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Abstract: This paper addresses the problem of freeway traffic flow estimation. The
freeway is considered as a network of components representing different freeway
stretches called segments. The evolution of the traffic in a segment is modelled
as a dynamic stochastic system, influenced by states of neighbour segments.
Measurements are received only at boundaries between some segments and
averaged within regular time intervals. An Unscented Kalman filter is developed
and its performance is compared with a particle filter both for synthetic data and
for real traffic data. The intended application is to supply traffic control systems
with the estimated traffic state. Copyright c©2006 IFAC
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1. INTRODUCTION

Dynamic traffic control offers possibilities to avoid
traffic jams on freeways by making better use of
the available infrastructure. These control systems
rely on measures such as ramp metering, dynamic
speed limits and route guidance. The choice for
the control actions is based on the current traffic
state. However, the traffic state is typically un-
available everywhere and always on the traffic net-
work, because of malfunctioning of sensors (mag-
netic loops or cameras) or because the sensors are
sparsely installed. Further problems are that the
measurements are corrupted by noise and that the
control systems may need information about the
traffic state that is not directly measured (e.g.,
density is generally not measured). In this paper
these problems are tackled by using an Unscented
Kalman Filter (UKF) which combines the knowl-
edge about the traffic behaviour (i.e., a model)
and the measurements.

The highly nonlinear behaviour of traffic can be
described by macroscopic models (Hoogendoorn

and Bovy 2001, Papageorgiou and Blosseville
1989, Helbing 2002) that are suitable for real-time
problems in view of the fact that they represent
the average traffic behaviour through aggregated
variables (flow, density and speed at different loca-
tions). Most papers dealing with recursive traffic
state estimation apply the Extended Kalman filter
(EKF) to such macroscopic models. For example,
(Wang and Papageorgiou 2005) propose an EKF
to estimate the unknown parameters and states
of a stochastic version of METANET macroscopic
model (Papageorgiou and Blosseville 1989) of free-
way traffic. These estimators have all the advan-
tages and disadvantages of the EKF technique:
presumably computationally cheap, but relying
on a linearisation of the state and measurement
models which can cause filter divergence.

In (Sun et al. 2003) a solution to highway traffic
estimation is proposed by a sequential Monte
Carlo algorithm, the so-called mixture Kalman
filtering, and in (Mihaylova and Boel 2004) a
particle filter (PF) is developed. The mixture



Kalman filter (MKF) (Chen and Liu 2000) is
essentially a bank of Kalman filters run with the
Monte Carlo sampling approach. The MKF is
applicable only to conditionally linear Gaussian
models. First-order traffic models represent the
network, i.e. only the traffic density is modelled,
distinguishing between the free-flow mode and
congestion mode. The traffic mode is characterised
in (Sun et al. 2003) by its density.

In contrast to (Sun et al. 2003), the traffic in
the present paper is described by a second-order
macroscopic model, and we develop an UKF that
estimates both the density and speed. The traffic
is described by the recently developed model (Boel
and Mihaylova 2006) that is an extension to the
cell-transmission model (Daganzo 1994). We com-
pare the UKF to the PF from (Mihaylova and Boel
2004). The freeway network is modelled as a se-
quence of segments (Fig. 1). Sensors are available
only at some boundaries between segments. Tech-
nological limitations (such as limited bandwidth
of communication channels) force one to average
these measurements over regular or irregular time
intervals before they are transmitted to the centre
where the measurement update is carried out.

The outline of the paper is as follows. Section 2
presents the stochastic macroscopic traffic model
and the model for real-time traffic measurements
used in the UKF. Section 3 describes the UKF
for traffic estimation. The UKF performance is
evaluated in Section 4. Conclusions and future
research issues are highlighted in Section 5.

2. FREEWAY TRAFFIC FLOW MODEL

2.1 Compositional Macroscopic Traffic Model

Traffic states are estimated consecutively at dis-
crete time instants t1, t2, . . . , tk, . . ., based on the
incoming information transmitted by sensors to
the estimation algorithm. The overall state vector
xk = (xT

1,k,xT
2,k, . . . , xT

n,k)T at time tk consists
of local state vectors xi,k = (Ni,k, vi,k)T , where
Ni,k, [veh], is the number of vehicles counted in
segment i ∈ I = {1, 2, . . . n}, and vi,k, [km/h], is
their average speed. The traffic state evolution is
described by the system of equations

x1,k+1 = f1(Qin
k , vin

k , x1,k, x2,k,η1,k), (1)
xi,k+1 = fi(xi−1,k,xi,k, xi+1,k, ηi,k), (2)
xn,k+1 = fn(xn−1,k, xn,k, Qout

k , vout
k , ηn,k), (3)

where fi is specified by the traffic model, Qin
k is

the number of vehicles entering segment 1 dur-
ing the interval ∆tk = tk+1 − tk with average
speed vin

k , Qout
k is the outflow leaving a ‘fictitious’

segment n + 1, with an average speed vout
k . ηk is

a Gaussian disturbance vector, reflecting random
fluctuations and the effect of modelling errors in
the state evolution. Note that Qin

k , vin
k , and Qout

k ,
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Fig. 1. Freeway segments and measurement
points. Qi is the number of vehicles leaving
segment i, Ni and vi are the average number
of vehicles and speed in segment i.

vout
k are respectively, inflow and outflow boundary

variables. They are not traffic states and are not
estimated. They are supplied by the traffic detec-
tors. A chain of interconnected segments is con-
sidered, together with their boundary conditions.

In this paper the general state-space description
(1)-(3) takes a particular form of the recently
developed compositional stochastic macroscopic
traffic model (Boel and Mihaylova 2006). This
speed-extended cell-transmission model describes
the complex traffic behaviour with forward and
backward propagation of traffic perturbations and
is suitable for large networks and for distributed
processing. The forward and backward traffic
perturbations were characterised by (Daganzo
1994) through deterministic sending and receiving
functions where piecewise affine representations
are used. In (Boel and Mihaylova 2006) speed-
dependent random sending and receiving func-
tions are introduced that represent also the evo-
lution of the average speed in each segment. The
model is given in concise form as Algorithm 1.

The sending function Si,k for segment i, having
length Li, is calculated by (4). Si,k represents the
vehicles that “intend to leave” segment i within
∆tk. The receiving function Ri,k (6) expresses the
maximum number of vehicles that are allowed to
enter segment i+1. In (6) Nmax

i+1,k characterises the
maximum number of vehicles that can simultane-
ously be present in segment i + 1 at sample time
tk. Nmax

i+1,k depends on the available space, Li+1

time the number of lanes `i+1,k, in segment i + 1,
on the average length A` of vehicles, the average
speed vi+1,k and the time distance td between two
vehicles (in order to allow safe driving).

The evolution of Ni,k+1 is governed by the prin-
ciple of conservation of vehicles (9). The traffic
density ρi,k+1, [veh/km/lane], is given by (9). The
anticipated density ρantic

i,k+1 is then obtained as a
weighed average between the density of segment i
and segment i + 1, (11). This corresponds to the



drivers’ tendency usually to look ahead when they
change their speed. The average vehicle speed
vi,k+1 is a function of the ‘intermediate’ speed
vinterm

i,k+1 , calculated in step 5 of Algorithm 1, and
of the equilibrium speed satisfying a speed-density
relation ve(ρantic

i,k+1) (Kotsialos et al. 2002).

Design traffic parameters are: the free-flow speed
vfree, the critical density ρcrit (density below
which the interactions between vehicles will be
negligible), the density in jam, ρjam, above which
the vehicles do not move, and the minimum vehi-
cle speed vmin. Other details for the model can be
found in (Boel and Mihaylova 2006) where this ex-
tended cell-transmission model has been validated
both against the well established METANET
model (Papageorgiou and Blosseville 1989, Kot-
sialos et al. 2002), and over real traffic data.

Algorithm 1. The compositional traffic model.

1. Forward wave : for i = 1, 2, . . . , n

Si,k = max

(
Ni,k

vi,k.∆tk

Li
+ ηSi,k, Ni,k

vmin.∆tk
Li

)
(4)

and set Qi,k = Si,k. (5)
2. Backward wave : for i = n, n− 1, . . . , 1
Ri,k = Nmax

i+1,k −Ni+1,k + Qi+1,k, (6)

where Nmax
i+1,k = (Li+1`i+1,k)/(A` + vi+1,ktd).

if Si,k < Ri,k, Qi,k = Si,k, (7)
else Qi,k = Ri,k, vi,k = Qi,kLi/(Ni,k∆tk), (8)
3. Update the number of vehicles inside

segments, for i = 1, 2, . . . , n
Ni,k+1 = Ni,k + Qi−1,k −Qi,k, (9)
4. Update the density, for i = 1, 2, . . . , n
ρi,k+1 = Ni,k+1/(Li`i,k+1), (10)
ρantic

i,k+1 = αρi,k+1 + (1− α)ρi+1,k+1. (11)

5. Update of the speed, for i = 1, 2, . . . , n

vinterm
i,k+1 =





vi−1,kQi−1,k + vi,k(Ni,k −Qi,k)

Ni,k+1
,

for Ni,k+1 6= 0,

vf , otherwise,

vinterm
i,k+1 = max(vinterm

i,k+1 , vmin),

vi,k+1 =βk+1vinterm
i,k+1 + (1− βk+1)v

e(ρantic
i,k+1)+ ηvi,k+1,

where

βk+1 =

{
βI , if |ρantic

i+1,k+1 − ρantic
i,k+1| ≥ ρthreshold,

βII otherwise.

2.2 Measurement Model

Sensors (magnetic loops, video cameras, radar
detectors) are located at boundaries between some
segments. Usually, measurements are collected at
the entrance and at the exit of the considered road
stretch, at the on-ramps and off-ramps, etc.

Let us consider m sensors along the stretch.
Traffic states are measured at discrete time in-
stants. The overall measurement vector zs =
(zT

1,s, z
T
2,s, . . . , z

T
m,s)

T at time ts consists of local
measurement vectors zj,s = (Qj,s, vj,s)T , where
j ∈ J = {1, 2, . . . , m}. Qj,s is the noisy mea-
surement of the number of vehicles crossing the
boundaries between the corresponding segment

i and segment i + 1 during the time interval
∆ts = ts+1 − ts, and vj,s is the measured mean
speed of these vehicles. The intervals ∆ts are
typically several times longer than the intervals
∆tk between successive state update steps. In case
that ∆ts > ∆tk we take measurements at each
time step.

Consider the measurement equation

zs = h(xs, ξs), (12)

where the measurement noise ξ is a white Gaus-
sian process, independent from the system noise
η. If the interval ∆ts is different from ∆tk with
q steps, i.e. ∆ts = q∆tk, the vehicles crossing the
boundaries have to correspond to the same time
interval as the measurements. Equation (12) takes
further the form

zj,s =
(

Q̄j,s

v̄j,s

)
+ξj,s, (13)

where Q̄j,s is the sum of the number of vehi-
cles (calculated by the state model) crossing the
boundary between segments i and i+1 within the
interval ∆ts, and v̄j,s is their average speed.

3. AN UNSCENTED KALMAN FILTER FOR
TRAFFIC FLOW ESTIMATION

The UKF relies on the unscented transforma-
tion (Julier et al. 1995, Julier and Uhlmann
2004, Wan and van der Merwe 2001), a method
for calculating the statistics of a random vari-
able which undergoes a nonlinear transformation.
Consider propagating a random variable x (with
dimension nx) through a nonlinear transformation
y = f(x). Assume that x has mean x̂ and covari-
ance matrix P . To calculate the statistics of y, a
matrix X of 2.nx + 1 sigma points Xi is formed.

The system state update is performed based on
these sigma Xi points. To compute the mea-
surement update step, we propagate the sigma
points through the measurement function h and
we get transformed points Zi,k/k−1 that form
the matrix Zk/k−1. Similarly to the Kalman fil-
ter, the Kalman gain K, the state estimate x̂
and the corresponding covariance matrix P are
updated by (14)-(16). The UKF equations are
given as Algorithm 2. We implemented the UKF
using an augmented state vector concatenating
the original state and the noise variables: xa

k =
(xT

k , ηT
k , ξT

k )T (Wan and van der Merwe 2001).
The corresponding matrix with sigma points is
X a = ((X x)T , (X η)T , (X ξ)T )T . The sigma
points of the UKF are deterministically chosen so
that they exhibit certain properties, e.g. have a
given mean and covariance. The UKF is formu-
lated for Gaussian distributions of the noises.



Algorithm 2. The Unscented Kalman Filter.

I. Initialise with:

x̂0 = E[x0], P 0 = E[(x0 − x̂0)(x0 − x̂0)T ],x̂a
0 = E[xa

0 ],
P a

0 = E[(xa
0 − x̂a

0)(xa
0 − x̂a

0)T ] = diag{P 0, P η , P ξ}
For k = 1, 2, . . . ,
II. Calculate sigma points :

X a
k−1 = [x̂a

k−1, x̂a
k−1 +γ

√
P a

k−1, x̂a
k−1−γ

√
P a

k−1],

where
√

P a
k−1 is a Cholesky factor, γ =

√
nx + λ,

λ = α2(nx + κ)− nx, 1 ≤ α ≤ 1e− 4, κ = 3− nx

III. Time update :

X x
k/k−1 = f(X x

k−1, X η
k−1

),

x̂k/k−1 =

2nx∑
i=0

W
(m)
i Xx

i,k/k−1,

P k/k−1 =

2nx∑
i=0

W
(c)
i [Xx

i,k/k−1−x̂k/k−1][Xx
i,k/k−1−x̂k/k−1]T ,

Zk/k−1 = h(X x
k/k−1, X ξ

k−1
),

ẑk/k−1 =

2nx∑
i=0

W
(m)
i Zi,k/k−1,

IV. Measurement update equations:

P zkzk =

2nx∑
i=0

W
(c)
i [Zi,k/k−1−ẑk/k−1][Zi,k/k−1−ẑk/k−1]T ,

P xkzk =

2nx∑
i=0

W
(c)
i [Xx

i,k/k−1−x̂k/k−1][Zi,k/k−1−ẑk/k−1]T ,

Kk = P xkzkP−1
zkzk

, (14)

x̂k/k = x̂k/k−1 + Kk(zk − ẑk/k−1), (15)

P k/k = P k/k−1 −KkP zkzk KT
k , (16)

where the weights are: W
(m)
0 = λ/(nx + λ),

W
(c)
0 = λ/(nx + λ) + (1− α2 + β),

W
(m)
i = W

(c)
i = 1/2(nx + λ), i = 1, . . . , 2nx.

4. UKF PERFORMANCE EVALUATION

4.1 Investigations with Synthetic Data

The UKF performance is evaluated versus the
PF developed in (Mihaylova and Boel 2004) over
of freeway stretch of 4 [km] consisting of eight
segments with data, having periods of conges-
tion. The data are generated by the compositional
model (Boel and Mihaylova 2006) with indepen-
dent measurement noises for different runs and
with different initial state conditions. The con-
gestion is due to variations in the inflow Qin

k

and outflow Qout
k (shown in Fig. 2) within the

period 1.12 h - 1.7 h and due to the fall in the
speed vout

k within the interval 2.4 h-2.65 h. The
measurements are generated, by adding measure-
ment noises to the counted number of vehicles
Qi,k and to the speed vi,k for segments 1 and
8. These measurements are used in the filters
also as inflow/ outflow boundary conditions (for
the state model). The augmented state vector is
xk = (xT

1,k,xT
2,k, . . . , xT

8,k)T , i.e. i = 1, 2, . . . , 8,
and the measurement vector is zs = (zT

1,s, z
T
8,s)

T .

The per minute aggregated measurements are
supplied to the UKF and PF as would be the case
with real data. The state prediction is performed
also at each intermediate state update time step.

The states of all segments between two measure-
ments are estimated as one augmented state vec-
tor. The filters’ performance is evaluated by the
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Root mean square errors (RMSEs) ε(x̂i,k) =
[ 1r

∑r
i=1(εi,k)T (εi,k)]1/2, where x̂i,k, εi,k = xi,k −

x̂i,k are the errors between the actual xi,k and
estimated states over r independent Monte Carlo
runs. Table 3 gives the parameters of the state
model. The evolution of the flow and speed in time
(for one realisation) is shown in Figs. 3 and 4. We
see the backward wave on the evolution of the
speed and flow in time. The flow-density and the
speed-flow diagrams have the typical bell-shaped
forms. The filters’ performance is evaluated for
r = 100 independent Monte Carlo runs. RMSEs
for all the eight segments, with respect to density,
speed and flow, are presented in Figs. 5-6.
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We see the influence of the backward wave on
these RMSEs. We observe that the RMSE values
in segment 1 are smaller than their values in the
intermediate segment 5 (it is also due to the fact
that there are no sensor data in this segment). Ac-
cording to these results the PF estimates are more
accurate than the UKF estimates. However, the
PF complexity is more computationally expensive
than the UKF. The complexity of the PF is pro-
portional to the the number of particles times the
dimension of the overall state vector, M.nx, whilst
the complexity of the UKF is proportional to the
number 2.nx + 1 of sigma points. Note that nx

is equal to the number of segments n times the
number of states 2 in a segment. We calculated
the ratio between the PF and UKF computational



time and it is: 2.8 (with M = 100 particles), 5.45
(with M = 200), 15 (with M = 500). In general,
the number of necessary particles is increasing
with the increased number of states for reaching a
certain accuracy, but not very much. It is difficult
to characterise in general the PF accuracy and
complexity because they highly depend on the
road structure and the traffic conditions.

Table 3. Parameters of the UKF and PF

vfree = 120 [km/h] , vmin = 7.4 [km/h]

ρcrit = 20.89 [veh/km/lane] , ρjam = 180 [veh/km]

α = 0.65, βk+1 =

{
0.25, if |ρantic

i+1,k+1 − ρi,k+1| ≥ 2,

0.75, otherwise.

∆ti = 10 [sec], td = 2 [sec] , Li = 0.5 [km], i = 1, ..., 8,

M = 200 particles, td = 2 [sec], A`=0.01 [km], `i = 3

cov{ηSi,k
}=(0.03Ni,kvi,k∆tk/Li)

2 [veh]2

cov{ηQi
} = 12 [veh]2, cov{ηvi} = 3.52 [km/h]2

cov{ξQi
} = 12 [veh]2, cov{ξvi} = 52 [km/h]2
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Fig. 7. Schematic representation of the segmentation of
the E17 case study freeway. The labels CLOF to
CLO9 indicate the locations of the traffic measure-
ment cameras. The vertical arrows indicate the loca-
tion of the used measurements.

4.2 Application of the UKF to Real Traffic Data

The UKF and PF performance has also been
evaluated with real data, over a stretch of E17
(between CLOF and CLOA on Fig. 7) freeway
between the cities of Ghent and Antwerp. E17 is
one of the very important Belgian freeways sub-
ject to frequent congestion. Measurement data are
available from video cameras installed at location
CLOA, CLOB, CLOD, CLOE, and CLOF, includ-
ing the total number of vehicles that cross the
sensor location during each one minute interval,
and the average speed of these vehicles during
that one minute interval. We tested the PF and
UKF using data measured from September, 2001
from 6.4 [h] a.m. till 10.6 [h] a.m., which period
includes heavy congestion. The data are supplied
from two sensors installed at CLOF and CLOA
(Fig. 7). The link CLOF to CLOA contains an off-
ramp towards and an on-ramp from a parking lot,
but we assume that the flow of vehicles using this
parking lot is negligible so that the conservation
equation (9) remains valid in the state prediction
step. The parameters of the models and of the
filters are given in Table 4. The filters generate
estimates of the state of each segment in a link,
and also of the speed and density (and hence also
of the flow) at each boundary between segments.
Figures 8 presents flow-density diagrams plotted
based on the estimates. The bell-shaped diagram
shows nicely that the estimated states indeed
have properties as one can expect for traffic data.
These estimates of the density, speed, and flow
at the boundaries are compared with the mea-
sured data in the intermediate segment boundary
CLOD (Figs. 9 and 10).

Table 4. Parameters of the UKF and PF

vfree = 120 [km/h], vmin = 7.4 [km/h]

βk+1 =

{
0.3, if |ρantic

i+1,k+1 − ρi,k+1| ≥ 2,

0.7, otherwise.

L1 = L2 = L3 = 0.6 [km], L4 = L5 = 0.5 [km]

∆ti = 10 [sec], td = 1.5 [sec], A` = 0.01 [km]

ρcrit = 20.89 [veh/km/lane], ρjam = 180 [veh/km]

M = 100 particles, α = 0.65

Gaussian noises ηSi,k
, ηvi,k with covariances:

cov{ηSi,k
} = (0.035Ni,kvi,k∆tk/Li)

2 [veh]2

cov{ηvi} = 3.52 [km/h]2, cov{ηQi
} = 12 [veh]2,

cov{ξvi} = 52 [km/h]2, cov{ξQi
} = 12 [veh]2
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Fig. 10. UKF estimated states (solid line) versus mea-
sured states in CLOD (dashed line)

5. CONCLUSIONS AND OPEN ISSUES

This paper presents an Unscented Kalman filter
for the freeway traffic flow estimation and com-
pares its performance with respect to a parti-
cle filter. The Unscented Kalman filtering is a
promising method for traffic flow estimation, re-
quiring small computational costs. The UKF is
developed using traffic and observation models
with aggregated variables. The traffic is modelled
by a recently developed stochastic compositional
traffic model with interconnected states of neigh-
bour segments. The UKF and PF performance is
investigated and validated by simulated data and
by real traffic data from a Belgian freeway. An ad-
vantage of the UKF compared to the PF is that it
is less computationally expensive. Both the results
with simulated and real traffic data confirm that
the UKF provides accurate tracking performance,
however, slightly less accurate than the PF. Both
the UKF and the PF are suitable methods for
real-time traffic estimation, and both are easy
to implement because of the fact that they do
not require linearisation. Both the UKF and PF,
extended with on-line mode detection logic, can
be used for on-line traffic control strategies, e.g.
within the model predictive control framework.
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