
Empirical Evaluation of Pareto Efficient Multi-objective
Regression Test Case Prioritisation

Michael G. Epitropakis
Computing Science and

Mathematics
University of Stirling

Stirling, UK

mge@cs.stir.ac.uk

Shin Yoo
Department of Computer

Science,
University College London,

London, UK
shin.yoo@ucl.ac.uk

Mark Harman
Department of Computer

Science,
University College London,

London, UK
mark.harman@ucl.ac.uk

Edmund K. Burke
Computing Science and

Mathematics
University of Stirling

Stirling, UK

e.k.burke@stir.ac.uk

ABSTRACT

The aim of test case prioritisation is to determine an order-
ing of test cases that maximises the likelihood of early fault
revelation. Previous prioritisation techniques have tended
to be single objective, for which the additional greedy algo-
rithm is the current state-of-the-art. Unlike test suite min-
imisation, multi objective test case prioritisation has not
been thoroughly evaluated. This paper presents an exten-
sive empirical study of the effectiveness of multi objective
test case prioritisation, evaluating it on multiple versions of
five widely-used benchmark programs and a much larger real
world system of over 1 million lines of code. The paper also
presents a lossless coverage compaction algorithm that dra-
matically scales the performance of all algorithms studied by
between 2 and 4 orders of magnitude, making prioritisation
practical for even very demanding problems.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging

General Terms

Algorithms

Keywords

Test case prioritization, multi-objective evolutionary algo-
rithm, additional greedy algorithm, coverage compaction

1. INTRODUCTION
Test case prioritisation [13] is useful when the tester is

forced to terminate testing before all the test cases have
been executed. Such premature test termination can occur

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’15 , July 12–17, 2015, Baltimore, MD, USA
Copyright 2015 ACM 978-1-4503-3620-8/15/07 ...$15.00.

because of business imperatives, such as fixed release dates,
or due to budgetary constraints. Prioritisation is an attrac-
tive way to mitigate the reduction in test effectiveness that
would otherwise accompany premature test termination. In-
deed, a recent survey revealed increasing interest in prioriti-
sation over other forms of regression test optimisation, such
as selection and minimisation [39].

Of course, it is not known which tests will reveal which
faults at prioritisation time, so some surrogate has to be em-
ployed (as in other regression test optimisation approaches).
Often structural coverage is adopted as this surrogate [12,
25, 30, 44]. However, such a single objective ‘coverage only’
approach is limited. In practice, the tester may have mul-
tiple technical and business imperatives driving their test-
ing, making it unrealistic to limit prioritisation to a single
objective. Furthermore, even where the tester is solely con-
cerned with the single objective of fault revelation, there are
likely to be multiple coverage-based surrogates from which
to choose, such as coverage of new functionality or coverage
of previously revealed faults.

These practical limitations of single objective regression
test optimisation have led to an upsurge in interest in multi
objective regression testing [8, 19, 20, 24, 34, 37]. However,
all but one of the previous studies of multi objective regres-
sion test optimisation have been concerned with test case
minimisation rather than test case prioritisation. Existing
empirical studies on test case prioritisation either entirely
focused on the variations of the greedy algorithm [12] or
considered other algorithms, such as evolutionary algorithm,
exclusively for the single objective formulation of the prob-
lem [25]. The only previous study to use a multi objec-
tive prioritisation [24] was primarily concerned with extend-
ing, to prioritisation, previous work on parallel computation
speed-ups for test case minimisation [41]. It, therefore, re-
ports the speed-up achieved by parallelisation, but does not
evaluate the fault detection capabilities of different single
and multi objective algorithms in an empirical study.

This paper studies multi objective test case prioritisation
in detail. Three objectives are considered: average percent-
age of coverage achieved, average percentage of coverage of
changed code, and average percentage of past fault coverage.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

ISSTA’15, July 12–17, 2015, Baltimore, MD, USA
ACM. 978-1-4503-3620-8/15/07
http://dx.doi.org/10.1145/2771783.2771788

234

The first objective is the widely-used surrogate for fault de-
tection capability. The second objective is included based
on the conjecture that prioritising differences between ver-
sions is also a natural objective, especially in the context of
regression testing. Finally, the third objective is included
because previous work on test suite minimisation [43] has
noted that tests that have detected faults in the past may
tend to be more effective than those that have not.

The evaluation of multi objective test case prioritisation
has been performed on multiple versions of five SIR [10]
programs (flex, grep, gzip, make and sed), which contain
seeded faults (as in much of the previous literature [39]).
Additionally, the empirical study also includes versions of
a large real world system, mysql, which has not previously
been studied in the literature and for which information con-
cerning its real faults has been extracted. In total, the em-
pirical study included 22 regression testing phases between
versions.

The empirical study compared 7 different prioritisation
algorithms in total. For multi objective test case prioritisa-
tion, the study includes new implementations of two differ-
ent Multi Objective Evolutionary Algorithms (MOEAs): the
widely studied NSGA-II algorithm [9] and the Two Archive
multi objective algorithm [29]. In addition, the study con-
siders three different instantiations of the current state-of-
the-art single objective cost-cognisant additional greedy al-
gorithm, each with one of the considered objectives. Finally,
following existing work on test suite minimisation [38], two
hybrid algorithms were formulated by seeding the initial
populations of two MOEAs with solutions from the addi-
tional greedy prioritisations. These algorithms are compared
using standard optimisation quality indicator metrics. The
results of our study show that the MOEAs can significantly
outperform the state-of-the-art with large effect sizes accord-
ing to each of three quality indicators for at least 19 of the
22 versions studied in the paper.

More importantly for practitioners, the results also show
that MOEAs and hybrids can significantly outperform the
testing effectiveness of statement coverage based prioriti-
sations in up to 14 out of the 22 versions studied. They
find faults significantly faster in all 14 cases, often with
large effect sizes, according to the standard evaluation met-
ric, cost cognisant Average Percentage of Fault Detected
(APFDc) [14].

The gain in testing effectiveness may have been futile had
the cost of using MOEAs been prohibitively high. Fortu-
nately, the paper also introduces and evaluates coverage
compaction, an algorithm for non-lossy coverage data com-
paction. Unlike existing work on execution profile reduc-
tion [6], the proposed compaction algorithm is determinis-
tic, it does not affect the precision of any follow-up analysis,
and it can be used as a pre-processing phase. The results
show dramatic improvements in performance: after com-
paction, the size of the coverage data becomes smaller by a
factor of between 7 and 488. With the largest studied pro-
gram, mysql, it led to four orders of magnitude speed-up for
both MOEAs and the additional greedy algorithms.

The technical contributions of this paper are as follows:

• An empirical study of two multi objective evolution-
ary algorithms, as well as three state-of-the-art cost-
cognisant additional greedy algorithms, and two hy-
brids between these, in terms of their optimisation
quality for the multi objective test case prioritisation

problem. The empirical study uses both standard bench-
mark programs and a large real world open source soft-
ware with over million lines of code and real faults:
mysql.

• An evaluation of 7 prioritisation algorithms with re-
spect to the rate of early fault detection, which is the
aim of test case prioritisation. The empirical study
uses the widely-studied cost cognisant Average Per-
centage of Fault Detection (APFDc) metric to evaluate
the rate of fault detection.

• The introduction and evaluation of a novel coverage
compaction algorithm, which achieves up to 4 orders
of magnitude speed-up for both MOEAs and greedy
algorithms when applied to the coverage traces of a
large system.

The rest of the paper is structured as follows. Section 2
describes the multi objective test case prioritisation prob-
lem and the coverage compaction. Section 3 outlines the
research questions and how they are answered. Section 4
describes the details of the experimental setup. Section 5
presents and analyses the result of the empirical evaluation,
and Section 6 discusses the threats to validity. Section 7
presents the related work, and Section 8 concludes.

2. MULTI OBJECTIVE TEST CASE PRIORI-

TISATION

2.1 Single Objective Formulation
The aim of test case prioritisation is to find the ordering of

test cases that will help the tester to achieve the maximum
benefit, even if the testing procedure is prematurely halted.
More formally, the Test Case Prioritisation problem can be
defined as follows [32]:

Definition 1. Test Case Prioritisation Problem: Given
a test suite T, a set of all permutations, Π, of T, and a
function f : Π → R. The problem is to find a π′ ∈ Π such
that:

(∀π′′)(π′′ ∈ Π)(π′′ 6= π′)[f(π′) ≥ f(π′′)].

The set Π represents the set of all possible permutations
of T, and the objective function f maps each ordering to
a real number, which should correspond to an award value
for the ordering under consideration. The ideal award value
would represent how early faults are detected. However, this
is infeasible because at the time of prioritisation faults are
not known. Consequently, some surrogate for fault detection
capability, such as structural coverage, is usually used for the
objective function, f .

2.2 Multi Objective Formulation
Multi objective optimisation is based on the notion of

Pareto optimality. With multiple objectives, an ordering
of test cases A is better than another ordering B, (or A
dominates B), only when A excels B in at least one objec-
tives while not being worse of than B in all other objectives.
More formally, let us assume M different objectives (award
functions), fi : Π→ R, (1 ≤ i ≤M). An ordering π1 is said
to dominate another ordering π2 if and only if the following
is satisfied:

fi(π1) ≥ fi(π2), ∀i ∈ {1, 2, . . . ,M} and

∃i ∈ {1, 2, . . . ,M} : fi(π1) > fi(π2)

235

When evolutionary algorithms are applied to single objec-
tive test case prioritisation, they produce a single ordering
with the maximum fitness value. When applied to multi
objective prioritisation, however, they will produce a set of
orderings that are not dominated by any other in the pop-
ulation. This set of solutions is said to represent a Pareto
front.

2.3 Evaluating Test Orderings
The effectiveness of test case prioritisation is measured by

the rate of fault detection achieved by the produced ordering
of test cases. Rothermel et al. first defined the Average
Percentage of Fault Detection (APFD) evaluation metric for
test case prioritisation [31], which, intuitively, measures how
quickly faults are detected by the given ordering.

Definition 2. Average Percentage of Fault Detection: Let
T be a test suite containing n test cases, and F be a set of
m faults detected by T . Let TFi be the first test case in an
ordering π of T that reveals fault i. Given an ordering π of
the test suite T , the Average Percentage of Fault Detection
(APFD) metric is defined as follows:

APFD(π) = 1 +

∑m

i=1 TFi

nm
−

1

2n

Later, Elbaum et al. extended the metric to consider both
fault severity and test case execution cost, and defined the
cost cognisant version, APFDc [14]. The APFD metric as-
sumes that all faults have the same severity (i.e. they have
equal cost) and all test cases take the equal effort to execute.
The cost cognisant version, APFDc, incorporates weightings
based on varying fault severities and execution costs.

Definition 3. Let t1, t2, . . . , tn be the costs of n test cases,
and f1, f2, . . . , fm be the severities of m detected faults. APFDc

is defined as follows:

APFDc(π) =

∑m

i=1

(

fi ·
(

∑n

j=TFi
tj −

1
2
tTFi

))

∑n

j=1 tj ·
∑m

i=1 fi

Due to the lack of robust fault severity models for the
subject programs, the experiments in this paper use the test
execution cost weightings of APFDc and treat all faults as
sharing the same severity (i.e. fi = 1 for 1 ≤ i ≤ m), which
yields the following:

APFDc(π) =

∑m

i=1

(

∑n

j=TFi
tj −

1
2
tTFi

)

∑n

j=1 tj ·m

Since MOEAs will produce multiple solutions (i.e. order-
ings), it is not possible to evaluate MOEAs based on a single
APFDc value obtained from a single ordering. Instead, the
average APFDc value from all solutions a MOEA contributes
to the reference Pareto front have been calculated and used
for comparisons (refer to Section 4.4 for the definition of a
reference Pareto front).

2.4 Objectives
The current study considers a three-objective formulation

of test case prioritisation. The objectives used are common
surrogates for fault detection capability and have been stud-
ied before in the literature, but the trade-off between them
under a multi objective formulation has not been considered
before. Specifically, the study uses statement coverage, the

difference of the statement coverage between two consecu-
tive versions (hereby referred to as ∆-coverage), and the
historical fault information of the test suite. For all three
objectives, the rates of their realisation are measured in a
similar way to APFDc. To be cost cognisant, the execution
cost of each test cases has been also measured. Let us briefly
describe the main characteristics of each objective below.
Statement Coverage: one well-known and widely-used
surrogate for fault detection capability in regression testing
literature is structural coverage [39], which is one of the
necessary conditions to detect a fault (i.e. one has to at
least execute the faulty statement in order to detect it).
Here, statement coverage is used as the surrogate for fault
detection capability.
∆-coverage: the second objective used is the information
about the difference of the statement coverage between two
consecutive versions (called ∆-coverage). In a regression
testing scenario, one may conjecture that new regression
faults are likely to originate from the changed parts of the
source code in the version under test. Therefore, the cover-
age of the changed parts, obtained with diff, is a rational
candidate for prioritisation.
Fault History Coverage: in a regression testing scenario,
the tester may have information of the test history regarding
which test case detected faults in the past. When aggregated
over all known faults, this information can be represented in
the form of coverage: a test case covers a known past fault
if it successfully detected the fault. The rational behind this
objective is that, if a test case has revealed a fault in the past,
it has a better chance to reveal faults in the future. Fault
history coverage has been used in previous multi objective
test case minimisation [37, 43] with successful results, but
has not be used in prioritisation.
Execution Cost: one natural candidate for execution cost,
the wall-clock time, is not only noisy but also dependant
on the underlying hardware and operating system, making
it inaccurate and not robust. To alleviate these issues, a
widely used software profiling tool called valgrind [27] has
been used in place of the wall-clock time. Valgrind exe-
cutes the given program in a virtual machine and can report
the number of virtual instructions executed. This number
provides a precise measurement of the computational effort
required to execute each test case. Executions of each test
case have been profiled with Valgrind and the number of
virtual instructions were used as a representative surrogate
for execution cost.

Three objective functions for test case prioritisation are
defined based on these measures, as variations of APFCc:
Average Percentage of Statement Coverage (APSCc), Aver-
age Percentage of ∆-Coverage (APDCc), and Average Per-
centage of Fault Coverage (APFCc). These are all defined
by replacing TFi (i.e. index of the test case that detects
fault fi in the ordering) in Definition 3 with TSi, TDi, and
THi. They represent the index of the test case that covers
the ith statement in the program, ith changed statement in
the program, and ith historical fault, respectively. As with
the use of APFDc, the fault severity weights have been dis-
carded. These three rate of objective realisation metrics will
be hereby collectively referred to as AP*Cc.

2.5 Algorithms
The empirical study uses two different Multi Objective

Evolutionary Algorithms (MOEAs) that have been previ-

236

ously applied to software engineering problems. The Non-
dominated Sorting Genetic Algorithm II (NSGA-II) [9] is
one of the most widely studied multi objective optimisation
algorithms and has been applied to various domain ranging
from Requirement Engineering [15] to regression testing [42].
The Two Archive Evolutionary Algorithm (TAEA) [29] was
specifically designed to overcome weaknesses of NSGA-II
and has also been applied to regression testing [42].

NSGA-II uses a crowding distance selection mechanism to
promote diversity. Intuitively, given a set of non-dominated
solutions, crowding distance selection favours the solution
farthest away from the rest of the population, in order to
promote diversity. It also adopts elitism to achieve fast con-
vergence: the solutions on the Pareto front in current gen-
eration are preserved into the next generation.

The Two-Archive evolutionary algorithm is characterised
by two separate archives that are used in addition to the
population pool. The first is reserved for fast convergence,
while the second promotes diversity. During evolution, so-
lutions of two different types are archived: non-dominated
solutions that dominate some other solutions are stored in
the convergence archive, while those that do not dominate
any others are stored in the diversity archive. A pruning
procedure is applied when the diversity archive reaches a
pre-specified size limit: the solution closest to the conver-
gence archive will be discarded.

The empirical study also includes three different instanti-
ations of the cost cognisant additional greedy algorithm [14,
26], each with one of the three objectives. These algorithms
greedily select test cases, attempting to cover statements,
modified statements, or past faults per time unit that re-
main as yet uncovered by test cases that occur earlier in
the ordering. Specifically, they initially select a test case
that has the highest value of the given coverage per time
unit. Subsequently, they try to find the next test case that
will increase the given coverage per time unit by the largest
amount. This procedure is repeated until the highest pos-
sible coverage per time unit is reached, at which point the
algorithms are recursively applied to the remaining test cases
until all are ordered.

Finally, the paper also introduces two hybridisations be-
tween the MOEAs and the additional greedy algorithms.
For the hybrid versions, the populations of both MOEAs
are seeded with solutions produced by all three additional
greedy algorithms. The expectation is that these solutions
will speed up the convergence, because the additional greedy
algorithms will produce better solutions than the, otherwise,
random initialisation.
Algorithm 1: Coverage Compaction Algorithm
Input: an n by m binary coverage matrix, M
Output: a compacted M
(1) i← 0
(2) while i < M.width
(3) cc←M(,i)

(4) for j = i+ 1 to M.width− 1
(5) if cc == M(,j)

(6) M(,i) ←M(,j) + cc
(7) delete M(,j) from M
(8) i← i+ 1
(9) return M

2.6 Compact Coverage
The biggest driver of computational cost for population

based evolutionary algorithms is the large number of fitness

evaluations required to find a solution [42]. Whereas a con-
structive heuristic such as the additional greedy algorithm
forms only a single solution, an evolutionary algorithm, with
population size of p, running for l generations is guaranteed
to perform lp fitness evaluations. Moreover, when applied to
the optimisation of a regression test suite with n test cases
covering m statements, a single fitness evaluation has the
complexity of O(nm): the fitness function iterates over n
coverage traces of length m, either aggregating them for se-
lected test cases (for test suite minimisation) or tracing the
achieved coverage (for test case prioritisation). As a result,
evolutionary algorithms applied to regression test suite op-
timisation includes a fixed computational cost of O(lmnp).

The paper proposes a novel algorithm called coverage com-
paction to reduce this cost. Given a test suite, n is fixed; l
and p may have to be tuned to achieve desirable outcome.
However, the length of traces, m, can be compacted without
losing information. The compaction is based on the observa-
tion that coverage data from structured programs often show
highly repetitive patterns, because some statements are ex-
ecuted only by the same subset of test cases, regardless of
their location.

2.6.1 Coverage Compaction Algorithm

Algorithm 1 presents the compaction algorithm. It takes
an n by m binary matrix that represents the coverage of n
test cases over m statements, and outputs a compact version
of the same matrix. Intuitively, each column in the compact
matrix corresponds to a set of statements that are covered
by the same subset of test cases. For example, consider the
example in Figure 1. If three statements are covered by all
test cases in the test suite, the compacted coverage matrix
will contain a single column of all threes, instead of three
columns of all ones.

1 1 1 1 0 1 1 0
1 0 0 1 0 0 1 0
1 0 1 1 0 1 1 0

 →

3 1 2 0
3 0 0 0
3 0 2 0

Figure 1: Example of Coverage Compaction

The coverage achieved by any subset of rows (i.e. test
cases) can be calculated from the compact matrix. Let us
assume that the coverage of the subset of the second and
the third test case in Figure 1 needs to be calculated. With
a binary coverage matrix, the aggregation of rows is per-
formed by bitwise OR; with the compact matrix, the aggre-
gation is performed by addition of column values, but only
when the corresponding column in the accumulated coverage
row is still 0. For example, Aggregating the compact trace
(3, 0, 0, 0) and (3, 0, 2, 0) therefore results in (3, 0, 2, 0), not
(6, 0, 2, 0). The sum of all numbers in the aggregated cover-
age vector, 5, is the number of statements covered by these
two rows. The statement coverage can be calculated using
the number of statements, which is 8: 5

8
· 100 = 62.5%. No-

tice that the column with only zero values does not contain
any useful coverage information and can be discarded.

2.6.2 Calculating Objectives with Compact Cover-
age

Since compact coverage is lossless, the objective functions
can be computed directly from it (and will be considerably
faster). Let us consider APSCc for an example. Let the orig-
inal coverage trace be a n by m matrix, containing coverage
traces of n test cases for m statements. Let the compacted
matrix have m′ columns (m ≤ m after compaction). The

237

compact version, CAPSCc, would then be defined as follows:

CAPSCc(π) =

∑m′

i=1 ci ·
(

∑n

j=TS′
i

tj −
1
2
tTS′

i

)

∑n

j=1 tj ·m

where TS′

j(1 ≤ j ≤ n) is the index of the first test case that
covers the ith column of the compacted coverage matrix,
and ci(1 ≤ i ≤ m′) is the non-zero entry in ith column.
Essentially, whenever the next test case covers a column in
the compact coverage matrix, in fact ci statements are being
covered in the original program.

3. EMPIRICAL STUDY

3.1 Research Questions
This empirical study compares the performance of the

two multi objective evolutionary algorithms (NSGA-II and
TAEA), three instantiations of the single objective cost-
cognisant additional greedy algorithm, and two hybrid MOEAs
with seeding. The first research question, RQ1, concerns
the quality of optimisation.

• RQ1. Optimisation Quality: Which prioritisation
algorithm produces the best solutions in terms of op-
timisation quality? What are the differences?

RQ1 is answered by calculating and comparing three widely
used quality indicators for multi objective optimisation for
the result from each algorithm. These three quality indica-
tors asses the quality of the Pareto front produced by each
algorithm, but they do not help the software engineer to de-
termine which is better at finding faults earlier. Therefore,
the second research question RQ2 is formulated as follows:

• RQ2. Testing Effectiveness: Which prioritisation
algorithm produces the best solutions in terms of pri-
oritisation cost effectiveness? Which algorithm achieves
the earliest fault detection?

RQ2 is answered by calculating and comparing the stan-
dard cost effectiveness measure for test case prioritisation,
the APFDc metric. The final research question, RQ3, con-
cerns the efficiency of algorithms studied. MOEAs used in
this paper are population based algorithms, usually demand-
ing longer execution time due to the large number of fit-
ness evaluation (i.e. calculations of AP*Cc values). RQ3
compares the execution time of 2 MOEAs and 3 additional
greedy algorithms, with and without coverage compaction.

• RQ3. Effort requirement/Efficiency: How much
effort is required to produce high quality test case pri-
oritisations? How much difference does the coverage
compaction make?

RQ3 is answered by comparing the average system-clock
execution time from repeated runs of 2 MOEAs and 3 ad-
ditional greedy algorithms, both with and without coverage
compaction.

4. EXPERIMENTAL SETUP

4.1 Subjects
The studied prioritisation techniques are evaluated us-

ing six C/C++ open source programs as subjects. Five sub-
ject programs are Unix utilities taken from the widely-used
Software-artifact Infrastructure Repository (SIR) [3,10]: flex,
grep, gzip, make, and sed. The sixth subject program
is mysql, one of the most popular open source relational
database management systems [28].

Table 1: Size of versions of subject programs in Lines
of Code

Object V1 V2 V3 V4 V5 V6 V7

flex 9,484 10,217 10,243 11,401 10,332 N/A N/A
grep 9,400 9,977 10,066 10,107 10,102 N/A N/A
gzip 4,528 5,055 5,066 5,185 5,689 N/A N/A
make 14,357 28,988 30,316 35,564 N/A N/A N/A
sed 5,488 9,799 7,082 7,085 13,374 13,393 14,437

V0 V1 V2

mysql 1,282,282 1,283,361 1,283,504

Table 1 presents the size of the subject programs in Lines
of Code (LOC), measured with the cloc [1]. All subjects
have multiple consecutive versions available. The versions
of the Unix tools are provided by the SIR. The three ver-
sions of mysql are obtained from the 5.5.X source tree: V0

corresponds to 5.5.15, V1 and V2 to 5.5.16 and 5.5.17 respec-
tively.

In total, 29 versions of six subject programs have been
used to create the data required to evaluate the proposed
methodologies in 22 different test case prioritisation instances.
The number of instances is 22 (not 29) because the data from
the previous version is required for prioritisation (i.e. pri-
oritising V1s is not possible). In addition, v0 of mysql was
used as the baseline to collect the regression faults in v1.

Table 2: Test suite size and the average number of
faults per version

Subject: flex grep gzip make sed mysql

#Test Cases 567 809 214 1,043 360 2,005
#Faults 16.6 11.4 11.8 8.75 4.57 20

Table 2 reports the size of the test suites and the aver-
age number of faults per version. Subject programs from
SIR provide test suites described in Test suite Specifica-
tion Language (TSL). SIR also provides versions of programs
with seeded faults, descriptions of which are avaialble from
SIR [3,10].

The source code of mysql comes with a testing framework
that provides a set of test cases and the infrastructure re-
quired for their execution. Test suites for V0 is used as the
regression test suite for all subsequent versions [4]. In total,
20 real faults were manually collected from the online bug-
tracking system used by mysql community [2]. The faults
used in this paper are those with “closed” status and fix
patches. These faults were then seeded back to the source
code of the corresponding version by inverting and applying
the fix patch.

4.2 MOEA Configuration
NSGA-II and TAEA share the same configuration to facil-

itate a fair comparison. The population size is 250. The cho-
sen genetic operators are ones that are widely used for per-
mutation type representation: Partially Matched Crossover
(PMX) and swap mutation, as well as binary tournament
selection [16, 17]. The crossover rate is set to 0.9, and the
mutation rate is set to 1

n
where n is the number of test cases.

The termination criterion for both algorithms is based on
the maximum available budget of fitness evaluations, which
is fixed to 25, 000 for SIR subjects and 50, 000 for mysql. Fi-
nally, the archive size in TAEA is set to twice the size of the
population. To cater for the stochastic nature of algorithms,
MOEAs and hybrids are executed 30 times.

238

4.3 Measurements & Environment
Statement coverage data is obtained using the GNU gcov

profiling tool. The ∆-coverage is generated by combining
the statement coverage information with the results of Unix
diff tool applied to two consecutive versions. The execu-
tion cost of each test case is measured using the valgrind

profiling tool, as discussed in Section 2.4.
For SIR objects, the execution time of the additional greedy

algorithm as well as the MOEAs was measured on a machine
equipped with AMD Opteron CPU and 16 GB of RAM, run-
ning CentOS Linux 6.4. For mysql, the same system could
not execute neither greedy algorithms nor MOEAs due to
insufficient memory; consequently, the execution time of all
algorithms was measured on a cluster node equipped with
Intel Xeon X7500 CPU and 1024 GB of RAM, running Cen-
tOS Linux 6.5. Execution time was measured using system
clock.

4.4 MOEA Quality Indicators
The main goal of a MOEA is to find the true Pareto front

of the given multi objective optimisation problem. How-
ever, it is usually infeasible to obtain the true Pareto front.
The output of MOEAs are usually approximations of the
true Pareto front. There are two ways to evaluate such ap-
proximations. First, the approximation should be as close
as possible to the true Pareto front (convergence). Second,
the acquired solutions should be as diverse as possible (di-
versity). The proximity to the true Pareto front ensures
high quality of the found solutions, whereas the diversity
indicates the search space has been explored as thoroughly
as possible to present the decision maker with a variety of
solutions.

However, the convergence to the true Pareto front cannot
be measured, simply because the true front is not known.
In practice, reference Pareto front is used as a surrogate.
A reference Pareto front consists of the best non-dominated
solutions found by all evaluated algorithms (in the case of
this paper, all 7 algorithms). Formally, the reference Pareto
front, Pref , can be defined as follows:

Definition 4. Reference Pareto Front: Let us assume
that there exist N different Pareto fronts, Pi(i = 1, 2, . . . , N),
and the union of all Pi, PU. The reference Pareto front,
Pref , is defined as: Pref ⊂ PU : (∀p ∈ Pref)(∄q ∈ PU)(q ≻ p),
where ≻ is the Pareto dominance relation.

To answer RQ1, three widely studied MOEA quality in-
dicators have been used: EPSILON, Inverted Generational
Distance (IGD), and Hyper Volume (HV). EPSILON and
IGD are distance based indicators that measure convergence,
while HV measures diversity of a solution set. Given a
Pareto front A and a reference Pareto front:

• EPSILON measures the shortest distance that is re-
quired to transform every solution in A so that it dom-
inates the reference Pareto front [23].

• IGD is the average distance from solutions in the ref-
erence Pareto front to the closest solution in A [36].

• HV is the volume of objective space dominated by
solutions in A [45].

With EPSILON and IGD, the lower the indicator value
is, the closer A is to the reference Pareto front, which adds
confidence to its convergence to the true front. With HV, the
higher the indicator value is, the more diverse the solutions
in A is (as they collectively dominate larger volume).

4.5 Statistical Tests
Non-parametric Wilcoxon-signed rank tests [5, 18] have

been used to assess the statistical significance of differences
observed in the quality indicators (the Shapiro-Wilk nor-
mality test [33] does not report evidence of normality in
the samples). The null hypothesis is that the median dif-
ference between two sets of quality indicator values is zero;
the alternative hypothesis is that the algorithms produce
different median quality indicator values. The significance
level is 0.05. In addition, the standard Bonferroni adjust-
ment [5] have been applied to address the problem of the
higher probability of Type I errors in multiple comparisons:
the adjusted p-value, pBonf , are reported in Section 5. This
is conservative, but safe, because it avoids Type I errors.

Furthermore, a non-parametric effect size measure, called
Vargha and Delaney’s Â12 statistic [35], was used to assess
the magnitude of any observed improvements. Intuitively,
given a quality indicator measure I and two algorithms A1

and A2 for comparison, the Â12 measures the probability
that I(A1) yields a higher value than I(A2). For example,

Â12 = 0.8 suggests that algorithm A1 will outperform A2

in 80% of the runs. If two algorithms are equivalent, then
Â12 = 0.5. According to Vargha and Delaney [35], differ-
ences between populations can be characterised as small,
medium and large when Â12 is over 0.56, 0.64, and 0.71,
respectively.

5. RESULTS & DISCUSSION

5.1 Optimisation Quality
Let us first consider the optimisation quality of the stud-

ied algorithms. Table 3 presents the complete descriptive
statistics on the quantitative optimisation quality from the
NSGA-II (denoted ‘N’), the TAEA (‘T’), the cost-cognisant
additional greedy algorithms based on: statement coverage
(‘C’), ∆-coverage (‘D’), and fault history coverage (‘F’), and
the two hybrid algorithms with seeded solutions from the
greedy approaches, NSGA-II (’NS’) and TAEA (’TS’). Each
column in Table 3 shows the quality indicators (EPSILON,
IGD, and HV) obtained by applying all the studied algo-
rithms on 22 versions of the subjects. The best perform-
ing cases are highlighted with boldface (Note that lower
values indicate better performance for EPSILON and the
IGD, while the opposite holds for the HV). Overall, seeded
MOEAs tend to outperform others.

The first three major columns of Table 4 present a sum-
mary of the statistical significance of the differences in each
quality indicator, observed between each pair of algorithms
(α = 0.05). Due to limited space full information of the
statistical analysis (p-values, effect sizes) are provided as
supplementary material in1. For each comparison of algo-
rithm pair (A, B), columns p-value and pBonf contain the
number of subject versions for which the performance of A
is significantly superior to (‘+’), equal to (‘=’), or inferior

to (‘–’) that of B. In addition, column Â12 contains median

(m), mean (µ), and standard deviation (σ) of the Â12 effect
size metric: large effect sizes are highlighted with boldface
and medium effect sizes with underlined fonts. Boxplots of
the effect size for each quality indicator are illustrated in
Figure 2(a), 2(b), and 2(c).

The results answer RQ1 in favour of MOEAs. MOEAs
and their hybrid variants outperformed all variations of the

1 http://www.epitropakis.co.uk/issta2015/

239

http://www.epitropakis.co.uk/issta2015/

Table 3: Descriptive statistics of EPSILON, HV and IGD indicators. For each subject version, the mean
(µ) and standard deviation (σ) of the indicators are presented for the NSGA-II (N), the TAEA (T), the
additional greedy algorithms based on, statement coverage (C), ∆-coverage (D), and fault history coverage
(F), and the two hybrid MOEAs based on NSGA-II (NS) and TAEA (TS).

EPSILON HV IGD EPSILON HV IGD EPSILON HV IGD EPSILON HV IGD

Alg. µ σ µ σ µ σ Alg. µ σ µ σ µ σ Alg. µ σ µ σ µ σ Alg. µ σ µ σ µ σ

f
l
e
x

v
2

N 0.006 0.001 0.670 0.053 0.009 0.001

g
r
e
p

v
3

N 0.004 0.001 0.607 0.045 0.009 0.001

g
z
i
p

v
5

N 0.000 0.000 0.962 0.023 0.002 0.001

s
e
d

v
3

N 0.003 0.001 0.690 0.038 0.006 0.001
NS 0.006 0.001 0.688 0.042 0.008 0.001 NS 0.004 0.001 0.614 0.050 0.009 0.001 NS 0.000 0.000 0.956 0.031 0.002 0.001 NS 0.003 0.001 0.676 0.046 0.006 0.001
T 0.004 0.002 0.765 0.049 0.007 0.001 T 0.003 0.001 0.736 0.052 0.007 0.001 T 0.000 0.000 0.949 0.048 0.003 0.001 T 0.002 0.001 0.759 0.042 0.006 0.001
TS 0.004 0.003 0.787 0.089 0.007 0.002 TS 0.003 0.001 0.750 0.069 0.007 0.001 TS 0.000 0.000 0.917 0.066 0.003 0.001 TS 0.003 0.001 0.736 0.047 0.006 0.001
C 0.130 0.000 0.000 0.000 0.589 0.000 C 0.067 0.000 0.000 0.000 0.174 0.000 C 0.009 0.000 0.382 0.000 0.010 0.000 C 0.211 0.000 0.000 0.000 0.395 0.000
D 0.131 0.000 0.000 0.000 0.633 0.000 D 0.069 0.000 0.000 0.000 0.179 0.000 D 0.019 0.000 0.000 0.000 0.021 0.000 D 0.210 0.000 0.000 0.000 0.396 0.000
F 0.128 0.000 0.000 0.000 0.498 0.000 F 0.038 0.000 0.000 0.000 0.102 0.000 F 0.044 0.000 0.000 0.000 0.048 0.000 F 0.139 0.000 0.000 0.000 0.322 0.000

f
l
e
x

v
3

N 0.003 0.001 0.560 0.059 0.022 0.003
g
r
e
p

v
4

N 0.004 0.001 0.777 0.035 0.004 0.001

m
a
k
e

v
2

N 0.003 0.001 0.140 0.120 0.024 0.005

s
e
d

v
4

N 0.001 0.000 0.294 0.137 0.024 0.007
NS 0.003 0.001 0.618 0.073 0.019 0.004 NS 0.004 0.000 0.779 0.021 0.004 0.000 NS 0.002 0.000 0.251 0.198 0.019 0.007 NS 0.001 0.000 0.378 0.132 0.020 0.006
T 0.001 0.001 0.658 0.091 0.018 0.005 T 0.002 0.000 0.852 0.032 0.003 0.000 T 0.003 0.001 0.227 0.224 0.021 0.009 T 0.001 0.001 0.459 0.267 0.022 0.020
TS 0.001 0.001 0.668 0.083 0.018 0.004 TS 0.002 0.001 0.854 0.048 0.003 0.000 TS 0.002 0.001 0.371 0.272 0.016 0.008 TS 0.001 0.001 0.449 0.280 0.021 0.019
C 0.026 0.000 0.000 0.000 1.581 0.000 C 0.091 0.000 0.000 0.000 0.131 0.000 C 0.103 0.000 0.000 0.000 1.883 0.000 C 0.110 0.000 0.000 0.000 1.044 0.000
D 0.030 0.000 0.000 0.000 1.311 0.000 D 0.098 0.000 0.000 0.000 0.115 0.000 D 0.103 0.000 0.000 0.000 1.883 0.000 D 0.123 0.000 0.000 0.000 1.475 0.000
F 0.029 0.000 0.000 0.000 1.755 0.000 F 0.039 0.000 0.000 0.000 0.092 0.000 F 0.116 0.000 0.000 0.000 2.116 0.000 F 0.052 0.000 0.000 0.000 0.845 0.000

f
l
e
x

v
4

N 0.003 0.001 0.161 0.128 0.022 0.009

g
r
e
p

v
5

N 0.003 0.001 0.000 0.000 0.128 0.029

m
a
k
e

v
3

N 0.002 0.001 0.637 0.076 0.021 0.004

s
e
d

v
5

N 0.011 0.004 0.771 0.041 0.005 0.001
NS 0.003 0.001 0.269 0.147 0.016 0.005 NS 0.002 0.001 0.024 0.114 0.059 0.022 NS 0.002 0.001 0.765 0.070 0.014 0.003 NS 0.010 0.004 0.778 0.036 0.005 0.001
T 0.003 0.003 0.182 0.235 0.037 0.035 T 0.003 0.001 0.021 0.055 0.101 0.057 T 0.002 0.001 0.675 0.204 0.022 0.011 T 0.011 0.004 0.811 0.042 0.005 0.001
TS 0.004 0.004 0.179 0.231 0.053 0.074 TS 0.002 0.002 0.040 0.097 0.088 0.084 TS 0.001 0.001 0.874 0.067 0.012 0.004 TS 0.009 0.005 0.831 0.052 0.005 0.001
C 0.026 0.000 0.000 0.000 1.286 0.000 C 0.022 0.000 0.000 0.000 1.995 0.000 C 0.037 0.000 0.000 0.000 0.185 0.000 C 0.173 0.000 0.000 0.000 0.192 0.000
D 0.032 0.000 0.000 0.000 1.294 0.000 D 0.025 0.000 0.000 0.000 2.417 0.000 D 0.037 0.000 0.000 0.000 0.200 0.000 D 0.173 0.000 0.000 0.000 0.187 0.000
F 0.031 0.000 0.000 0.000 1.368 0.000 F 0.024 0.000 0.000 0.000 0.986 0.000 F 0.067 0.000 0.000 0.000 0.489 0.000 F 0.172 0.000 0.000 0.000 0.154 0.000

f
l
e
x

v
5

N 0.002 0.001 0.040 0.088 0.101 0.031

g
z
i
p

v
2

N 0.000 0.000 0.936 0.011 0.002 0.003

m
a
k
e

v
4

N 0.000 0.000 0.025 0.060 0.113 0.086

s
e
d

v
6

N 0.002 0.000 0.569 0.083 0.019 0.004
NS 0.001 0.001 0.227 0.205 0.063 0.023 NS 0.000 0.000 0.942 0.009 0.001 0.000 NS 0.000 0.000 0.080 0.155 0.098 0.068 NS 0.002 0.000 0.634 0.073 0.016 0.004
T 0.004 0.002 0.012 0.061 0.199 0.113 T 0.000 0.000 0.924 0.031 0.003 0.004 T 0.002 0.001 0.000 0.000 1.814 0.955 T 0.001 0.000 0.772 0.080 0.012 0.006
TS 0.004 0.002 0.047 0.151 0.181 0.086 TS 0.000 0.000 0.944 0.009 0.001 0.000 TS 0.000 0.000 0.014 0.037 0.168 0.078 TS 0.001 0.000 0.803 0.078 0.012 0.005
C 0.026 0.000 0.000 0.000 2.827 0.000 C 0.013 0.000 0.009 0.000 0.024 0.000 C 0.551 0.000 0.000 0.000 6.873 0.000 C 0.029 0.000 0.000 0.000 0.384 0.000
D 0.029 0.000 0.000 0.000 1.698 0.000 D 0.013 0.000 0.000 0.000 0.024 0.000 D 0.551 0.000 0.000 0.000 6.873 0.000 D 0.034 0.000 0.000 0.000 0.455 0.000
F 0.033 0.000 0.000 0.000 1.860 0.000 F 0.013 0.000 0.000 0.000 0.020 0.000 F 0.016 0.000 0.000 0.000 15.297 0.000 F 0.027 0.000 0.000 0.000 0.359 0.000

g
r
e
p

v
2

N 0.004 0.001 0.623 0.064 0.008 0.001

g
z
i
p

v
3

N 0.000 0.000 0.160 0.148 0.018 0.005

s
e
d

v
2

N 0.002 0.000 0.613 0.064 0.021 0.005

s
e
d

v
7

N 0.002 0.000 0.843 0.022 0.003 0.001
NS 0.004 0.001 0.637 0.057 0.008 0.001 NS 0.000 0.000 0.631 0.103 0.005 0.002 NS 0.002 0.000 0.633 0.059 0.019 0.004 NS 0.002 0.000 0.848 0.027 0.003 0.001
T 0.003 0.001 0.755 0.120 0.007 0.002 T 0.000 0.000 0.582 0.163 0.007 0.004 T 0.002 0.001 0.734 0.062 0.013 0.005 T 0.002 0.000 0.866 0.027 0.003 0.001
TS 0.003 0.001 0.759 0.098 0.007 0.002 TS 0.000 0.000 0.744 0.090 0.003 0.001 TS 0.002 0.001 0.737 0.103 0.014 0.007 TS 0.002 0.000 0.881 0.025 0.003 0.001
C 0.111 0.000 0.000 0.000 0.094 0.000 C 0.125 0.000 0.000 0.000 0.088 0.000 C 0.034 0.000 0.000 0.000 0.403 0.000 C 0.068 0.000 0.000 0.000 0.077 0.000
D 0.113 0.000 0.000 0.000 0.096 0.000 D 0.126 0.000 0.000 0.000 0.074 0.000 D 0.035 0.000 0.000 0.000 0.210 0.000 D 0.070 0.000 0.000 0.000 0.067 0.000
F 0.086 0.000 0.000 0.000 0.100 0.000 F 0.116 0.000 0.000 0.000 0.165 0.000 F 0.041 0.000 0.000 0.000 0.337 0.000 F 0.049 0.000 0.000 0.000 0.079 0.000

g
z
i
p

v
4 N 0.000 0.000 0.115 0.139 0.031 0.008

g
z
i
p

v
4 C 0.038 0.000 0.000 0.000 0.143 0.000

m
y
s
q
l
v
2 N 0.008 0.003 0.804 0.047 0.010 0.004

m
y
s
q
l
v
2 C 0.240 0.000 0.000 0.000 0.125 0.000

NS 0.000 0.000 0.425 0.090 0.015 0.003 D 0.053 0.000 0.000 0.000 0.143 0.000 NS 0.002 0.000 0.895 0.031 0.003 0.001 D 0.195 0.000 0.000 0.000 0.121 0.000
T 0.000 0.000 0.372 0.206 0.019 0.017 F 0.129 0.000 0.000 0.000 0.177 0.000 T 0.008 0.004 0.807 0.154 0.010 0.006 F 0.017 0.000 0.000 0.000 0.055 0.000
TS 0.000 0.000 0.525 0.119 0.011 0.004 TS 0.001 0.001 0.866 0.170 0.004 0.005

Table 4: A summary of the statistical significance of differences between each pair of algorithms. Column
p-value (Wilcoxon test) and pBonf (the Bonferroni adjustment) contain the number of cases where algorithm

A is significantly superior (+), equal (=), or inferior (–) to algorithm B. Column Â12 contains the median

(m), mean (µ) and standart deviation (σ) of the Â12 effect size metric. MOEAs consistently outperform the
additional greedy algorithms in EPSILON, HV, and IGD, while matching or outperforming the APFDc of
the additional greedy algorithms for the majority of the cases.

EPSILON HV IGD APFDc

p-value pBonf Â12 p-value pBonf Â12 p-value pBonf Â12 p-value pBonf Â12

A vs B +/=/– +/=/– m µ σ +/=/– +/=/– m µ σ +/=/– +/=/– m µ σ +/=/– +/=/– m µ σ

D vs C 4/1/17 4/1/17 0.000 0.205 0.398 0/20/2 0/20/2 0.500 0.455 0.147 11/0/11 11/0/11 0.500 0.500 0.512 15/2/5 15/3/4 1.000 0.747 0.404
F vs C 12/0/10 12/0/10 1.000 0.545 0.510 0/20/2 0/20/2 0.500 0.455 0.147 12/0/10 12/0/10 1.000 0.545 0.510 13/1/8 13/1/8 1.000 0.616 0.486
F vs D 15/0/7 15/0/7 1.000 0.682 0.477 0/22/0 0/22/0 0.500 0.500 0.000 10/0/12 10/0/12 0.000 0.455 0.510 8/1/13 8/1/13 0.000 0.389 0.486

N vs C 22/0/0 22/0/0 1.000 1.000 0.000 19/3/0 19/3/0 1.000 0.933 0.144 22/0/0 22/0/0 1.000 1.000 0.000 13/1/8 13/1/8 0.917 0.625 0.453
N vs D 22/0/0 22/0/0 1.000 1.000 0.000 19/3/0 19/3/0 1.000 0.933 0.144 22/0/0 22/0/0 1.000 1.000 0.000 10/2/10 10/2/10 0.558 0.518 0.460
N vs F 22/0/0 22/0/0 1.000 0.998 0.007 19/3/0 19/3/0 1.000 0.933 0.144 22/0/0 22/0/0 1.000 1.000 0.000 13/0/9 12/2/8 0.917 0.586 0.454

NS vs C 22/0/0 22/0/0 1.000 1.000 0.000 20/2/0 20/2/0 1.000 0.962 0.109 22/0/0 22/0/0 1.000 1.000 0.000 13/1/8 12/2/8 0.900 0.621 0.453
NS vs D 22/0/0 22/0/0 1.000 1.000 0.000 20/2/0 20/2/0 1.000 0.962 0.109 22/0/0 22/0/0 1.000 1.000 0.000 10/2/10 10/2/10 0.667 0.526 0.466
NS vs F 22/0/0 22/0/0 1.000 1.000 0.000 20/2/0 20/2/0 1.000 0.962 0.109 22/0/0 22/0/0 1.000 1.000 0.000 11/2/9 11/3/8 0.783 0.574 0.453
NS vs N 11/11/0 10/12/0 0.639 0.711 0.198 10/12/0 7/15/0 0.634 0.674 0.160 12/10/0 8/14/0 0.672 0.710 0.171 2/18/2 0/21/1 0.525 0.513 0.128

T vs C 22/0/0 22/0/0 1.000 1.000 0.000 19/3/0 19/3/0 1.000 0.921 0.164 22/0/0 22/0/0 1.000 1.000 0.000 14/2/6 12/4/6 0.933 0.671 0.409
T vs D 22/0/0 22/0/0 1.000 1.000 0.000 19/3/0 19/3/0 1.000 0.921 0.164 22/0/0 22/0/0 1.000 1.000 0.000 12/1/9 10/3/9 0.683 0.540 0.454
T vs F 22/0/0 22/0/0 1.000 0.998 0.007 19/3/0 19/3/0 1.000 0.921 0.164 22/0/0 22/0/0 1.000 1.000 0.000 12/3/7 11/5/6 0.883 0.626 0.422
T vs N 13/7/2 12/8/2 0.766 0.716 0.257 13/8/1 11/11/0 0.752 0.710 0.211 11/8/3 7/13/2 0.678 0.633 0.255 13/8/1 6/16/0 0.667 0.648 0.172
T vs NS 9/6/7 7/10/5 0.579 0.539 0.318 9/10/3 8/11/3 0.541 0.585 0.268 6/8/8 5/10/7 0.471 0.470 0.290 9/12/1 7/15/0 0.664 0.634 0.189

TS vs C 22/0/0 22/0/0 1.000 1.000 0.000 19/3/0 19/3/0 1.000 0.930 0.147 22/0/0 22/0/0 1.000 1.000 0.000 13/1/8 12/3/7 0.917 0.655 0.404
TS vs D 22/0/0 22/0/0 1.000 1.000 0.000 19/3/0 19/3/0 1.000 0.930 0.147 22/0/0 22/0/0 1.000 1.000 0.000 11/1/10 11/1/10 0.635 0.547 0.441
TS vs F 22/0/0 22/0/0 1.000 1.000 0.000 19/3/0 19/3/0 1.000 0.930 0.147 22/0/0 22/0/0 1.000 1.000 0.000 11/5/6 10/6/6 0.758 0.625 0.417
TS vs N 15/6/1 13/8/1 0.867 0.789 0.226 17/4/1 15/7/0 0.835 0.777 0.203 14/6/2 14/7/1 0.768 0.713 0.229 11/9/2 7/14/1 0.661 0.637 0.207
TS vs NS 12/7/3 10/11/1 0.703 0.686 0.229 13/7/2 12/9/1 0.786 0.690 0.224 10/8/4 7/12/3 0.631 0.593 0.229 10/10/2 5/17/0 0.659 0.636 0.169
TS vs T 6/16/0 5/17/0 0.618 0.647 0.159 7/15/0 4/18/0 0.574 0.602 0.133 7/15/0 5/17/0 0.549 0.611 0.164 1/19/2 0/20/2 0.504 0.488 0.150

additional greedy algorithms, for all subject versions, in
terms of the quality indicator metrics. The additional greedy
algorithms fail to produce as many solutions on or close to
the reference Pareto front, evidenced by the high EPSILON

and IGD values. HV values of the additional greedy algo-
rithms are mostly nearly zero. This is as expected because,
being single objective algorithms, they do not optimise for
all three objectives.

240

0.00

0.25

0.50

0.75

1.00

D
-C

F
-C

F
-D

N
-C

N
-D

N
-F

N
S
-C

N
S
-D

N
S
-F

N
S
-N

T
-C

T
-D T
-F

T
-N

T
-N
S

T
S
-C

T
S
-D

T
S
-F

T
S
-N

T
S
-N
S

T
S
-T

A
1
2

(a) Epsilon

0.00

0.25

0.50

0.75

1.00

D
-C

F
-C

F
-D

N
-C

N
-D

N
-F

N
S
-C

N
S
-D

N
S
-F

N
S
-N

T
-C

T
-D T
-F

T
-N

T
-N
S

T
S
-C

T
S
-D

T
S
-F

T
S
-N

T
S
-N
S

T
S
-T

A
1
2

(b) Hypervolume

0.00

0.25

0.50

0.75

1.00

D
-C

F
-C

F
-D

N
-C

N
-D

N
-F

N
S
-C

N
S
-D

N
S
-F

N
S
-N

T
-C

T
-D T
-F

T
-N

T
-N
S

T
S
-C

T
S
-D

T
S
-F

T
S
-N

T
S
-N
S

T
S
-T

A
1
2

(c) IGD

0.00

0.25

0.50

0.75

1.00

D
-C

F
-C

F
-D

N
-C

N
-D

N
-F

N
S
-C

N
S
-D

N
S
-F

N
S
-N

T
-C

T
-D T
-F

T
-N

T
-N
S

T
S
-C

T
S
-D

T
S
-F

T
S
-N

T
S
-N
S

T
S
-T

A
1
2

(d) APFDc

Figure 2: Boxplots of Â12 for the Optimization Quality Indicators and the APFDc metric

Table 5: The mean (µ), standard deviation (σ), and the maximum value (max) of the APFDc measure for 22
subjects.

Alg. µ σ max Alg. µ σ max Alg. µ σ max Alg. µ σ max Alg. µ σ max Alg. µ σ max

f
l
e
x

v
2

N 0.999 0.000 0.999

g
r
e
p

v
2

N 0.980 0.004 0.986

g
z
i
p

v
2

N 1.000 0.001 1.000

m
a
k
e

v
2

N 0.993 0.002 0.998

s
e
d

v
3

N 0.975 0.004 0.982

s
e
d

v
7

N 0.859 0.018 0.895
NS 0.999 0.000 0.999 NS 0.981 0.004 0.993 NS 1.000 0.000 1.000 NS 0.994 0.003 0.998 NS 0.974 0.004 0.981 NS 0.856 0.023 0.935
T 0.999 0.000 0.999 T 0.986 0.005 0.995 T 1.000 0.000 1.000 T 0.994 0.003 1.000 T 0.980 0.004 0.988 T 0.855 0.019 0.896
TS 0.999 0.000 0.999 TS 0.985 0.007 0.995 TS 1.000 0.000 1.000 TS 0.996 0.002 1.000 TS 0.978 0.005 0.986 TS 0.859 0.023 0.897
C 0.974 0.000 0.974 C 0.930 0.000 0.930 C 1.000 0.000 1.000 C 0.989 0.000 0.989 C 0.863 0.000 0.863 C 0.957 0.000 0.957

D 0.973 0.000 0.973 D 0.931 0.000 0.931 D 1.000 0.000 1.000 D 0.993 0.000 0.993 D 0.866 0.000 0.866 D 0.957 0.000 0.957

F 0.978 0.000 0.978 F 0.913 0.000 0.913 F 1.000 0.000 1.000 F 1.000 0.000 1.000 F 0.880 0.000 0.880 F 0.909 0.000 0.909

f
l
e
x

v
3

N 0.987 0.006 0.995

g
r
e
p

v
3

N 0.982 0.004 0.990

g
z
i
p

v
3

N 1.000 0.000 1.000

m
a
k
e

v
3

N 0.996 0.002 0.999

s
e
d

v
4

N 0.996 0.003 1.000

m
y
s
q
l
v
2

N 0.706 0.020 0.734
NS 0.989 0.006 0.995 NS 0.983 0.003 0.992 NS 1.000 0.000 1.000 NS 0.997 0.002 0.999 NS 0.997 0.002 1.000 NS 0.709 0.019 0.753
T 0.993 0.003 0.997 T 0.982 0.004 0.989 T 1.000 0.000 1.000 T 0.997 0.002 1.000 T 0.996 0.002 0.999 T 0.719 0.036 0.780
TS 0.994 0.003 0.997 TS 0.982 0.005 0.992 TS 1.000 0.000 1.000 TS 0.997 0.003 0.999 TS 0.996 0.002 0.999 TS 0.714 0.029 0.769
C 0.975 0.000 0.975 C 0.945 0.000 0.945 C 1.000 0.000 1.000 C 0.987 0.000 0.987 C 0.996 0.000 0.996 C 0.759 0.000 0.759
D 0.978 0.000 0.978 D 0.951 0.000 0.951 D 1.000 0.000 1.000 D 0.984 0.000 0.984 D 0.997 0.000 0.997 D 0.787 0.000 0.787

F 0.972 0.000 0.972 F 0.948 0.000 0.948 F 1.000 0.000 1.000 F 1.000 0.000 1.000 F 0.999 0.000 0.999 F 0.777 0.000 0.777

f
l
e
x

v
4

N 0.999 0.000 0.999

g
r
e
p

v
4

N 0.994 0.001 0.996

g
z
i
p

v
4

N 1.000 0.000 1.000

m
a
k
e

v
4

N 0.998 0.002 1.000

s
e
d

v
5

N 0.965 0.006 0.979
NS 0.999 0.000 0.999 NS 0.994 0.001 0.996 NS 1.000 0.000 1.000 NS 0.994 0.004 0.999 NS 0.963 0.005 0.973
T 0.999 0.000 1.000 T 0.995 0.002 0.998 T 1.000 0.000 1.000 T 0.999 0.002 1.000 T 0.974 0.006 0.986
TS 0.999 0.000 1.000 TS 0.996 0.002 0.998 TS 1.000 0.000 1.000 TS 0.995 0.006 1.000 TS 0.974 0.006 0.986
C 0.996 0.000 0.996 C 0.996 0.000 0.996 C 1.000 0.000 1.000 C 0.092 0.000 0.092 C 0.999 0.000 0.999

D 0.997 0.000 0.997 D 0.997 0.000 0.997 D 1.000 0.000 1.000 D 0.092 0.000 0.092 D 0.997 0.000 0.997
F 0.999 0.000 0.999 F 0.996 0.000 0.996 F 0.835 0.000 0.835 F 1.000 0.000 1.000 F 0.972 0.000 0.972

f
l
e
x

v
5

N 1.000 0.000 1.000

g
r
e
p

v
5

N 1.000 0.000 1.000

g
z
i
p

v
5

N 0.992 0.005 0.998

s
e
d

v
2

N 0.890 0.026 0.946

s
e
d

v
6

N 0.966 0.006 0.981
NS 1.000 0.000 1.000 NS 1.000 0.000 1.000 NS 0.994 0.005 1.000 NS 0.889 0.021 0.927 NS 0.970 0.006 0.983
T 1.000 0.000 1.000 T 1.000 0.000 1.000 T 0.992 0.008 1.000 T 0.886 0.045 0.974 T 0.976 0.006 0.986
TS 1.000 0.000 1.000 TS 1.000 0.000 1.000 TS 0.997 0.004 1.000 TS 0.883 0.044 0.958 TS 0.978 0.004 0.988

C 0.999 0.000 0.999 C 1.000 0.000 1.000 C 1.000 0.000 1.000 C 0.860 0.000 0.860 C 0.982 0.000 0.982
D 1.000 0.000 1.000 D 1.000 0.000 1.000 D 1.000 0.000 1.000 D 0.849 0.000 0.849 D 0.990 0.000 0.990
F 1.000 0.000 1.000 F 1.000 0.000 1.000 F 1.000 0.000 1.000 F 0.900 0.000 0.900 F 0.958 0.000 0.958

The performance difference between MOEAs and the ad-
ditional greedy algorithms is statistically significant with
large effect sizes in all cases: both the Wilcoxon-signed rank
test p-values and the adjusted pBonf) are significant at the
α = 0.05 significance level, confirming the alternative hy-
pothesis. Note that MOEAs and the hybrids significantly
outperform the additional greedy algorithms in all cases with
EPSILON and IGD, while they exhibit significant improve-
ments in only 19 (N, T, TS) or 20 (NS) out of 22 cases for
the HV.

Between two MOEAs, TAEA showed significant improve-
ments with large effect sizes over NSGA-II for 13 out of
22 subject versions in terms of EPSILON and HV. TAEA
also significantly outperformed NSGA-II for 11 out of 22
subject versions in terms of the IGD. The hybrid variants
tend to produce solutions that are either significantly better
than or statistically equal to their original versions. The hy-
brid NSGA-II outperformed its original in about 50% of the
cases with medium effect sizes, and showed equal quality in
other cases. Similarly, while the hybrid TAEA outperformed
its original in 7 subject versions, the effect sizes are mostly
small. Finally, between two hybrids, the hybrid TAEA out-
performed the hybrid NSGA-II in 12 and 13 out of 22 cases
with medium effect sizes in terms of EPSILON and HV re-
spectively, and in 10 out of 22 cases with small effect sizes
in terms of IGD. While the results suggest that TAEA and
its seeded hybrid can outperform other algorithms, further
empirical study will be required to draw a more conclusive
decision.

5.2 Effectiveness of Prioritisation
Table 5 reports the APFDc values achieved by all 7 algo-

rithms for the 22 subject versions. The results of statistical
hypothesis tests between all pairs of algorithms are summa-
rized in the fourth major column of Table 4. The spread of
the Â12 effect sizes is illustrated in Figure 2(d).

MOEAs and their variants still tend to outperform the
cost-cognisant additional greedy algorithms in general, but
not as dominantly as with quality indicators. Based on p-
value, NSGA-II and its hybrid significantly outperform the
statement coverage based prioritisation in 13 out of 22 cases,
with large effect sizes, whereas TAEA and its hybrid do so
in 14 and 13 cases respectively, with large effect sizes. While
these numbers become smaller against other single objective
prioritisations, the Â12 metric indicates mostly medium to
large effect sizes in favour of MOEAs and hybrids.

Table 4 also allows us to investigate how suitable each of
the individual single objectives are as a surrogate for fault
detection, by comparing the cost effectiveness of the single
objective additional greedy prioritisations. Both the ∆ and
fault coverage outperform the statement coverage, as can be
seen in the ‘D vs C’ and ‘F vs C’ comparisons. Also note
that ∆-coverage can outperform MOEAs and the hybrids up
to 10 out of 22 cases. This provides supporting evidence to
the conjecture about ∆-coverage as well as to the existing
work that uses fault coverage.

Finally, Figure 3 and Table 6 present the overall compari-
son between algorithms. The boxplot shows all APFDc val-
ues across all 22 cases, per algorithm. This provides a high

241

0.25

0.50

0.75

1.00

C D F N NS T TS

P
e
rf

o
rm

a
n
c
e
 i
n
 t

e
rm

s
 o

f
A

P
F
D

c

Figure 3: Boxplots of the APFDc metric across all
studied subjects. MOEAs and their variants show
higher median values and smaller variances.

Table 6: Wilcoxon rank sum test of the APFDc mea-
sures between all algorithms, across all studied sub-
jects. For the p and pBonf-values in row r and column
c, the alternative hypothesis is that the algorithm in
row r produces higher APFDc value than the algo-
rithm in column c.

C D F

p pbonf p pbonf p pbonf

D <0.001 <0.001
† – – – –

F 0.001 0.022
†

0.009 0.192† – –

N <0.001 <0.001
†

<0.001 0.002
†

0.003 0.061†

NS <0.001 <0.001
†

<0.001 <0.001
†

<0.001 0.012
†

T <0.001 <0.001
†

<0.001 <0.001
†

<0.001 <0.001
†

TS <0.001 <0.001
†

<0.001 <0.001
†

<0.001 <0.001
†

N NS T

p pbonf p pbonf p pbonf

NS 0.331 1.000 – – – –

T <0.001 <0.001
†

<0.001 <0.001
† – –

TS <0.001 <0.001
†

<0.001 <0.001
† 0.480 1.000

level comparison between algorithms. MOEAs and their
variants show higher median values and smaller variances,
suggesting that, for an arbitrary program and its test suite,
they are more likely to result in higher APFDc. Table 6
presents p and pBonf -values from Wilcoxon signed rank test
of APFDc values, aggregated across all 22 cases, between all
pairs of algorithms. It confirms the observation from Fig-
ure 3 that MOEAs and their variants can outperform the
single objective algorithms.

To answer RQ2, MOEAs are not as dominant in terms
of the testing cost effectiveness measured in APFDc as in
optimisation quality. However, MOEAs can still outperform
statement coverage based prioritisation in up to 14 out of 22
cases. The Â12 metric suggests that, if the decision maker
chooses a solution on the reference Pareto front produced
by an MOEA, there is a reasonable chance that the prioriti-
sation will produce a higher APFDc value than that of the
single objective prioritisation.

5.3 Efficiency
Let us now turn to RQ3. Table 7 shows the average sizes

of coverage trace data across all versions of studied sub-
ject programs, both before (SO) and after (SC) the applica-

Table 7: Coverage data sizes before (SO) and after
(SC) compaction

Coverage Trace Size

flex grep gzip make sed mysql

SO 3822.83 3338.00 1887.33 5901.60 3360.62 447316.67
SC 354.67 457.33 93.00 123.60 223.88 916.00

R% 90.72 86.30 95.07 97.91 93.34 99.80

SO/SC 10.78 7.30 20.29 47.75 15.01 488.34

tion of the coverage compaction algorithm. The reduction
percentage of the coverage trace size, R%, is calculated as
100 · (SO−SC)/SO. Also the ratio SO/SC shows how many
times smaller is the coverage trace size after compaction.
In all subject programs, the coverage compaction achieves
close to or over 90% of size reduction. In particular, mysql
experiences 99.9% size reduction.

The size reduction leads to reduction in execution time.
The execution time of two MOEAs and three additional
greedy algorithms have been measured for 30 times using
the wall clock2, using the same configuration described in
Section 4.2. Note that, essentially, the execution time of a
hybrid is roughly equal to the sum of its component, i.e.
that of the corresponding MOEA and the additional greedy
algorithm. Table 8 shows the mean (µ) and the standard
deviation (σ) of the average execution time that each algo-
rithm takes, with and without compact coverage, along with
the speed-up.

Being a constructive heuristic, it is expected that the ad-
ditional greedy algorithms will be faster than MOEAs on
average. Without coverage compaction, they take less than
60 seconds for all SIR subjects, and less than 2.3 hours for
mysql. The longer execution time of ∆-coverage based pri-
oritisations can be attributed to the additional invocation of
the diff tool to identify the modified coverage. On the other
hand, both NSGA-II and TAEA take from slightly over a
minute (gzip) to over 35 minutes (make) with SIR subjects.
The execution time of MOEAs for mysql becomes patholog-
ical without compaction, as they take almost 9 days.

The application of the coverage compaction algorithm in-
troduces a dramatic change to the performance of all algo-
rithms. For the SIR subjects, the MOEAs terminate within
40 seconds, achieving speed-ups ranging from one to two
orders of magnitude. However, the biggest speed-up is ob-
served in the largest subject, mysql: their execution times
are reduced from about 8.7 days to slightly over a minute,
achieving 4 orders of magnitude speed-up (about 10,000
times faster). The additional greedy algorithms can also
prioritise mysql test cases under 12 seconds after coverage
compaction (a speed-up of 2 orders of magnitude). It is
worth noting that the additional greedy algorithm based on
∆-coverage for the mysql case exhibits the highest speed-up
of this study, becoming about 16,000 times faster.

To answer RQ3, the execution time of all algorithms can
be short enough to be used in most regression testing con-
texts, especially with the coverage compaction algorithm,
which introduces speed-ups ranking from 1 to 4 orders of
magnitudes. This may prove to be a pivotal contribution
for future work. Without coverage compaction, a large real

2 Note that the execution time of MOEAs for mysql could
not be measured for 30 times, as each run took over a week.
It was repeated only twice.

242

Table 8: Average wall clock execution time in seconds without and with Compaction, along with Speed-up

No Compact. Compact. No Compact. Compact. No Compact. Compact.

Alg. µ σ µ σ Speed-up Alg. µ σ µ σ Speed-up Alg. µ σ µ σ Speed-up

flex

N 627.28 80.42 16.47 13.55 38.08
gzip

N 79.84 9.09 8.07 14.93 9.90
sed

N 280.28 132.08 8.59 2.59 32.64
T 628.52 81.66 19.38 19.22 32.44 T 81.24 10.01 6.14 17.59 13.23 T 279.58 125.27 8.79 4.15 31.82
C 7.21 0.39 0.56 0.10 12.96 C 0.88 2.17 0.02 0.04 39.10 C 3.87 1.78 0.13 0.05 29.27
D 9.72 1.06 0.07 0.08 135.76 D 0.88 1.26 0.01 0.04 61.15 D 4.79 2.15 0.07 0.05 71.46
F 0.08 0.03 0.08 0.13 0.90 F 0.02 0.03 0.02 0.04 0.84 F 0.04 0.03 0.03 0.03 1.71

grep

N 926.39 145.63 34.48 13.75 26.87
make

N 2117.28 222.36 18.50 21.62 114.46
mysql

N 758170.25 562.46 73.62 4.41 10297.90
T 905.82 157.09 38.90 35.80 23.28 T 2100.43 220.70 22.29 28.97 94.23 T 756153.49 982.51 72.25 5.53 10465.36
C 15.11 1.10 1.50 0.14 10.05 C 58.81 16.01 1.36 2.13 43.26 C 6974.31 573.29 11.85 0.55 588.60
D 20.36 5.01 0.35 0.21 59.06 D 59.60 16.31 0.59 0.51 101.93 D 8091.21 350.92 0.49 0.21 16442.09
F 0.21 0.10 0.13 0.09 1.68 F 0.33 0.08 0.49 1.72 0.67 F 15.01 1.21 0.59 0.25 25.40

world systems such as mysql will not be able to take advan-
tage of even the single objective prioritisation, under time-
limited testing scenarios such as smoke testing, let alone
more expensive MOEAs.

6. THREATS TO VALIDITY
The main threat to internal validity derives from potential

instrumentation inaccuracy. To alleviate this, widely used
and tested open source tools, such as gcov, diff, and val-

grind, have been adopted. To avoid any bias, the majority
of the subject programs were chosen from a well-managed
software repository [10], where not only the subject pro-
grams and their test suites, but also the fault seeding process
is documented. With mysql, a mature source code branch
(5.5.X) that is both well-documented and tested was chosen;
all artifacts and fault information used are available from the
mysql website and bug tracker system.

Another potential threat to internal validity lies on the se-
lection of the optimisation algorithms. Both MOEAs were
chosen because they have been successfully applied to soft-
ware engineering problems [15, 42]. However, only further
studies with different algorithms can eliminate this threat.

Threats to external validity are centred around the rep-
resentativeness of the studied subjects, and how it affects
the generalisation of the claims. The use of the standard
benchmark in the literature as well as a large and complex
real world system will help avoid over-fitting the results.
However, wider generalisation will require further empirical
studies with a disjoint set of subject programs.

7. RELATED WORK
Recent trends in the regression literature suggest that

test case prioritisation is receiving increasing attention [39]:
prioritisation does not exclude the execution of any test
case completely (it will eventually accomplish the“retest-all”
strategy), yet promises the maximum benefit when testing
may have to terminate prematurely. Structural coverage has
been widely used as the prioritisation criterion [11,13,21,44].
Coverage of differences between two versions of program has
been considered as an isolated single objective for prioriti-
sation [12], but this is the first paper to consider it as part
of a multi objective formulation and compare the results to
those from single objective formulations. Evolutionary al-
gorithms have been applied to test case prioritisation [25],
but only with single objective formation, apart from Li et
al. [24], which is concerned with parallelisation speed-ups
and not fault detection and optimization quality.

Other prioritisation criteria in the literature include time
of last test execution [22], coverage augmented by human
knowledge [40], and interaction coverage [7]. Any of these

objectives can be added to the multi objective test case pri-
oritisation, because the MOEAs studied in this paper are
agnostic to the objective functions. This paper chooses to
focus on the most widely studied fault detection surrogate,
structural coverage, and its variations in the regression test-
ing context, ∆- and past fault coverage.

The size of coverage data from large systems can sig-
nificantly increase the execution time of evolutionary algo-
rithms, limiting their scalability. Generic Purpose compu-
tation on Graphics Processing Units (GPGPU) has been
suggested to parallelise and, therefore, improve the scalabil-
ity [24, 42]. This paper proposes compact coverage, which
provides 2 to 4 orders of magnitude speed-up without any
parallelism. Unlike existing work [6], compact coverage is
deterministic and completely lossless. Moreover, it is com-
patible with the existing GPGPU parallelism, providing fur-
ther scalability.

8. CONCLUSIONS
This paper empirically evaluates seven different test case

prioritisation algorithms: three instantiations of the addi-
tional greedy algorithm with different fault detection surro-
gates, two multi objective formulations using MOEAs (NSGA-
II and TAEA), and two hybrid algorithms that augment the
MOEAs with the additional greedy seeding. These algo-
rithms are evaluated on a set of five utility programs from
the Software Infrastructure Repository (SIR), together with
a larger program, mysql, from which 20 real faults with
“closed” status have been extracted. The results show that
MOEAs and hybrid algorithms can produce solutions whose
prioritisation effectiveness, measured by the widely studied
APFDc metric, is either equal or superior to those of solu-
tions produced by the additional greedy algorithms.

The paper also introduces a coverage compaction algo-
rithm that dramatically, yet losslessly, reduces coverage data
size, and thereby algorithm execution time. On the largest
program, mysql, the additional greedy algorithms can take
more than two hours to prioritise without compaction, but
only 12 seconds after compaction. The performance im-
provement is even more dramatic for the MOEAs. Their
performance is improved from over eight days to a little over
one minute. Since compaction can be applied to any and all
regression testing approaches, these performance improve-
ments may make an important contribution to the practical
application of regression test optimisation in future work.

9. ACKNOWLEDGEMENTS
The authors are supported by EPSRC, EP/J017515/1

(DAASE: Dynamic Adaptive Automated Software Engineer-
ing).

243

10. REFERENCES

[1] CLOC: count lines of code.
http://cloc.sourceforge.net.

[2] MySQL, Online Bug Repository.
http://bugs.mysql.com/.

[3] SIR: Software-artifact Infrastructure Repository.
http://sir.unl.edu/.

[4] The MySQL Test Framework, Version 2.0.
http://bugs.mysql.com/.

[5] A. Arcuri and L. Briand. A practical guide for using
statistical tests to assess randomized algorithms in
software engineering. In Proceedings of the 33rd
International Conference on Software Engineering,
ICSE ’11, pages 1–10, New York, NY, USA, 2011.
ACM.

[6] R. Assi and W. Masri. Lossless reduction of execution
profiles using a genetic algorithm. In Proceedings of
the 7th IEEE International Conference on Software
Testing, Verification and Validation Workshops,
ICSTW 2014, pages 294–297, March 2014.

[7] R. C. Bryce and C. J. Colbourn. Prioritized
interaction testing for pair-wise coverage with seeding
and constraints. Journal of Information and Software
Technology, 48(10):960–970, 2006.

[8] J. T. de Souza, C. L. Maia, F. G. de Freitas, and D. P.
Coutinho. The human competitiveness of search based
software engineering. In Proceedings of 2nd

International Symposium on Search based Software
Engineering (SSBSE 2010), pages 143–152,
Benevento, Italy, 2010. IEEE Computer Society Press.

[9] K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan. A
Fast Elitist Non-Dominated Sorting Genetic
Algorithm for Multi-Objective Optimization:
NSGA-II. In Proceedings of the Parallel Problem
Solving from Nature Conference, pages 849–858.
Springer, 2000.

[10] H. Do, S. G. Elbaum, and G. Rothermel. Supporting
controlled experimentation with testing techniques:
An infrastructure and its potential impact. Empirical
Software Engineering, 10(4):405–435, 2005.

[11] H. Do, G. Rothermel, and A. Kinneer. Prioritizing
junit test cases: An empirical assessment and
cost-benefits analysis. Empirical Software Engineering,
11(1):33–70, 2006.

[12] S. Elbaum, A. Malishevsky, and G. Rothermel. Test
case prioritization: a family of empirical studies. IEEE
Transactions on Software Engineering, 28(2):159–182,
Feb 2002.

[13] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel.
Prioritizing test cases for regression testing. In
Proceedings of International Symposium on Software
Testing and Analysis, pages 102–112, August 2000.

[14] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel.
Incorporating varying test costs and fault severities
into test case prioritization. In Proceedings of the
International Conference on Software Engineering
(ICSE 2001), pages 329–338. ACM Press, May 2001.

[15] A. Finkelstein, M. Harman, S. A. Mansouri, J. Ren,
and Y. Zhang. ”fairness analysis” in requirements
assignments. In Proceedings of the 16th IEEE
International Requirements Engineering Conference

(RE ’08), Barcelona, Catalunya, Spain, September
2008.

[16] D. E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1st
edition, 1989.

[17] D. E. Goldberg and R. Lingle, Jr. Alleles loci and the
traveling salesman problem. In Proceedings of the 1st
International Conference on Genetic Algorithms,
pages 154–159, Hillsdale, NJ, USA, 1985. L. Erlbaum
Associates Inc.

[18] R. Grissom and J. Kim. Effect Sizes for Research: A
Broad Practical Approach. Lawrence Erlbaum
Associates, Inc., Publishers., 2005.

[19] Q. Gu, B. Tang, and D. Chen. Optimal regression
testing based on selective coverage of test
requirements. In International Symposium on Parallel
and Distributed Processing with Applications (ISPA
10), pages 419 – 426, Sept. 2010.

[20] M. Harman. Making the case for MORTO: Multi
Objective Regression Test Optimization. In
Proceedings of the 2011 IEEE Fourth International
Conference on Software Testing, Verification and
Validation Workshops, ICSTW ’11, pages 111–114,
Washington, DC, USA, 2011. IEEE Computer Society.

[21] D. Jeffrey and N. Gupta. Test suite reduction with
selective redundancy. In Proceedings of the 21st IEEE
International Conference on Software Maintenance
2005 (ICSM’05), pages 549–558. IEEE Computer
Society Press, September 2005.

[22] J.-M. Kim and A. Porter. A history-based test
prioritization technique for regression testing in
resource constrained environments. In Proceedings of
the 24th International Conference on Software
Engineering, pages 119–129. ACM Press, May 2002.

[23] J. Knowles, L. Thiele, and E. Zitzler. A tutorial on the
performance assessment of stochastic multiobjective
optimizers. 214, Computer Engineering and Networks
Laboratory (TIK), ETH Zurich, Switzerland, Feb.
2006. revised version.

[24] Z. Li, Y. Bian, R. Zhao, and J. Cheng. A fine-grained
parallel multi-objective test case prioritization on gpu.
In G. Ruhe and Y. Zhang, editors, Search Based
Software Engineering, volume 8084 of Lecture Notes in
Computer Science, pages 111–125. Springer Berlin
Heidelberg, 2013.

[25] Z. Li, M. Harman, and R. M. Hierons. Search
Algorithms for Regression Test Case Prioritization.
IEEE Transactions on Software Engineering,
33(4):225–237, 2007.

[26] A. G. Malishevsky, J. R. Ruthruff, G. Rothermel, and
S. Elbaum. Cost-cognizant test case prioritization.
Technical Report TR-UNL-CSE-2006-0004,
Department of Computer Science and Engineering,
University of Nebraska-Lincoln, March 2006.

[27] N. Nethercote and J. Seward. Valgrind: A program
supervision framework. In Proceedings of ACM
Conference on Programming Language Design and
Implementation, pages 89–100. ACM Press, June 2007.

[28] Oracle Corporation. http://www.mysql.com.

[29] K. Praditwong and X. Yao. A new multi-objective
evolutionary optimisation algorithm: The two-archive

244

http://cloc.sourceforge.net
http://bugs.mysql.com/
http://sir.unl.edu/
http://bugs.mysql.com/
http://www.mysql.com

algorithm. In Proceedings of Computational
Intelligence and Security, International Conference,
volume 4456 of Lecture Notes in Computer Science,
pages 95–104, November 2006.

[30] G. Rothermel, S. Elbaum, A. Malishevsky,
P. Kallakuri, and B. Davia. The impact of test suite
granularity on the cost-effectiveness of regression
testing. In Proceedings of the 24th International
Conference on Software Engineering (ICSE 2002),
pages 130–140. ACM Press, May 2002.

[31] G. Rothermel, R. H. Untch, C. Chu, and M. J.
Harrold. Test case prioritization: An empirical study.
In Proceedings of International Conference on
Software Maintenance (ICSM 1999), pages 179–188.
IEEE Computer Society Press, August 1999.

[32] G. Rothermel, R. J. Untch, and C. Chu. Prioritizing
test cases for regression testing. IEEE Transactions on
Software Engineering, 27(10):929–948, October 2001.

[33] J. P. Royston. An extension of shapiro and wilk’s w
test for normality to large samples. Journal of the
Royal Statistical Society. Series C (Applied Statistics),
31(2):115–124, 1982.

[34] P. G. Sapna and M. Hrushikesha. Automated test
scenario selection based on levenshtein distance. In
T. Janowski and H. Mohanty, editors, 6th Distributed
Computing and Internet Technology (ICDCIT’10),
volume 5966 of Lecture Notes in Computer Science
(LNCS), pages 255–266. Springer-Verlag (New York),
Bhubaneswar, India, Feb. 2010.

[35] A. Vargha and H. D. Delaney. A critique and
improvement of the “CL” common language effect size
statistics of McGraw and Wong. Journal of
Educational and Behavioral Statistics, 25(2):pp.
101–132, 2000.

[36] D. A. V. Veldhuizen and G. B. Lamont.
Multiobjective evolutionary algorithm research: A
history and analysis. Technical Report TR-98-03,
Department of Electrical and Computer Engineering,
Air Force Institute of Technology, 1998.

[37] S. Yoo and M. Harman. Pareto efficient
multi-objective test case selection. In Proceedings of
International Symposium on Software Testing and
Analysis, pages 140–150. ACM Press, July 2007.

[38] S. Yoo and M. Harman. Using hybrid algorithm for
pareto effcient multi-objective test suite minimisation.
Journal of Systems Software, 83(4):689–701, April
2010.

[39] S. Yoo and M. Harman. Regression testing
minimisation, selection and prioritisation: A survey.
Software Testing, Verification, and Reliability,
22(2):67–120, March 2012.

[40] S. Yoo, M. Harman, P. Tonella, and A. Susi.
Clustering test cases to achieve effective & scalable
prioritisation incorporating expert knowledge. In
Proceedings of International Symposium on Software
Testing and Analysis (ISSTA 2009), pages 201–211.
ACM Press, July 2009.

[41] S. Yoo, M. Harman, and S. Ur. Highly scalable
multi-objective test suite minimisation using graphics
card. In LNCS: Proceedings of the 3rd International
Symposium on Search-Based Software Engineering,
volume 6956 of SSBSE, pages 219–236, September
2011.

[42] S. Yoo, M. Harman, and S. Ur. Gpgpu test suite
minimisation: search based software engineering
performance improvement using graphics cards.
Empirical Software Engineering, 18(3):550–593, 2013.

[43] S. Yoo, R. Nilsson, and M. Harman. Faster fault
finding at Google using multi objective regression test
optimisation. In 8th European Software Engineering
Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE
’11), Szeged, Hungary, September 5th - 9th 2011.
Industry Track.

[44] L. Zhang, S.-S. Hou, C. Guo, T. Xie, and H. Mei.
Time-aware test-case prioritization using Integer
Linear Programming. In Proceedings of the
International Conference on Software Testing and
Analysis (ISSTA 2009), pages 212–222. ACM Press,
July 2009.

[45] E. Zitzler and L. Thiele. Multiobjective evolutionary
algorithms: a comparative case study and the strength
pareto approach. IEEE Transactions on Evolutionary
Computation, 3(4):257–271, Nov. 1999.

245

	Introduction
	Multi Objective Test Case Prioritisation
	Single Objective Formulation
	Multi Objective Formulation
	Evaluating Test Orderings
	Objectives
	Algorithms
	Compact Coverage
	Coverage Compaction Algorithm
	Calculating Objectives with Compact Coverage

	Empirical Study
	Research Questions

	Experimental Setup
	Subjects
	MOEA Configuration
	Measurements & Environment
	MOEA Quality Indicators
	Statistical Tests

	Results & Discussion
	Optimisation Quality
	Effectiveness of Prioritisation
	Efficiency

	Threats to Validity
	Related Work
	Conclusions
	Acknowledgements
	References

