared with the contribution from point sources 655 

(effluents). This study demonstrated the importance of representing catchment land use change as a 656 

dynamic variable responding to climate change in future water quality assessments, considering land 657 

use allocation in a way that reflects large-scale market supply and demand. 658 
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