
Please cite this paper as:

Svetunkov, I. (2017). Statistical models underlying functions of 'smooth' package for R. Working
Paper of Department of Management Science, Lancaster University, 2017:1 , 1–52.

Managmeent Science
Working Paper 2017:1

Statistical models underlying functions of
'smooth' package for R

Ivan Svetunkov

The Department of Management Science
Lancaster University Management School

Lancaster LA1 4YX
UK

© Ivan Svetunkov
All rights reserved. Short sections of text, not to exceed

two paragraphs, may be quoted without explicit permission,
provided that full acknowledgment is given.

LUMS home page: http://www.lums.lancs.ac.uk

Statistical models underlying functions of “smooth”

package for R

Ivan Svetunkova,∗

aLancaster Centre for Forecasting
Lancaster University Management School, Lancaster, LA1 4YX, UK

Abstract

In this paper we describe statistical models underlying functions of “smooth”
package for R and show the connection between each of the parameters in
functions and variables in those models. Aside from discussing conventional
state-space models, we introduce several new models and discuss their prop-
erties. This paper should be useful mainly for people who want to understand
what is happening in the core of functions implemented in “smooth” package.

Keywords: Forecasting, state-space models, Exponential smoothing,
statistics, smoothing

1. Introduction

The package “smooth” has got its name because it’s aim is to gather
all the essential smoothing techniques used in forecasting. This includes
exponential smoothing, several modifications of it using similar principles
and ARIMA which can be considered as a smoothing model in some cases.
In fact the thing that unites all the functions in the package is the usage
of single source of error state-space model. So probably it would be more
appropriate to call the package “state-space models” or something along
those lines. But “smooth” should also suffice.

The current version of package is 1.4.6 and it includes the following main
functions:

∗Correspondance: Ivan Svetunkov, Department of Management Science, Lancaster Uni-
versity Management School, Lancaster, Lancashire, LA1 4YX, UK.

Email address: i.svetunkov@lancaster.ac.uk (Ivan Svetunkov)

Working Paper March 2, 2017

1. es() – Exponential Smoothing (also known in forecasting society as
ETS),

2. ces() – Complex Exponential Smoothing,

3. ges() – Generalised Exponential Smoothing,

4. ssarima() – state-space ARIMA,

5. auto.ssarima() – automatic order selection of state-space ARIMA,

6. auto.ces() – automatic model selection between seasonal and non-
seasonal CES,

7. sim()-functions: sim.es(). The other functions to be implemented
at some point: sim.ces(), sim.ges(), sim.ssarima – functions to
simulate data from corresponding statistical models.

8. simulate(), forecast(), fitted(), summary() and others – methods
applied to objects of class “smooth”.

The core code of these functions is written in C++ and that is the rea-
son why the package depends on “Rcpp” and “RcppArmadillo” packages.
The functions are optimised using R implementation of C++ library “nlopt”
(nloptr package), employing optimisation algorithms BOBYQA and Nelder-
Mead.

All the forecasting functions produce objects of class “smooth”, allow-
ing to apply such methods as: coef(), summary(), plot(), forecast(),
fitted(), residuals(). Some of them also use methods: orders(), lags()
and modelType()

Overall functions in this package allow to produce forecasts for large va-
riety of data. This includes normal, intermittent and even high frequency
data. All the main functions allow to include exogenous variables and even
have a mechanism of adaptation of parameters for exogenous variables. All
of this will be discuss in details in this paper. We will also study models
underlying all these functions and explain how they are estimated in the
package. Finally, we will show advantages of the implemented functions in
comparison with existing R functions.

The article has the following structure: Section 2 discusses general state-
space model, its statistical properties, how estimation, initialisation model
selection is done, how forecasts and prediction intervals are constructed and
what lies inside of intermittent part of state-space model. Section 3 discusses
function specific models, their statistical properties, state-space forms and
function specific parameters. It concludes then with examples of usage. This
is then followed by conclusions.

2

2. SSOE state-space models and their implementation

Before starting discussion about general statistical models, we would like
to explain what is a state-space model and why we bother at all. The idea
behind any state-space model is that the process that we study consists of
two parts: measurable part, that we observe, consisting of some components
and unobservable part describing the evolution of those components. For
example, a so called “local-level” model can be written as:

yt = lt−1 + εt
lt = lt−1 + αεt

, (1)

where yt is actual value of time series, lt is level component, εt is error term
and α is some parameter. The model in the form (1) is called Single Source of
Error model, because we use one and the same εt in both equations. There
are also Multiple Source of Error models, but they are currently neither
discussed nor implemented in “smooth”.

What we really say by the equation (1) is that there is a component
in time series, lt which changes in time based on errors obtained on new
observations. Think of demand on computers, for example. They have some
level of sales. For example, on average a company sells 1000 of these things
a day. So lt will be equal to 1000. However, due to prices on competitors’
devices, weather conditions and all the other things happening in life, this
number, 1000, will not be stable and probably will change in time. So the
level of sales on Monday maybe 1000, while it will slowly slide to 999, then to
995 and so on, if our company does not do something in order to stimulate
the demand on their computers. So in real life we are dealing with time
varying level of sales. This means that our level component needs to be
updated somehow when we have new figures, which leads us to the model
(1). In the first equation we say that the actual sales consist of the level
yesterday plus some random error. In the second equation we say that our
new level for today is formed as a sum of yesterday level plus some portion
of that random error that we have observed today.

In a similar manner other state-space models are formed. The important
thing to note here is that level is unobservable and so is the second equation
in (1), but we make up a rule and give it some form. This form, as we can
see later in this paper, is very flexible and has good statistical properties. It
is in fact one of the most flexible models: almost any other statistical model
can be written in state-space form.

3

2.1. General state-space model

All the models constructed in the package have the following general state-
space form with single source of error (similar to Hyndman and Khandakar
(2008)):

yt = ot (w(vt−l) + r(vt−l)εt)
vt = f(vt−l) + g(vt−l)εt

, (2)

where yt is actual value of time series, ot is Bernoulli distributed binary
variable (which is equal to 1 when yt is observed), εt is error term, vt−l is a
state vector, w(.) is measurement function, r(.) is error term function, f(.) is
transition function and g(.) is persistence function. Introduction of ot allows
to model intermittent data (this will be discussed later in this paper). In
cases of non-intermittent data, ot = 1 for all t.

Although this very general state-space model (2) looks complicated, it is
not. We can draw the connection between (2) and previously discussed (1) if
we set ot = 1, vt = lt, w(vt−l) = lt−1, r(vt−l) = 1, f(vt−l) = vt−1, g(vt−l) = 1.
In some other special cases for some other models, these parameters will
have different set of values. That’s the flexibility of general SSOE state-
space model (2). The first equation of (2) is called “measurement equation”
(sometimes “observation equation”), while the second is “transition equa-
tion”. The name of the former indicates that we measure data using this
mathematical formula, while the name of the latter demonstrates that there
is some sort of transition between components of state-space model.

Functions w(·), r(·), f(·) and g(·) are taken from Hyndman et al. (2008)
and allow to switch between additive and multiplicative components of the
state-space model. They are written in C++ and are used by other functions
internally.

There are two special cases of (2) that are more often used than all the
others: pure additive and pure multiplicative model, which are discussed
in details in subsections 2.1.1 and 2.1.2. Currently only ETS model imple-
mented in es() function uses non-additive models. All the other models and
their corresponding functions in the package use pure additive state-space
model only.

We need to note at this point that we use vt−l, where l is a vector of
lags, instead of vt−1 (Hyndman et al. (2008) use xt−1 instead, however we
prefer to reserve letter x for exogenous variables). For non-seasonal mod-
els, there is no difference between (2) and state-space model of Hyndman
et al. (2008). However while Hyndman et al. (2008) model seasonality using

4

dummy variables, we model seasonal components as lagged variables. This
will be discussed in details in section 2.2.

We start this section with discussion of cases when ot = 1 for all t (non-
intermittent data). Cases when ot 6= 1 are discussed later in this paper, in
section 2.3.

2.1.1. Pure additive state-space model

Pure additive models are easy. The local-level model (1) is pure additive,
because there is no multiplication of components in the formulae – there is
only addition of level component and error term. These models are very
popular, easy to construct and they work very well for many time series.

In pure additive cases general state-space model has the following form:

yt = w′vt−l + εt
vt = Fvt−l + gεt

, (3)

where w is measurement vector, F is transition matrix, g is persistence vector.
In this model it is assumed that error term has normal distribution:

εt = yt − µt|t−1 ∼ N (0, σ2), (4)

where µt|t−1 = w′vt−l is conditional expectation.
The local level model, discussed before, corresponds to exponential smooth-

ing with additive error, no trend and no seasonality, ETS(A,N,N). The con-
nection between (3) and (1) becomes obvious if we set: w = (1), F = (1),
g = α and vt = lt. Other examples of pure additive exponential smoothing
are discussed in section 3.1.

Now there are several important statistics that can be derived from (3).
These are conditional expectation (which shows expected demand level in
the future) and conditional variance (it shows the expected future variability
of demand around our expected level). If we can show how to calculate them
for (3), then we can use the same formulae for all the other pure additive
state-space models.

Both of these statistics for some horizon h can be derived using state-
space equation (3) if we substitute indices t with t+ h:

yt+h = w′vt+h−l + εt+h
vt+h−l = Fvt+h−2l + gεt+h−l

. (5)

5

Substituting previous values of vt+h−2l in transition equation in (5) leads to
the following:

vt+h−l = F 2vt+h−3l + Fgεt+h−2l + gεt+h−l. (6)

Repeating this till we get to vt leads to:

vt+h−l = F h−1vt +
h−1∑

j=1

F j−1gεt+h−jl. (7)

Finally inserting (7) into measurement equation of (5) leads to the following
equation:

yt+h = w′F h−1vt +
h−1∑

j=1

w′F j−1gεt+h−jl + εt+h. (8)

This equation shows that the actual value yt+h consists of two parts: com-
ponent vt that changes over time due to its multiplication by F h−1 and sum
of error terms appearing in demand from observation t+ 1 till t+ h.

Note here that it is not necessary to say that the model (5) is in any
sense “true”, underlies or even generates the studied process. All we say is
that if we use the structure (5) for decomposition of time series into some set
of components vt, then the future actual value of demand can be calculated
using (8).

Now expectation of (8) conditional to value of vt is (because we assume
that error term εt has mean equal to zero):

µt+h|t = E(yt+h|vt) = w′F h−1vt. (9)

Conditional variance of purely additive model can be calculated using:

σ2
t+h|t = V(yt+h|vt) =

V
(
w′F h−1vt +

∑h−1
j=1 w

′F j−1gεt+h−jl + εt+h

)
.

(10)

Assuming that errors are not autocorrelated (εt+h does not depend on εt+1)
and are homoscedastic (variance of εt+1 is the same as for εt+h), equation
(10) can be rewritten and simplified to:

σ2
t+h|t = σ2

(
1 +

h−1∑

j=1

(w′F j−1g)2

)
. (11)

6

Using (9), (11) and assumption of normality of error term (4), predic-
tion intervals for pure additive state-space models can be constructed using
formula:

µt+h|t + zα/2σt+h|t < yt+h < µt+h|t + z1−α/2σt+h|t, (12)

where zα/2 and z1−α/2 are lower and upper quantiles of normal distribution.
Now we can say that future demand will on average be equal to µt+h|t

and in 1−α percent of cases it should vary in a region defined by prediction
intervals (12).

2.1.2. Pure multiplicative state-space model

Pure multiplicative models are in a way more natural than additive ones
for many time series that we encounter in forecasting. This is because they
restrict actuals by positive values. This is useful, for example, for demand
forecasting, because in real life negative demand does not make much sense.
However in cases with high level of sales, the difference between additive
and multiplicative models is negligible and it is much easier to work with
former, than with latter. However, there are cases, where pure multiplicative
models cannot be substituted by other types. An example of such cases is
intermittent demand, which is discussed in section 2.3.2. That is why we
need to understand properties of pure multiplicative models.

Pure multiplicative state-space model in our implementation has the fol-
lowing form:

yt = exp (w′ log vt−l + log(1 + εt))
vt = exp(F log(vt−l) + log(1 + gεt))

. (13)

This linearisation of components using logarithms allows to introduce their
multiplication and results in exactly the same models as in Hyndman et al.
(2008). However, we do not assume that error term is distributed normally,
but make another assumption – that it has log-normal distribution:

(1 + εt) =
yt
µt
∼ logN (0, σ2). (14)

This means that log(1 + εt) in (13) has normal distribution. The form (13)
simplifies some derivations and allows construction of non-symmetric inter-
vals in cases, when they are needed.

An example of model (13) is model with multiplicative error and trend,

7

ETS(M,M,N):
yt = lt−1bt−1(1 + εt)
lt = lt−1bt−1(1 + αεt)
bt = bt−1(1 + βεt)

. (15)

This model has the following values:

w =

(
1
1

)
, F =

(
1 1
0 1

)
, g =

(
α
β

)
and vt =

(
lt
bt

)
.

Other examples of pure multiplicative exponential smoothing will be dis-
cussed in section 3.1.

In order to produce conditional expectation and variance, we linearise
(13) model using natural logarithm:

log yt = w′ log vt−l + log(1 + εt)
log vt = F log(vt−l) + log(1 + gεt)

. (16)

This model now resembles pure additive model (3), but has some features,
one of which is log(1+gεt) instead of just gεt. This brings some complications
in derivations.

In order to calculate conditional expectation and variance, we need to
come up with a formula similar to (8):

log yt+h = w′F h−1 log vt +
h−1∑

j=1

w′F j−1 log(1 + gεt+h−jl) + log(1 + εt+h). (17)

Now we can take conditional expectation and variance. The former is equal
to:

µ̃t+h|t = E(log yt+h| log vt) = w′F h−1 log vt, (18)

while the latter is:

σ̃2
t+h|t = V(log yt+h| log vt) =

σ2
(

1 +
∑h−1

j=1 w
′F j−1Sg(F j−1)′w

)
,

(19)

where Sg is covariance matrix calculated as:

Sg =
1

T
log(1 + gεt)(log(1 + gεt))

′, (20)

Note however that we have taken conditional values of log yt+h rather
than yt+h. We can construct prediction intervals using:

µ̃t+h|t + zα/2σ̃
2
t+h|t < log(yt+h) < µ̃t+h|t + z1−α/2σ̃

2
t+h|t (21)

8

and then, after taking exponent of (21), we can return to original scale:

exp(µ̃t+h|t + zα/2σ̃
2
t+h|t) < yt+h < exp(µ̃t+h|t + z1−α/2σ̃

2
t+h|t). (22)

Conditional expectation of actual values in normal scale can then be calcu-
lated using simple transformation:

µt+h|t = exp
(
µ̃t+h|t

)
, (23)

This method of calculation of conditional values and prediction intervals
construction works perfectly fine in cases when variance of error is small (for
example, smaller than 0.1), because log(1 + εt) in this case will be approx-
imately equal to εt. However, there are special cases with high variance,
where some additional transformations are needed in order to obtain correct
estimates of mean and variance. They are discussed in section 2.3.

2.1.3. Mixed models

Mixed models represent cases when some components are multiplied,
while the others add up. ETS(M,A,M) is an example of such models. It
is written as:

yt = (lt−1 + bt−1)st−m(1 + εt)
lt = (lt−1 + bt−1)(1 + αεt)
bt = bt−1 + (lt−1 + bt−1)βεt
st = st−m(1 + γεt)

. (24)

Already by looking at (24) it becomes obvious that this is not a simple model
to work with: mechanism of adaptation of trend component differs from
similar mechanisms for other components. This introduces some changes in
the structure of the model and means that neither (3) nor (13) can be used
for calculation of conditional expectation and variance.

Due to this complication, conditional expectations for these models are
currently taken from Hyndman et al. (2008), so they are not discussed
here. As for conditional variances, they are currently not calculated prop-
erly for mixed models. Variances for models with multiplicative errors and
non-multiplicative other components (for example, ETS(M,A,A)) can be
approximated by variances of similar pure additive models (for example,
ETS(A,A,A)). This can be done only when variance of error term is small
(smaller than 0.1), which is very common for these models if data is not
intermittent. In all the other cases in order to produce prediction intervals
simulations can be used.

9

The simulations for mixed models in “smooth” package are done using
sim.es() function (discussed in section 3.6). As a result of this 10000 sam-
ples with possible forecast trajectories are produced, after which quantiles of
data are taken for each horizon using quantile() function in R (“stats” pack-
age). This method works very well for non-intermittent data and is currently
used by default as “parametric” method of prediction intervals construction
for these models.

2.2. Estimation of the model

In order to construct a state-space model and estimate its parameters,
vector of states needs to be initialised somehow. There are several possible
ways of initialisation of state-space models. We initialise them before the
sample starts, which means that vt should be defined for t < 1. This way
the calculations (update of components using transition equation and one
step ahead forecasts using measurement equation) can start from the first
available actual value y1.

Note. In R states contain matrix with observations in rows and compo-
nents in columns. So when a model produces state vector, it will have number
of rows, covering the initialisation part, number of observations and forecast
horizon. So, for example, ETS(A,A,A) fitted on 36 observations of monthly
data with forecast horizon of 18 will have 36 + 12 + 18 = 66 observations of
state vector. However there is an exception in this rule: if forecast horizon is
lower than frequency of the data, than the number of rows will be calculated
as sum of number of observations and two frequencies of the data. So, for
example, the very same ETS(A,A,A) on the same data but with horizon of
6 instead of 18 will have 36 + 12 + 12 = 60 observations of state vector.

The structure of state vector in our implementation differs from conven-
tional structures (for example, in Hyndman et al. (2008)). This needs to be
explained in details.

2.2.1. State vector

Any state vector in our implementation can be represented as:

vt−l = Lvt =

Bm1 0 . . . 0
0 Bm2 . . . 0
...

...
. . .

...
0 0 . . . Bmk

 vt, (25)

10

where L is matrix of lags, B is back shift operator (variable satisfying equa-
tion yt−1 = Byt) and m1, m2, . . ., mk are lags of components. For example,
ETS(A,A,A) for monthly data will have the following matrix of lags:

L =

B 0 0
0 B 0
0 0 B12

 ,

meaning that first and second components (level and trend) are taken with
lag one, while the last one (seasonal) is taken with lag 12. State vector for
this model is usually set as v′t =

(
lt bt st

)
. If we multiply it by the matrix

of lags we will have:

vt−l = Lvt =

B 0 0
0 B 0
0 0 B12

lt
bt
st

 =

Blt
Bbt
B12st

 =

lt−1
bt−1
st−12

Inserting this value into pure additive state-space model (3), leads to the
well-known system of equations for ETS(A,A,A):

yt = lt−1 + bt−1 + st−m + εt
lt = lt−1 + bt−1 + αεt
bt = bt−1 + βεt
st = st−m + γεt

, (26)

where m = 12 in our example.
Note that due to a different structure of state vector (in comparison with

Hyndman et al. (2008)) we also define transition matrix and measurement

vector differently: F =

1 1 0
0 1 0
0 0 1

, w =

1
1
1

.

2.2.2. Initialisation of state vector, initial

Taking this feature of state vector into account, its initialisation should
start not on observation t = 0, but on observation t = 1 − m, where m is
the maximum lag in the model. So the initialisation part of state vector
takes m observations. For components with lag 1, only t = 0 is needed, all
the other observations are unimportant and can be substituted by values on
observation t = 0. For models with multiple seasonal patterns, each j-th

11

component will take places from t = 1 − mj to t = 0, where mj is lag for
respective component.

“smooth” package allows to initialise state vector in several ways:

1. Optimisation. This means that the initial values are set by optimiser
during the estimation of model along with smoothing parameters. This
initialisation method works very well for simple models with no more
than approximately 20 parameters. Otherwise optimisation may take
too much time and may also result in not accurate estimates of param-
eters.

2. Backcasting. This is iterative procedure. On first iteration initial values
are set heuristically. The model then is fitted till the end of data, after
which on additional m observations of state vector are calculated using
transition equation only and taking that εt = 0. Then the same model is
fitted in reverse order till the very first observations and finally initial
values are produced using transition equation and the same εt = 0.
The process repeats several times (4 times in current implementation)
in order to obtain stable estimates of initial values.
For example, model ETS(A,A,A) fitted to the data in reverse will have
form:

yt = lt+1 + bt+1 + st+m + εt
lt = lt+1 + bt+1 + αεt
bt = bt+1 + βεt
st = st+m + γεt

, (27)

while in the tails of the data the following set of equations is used for
the components:

lt = lt−1 + bt−1
bt = bt−1
st = st−m

and ,
lt = lt+1 + bt+1

bt = bt+1

st = st+m

. (28)

Backcasting asymptotically converges to least squares estimates of pa-
rameters and is advised for models with high number of parameters.
Examples of such models include seasonal models on weekly data or
multi-seasonal models for high frequency data. Optimisation in these
cases may become very slow and less efficient than for smaller models.
Backcasting however produces decent estimates of initials in both cases
of small and large models.

12

3. Preset values. It is also possible to define initial parameters using some
heuristics or use estimated parameters from some previous model. This
can be useful when one and the same model needs to be applied to
different sample sizes of the same data or when some heuristic method
of initialisation needs to be tested.

In R es(), ces(), ges(), ssarima() and auto() functions allow to make
selection between these values. This is done using parameter initial, which
can accept either "optimal" (or "o"), or "backcasting" ("b") or vector of
initial values. auto() functions however accept only first two options.

2.2.3. Cost functions, cfType

In order to estimate parameters with selected initialisation method, resid-
uals of the model should be calculated. They are then used in some selected
objective function. Residuals for model with additive errors are estimated
using:

et+1|t = yt+1 − µt+1|t, (29)

while for multiplicative:

ẽt+1|t =
yt+1 − µt+1|t

µt+1|t
, (30)

where µt+1|t is one-step-ahead forecast.
However during optimisation of models with multiplicative errors term

et+1|t = log(1+ ẽt+1|t) is used instead of (30) due to assumption of log-normal
distribution of residuals εt.

Instead of calculating one-step-ahead forecasts only, we can produce fore-
casts for h steps ahead from each observation t, µt+h|t and calculate con-
ditional errors et+h|t = yt+h − µt+h|t. This then can be used by some cost
functions for optimisation. But note the difference between et+h|t and εt+h.
Using pure additive model (3) we can show that:

et+h|t = yt+h|t − µt+h|t =

w′F h−1vt +
h−1∑

j=1

w′F j−1gεt+h−jl + εt+h − w′F h−1vt =

h−1∑

j=1

w′F j−1gεt+h−jl + εt+h

. (31)

13

So several steps ahead error et+h|t includes εt+h. This also means that while
there is an assumption about independence of εt+i and εt+j for different i and
j (no autocorrelation in the model), there is always a correlation between
et+i|t and et+j|t for any i and j, unless w′F j−1g = 0 in (31). This can happen,
for example, when all the smoothing parameters are equal to zero.

The following objective functions are available in “smooth” for parameters
estimation:

1. "MSE" – Mean Squared Error. This is calculated as:

MSE =
1

T

T∑

t=1

e2t+1|t, (32)

where T is number of observations in sample. It can be shown that
minimisation of MSE leads to the same estimates of parameters as
likelihood maximisation in case when residuals are distributed normally
(or log-normally in cases of multiplicative error term). MSE is known
to produce mean estimates of parameters. This is the default objective
function for all the forecast functions.

2. "MAE" – Mean Absolute Error:

MAE =
1

T

T∑

t=1

|et+1|t|. (33)

Due to its robustness to outliers (because we do not square errors), this
cost function is said to produce median estimates of parameters.

3. "HAM" – Half Absolute Moment:

HAM =
1

T

T∑

t=1

√
|et+1|t|. (34)

This is even more robust estimator, which produces mode estimates in
cases of count data and close to mode in continuous data. This is the
fastest (in terms of optimisation time) estimator, because of the square
root function that allows to reach minimum of the function fast.

4. "MSEh" – Mean Squared h steps ahead Error:

MSEh =
1

T

T∑

t=1

e2t+h|t. (35)

14

This is one of the cost functions using multiple steps ahead errors (31).
This cost function leads to shrinkage of parameters of models (excluding
initial states though). This means that with increase of h, smoothing
parameters will tend to become closer to zero, making underlying state-
space model deterministic.

5. "MSTFE" – Mean Squared Trace Forecast Error:

MSTFE =
h∑

j=1

1

T

T∑

t=1

e2t+j|t. (36)

The term “trace forecast” means that values are produced for 1 to h
steps ahead. This cost function also shrinks parameters but slower than
MSEh.

6. "MLSTFE" – Mean Logarithmic Squared Trace Forecast Error.

MLSTFE =
h∑

j=1

log

(
1

T

T∑

t=1

e2t+j|t

)
. (37)

This cost function allows to bring variances of conditional errors for
different horizons to one level, so one-step-ahead error becomes as im-
portant as h steps ahead one. This means that shrinkage effect in (37)
is weaker than in MSEh and MSTFE.

Cost functions (4) – (6) take more optimisation time than (1) – (3), be-
cause trace forecasts need to be produced for each observation. They are
advised in cases of high frequency data and large sample sizes (1000 observa-
tions and more) because of the shrinkage effect, allowing models to become
more robust. However calculations in this case will take substantial amount
of time. So there are also analytical analogues of cost functions (4) – (6),
which can be used either on small samples or in cases when time of estimation
is crucial. For example, "aMSTFE" produces estimates asymptotically similar
to MSTFE, but takes less calculation time, because it is based on statistical
properties of state-space model and MSTFE rather than generation of trace
forecasts. In order to use these analytical cost functions, user needs to add
“a” in front of names. For example, cfType="aMSEh" will produce analytical
Mean Squared h steps ahead Error.

2.2.4. Parameters space, bounds

In general state-space model does not need restrictions on parameter
space and anything can be constructed with any parameters. However in

15

forecasting we prefer for models to guarantee that newer observations would
have at least not smaller weight than older ones. Situations when some past
sale, that happened several years ago, would determine forecast for tomor-
row is ridiculous. So in order to have this property we need to make sure
that state-space models we estimate are “stable” or “invertible” (the lat-
ter is term from ARIMA models, but they are the same). This is in fact the
most important property: our state-space models may be non-stationary and
can produce variety of forecasting trajectories, depending on selected model
and parameters used, but it needs to guarantee that the importance of old
information deflates.

So here comes question of what bounds to use for parameters of models.
There are several solutions to this question and several options in “smooth”
that correspond to them.

There is a variable bounds that can be either "admissible", "none" or
"usual" (for es() only). bounds="a" guarantee that the estimated model
is stable. This is the default value for all the functions except for es(). In
case of ssarima() this value of parameter bounds will also guarantee that
estimated ARMA is stationary.

If bounds="n", then there is no restriction on parameter space. This is
not advised, because models may become unstable (there will be a warning
if they do), but this can be used for exploration purposes.

Finally, es() function has bounds="u", which ensures that parameter
space is restricted in a way, that the resulting exponential smoothing model
has a property of “averaging” model (see Hyndman et al. (2008) for details).
However it should be noted that if smoothing parameters reach boundary
values (for example, α becomes equal to 1), then it is advised to use admissi-
ble bounds instead. The reason for that is because an artificial restriction of
parameter space by usual bounds may lead to underestimation of uncertainty,
which leads to narrower than needed prediction intervals.

2.2.5. Optimisation

Taking into account selected initialisation method, cost function and pa-
rameter space restriction, we can find appropriate values that will lead to the
lowest value of the objective. This is done via optimisation in two steps. On
the first step “BOBYQA” algorithm is used with maximum of 1000 evalua-
tions and relative tolerance of 1e-8. On the second step the parameters are
optimised further on using “Nelder-Mead” algorithm with maximum of 1000
evaluations and relative tolerance of 1e-6. In both steps all the parameters

16

are optimised at the same time. In case of es() function there may be a
step between these two, when on the first step optimiser returns exactly the
same parameters as the provided to it in the beginning. This may happen
for some mixed state-space models. In this case “BOBYQA” is used again
but with other initials.

This two-steps optimisation allows obtaining good estimates of parame-
ters even for large models. While “BOBYQA” gets close to global minimum
of cost function, “Nelder-Mead” allows estimating it with higher precision.

2.3. Intermittent data

There is no good, concise and full definition of what is intermittent data.
The general property of it is presence of natural zero values, caused by some
objective reasons. For example, in case of demand forecasting the reason
can be just the absence of demand on the product. A typical example of
intermittent demand process is demand on aeroplanes: the daily data of
demand on such product will contain a lot of zeroes, because this is not a
product of daily consumption.

Standard models do not work in case of intermittent data, so special
methods have been developed. Professor John Boylan and I have managed
to derive a state-space model, that underlies those methods and showed
flexibility of this model. This is done via introduction of binary variable ot
corresponding to data occurrences. This allows using any state-space model
for intermittent data.

The main assumption about ot is that it is distributed Bernoulli with some
probability pt that can vary in time. There are several ways of modelling this
probability (for example, Croston (1972), Teunter et al. (2011)), and they are
implemented in “smooth”. They have been developed mainly for intermittent
demand, however principles described in this section and the implementation
in the package can be applied to other types of data with meaningful zeroes.
For example, forecasting of solar irradiation data can also benefit from this
model.

Occurrence variable is introduced in measurement equation only: yt =
ot (w(vt−l) + r(vt−l)εt), but it allows using all the available state-space models
(additive, multiplicative and mixed). This is important, because it has been
argued in several papers (Snyder, 2002; Shenstone and Hyndman, 2005) that
statistical model for intermittent data must be multiplicative (in order not
to have negative values), but noone has figured out before how to use such a
model with series with zeroes.

17

In “smooth” all the state-space models constructed for intermittent data
have a name starting with letter “i”. For example, iETS(M,N,N) means that
ETS(M,N,N) was constructed for intermittent data.

General properties of intermittent state-space model correspond to the
ones discussed in section 2. However conditional expectation and variance
need to be calculated differently in order to take future probability of occur-
rence into account.

2.3.1. Pure additive intermittent state-space models

Pure additive intermittent state-space model can be applied only for data
with both positive an negative values. This can be, for example, a series of
changes in sales (so differenced data). Although, there is not many examples
of such series in business and this model is now a bad substitution of mul-
tiplicative model (because of low level of data), pure additive intermittent
state-space model still can be useful in some situations.

This model has the following form:

yt = ot (w′vt−l + εt)
vt = Fvt−l + gεt

, (38)

where ot ∼ Bernoulli(pt).
What this model assumes is that states may evolve in time even when

we do not observe sales. States in this case represent desire of customers to
buy a product, which may change in time for different set of reasons. This
introduction of ot does not change properties of the underlying pure additive
model substantially, however there are some differences.

First of all measurement equation for h steps ahead (as discussed in sec-
tion 2.1.1) is modified for intermittent data to:

yt+h = ot+h

(
w′F h−1vt +

h−1∑

j=1

w′F j−1gεt+h−jl + εt+h

)
. (39)

It is fair to assume that occurrences are not correlated with sizes of data
(if this assumption does not hold, then another formula, not discussed here,
should be used), so conditional expectation of (39) is:

µt+h|t = E(yt+h|t) = E(ot+h|t)
(
w′F h−1vt

)
= µp,t+h|t

(
w′F h−1vt

)
, (40)

where µp,t+h|t is conditional expectation of probability of non-zero values
occurrence. The conditional expectation (40) means that future demand

18

level is not constant and can be interpreted as average level of sales over a
time unit.

As for conditional variance, the formula of variance of product of two
independent random variables a and b can be used in order to derive it:

V(ab) = V(a)V(b) + V(a)E(b)2 + E(a)2V(b). (41)

Variance of (39) is then:

σ2
t+h|t = σ2

(
1 +

∑h−1
j=1 (w′F j−1g)2

)(
σ2
p,t+h|t + µ2

p,t+h|t

)
+

(
w′F h−1vt

)2
σ2
p,t+h|t

, (42)

where σ2
p,t+h|t is conditional variance of probability pt. For Bernoulli distri-

bution this variance will be equal to:

σ2
p,t+h|t = µp,t+h|t(1− µp,t+h|t). (43)

Note that in case of continuous data pt = 1 for all t, so the conditional
expectation (40) transforms into (9), while conditional variance (42) becomes
equal to (10).

After that prediction intervals can easily be constructed using the con-
ventional formula:

µt+h|t + zα/2σt+h|t < yt+h < µt+h|t + z1−α/2σt+h|t, (44)

2.3.2. Pure multiplicative intermittent state-space models

As it was mentioned above pure multiplicative models make more sense
for intermittent demand and can be considered as more natural than additive
or mixed ones. In our model it can be written as:

yt = ot exp (w′ log vt−l + log(1 + εt))
vt = exp(F log(vt−l) + log(1 + gεt))

, (45)

where once again ot ∼ Bernoulli(pt).
Measurement equation for pure multiplicative models is:

yt+h = ot+h exp

(
w′F h−1 log vt +

h−1∑

j=1

w′F j−1 log(1 + gεt+h−jl) + log(1 + εt+h)

)
.

(46)

19

Conditional expectation of (46) is tricky because of connection between
mean of normal and mean of log-normal distributions. However conditional
median is much easier. From the formula: Md(exp(ỹt)) = exp(E(ỹt)) – it
follows that:

Md(yt+h|t) = µp,t+h|t exp
(
w′F h−1 log vt

)
= µp,t+h|t exp

(
µ̃t+h|t

)
. (47)

This follows from assumption of log-normal distribution of error term in
multiplicative models.

If we really need conditional expectation then following formula should
be used instead:

µt+h|t = µp,t+h|t exp

(
µ̃t+h|t +

σ̃2
t+h|t
2

)
, (48)

where µ̃t+h|t and σ̃2
t+h|t are conditional mean and variance discussed in sec-

tion 2.1.2. Note that the smaller conditional variance σ̃2
t+h|t is, the closer

final conditional mean and median are to each other. However in cases with
intermittent data, variance can reach much higher values than for continu-
ous data (for example, higher than one), so the modification (48) may be
necessary if mean is needed rather than median. However we do not make
this modification and return median instead of mean.

Now calculation of variance for original values of yt is connected with some
complications and does not allow to construct prediction intervals, because
in order to find out quantiles of log-normal distribution we would still need
to know mean and standard deviation of log yt. This means that we would
need to switch from normal to log-normal distribution and back to normal
again several times in order to calculate prediction intervals. So instead of
using the whole conditional distribution of yt+h we analyse distribution of
residuals only and use that in prediction intervals construction.

First, we find quantiles of log-normal distribution q̃h,α/2 and q̃h,1−α/2 for
each h based on σ̃2

t+h|t and zero mean, calculated using formulae from section
2.1.2.

Second, using formula for connection of variance of log-normal variable
with parameters of normal distribution (taking expectation equal to zero):

σ̂2
t+h|t =

(
exp

(
σ̃2
t+h|t

)
− 1
)

exp
(
σ̃2
t+h|t

)
, (49)

20

we calculate variance σ̂2
t+h|t for log-normal distribution. After that we stan-

dardise the quantiles produced on the first step using formula:

qh =
(q̃h − 1)

σ̂t+h|t
(50)

Then we take variance of occurrences (similar to (42)) into account by mod-
ifying variances σ̂2

t+h|t:

σ2
t+h|t = σ̂2

t+h|t
(
σ2
p,t+h|t + µ2

p,t+h|t
)

+ σ2
p,t+h|t. (51)

Finally we produce prediction intervals using (48) and (51):

µt+h|t(1− qh,α/2σt+h|t) < yt+h < µt+h|t(1 + qh,1−α/2σt+h|t) (52)

2.3.3. Mixed intermittent state-space models

As noted in section 2.1.3 prediction intervals for mixed models are cur-
rently done using simulations. However estimates of quantiles of simulated
values may be incorrect in case of intermittent data. This is because we
do not take probability into account in the same way as for pure additive
and pure multiplicative models. So it is recommended to use other types of
prediction intervals for mixed models (for example, “semiparameteric” and
“non-parameteric”). They are discussed in section 2.6.

Now that we have covered size of data parts of intermittent state-space
model, we can discuss the occurrences part. There are several ways to model
and forecast probability of occurrences. We will start from the simplest one.

2.3.4. Model with fixed probability

This is the simplest model. We assume that probability of occurrences is
fixed and does not vary in time, meaning that E(pt) = µp,t+h|t = p for all t.
Expectation for additive model transforms in this case into:

µt+h|t = E(yt+h|t) = p
(
w′F h−1vt

)
, (53)

while for multiplicative it is:

µt+h|t = E(yt+h|t) = p exp
(
w′F h−1 log vt

)
. (54)

Similarly substituting variance of occurrences in (42) and (51) by σ2
p,t+h|t =

p(1− p) allows calculating conditional variances.

21

Probability p can be estimated using likelihood, discussed in section 2.4.
It can be shown that it is equal to:

p =
T1
T
, (55)

where T1 is number of non-zero observations and T is number of all the
observations.

In R this model can be called using intermittent="fixed".

2.3.5. Croston’s model

In the original Croston’s method it is assumed that probability varies
in time and changes in reverse proportion to number of zero observations
between demand occurrences:

pt =
1

qt
, (56)

where qt is number of zeroes between demands. Calculation of qt starts from
1 (for consequent demands qt = 1). The probability of occurrence in this case
is updated on each non-zero observation, so there is some sort of stepwise
change of pt in the method. The longer periods without non-zero values lead
to lower probability of having demand at all.

In the original paper of Croston (1972) simple exponential smoothing
(SES) is used for forecasting of qt+h. Hyndman et al. (2008) show that SES
has two underlying statistical model: ETS(A,N,N) and ETS(M,N,N). Taking
that pt ∈ [0, 1], multiplicative model for qt should be preferred, because in
this case qt is bounded by values greater than zero. So the model underlying
occurrences in Croston’s method can be formulated as:

qt = lq,t−1(1 + εt)
lq,t = lq,t−1(1 + αqεt)

. (57)

This is pure multiplicative model with 1 + εt distributed log-normally, so its
properties have already been discussed in section 2.1.2.

Conditional expectation of the probability pt+h however depends on 1
qt+h

and as was shown in Syntetos and Boylan (2005) should be calculated using
the following formula:

µp,t+h|t =
(

1− αq
2

) 1

µq,t+h|t
, (58)

22

where µq,t+h|t is conditional expectation of the model (57) for h steps ahead.
Conditional variance of Croston’s model in this case (taking into account
(43)) becomes:

σ2
p,t+h|t = µp,t+h|t(1− µp,t+h|t) =

(
1− αq

2

) µq,t+h|t −
(
1− αq

2

)

µ2
q,t+h|t

. (59)

Values (58) and (59) can then be used for the final point and interval
forecasts construction.

In R this model can be constructed using intermittent="croston". The
model (57) is then constructed using es() function.

2.3.6. TSB model

Teunter et al. (2011) proposed a different approach to probability of oc-
currences estimation. Their method is usually called “TSB” and it uses SES
for probability estimation and update. In our case ETS(M,N,N) once again
makes more sense, for the same reasons as in Croston’s model:

pt = lp,t−1(1 + ξt)
lp,t = lp,t−1(1 + αpξt)

. (60)

However assumptions about distribution of pt need to be different, log-normal
distribution is bounded only from one side, which may lead to strange sit-
uations with pt becoming greater than one. So there should be used some
other distributions bounded by [0, 1] region. We prefer Beta distribution,
because it is flexible enough to cover different possible distributions of prob-
ability. Note however that Beta distribution does not allow random variable
to take boundary values (0 and 1), so we transform the actual probability
the following way:

p′t = lp,t−1(1 + ξt)
lp,t = lp,t−1(1 + αpξt)

, (61)

where p′t = (1 − 2k)pt + k and k is some small number (we use 10−5). This
allows to say that p′t ∼ Beta(a, b) and use statistical inferences.

The important thing is how to estimate actual probability, and Teunter
et al. (2011) propose to use Naive approach. This means that if non-zero
value occurs, then the probability is equal to one, otherwise it is equal to zero.
This approach may cause some problems and is hard to use in inferences, but
it gives TSB its unique property of updating probability when no demand
occurs.

23

Conditional expectation of TSB is trivial and is equal to µp,t+h|t = lt,
while conditional variance is equal to σ2

p,t+h|t = σ2
p(1 + (h− 1)α2

p).

However estimation of the model (61) in “smooth” is done in two steps.
On the first step the parameters a and b of Beta distribution with some
heuristic values of lp,0 and α are estimated. This is possible, because value
of Beta function is much bigger than values of pt, so changes in initial and
smoothing parameter almost do not change the cost function value. On the
second step the parameters of the model (61) are estimated using formulae
discussed later in section 2.4.

In R this model can be constructed using intermittent="tsb".

2.3.7. Model with provided data

Finally, in cases, when future probabilities or occurrences are known,
they can be provided to “smooth” functions and then will be used as µp,t+h|t
in order to produce point and intervals forecasts. Model with fixed proba-
bility 2.3.4 is built in this case without production of future probabilities.
This is done via the very same parameter intermittent=pForecast, where
pForecast needs to be a vector with values lying in [0, 1] region. The length
of pForecast needs to correspond to the forecast horizon. This functionality
can be useful if a researcher knows for some reasons that the product will be
bought in some specific days.

2.4. Likelihood and model selection

One of the main elements of modelling using state-space approach is like-
lihood function. As an estimator it has good statistical properties, allows
selecting the most appropriate model among the pool of models or produc-
ing combinations of models and forecasts.

2.4.1. Likelihood function for state-space models

We have already discussed that there are two types of models: with addi-
tive and multiplicative error terms – which are assumed to have either normal
or log-normal distribution. So the very general forms of likelihood functions
differ from conventional ones used in Hyndman et al. (2008), firstly because
we assume that multiplicative errors have log-normal distribution and sec-
ondly because we also take probabilities of occurrences into account.

24

In case of additive errors concentrated log-likelihood is:

`(θ, σ̂2|Y) = −T1
2

(log(2πe) + log(σ̂2))

+
∑

ot=1

log(pt) +
∑

ot=0

log(1− pt), (62)

where Y is a vector of all the actual values and T1 is number of non-zero
observations.

If error has multiplicative form, then from the assumption of log-normality
the concentrated log-likelihood is:

`(θ, σ̂2|Y) = −T1
2

(log(2πe) + log(σ̂2))−
∑

ot=1

log(yt)

+
∑

ot=1

log(pt) +
∑

ot=0

log(1− pt)
. (63)

For the continuous data (ot = 1 for all t and T1 = T), terms with ot = 0
in (62) and (63) are dropped, so we end up with conventional normal and
log-normal likelihood functions.

2.4.2. Model selection

Using likelihoods (62) and (63) information criteria can be calculated.
For example, AIC will be:

AIC = 2k − 2`(θ, σ̂2|Y), (64)

where k is number of parameters (including variance of errors). In case when
initials are found during the optimisation, k includes the number of initials.
In case of backcasting, this number is not included. In case of intermittent
models k increases by one, reflecting that the probability needs to be esti-
mated. However, probability estimation methods themselves do not reduce
parameter space, because they use occurrences rather than values of demand,
so there is no difference in number of parameters between fixed probability
model, Croston’s model and TSB. This allows to select the most appropriate
intermittent data model between the three and conventional model with no
intermittency.

The default information criterion used in the package is AICc, user how-
ever can define a different one using parameter ic, which can take values:
"AIC", "AICc" and "BIC".

25

Model selection is currently implemented in functions auto.ssarima(),
auto.ces() and es(). In addition setting parameter intermittent to
"auto" for any model allows to select the most appropriate type of intermit-
tent model amongst the ones discussed in the section 2.3 using an information
criterion.

However, all of that can be done only when MSE is used as a cost func-
tion. In cases when some other cfType is defined, the corresponding MSE is
calculated and then used in likelihood and criteria calculation. This is not
completely correct, because the likelihood function is not maximised in this
case and becomes not as efficient as it should be. So the results of model
selection in this case may be wrong. In these cases user is warned about that
but it is his decision to make.

2.4.3. Combinations of forecasts

Some functions allow to combine forecasts of models using information
criteria weights, discussed by Kolassa (2011) and in Burnham and Ander-
son (2004) (currently only es() has it, but this is to be implemented for
ssarima() and some other functions as well). These are defined using:

wj =
exp(−1

2
(AICj −min(AIC)))∑m

i=1 exp(−1
2
(AICi −min(AIC)))

, (65)

where m is number of models in the pool, AICj is AIC for jth model and
min(AIC) is the value of the smallest AIC in the pool. These weights are
then used for combination of forecasts, prediction intervals and fitted values.
Similar weights can be calculated for AICc and BIC, this is defined by user
via parameter ic.

2.5. Exogenous variables

Flexibility of state-space models allows introducing exogenous variables,
which in general can be done the following way:

yt = ot
(
w(vt−l) + a′t−1xt + r(vt−l)εt

)

vt = f(vt−l) + g(vt−l)εt
at = Fxat−1 + gxxt

−1εt

, (66)

where at is vector of time varying parameters for vector of exogenous variables
xt, Fx is transition matrix for exogenous variables, gx is persistence vector
for exogenous variables and xt

−1 is vector of inverted exogenous variables. If

26

it is assumed that the parameters should not change over time, then gx = 0.
Transition matrix Fx in the simplest case is identity matrix, although this
condition can be relaxed in order to introduce complex interactions between
parameters. Vector xt contains kx elements. When xt = 0, adaptation is not
happening, meaning that at = at−1. For example model ETS(A,N,N), based
on (66) with 2 exogenous variables can be written as a system:

yt = lt−1 + a1,t−1x1,t + a2,t−1x2,t + εt
lt = lt−1 + αεt

a1,t =

{
a1,t−1 + δ1

εt
x1,t

, when x1,t 6= 0

a1,t−1, when x1,t = 0

a2,t =

{
a2,t−1 + δ2

εt
x2,t

, when x2,t 6= 0

a2,t−1, when x2,t = 0

. (67)

The adaptation scheme for exogenous variables suggested in (66) is called
“Non-Uniform Smoothing” and is based on modification of method of stochas-
tic approximation. State-space models in this case become non-stable, but
still can be forecastable. This condition is checked during estimation of pa-
rameters. The mechanism of adaptation allows efficiently updating param-
eters of models with very different exogenous variables, including dummy
variables. By default this mechanism is switched off, so Fx is unity matrix,
while all elements of gx are set to be equal to zero.

Exogenous variables are included in “smooth” functions via parameter
xreg, which can accept either vector, or matrix, or data frame. Note that
xreg needs to contain number of observations either equal to in-sample or to
the length of yt. If the values for the forecast period are not provided, then
es() with automatic selection of iETS is used. This may increase time of
calculations.

In case user needs to estimate Fx together with gx, it can be done by set-
ting parameter updateX=TRUE. If either Fx or gx does not need to be updated,
then user needs to provide predefined values via parameters transitionX and
persistenceX respectively.

Initial parameters for exogenous variables are estimated using Least Squares
applied to the model Y = A′X, where Y is vector of all the actual values, A
is vector of parameters and X is matrix of all provided exogenous variables.
After that they are re-optimised during estimation of state-space model (or
produced using backcasting). However if user provides initials via initialX

parameter, then those values are taken as a0 and are not re-optimised.

27

An important note on exogenous variables usage is that they are cur-
rently developed for additive models, so some problems may rise with multi-
plicative and mixed state-space models.

2.6. Prediction intervals

We have already discussed how to construct parametric prediction inter-
vals for pure additive and multiplicative models (sections 2.1.1 and 2.1.2)
and how to take occurrences into account (sections 2.3.1 and 2.3.2). How-
ever “smooth” functions can also produce other types of intervals discussed
in this subsection.

By default all the main “smooth” functions do not produce any prediction
intervals, but this can be changed if parameter intervals is passed with
some preferred type of intervals. In that case any of the aforementioned
functions can construct one of the following types of prediction intervals:

1. Parametric. These have already been covered in sections 2.1.1, 2.1.2,
2.1.3, 2.3.1, 2.3.2 and 2.3.3. They are default for all the functions and
correspond to parameter intervals="parametric" or intervals="p".
The other way to construct parametric prediction intervals is to pass
intervals=TRUE.

2. Semiparameteric. In order to produce these intervals a forecast for h
steps ahead from each observation is done and multiple steps ahead
prediction errors are gathered (similar to how it is done for cost func-
tions discussed in section 2.2.3). After that variances of 1, 2, .., h steps
ahead forecast errors are calculated and then used in order to produce
symmetric intervals based on standard normal or log-normal distribu-
tion quantiles. This is called using intervals="semiparametric" or
intervals="sp".

3. Non-parameteric. These use principles described in Taylor and Bunn
(1999) and are based on quantile regressions of several steps ahead er-
rors (gather in the same manner as for semiparametric intervals) of
the following form: ej = ajb, where j = 1, ..h. Although Taylor and
Bunn (1999) propose to use polynomials, we found that they are not
stable and sometimes produce meaningless intervals (for example with
growth and then decline). Using power function however allows cover-
ing all the necessary types of intervals (linear, quadratic, square root).
Note that these non-parameteric intervals are usually asymmetric and
may look strange. However they work very well when key assumptions

28

of modelling are violated (for example, normally distributed residu-
als). They also seem to perform very well for intermittent data and
are recommended in cases of mixed state-space models. These can be
constructed with intervals="nonparametric" or intervals="np".

Width of prediction intervals is defined via parameter level. Although
the correct value to pass to level should lie between 0 and 1 (for example,
0.95), it will also accept values between 0 and 100 (e.g. 95).

3. Main “smooth” functions

In this section we discuss specific models underlying different functions
and see how they work in R. All the examples in this section use package
Mcomp in R.

There are several parameters that are accepted by all the “smooth” fore-
casting functions:

1. h – forecasting horizon;

2. holdout – binary for whether the holdout from the provided data needs
to be taken or not. This can be handy if you want to see accuracy of
forecasts on the provided data;

3. silent – this parameter determines what should not be produced by
the function. By default (silent="none") all the messages and texts
are printed out and graph with legend is produced. This parameter
allows to silent either "all" (nothing is printed out or plotted), or
"graph", or "legend", or "output".

There are also several hidden parameters that can be used, but are not
included in the list:

1. model – this parameter allows to pass previously estimated model of
the same type to the function. Only es() has this parameter as “un-
hidden”;

2. FI – if this parameter is TRUE, then Fisher Information is returned. This
can only be done if package “numDeriv” is installed. Fisher Information
then can be used for calculation of variances of parameters.

We start by looking at ETS and end this section with several examples.

29

3.1. Exponential Smoothing, es()

All the 30 variants of exponential smoothing models discussed in Hynd-
man et al. (2008) are implemented in es() function. Any specific model is
defined via parameter model. For example, ETS(A,Ad,M) can be constructed
with model="AAdM".

There are several arguments specific to es() that can be passed. These
are initial, initialSeason, persistence and phi. initial cannot have
length greater than 2 and allows defining values for level and trend com-
ponents only. If seasonal coefficients need to be set, then initialSeason

should be used instead. There is no restriction on number of seasonal co-
efficients. However, having ETS models with large seasonal lags may lead
to optimisation difficulties. If values of any of these parameters are pro-
vided, then they are not re-optimised and are used in model construction.
persistence parameter accepts vector of smoothing parameters. Finally phi

defines damping parameter and works only for models with damped additive
or multiplicative trends.

In addition parameter model can accept either specific model (as noted
above), or vector of model names, from which the best model needs to be se-
lected, or a previously estimated model. So for example, if we have estimated
some model for time series once, we can reuse it:

y1 <- rnorm(100,100,10)

esModel <- es(y, h=10, holdout=TRUE)

es(y, model=esModel, h=10)

Note that it is not advised to apply one and the same model to different time
series, because es() will reuse in this case initial and initialSeason along
with persistence and phi. However different data should have different
initials of state vector.

3.1.1. Normalisation of seasonal components

Due to a different structure of ETS models implemented in “smooth” (us-
ing lags instead of dummy variables), normalisation of seasonal components
cannot be done using conventional methods. As a result we have imple-
mented a different mechanism: instead of updating components of ETS on
each observation, we update groups of them each season. So, for example, for
monthly data this update will happen every 12th observation. The formulae
used in the process are shown in the table 1.

30

Additive seasonality Multiplicative seasonality

Normaliser aj = 1
m

∑m
i=1 sm(j−1)+i aj = m

√∏m
i=1 sm(j−1)+i

Seasonal component s′t = st − aj s′t = st
aj

T=N, level component l′t = lt + aj l′t = lt · aj
T=A, level component l′t = lt + aj l′t = lt · aj
T=A, trend component — b′t = bt · aj
T=M, level component l′t = lt +

aj
bt

l′t = lt · aj

Table 1: Normalisation formulae for seasonal ETS models.

As can be seen from the table above in case of additive seasonality, we
use simple mean in order to estimate the normalising factor, while in case of
multiplicative – geometric mean. After applying formulae from table 1, the
additive seasonal components add up to zero each season (from January to
December, for example) and the multiplication of multiplicative components
each season results in one.

Normalisation does not change point forecasts of ETS, however it may
slightly change prediction intervals and is needed for analysis purposes (when
seasonal components themselves are of the main interest).

3.1.2. Model selection and combinations

Model selection in es() can be done in several ways. The simplest one
is defining "Z" in model call for the component that needs to be selected.
For example, model="ZZN" will select the best non-seasonal model, while
model="MAZ" will select the most appropriate seasonality for additive trend
model with multiplicative error.

In order to decrease time of calculations branch and bound mechanism is
used. In general, for model="ZZZ", it is done in the following steps:

1. ETS(A,N,N) is fitted to the data.

2. Seasonal ETS(A,N,A) is fitted to the data. If AIC for this model is
lower than for (1), then seasonal model should be used. In this case we
move to step 3. Otherwise we move to step 4.

3. Seasonal ETS(A,N,M) is fitted. If AIC for this model is lower than
for (2), then we deal with multiplicative seasonal model. Otherwise we
have additive seasonality.

31

4. Additive trend model is fit to the data. The type of model depends
on steps (1) - (3). If there is no seasonality, then ETS(A,A,N) is con-
structed. If seasonality is additive, then we construct ETS(A,A,A).
Finally, with multiplicative seasonality we end up with ETS(A,A,M).
If the model on this step is better than the one on the previous step
(either (1), (2) or (3)), then trend is needed.

After that the pool of models that need to be estimated is defined, mod-
els in the pool are estimated and the one with the lowest information cri-
terion is selected. The longest pool of models in this case is when trend is
needed – it includes 8 models: for example, for non-seasonal model, exclud-
ing already estimated ETS(A,N,N) and ETS(A,A,N) we need to estimate
(A,Ad,N), (A,M,N), (A,Md,N), (M,N,N), (M,A,N), (M,Ad,N), (M,M,N) and
(M,Md,N).

In cases when not all the components need to be checked (for example,
for model="ZZN"), some steps of the described branch and bound algorithm
are skipped.

If user wants to select a model out of his favourite list of models, he can
provide that list as vector of names in the following way:

model=c("ANN","AAN","AAdN","ANA","AAA","AAdA")

All of these models will then be estimated and the one with the lowest infor-
mation criterion will be returned.

Finally es() allows to produce combinations of forecasts based on AIC
weights (see section 2.4.3 for the details). This is defined with letter "C"

instead of "Z". So model="CCN" will produce combined forecasts of all the
trend models with both additive and multiplicative errors, but no seasonality.
If something like model="CCZ" is provided, then "Z" is ignored and considered
as yet another "C". In general combination mechanism is slower than model
selection because it needs to fit all the models to the data. For example,
model="CCC" means that all the 30 models are fitted to the data.

3.2. Complex Exponential Smoothing, ces()

Complex Exponential Smoothing was proposed by Svetunkov and Kourentzes
(2015) and has its name because it is based on complex variables. The orig-
inal method is formulated as:

ŷt+1 + ip̂t+1 = (α0 + iα1)(yt + ipt) + (1− α0 + i− iα1)(ŷt + ip̂t), (68)

32

where i is imaginary unit, number satisfying equation i2 = −1, pt is potential
information variable and α0 and α1 are smoothing parameters. The idea
behind this method is that there may be some unidentifiable components in
time series that cannot be captured using conventional level-trend-seasonal
decomposition. So we claim that pt contains that useful information and can
be used in forecasting. However pt is unobservable so in order to use it, we
need to define proxy for it. The model implemented in “smooth” uses the
following proxy: pt = εt. So the state-space model underlying (68) in this
case can be written as (Svetunkov and Kourentzes, 2015):

yt = lt−1 + εt
lt = lt−1 − (1− α1)ct−1 + (α0 − α1)εt
ct = lt−1 + (1− α0)ct−1 + (α0 + α1)εt

, (69)

where ct is information potential component. The model (69) can be written
in compact form of pure additive state-space model discussed in section 2.1.1.
This means that it inherits all the properties of that model. However the
main difference between CES and ETS is that trend in the former is defined
by value of complex smoothing parameter α0 + iα1. α1 in this case defines
if trend is going upwards or downwards (if it is greater than 1, then it is
upwards), while α0 defines variability of the data. Svetunkov and Kourentzes
(2015) explain statistical properties of CES, so we won’t discuss them here.

Main advantage of CES is good estimation of long-term trends. As a
result it performs better than ETS for long-term horizons.

There are no “traditional” or “usual” bounds for CES, so only admissible
bounds are available for model construction.

There are also several seasonal modifications of CES available for con-
struction, which can be selected using parameter seasonality. Here is the
brief explanation.

Full seasonal CES model is defined as:

yt = l0,t−1 + l1,t−m + εt
l0,t = l0,t−1 − (1− α1)c0,t−1 + (α0 − α1)εt
c0,t = l0,t−1 + (1− α0)c0,t−1 + (α0 + α1)εt
l1,t = l1,t−m − (1− β1)c1,t−m + (β0 − β1)εt
c1,t = l1,t−m + (1− β0)c1,t−m + (β0 + β1)εt

. (70)

This model contains two groups of components: with lag 1 and with lag
m. So the latter group allows to model wide variety of seasonal patterns.

33

This includes additive and multiplicative types and also introduces new ones
(for example, when level of series does not grow, but amplitude of seasonality
increases). Number of parameters in the model (70) is high: k = 4+2+2m (4
smoothing parameters, 2 initial values for l0,0 and c0,0 and 2m initial seasonal
components.

Partial seasonal CES model includes conventional additive seasonal
component:

yt = lt−1 + st−m + εt
lt = lt−1 − (1− α1)ct−1 + (α0 − α1)εt
ct = lt−1 + (1− α0)ct−1 + (α0 + α1)εt
st = st−m + γεt

. (71)

The model (71) is not as universal as (70), but maybe sufficient in some
cases. Number of parameters in this case is k = 3 + 2 +m.

Finally, there is also so called Simple seasonal CES model:

yt = lt−m + εt
lt = lt−m − (1− β1)ct−m + (β0 − β1)εt
ct = lt−m + (1− β0)ct−m + (β0 + β1)εt

. (72)

This model has k = 2 + 2m parameters and seems to perform well in cases
of seasonal time series with zeroes. For example, solar irradiation data is
one of such time series. However we have not yet conducted an appropriate
research on this topic.

An automatic selection between these four models (non-seasonal and
three seasonal ones) can be done using auto.ces() function.

Due to the flexibility and simple form of the original model (no multipli-
cation of components), ces() is a very fast function. Because of that and
ability of CES to model different patterns in data, it is recommended for
data with large seasonal frequencies. However, the recommended (and de-
fault) initialisation method for CES is backcasting, which allows to decrease
number of parameters by m or 2m depending on the chosen seasonality type.
CES may perform poorly when initial="optimal" is used, because pa-
rameter space in this case may increase substantially (see details in section
2.2.2).

CES does not accept persistence vector directly. It uses A and B in-
stead, which correspond to non-seasonal and seasonal complex smoothing
parameters. These must be complex numbers. A user may also use a hidden
parameter model that allows applying the same CES model to a different
data.

34

3.3. State-Space ARIMA

Snyder (1985) showed that several ARIMA models can be written in
state space form (3). Since then this idea has not developed substantially
in forecasting literature but Hyndman et al. (2008) discuss connection be-
tween any ARIMA and pure additive state-space model (3), describing how
to construct ARIMA in that case. We decided to use this idea and these
derivations in order to construct State-Space ARIMA with possible multiple
seasonalities (Several Seasonals ARIMA). Thus name of SSARIMA stands
for both State-Space and Several Seasonals.

In general multiple seasonal ARIMA can be written as:

Φm1 · · · · · Φmn∆m1 · · · · ·∆mnyt = c+ Θm1 · · · · ·Θmnεt, (73)

where Φmi
is SAR(Pi)mi

polynomial (seasonal autoregressive part), ∆mi
is

SI(Di)mi
polynomial (seasonal differences) and finally Θmi

is SMA(Qi)mi

polynomial (seasonal moving average) with seasonal frequencies mi where
i = 1, .., n is number of seasonal parts and c is constant

However in our implementation a slightly different definition of SARIMA
then in Hyndman et al. (2008) is used. The main difference is in MA polyno-
mials that are defined the following way: Θmi

= 1 + θi,1B
mi + θi,2B

2mi +
So for example SARIMA(0,1,1)(1,1,1)12 in our notations is written as:

(1− Φ1B
12)(1−B12)(1−B)yt = c+ (1 + Θ1B

12)(1 + θ1B)εt.

Note that while Hyndman et al. (2008) dropped constant term “in accor-
dance with common usage” we do not do that and allow for our SSARIMA
to have constant even with differences, which usually results in model with
drift.

Derivations of state-space ARIMA are similar to Hyndman et al. (2008).
Firstly multiplications of polynomials for both sides of (73) are done in R
using “polynom” package. This leads to the following equation:

yt = c+
n∑

i=1

ηiyt−i +
n∑

i=1

θiεt−i + εt. (74)

Then (skipping some derivations, which can be found in (Hyndman et al.,
2008, p.173)) for each j of n components we have:

vj,t = ηjv1,t−1 + vj+1,t−1 + (ηj + θj)εt, (75)

35

and an additional component for constant term is defined as:

vn+1,t = c. (76)

However the first component in SSARIMA is updated using slightly different
formula than (75), taking constant term into account:

v1,t = η1v1,t−1 + v2,t−1 + vn+1,t + (η1 + θ1)εt. (77)

After all of that transition matrix, persistence and measurement vectors
are formed:

F =

η1 In−1 1
...

...
ηn 0 0
0 0 1

 , g =

η1 + θ1
...

ηn + θn
0

 , w =

1
0
...
0

 . (78)

In case when c = 0 (no constant term is needed), SSARIMA becomes exactly
the same as in Hyndman et al. (2008). In the other cases it either acts
as a simple constant term, or as drift (depending on differences of original
SARIMA).

The estimation of the model after definition of (78) is done in a similar
manner as for purely additive models. Furthermore all the properties of
pure additive model (3) can be applied to State-Space ARIMA (including
conditional expectation, variance, prediction intervals and model selection
using information criteria).

The method of transforming of conventional ARIMA into state-space
form described here is universal and allows constructing models with any
number of seasonal elements. That is why ssarima() has several parameters
for orders instead of one: ar.orders, i.orders, ma.orders and lags, which
accept integer values. A simple ARIMA(0,1,1), for example, can be con-
structed when ar.orders=0, i.orders=1, ma.orders=1 and lags=1, while a
more complicated SSARIMA(0,1,1)(1,1,2)12 is called with ar.orders=c(0,1),
i.orders=c(1,1), ma.orders=c(1,2) and lags=c(1,12). Inclusion of con-
stant term in the model is regulated with parameter constant, which accepts
either TRUE or FALSE.

Due to usage of State-Space model for ARIMA we do not loose any num-
ber of observations and estimate any type of ARIMA on one and the same
sample, but the initial values need to be estimated. This can be done us-
ing either optimisation or backcasting. The latter is recommended for more

36

complicated SARIMA models, because number of initials to estimate may
increase substantially. Number of parameters of SARIMA is equal to number
of AR and MA terms, plus one for constant and one for standard deviation:
k =

∑n
j=1 Pj +

∑n
j=1Qj + 1 + 1. In case of optimisation of initial values,

number of parameters increases by the number of components.
In order to ensure that estimated ARIMA is both stationary and invert-

ible, there are two checks during estimation of the model. This is done only
when bounds="admissible". If for some reason the estimated model is un-
stable (non-invertible) or not stationary, then the warning is printed out.
However, this may happen mainly in cases when bounds="none".

Finally information criteria can be calculated for any SSARIMA of any
order without restrictions, because now all the models are constructed on
one and the same sample, and the only difference between them is number
of parameters to estimate. “smooth” package has auto.ssarima() function
that selects order of SSARIMA using minimisation of information criteria.
It also uses branch and bound mechanism for order selection, which is done
in the following steps for general SSARIMA:

1. Selection of the most appropriate differences;

2. Selection of the most appropriate MA term;

3. Selection of the most appropriate AR term;

4. Check for the constant.

The order selection is done sequentially – model on step two is estimated
on residuals of step one model, while step three model is estimated on residu-
als of step two model. This is done for each differences combination and looks
tedious, but in fact allows increasing speed of calculation while preserving
accuracy of model selection.

Step one is done with constant term included, so model with first dif-
ferences will have drift. This in a way allows defining if there is trend in
time series and whether we need to take differences without conducting any
statistical tests.

On each step (2) – (3) selection starts from lower lag and finishes with the
highest, meaning that non-seasonal part is estimated first. Then for each lag
there is a loop, where orders of either AR or MA are checked. This is done
from higher order to lower. Motivation here is that if, for example, there is
AR(1) in some time series, then AR(3) will be better than AR(0) (in terms of
information criteria), because former includes that AR(1). AR(2) in its turn
will have lower information criterion than AR(3) and finally AR(1) will be

37

the best. However if the higher order does not decrease information criterion
in comparison with no order at all, then we can skip the check of orders for
the current lag. This allows to speed up the order selection process.

Maximum orders to check are defined in auto.ssarima() with a list
order, which should contain ar, i and ma. The length of at least one of
them must correspond to length of lags vector.

As an example, let’s say that we want to estimate SSARIMA(p,d,q)(P,D,Q)12
on some time series, setting ar=c(3,2), i=c(2,1), ma=c(3,2) and lags=c(1,12).
So the process of SARIMA order selection is done in the following steps:

1. Check differences d and D:
(a) Some values of d= {0, 1, 2} and D= {0, 1} are selected with non-

zero constant and all the other orders of the model being zero.
(b) The very first model that is checked is SSARIMA(0,0,0)(0,0,0)12,

so there is no need in checking zero orders of other elements on
other steps.

(c) Residuals of that model are taken to the next step.
2. Check moving average order, q and Q:

(a) Model with q= {3, 2, 1} with zero constant is fitted to the residuals
produced from step 1. if current q leads to the higher information
criterion value than on a previous step (either step (1) or the
previous value of q), then we move to the step (2,b).

(b) Find the appropriate Q∗ using the same principle as in (2,a).
3. Check autoregressive parts, p and P:

(a) Model with p= {3, 2, 1} with zero constant is fitted to the residuals
produced from step 2. if current p leads to the higher information
criterion value than on a previous step (either step (2) or the
previous value of p), then we move to the step (3,b).

(b) Check P= {2, 1} in a similar manner as in (3,a). Find the appro-
priate P∗.

4. Move to the step 1 and select next differences to check. When, there is
nothing else to check, move to step 5.

5. Compare SSARIMA(p∗,d∗,q∗)(P∗,D∗,Q∗)12 with constant and the same
model without constant term on the original data.

Using such an exhaustive search of appropriate differences ensures that
we select the correct ones with the correct MA and AR terms.

This is not ideal algorithm, however it gives decent results. Currently
the mechanism is slow mainly because of polynomial terms multiplication.
When this routine is moved to C++, the speed of selection will increase.

38

3.4. Generalised Exponential Smoothing, ges()

This is a next step from CES model. Here we assume that all the com-
ponents that we use are fuzzy and that the most important thing for us is
interaction between them, which leads to non-linear forecasts.

GES is pure additive model, so it has all the properties discussed in
section 2.1.1. In a way GES is just a state-space model, where transition
matrix, measurement and persistence vectors are estimated. In general it is
still a simple model defined by matrix equations:

yt = w′vt−l + εt
vt = Fvt−l + gεt

,

where w =

w1

w2
...
wn

, F =

f1,1 f1,2 . . . f1,n
f2,1 f2,2 . . . f2,n

...
...

. . .
...

fn,1 fn,2 . . . fn,n

, g =

g1
g2
...
gn

, vt =

v1,t
v2,t
...
vn,t

.

GES is defined by number of components and number of lags, which can
be written down as GES(km1

1 , km2
2 , ...). For example, model GES(21, 14, 112)

has two components with lag one, one component with lag 4 and one com-
ponent with lag 12. Such a model can be written in state-space form as:

yt = w1v1,t−1 + w2v2,t−1 + w3v3,t−4 + w4v4,t−12 + εt
v1,t = f1,1v1,t−1 + f1,2v2,t−1 + f1,3v3,t−4 + f1,4v4,t−12 + g1εt
v2,t = f2,1v1,t−1 + f2,2v2,t−1 + f2,3v3,t−4 + f2,4v4,t−12 + g2εt
v3,t = f3,1v1,t−1 + f3,2v2,t−1 + f3,3v3,t−4 + f3,4v4,t−12 + g3εt
v4,t = f4,1v1,t−1 + f4,2v2,t−1 + f4,3v3,t−4 + f4,4v4,t−12 + g4εt

. (79)

vt−l in this case is equal to Lvt =

B1 0 0 0
0 B1 0 0
0 0 B4 0
0 0 0 B12

v1,t
v2,t
v3,t
v4,t

.

As it can be seen from example (79), components interact with each other
and influence each other on every observation. This gives non-linearity and
flexibility to the model, so it can produce any forecasting trajectory and any
type of seasonality, becoming in a way a perfect approximator, if number of
components is large enough.

In R GES is defined using two parameters: order and lags, which
accept vectors of integer numbers. So, for example, the aforementioned
GES(21, 14, 112) can be constructed when order=c(2,1,1) and lags=c(1,4,12).

39

The only problem of GES is number of parameters to estimate. If initial
values are not taken into account, then number of parameters will be 2n+n2,
where n is number of all the components. So GES(21, 14, 112) has k = 2 · 4 +
42 = 24 parameters to estimate. In case when initials need to be estimated,
number of parameters increases by m =

∑n
j=1mj, where mj is lag for each

component. So for our example m = 1+1+4+12 = 18 and in this case GES
will have k = 24 + 18 = 42 parameters to estimate. This is not a trivial task,
so “backcasting” is recommended for initialisation of such models. This also
means that not all GES models can be used in cases of small samples.

It can be shown that GES is model encompassing any ARIMA model and
any pure additive exponential smoothing model (including multiple seasonal
additive models), but not all GES models have underlying ARIMA. Connec-
tions between GES and ARIMA become obvious from state-space form of
ARIMA discussed in section 3.3. This makes GES more general than any
other model.

An example, of conventional model written in GES framework is double
seasonal additive exponential smoothing applied to daily data with frequen-
cies 7 and 365, which corresponds to GES(11, 17, 1365):

yt = v1,t−1 + v2,t−7 + v3,t−365 + εt
v1,t = v1,t−1 + g1εt
v2,t = v2,t−7 + g2εt
v3,t = v3,t−365 + g3εt

, (80)

which actually means predefined values for measurement vector and transi-

tion matrix: w =

1
1
1

 and F =

1 0 0
0 1 0
0 0 1

, and L =

B1 0 0
0 B7 0
0 0 B365

.

Order selection for GES can be done using information criteria, however
we currently do not have a function that would do this automatically. But
even the default values of orders (c(1,1)) and lags (c(1,m)) for GES
should suffice for many cases of simpler time series.

ges() function allows to predefine such parameters as transition (ma-
trix F), measurement (vector w) and persistence (vector g). A hidden
parameter model allows to apply the same GES model to different data.

40

3.5. Simple Moving Average, sma()

Simple Moving Average is a very simple method that has the following
formula:

ŷt =
1

p

p∑

j=1

yt−j. (81)

Note that we discuss here simple, not centred moving average. It has been
thought for a long time that this method does not have an underlying statis-
tical model. However it is very easy to show the opposite. In order to do that
we move the sum in (84) to the left hand side of the equation and substitute
ŷt = yt − εt. So we end up with something looking like AR(p) process:

yt −
1

p

p∑

j=1

yt−j = εt. (82)

Which in conventional notations of ARIMA can be written as:
(

1− 1

p
B − 1

p
B2 − ...− 1

p
Bp

)
yt = εt. (83)

So for any simple moving average there is an underlying AR(p) process with
predefined parameters. We however estimate ARIMA in state-space form, so
in the case of SMA we simply use the same mechanism as in 3.3. Note that
having a state space model for SMA allows constructing prediction intervals,
selecting the most appropriate order of SMA and also produce values in the
beginning of the series. So there are no missing values for SMA in state-space
form. This however holds only when we use backcasting as initialisation of
the model. Otherwise we loose those first values, because SMA has a short
memory and optimiser ends up with over-fitting first p actual values. This is
the reason why we switched off initialisation selection for SMA and produce
initials using backcasting only.

The only issue with SMA is how to calculate number of parameters used.
The original moving average has T − 1 degrees of freedom, so the number of
parameters of SMA in state-space form should be two (the average + stan-
dard deviation of residuals). In case with optimisation of initial parameters,
they should be added to number of parameters. But in case when initial
values are produced using backcasting all the SMA models will have exactly
the same number of parameters. This also means that AIC is influenced only

41

by the fit of SMA and will select the one that has the lowest Mean Squared
Error.

There is only one important parameter in sma() function – order. If it
is NULL, then the order is selected using information criteria.

An underlying statistical model for Centred Moving Average is more com-
plicated to derive, because it depends on past and future observations at the
same time. The formula for CMA(p) method is:

ỹt =
1

p

k∑

j=−k
yt−j, (84)

where p = 2k − 1. If we note that ỹt in CMA is equal to ŷt+k+1 in SMA,
then we can set yt = ỹt + et = ŷt+k+1 + et. This allows using the same state-
space model as used in SMA for conditional expectation of CMA. However
errors need to be calculated differently and variance of CMA should differ
from variance of SMA. So what we in fact could do, is just to shift the fitted
values and calculate errors differently. However this functionality is not yet
implemented in “smooth”.

3.6. Simulation functions

There are three functions in “smooth” that allow simulating data from a
selected state-space model:

• sim.es() - simulate data from predefined ETS model;

• sim.ssarima() - simulate data from arbitrary SSARIMA model;

• sim.ces() - do the same from CES model;

sim.es() generates data using state-space ETS (with all the properties dis-
cussed in previous sections) with chosen model and preset initial, initialSeason,
persistence, phi and selected random numbers generator via randomizer

parameter. If initial, initialSeason and persistence are not speci-
fied then the values are generated from uniform distribution. persistence

in this case is restricted by selected bounds (which are either "usual",
"admissible" or "restricted" with latter meaning that smoothing pa-
rameters should not exceed 0.3). Parameter phi is needed for damped-trend
models and is ignored for the others.

42

sim.ssarima() accepts orders and lags parameters, which define the
order of SARIMA model. These two parameters are compulsory, model can-
not be used without them. It also has AR, MA, constant for predefined pa-
rameters and initial for initial values of the model. If these parameters are
not provided, then they are randomly generated.

sim.ces() allows defining type of CES model (non-seasonal, with simple,
partial or full seasonality) and providing values of α0 + iα1 and β0 + iβ1. If
the latter are not provided, then they are randomly generated. Note that
CES is very sensitive to values of smoothing parameters, so the values should
be used with care. We advise to use parameters of some CES estimated on
a data.

randomizer parameter is available for all the functions and is needed
in order to produce error term, the default value for it is rnorm(). In cases
with multiplicative error models the generated values are automatically trans-
formed into log-normally distributed. All the functions allow providing any
randomizer with any parameters, but only few of them really make sense.
For example, generating log-normal errors with zero mean and standard de-
viation of 0.1 with sim.es() can be done this way:

sim.es("MMN", obs=100, randomizer="rlnorm", meanlog=0, sdlog=0.1)

Note that we always need to pass both meanlog and sdlog even if we are
fine with the default value of meanlog.

All the sim-functions also accept parameter iprob producing intermit-
tent data with fixed probability. If the probability is provided, then data is
rounded to integer values.

Another important parameter in all the functions is nsim which deter-
mines how many time series to generate.

Finally, there is a simulate.smooth function that accepts a predefined
model and generates data using the parameters of that model. For example,
this way we can generate 5 time series looking similar to N2568 from M3
data:

ourModel <- es(M3$N2568$x,"ZZZ")

x <- simulate(ourModel, nsim=5, obs=1000)

Finally, all sim-functions use class smooth.sim and have several default
methods: summary, plot, logLik and nobs.

43

3.7. Miscellaneous functions

There are several other smaller, but not less important function in “smooth”
package. They are available to user, but are needed for main forecasting func-
tions. We briefly discuss them in this subsection.

• iss() – this function produces forecasts for occurrences of time series
and is used by other functions, when intermittent parameter is not
"none". It allows to construct one of the models mentioned in section
2.3. In case of Croston’s model (section 2.3.5) user can also select
any ETS model and play around with it. Note that multiplicative
error models are advised for intermittent data. User can also provide
a desired value of smoothing parameters via persistence variable to
both Croston’s and TSB models;

• graphmaker() – function creates plot based on passed actuals, forecast,
fitted, lower and upper. It also allows defining if legend is needed,
the width of prediction interval (if lower and upper are not NULL) and
what to print as a title for the graph;

• Error measures, which include: 1. MPE(), Mean Percentage Error;
2. MAPE(), Mean Absolute Percentage Error; 3. SMAPE(), Symmetric
MAPE; 4. MASE(), Mean Absolute Scaled Error, equivalent to scaled
Mean Absolute Error, sMAE; 5. RelMAE(), Relative MAE; 6. sMSE(),
scaled Mean Squared Error. This variety of errors is needed in order to
have better picture of performance of models. For example, errors based
on absolute values do not work for intermittent demand, so square
errors are needed. All these errors are reported when a model with
holdout=TRUE is constructed. Literature on error measures is extensive
(Fildes, 1992; Hyndman and Koehler, 2006; Davydenko and Fildes,
2013; Kourentzes, 2014; Petropoulos and Kourentzes, 2015), so we are
not discussing their properties here;

• hm() and cbias() – half moment of distributions and complex bias.
The former is not used directly by any function, while the second one is
reported as “Bias” along with other error measures. “Bias” may take
values from -1 to 1. The perfect model should have Bias = 0. We will
provide reference to a paper about Bias soon...;

44

3.8. Examples of usage

The detailed examples with graphs and explained outputs can be found
in the official vignette of “smooth” package. Here we show some simple
examples.

3.8.1. Exponential Smoothing, es()

For some random time series from M3 dataset:

y <- ts(c(M3$N2457$x,M3$N2457$xx), frequency=frequency(M3$N2457$x),

start=start(M3$N2457$x))

h <- M3$N2457$h

es() can be constructed using:

es(y, h=h, holdout=TRUE)

The function in this case uses the discussed branch and bound algorithm
and selects ETS(M,N,N). It also produces an output with brief information
about the model and a graph with series, fitted values and point forecasts.
If we need prediction intervals, then we run:

es(y, h=h, holdout=TRUE, intervals=TRUE)

Due to multiplicative error in the model, the intervals will be asymmetric.
This is the expected behaviour.

If we save the model (and let’s say we want it to work silently):

ourModel <- es(y, h=h, holdout=TRUE, silent="all")

we can then reuse it for different purposes:

es(y, model=ourModel, h=h, holdout=FALSE, intervals=TRUE,

intervals="np", level=0.93)

Or we can just use persistence or initials from one model to construct the
other one:

es(y, model="MNN", h=h, holdout=FALSE, initial=ourModel$initial)

es(y, model="MNN", h=h, holdout=FALSE, persistence=ourModel$persistence)

or provide some arbitrary values:

es(y, model="MNN", h=h, holdout=TRUE, initial=1500)

45

3.8.2. Complex Exponential Smoothing, ces(), auto.ces()

For the same random series from M3 dataset ces() can be constructed
using:

ces(y, h=h, holdout=TRUE)

If we want automatic model selection, then we use auto.ces() function:

auto.ces(y, h=h, holdout=TRUE)

If for some reason we want to optimise initial values then we call:

auto.ces(y, h=h, holdout=TRUE, initial="o")

Or we can call some specific model. For example, with simple seasonality
(72):

ces(y, seasonality="s", h=h, holdout=TRUE)

ces() allows use exogenous variables and different types of prediction
intervals in exactly the same manner as es(). So we can fit a model with
exogenous without update first:

auto.ces(y, h=h, holdout=TRUE, xreg=x, intervals=TRUE)

and then with the update:

auto.ces(y, h=h, holdout=TRUE, xreg=x, updateX=TRUE, intervals=TRUE)

3.8.3. SSARIMA, ssarima(), auto.ssarima()

Simple ARIMA(0,1,1) is constructed by ssarima() function by default:

ssarima(y, h=h, holdout=TRUE)

We could try selecting orders manually, but this can also be done automati-
cally via auto.ssarima() function:

auto.ssarima(y, h=h, holdout=TRUE)

Automatic order selection in SSARIMA with optimised initials does not
work well, but we can still ask for it:

auto.ssarima(y, h=h, holdout=TRUE, initial="o")

46

This can be seen on example of another time series (which has complicated
seasonality):

auto.ssarima(M3$N1683, h=18, initial="backcasting")

auto.ssarima(M3$N1683, h=18, initial="optimal")

If we save model:

ourModel <- auto.ssarima(y, h=h, holdout=TRUE, xreg=x, updateX=TRUE)

we can then reuse it:

ssarima(y, model=ourModel, h=h, holdout=FALSE, xreg=x, updateX=TRUE)

3.8.4. GES, ges()

By default ges() fits a model GES(11, 112):

ges(y, h=h, holdout=TRUE)

But some different orders and lags can be specified. For example:

ges(y, h=h, holdout=TRUE, orders=c(2,1), lags=c(1,12))

Function auto.ges() is not yet implemented in “smooth”, but manual
selection allows to conclude that GES(21, 112) has the lowest AIC amongst
other possible GES models. In theory inclusion of more orders and lags
should lead to decrease of MSE. However this is not the case in our imple-
mentation, because currently we use linear programming optimisers, which
may leave us with suboptimal values in cases when parameter space is wide.

In addition to standard values that other functions accept, GES accepts
predefined values for transition matrix, measurement and persistence vectors.
For example, something more common can be passed to the function:

transition <- matrix(c(1,0,0,1,1,0,0,0,1),3,3)

measurement <- c(1,1,1)

ges(y, h=h, holdout=TRUE, orders=c(2,1), lags=c(1,12),

transition=transition, measurement=measurement)

The resulting model will be equivalent to ETS(A,A,A). However due to differ-
ent initialisation of optimisers and different method of number of parameters
calculation, ges() above and es(y, "AAA", h=h, holdout=TRUE) will lead
to different models.

47

3.8.5. Simulate functions, sim.es(), sim.ssarima(), sim.ces(), simulate()

Let’s start from something simple. For example, monthly data generated
from ETS(A,N,N), 120 observations:

ourSimulation <- sim.es("ANN", frequency=12, obs=120)

The resulting ourSimulation object contains: ourSimulation$model – name
of ETS model used in simulation; ourSimulation$data – vector of simulated
data; ourSimulation$states – matrix of states, where columns contain dif-
ferent states and rows corresponds to time; ourSimulation$persistence –
vector of smoothing parameters used in simulation (in our case generated
randomly); ourSimulation$residuals – vector of errors generated in the
simulation; ourSimulation$occurrences – vector of demand occurrences
(zeroes and ones, in our case only ones); ourSimulation$likelihood – true
likelihood function for the used generating model.

We can plot produced data, states or residuals in order to see what was
generated. This is done using plot(ourSimulation).

sim.ssarima() function allows defining any AR, MA parameters, con-
stant and initial values. In cases of non-zero differences, constant is treated
as drift value. This is a very flexible tool, which has some advantages over
sim.arima() function from stats package. The possibility of defining what-
ever you want however you want is one of those. The function also allows
generating data with multiple seasonalities and producing intermittent data.

The simplest example of usage is:

ourSimulation <- sim.ssarima(frequency=12, obs=120)

This generates data from ARIMA(0,1,1).
If we have estimated some model on data and want to generate something

using exactly the same model, we can use simulate() function:

ourModel <- es(y, h=h, holdout=TRUE)

ourSimulation <- simulate(ourModel, nsim=1000)

Similarly we can do things with SSARIMA:

ourModel <- auto.ssarima(y, h=h, holdout=TRUE)

ourSimulation <- simulate(ourModel, nsim=1000)

Or with CES:

ourModel <- auto.ces(y, h=h, holdout=TRUE)

ourSimulation <- simulate(ourModel, nsim=1000)

For more examples, see vignettes of the package.

48

3.9. Methods for the class “smooth”

There are several functions that can be used together with es(), ces(),
ssarima() and ges() models. So when a model is saved to some object
ourModel, these function will do some things. Here’s the list with some
explanations:

1. summary(ourModel) – function prints brief output with explanation of
what was fitted, with what parameters and errors;

2. fitted(ourModel) – fitted values;

3. forecast(ourModel) – point and interval forecasts. This is needed
for compatibility with Rob Hyndman’s “forecast” package, however
“smooth” does not include that package in dependencies and uses a
forecast function similar to Rob’s. So when you attach both “smooth”
and “forecast” you may see some warnings about masking “forecast”
function. But nothing bad happens here. forecast(ourModel) returns
object of class “forecastSmooth”;

4. residuals(ourModel) – residuals of constructed model;

5. AIC(ourModel), BIC(ourModel) and AICc(ourModel) – information
criteria of the constructed model. AICc() function is not a standard
“stats” function and is introduced by “smooth”;

6. plot(ourModel) – plots states of constructed model;

7. simulate(ourModel) – produces data simulated from provided model.
Currently only available for ETS;

8. summary(forecast(ourModel)) – prints point and interval forecasts;

9. plot(forecast(ourModel)) – produces graph with actuals, forecast,
fitted and intervals using graphmaker() function.

3.10. Returned values

For the list of returned values with explanation, see help pages in R.

4. Conclusions

Package “smooth” has several functions that are based on state-space
models. It supports additive, multiplicative and mixed models, which are
currently implemented in exponential smoothing, represented by es() func-
tion and several other functions.

es() function is flexible and has features that no package in R has yet in-
troduced. These include: exogenous variables together with any ETS model,

49

intermittent state-space model using Croston’s and TSB, cost functions based
on multiple steps ahead errors, different types of intervals, including Taylor
and Bunn (1999), model selection and forecasts combination using informa-
tion criteria, different types of initialisation and more.

“smooth” package also introduces State-space SARIMA model with pos-
sible multiple seasonalities and automatic SARIMA order selection mech-
anism. Implementation of ssarima() allows to avoid using any statistical
tests, thus decreasing uncertainty about the correct model. Although order
selection mechanism in auto.ssarima() could still be optimised, it already
returns decent results.

“smooth” also introduces brand new Complex Exponential Smoothing
and Generalised Exponential Smoothing, that make life of forecaster if not
easier than definitely more exciting.

In addition advanced simulation functions are included in the package.
They allow full control over parameters of models, which leads to larger
variety of data to generate.

All the functions in “smooth” are flexible and allow users who read the
manual doing things they want in a way they desire. The package is still
developing and we hope to introduce new features in upcoming releases.

References

Burnham, K. P., Anderson, D. R., 2004. Model Selection and Multimodel
Inference. Springer New York, New York, NY.
URL http://pubs.amstat.org/doi/pdf/10.1198/tech.2003.s146

http://link.springer.com/10.1007/b97636

Croston, J. D., sep 1972. Forecasting and Stock Control for Intermittent
Demands. Operational Research Quarterly (1970-1977) 23 (3), 289.
URL http://www.jstor.org/stable/3007885?origin=crossref

Davydenko, A., Fildes, R., 2013. Measuring Forecasting Accuracy: The Case
Of Judgmental Adjustments To Sku-Level Demand Forecasts. Interna-
tional Journal of Forecasting 29 (3), 510–522.
URL http://dx.doi.org/10.1016/j.ijforecast.2012.09.002

Fildes, R., jun 1992. The evaluation of extrapolative forecasting methods.
International Journal of Forecasting 8 (1), 81–98.
URL http://linkinghub.elsevier.com/retrieve/pii/016920709290009X

50

Hyndman, R. J., Khandakar, Y., 2008. Automatic time series forecasting:
the forecast package for R. Journal Of Statistical Software 27 (3), 1–22.
URL http://www.jstatsoft.org/v27/i03

Hyndman, R. J., Koehler, A. B., 2006. Another look at measures of forecast
accuracy. International Journal of Forecasting 22 (4), 679–688.

Hyndman, R. J., Koehler, A. B., Ord, J. K., Snyder, R. D., 2008. Forecasting
with Exponential Smoothing. Springer Series in Statistics. Springer Berlin
Heidelberg, Berlin, Heidelberg.
URL http://link.springer.com/10.1007/978-3-540-71918-2

Kolassa, S., 2011. Combining exponential smoothing forecasts using Akaike
weights. International Journal of Forecasting 27 (2), 238–251.
URL http://dx.doi.org/10.1016/j.ijforecast.2010.04.006

Kourentzes, N., oct 2014. On intermittent demand model optimisation and
selection. International Journal of Production Economics 156, 180–190.
URL http://dx.doi.org/10.1016/j.ijpe.2014.06.007

http://linkinghub.elsevier.com/retrieve/pii/S092552731400190X

Petropoulos, F., Kourentzes, N., jun 2015. Forecast combinations for
intermittent demand. Journal of the Operational Research Society 66 (6),
914–924.
URL http://dx.doi.org/10.1057/jors.2014.62%7B%25%7D5Cn10.1057/jors.2014.62

http://link.springer.com/10.1057/jors.2014.62

Shenstone, L., Hyndman, R. J., sep 2005. Stochastic models underlying Cros-
ton’s method for intermittent demand forecasting. Journal of Forecasting
24 (6), 389–402.
URL http://doi.wiley.com/10.1002/for.963

Snyder, R. D., 1985. Recursive Estimation of Dynamic Linear Models. Jour-
nal of the Royal Statistical Society, Series B (Methodological) 47 (2), 272–
276.

Snyder, R. D., aug 2002. Forecasting sales of slow and fast moving invento-
ries. European Journal of Operational Research 140 (3), 684–699.
URL http://linkinghub.elsevier.com/retrieve/pii/S0377221701002314

51

Svetunkov, I., Kourentzes, N., 2015. Complex Exponential Smoothing. Tech.
rep., University Library of Munich, Germany.
URL https://ideas.repec.org/p/pra/mprapa/69394.html

Syntetos, A. A., Boylan, J. E., apr 2005. The accuracy of intermittent
demand estimates. International Journal of Forecasting 21 (2), 303–314.
URL http://linkinghub.elsevier.com/retrieve/pii/S0925527310002306

http://linkinghub.elsevier.com/retrieve/pii/S0169207004000792

Taylor, J. W., Bunn, D. W., 1999. A Quantile Regression Approach to Gen-
erating Prediction Intervals. Management Science 45 (2), 225–237.

Teunter, R. H., Syntetos, A. A., Babai, M. Z., nov 2011. Intermittent
demand: Linking forecasting to inventory obsolescence. European Journal
of Operational Research 214 (3), 606–615.
URL http://linkinghub.elsevier.com/retrieve/pii/S0377221711004437

52

