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Abstract

Two distinct strands of research are developed: new methodology for inference

on the Markov modulated Poisson process (MMPP), and new theory on optimal

scaling for the random walk Metropolis (RWM).

A novel technique is presented for simulating from the exact distribution of a con-

tinuous time Markov chain over an interval given the start and end states and

the infinitesimal generator. This is used to create a Gibbs sampler which samples

from the exact distribution of the hidden Markov chain in an MMPP. The Gibbs

sampler is compared with several Metropolis-Hastings algorithms on a variety of

simulated datasets. It is found that the Gibbs sampler is more efficient than all

but one of the Metropolis-Hastings algorithms, sometimes by an order of magni-

tude. One alternative algorithm, with reparameterisation motivated by a Taylor

expansion of the MMPP log-likelihood, outperforms the Gibbs sampler when the

different Poisson process intensities are similar. The Gibbs sampler is applied to

modelling the occurrence of a rare DNA motif.
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Two Lemmas are derived that apply to stationary Metropolis-Hastings Markov

chains and simplify the analytical forms for expected acceptance rate and expected

square jump distance (ESJD), a measure of efficiency. These are applied to the

RWM for elliptically symmetric unimodal targets, and the existence, subject to

conditions, of at least one finite optimal scaling is proved in finite dimension d.

A one-to-one relationship between acceptance rate and scale parameter is also

established. Asymptotic forms for ESJD and expected acceptance rate as d→∞

are then derived and conditions under which the limiting optimal acceptance rate

is 0.234 are obtained. It is also shown that in a more general setting the limiting

optimal acceptance rate is ≤ 0.234. Limiting efficiency results are also obtained for

partial-blocking and for the exploration of elliptical targets with elliptical proposals

of the same shape.
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Chapter 1

Introduction and background

material

1.1 Introduction

The main body of this thesis comprises two separate pieces of research broadly

linked under the umbrella of Markov chain Monte Carlo (MCMC). Chapter 2 in-

vestigates the Bayesian analysis of the Markov modulated Poisson process using

MCMC; it develops new methodology and applies this to a real problem in sta-

tistical genetics. Chapter 3 develops the theory of optimal scaling for a particular

MCMC algorithm, the random walk Metropolis. This chapter serves as an intro-

duction to both.

The Markov modulated Poisson process has a variety of applications in statistical

modelling, which are reviewed at the start of Chapter 2. The main innovation of

the chapter is an exact Gibbs sampler for analysing the Markov modulated Pois-

son process which samples alternately from the exact conditional distribution of

1
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the underlying Markov chain given the parameters and the data, and then from

the conditional distribution of the parameters given the underlying Markov chain

and the data. The performance of the Gibbs sampler on a variety of simulated

data sets is compared with several random walk Metropolis algorithms, including

two new reparameterisations. The Gibbs sampler compares favourably with the

random walk algorithms; it is then used to analyse occurences of a particur motif

in a bacterial DNA. Part of this work (specifically the review Sections 2.1, 2.2, 2.4;

Sections associated with the Gibbs sampler and its application 2.3 , 2.5.1, 2.7, and

part of the discussion 2.8) has been published as Fearnhead and Sherlock (2006).

The random walk Metropolis is one of the most common MCMC algorithms em-

ployed in practice. The practising statistician must choose a scale parameter for

the jump proposal distribution, yet the impact of this choice on the efficiency of an

algorithm can be of many orders of magnitude. A sensible choice of scale parame-

ter is therefore vital for obtaining accurate MCMC estimates in a reasonable time.

Current theory on optimal scaling for the random walk Metropolis applies in the

limit as dimension d→∞ and is reviewed at the start of Chapter 3. The chapter

then develops a new theory for certain target distributions, initially deriving exact

formulae in finite dimension d, before examining the limiting behaviour described

by these formulae as d→∞.

Both of the main Chapters take for granted some fundamental ideas about MCMC:

convergence, mixing, and a knowledge of several of the basic types of algorithm.

These are reviewed in this introductory chapter, as are basic ideas about Langevin

diffusions which are needed for the literature review on current optimal scaling
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theory. This chapter also includes a short summary of properties of the beta

function and the surface areas of hypershperes, both of which are required in

Chapter 3. We start, however, with a simple introduction to the Markov modulated

Poisson process.

1.2 The Markov modulated Poisson process

Chapter 2 of this thesis examines in depth the analysis of the Markov modu-

lated Poisson process (MMPP). It reviews applications, likelihood calculations and

Bayesian analysis, as well as detailing new work on an exact Gibbs sampler, on

an efficient reparameterisation of the two-dimensional MMPP, and on a simulation

study comparison between several MCMC approaches. This section sets the scene

by introducing the MMPP itself with graphical illustrations.

Let Xt be a continuous time Markov chain on discrete state space {1, . . . , d} and let

λ be a d-dimensional vector of (non-negative) intensities. The linked but stochasti-

cally independent Poisson process Yt whose intensity is λXt is a Markov modulated

Poisson process - it is a Poisson process whose intensity is modulated my a contin-

uous time Markov chain.

The idea is best illustrated through an example, which also serves to introduce

notation that will be used throughout Chapter 2. Consider a two-dimensional

Markov chain Xt with generator

Q =





−2 2

1 −1




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Figure 1.1: (a) A two state continuous time Markov chain simulated from generator Q

with q12 = 2 and q21 = 1; the rug plot shows events from an MMPP simulated from this

chain, with intensity vector λ = (20, 2). (b) Cumulative number of events of the MMPP

against time.
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Figure 1.1a shows a realisation from this chain over a period of 10 seconds. Notice

that the chain spends approximately (in fact slightly less than) one third of its

time in state 1 and two thirds of its time in state 2, as would be expected from its

stationary distribution ν = (1/3, 2/3). Now consider a Poisson process Yt which

has intensity 20 when Xt is in state 1 and intensity 2 when Xt is in state 2. This

is an MMPP with intensity vector

λ = [20, 2]

A realisation (obtained via the realisation of Xt) is shown as a rug plot underneath

the chain. The variation in concentration of points in the process Yt is exactly

the characteristic in real processes that the MMPP as a statistical model aims to

capture. This can also be seen through the variation in the slope of the cumulative

plot of number of Yt-events against time (Figure 1.1b).

1.2.1 Degenerate solutions

A given MMPP covers all lower dimensional MMPP’s as special cases with certain

combinations of parameter values. This degeneracy is evident in the simulation

studies of Chapter 2. It is also responsible for strictly positive lower bounds on the

likelihood as certain parameters approach 0 or ∞, which in turn disallows the use

of improper priors for these parameters under a Bayesian analysis. This section

provides an intuition into degeneracy and some consequences.

For simplicity we consider only a 2-dimensional MMPP with parameters

Q =





−q12 q12

q21 −q21




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and

λ = [λ1, λ2]
t

Denote the chain’s stationary distribution as

ν := [ν1, ν2]
t =

1

q12 + q21
[q21, q12]

t

Intuitively the observed data from this approaches that of a 1-dimensional MMPP

(i.e. a Poisson process) with parameter

λ =
q21λ1 + q12λ2

q12 + q21
= ν1λ1 + ν2λ2

as (for example)

1. q21 →∞ with λ1, q12 fixed and λ2/q21 → 0

2. q12 → 0 with λ1, q21 > 0 fixed and q12λ2 → 0

3. q21 + q12 →∞ with λ and ν fixed

4. λ2 → λ1 with all other parameters fixed.

In the first two cases the chain spends a larger and larger fraction of its time in

a single state (state 1), and in the third case it oscillates so quickly between the

states that (as far as the observer is concerned) it is effectively in a mean state

somewhere between the two.

Now consider data from a general 2-dimensional MMPP for which n events are

observed over a time window [0, tobs]. To keep notation consistent with Chapter 2,

let t′ be the vector of event-times. Thoughout Chapter 2 it is assumed that the
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underlying Markov chain starts at stationarity; given this, the likelihood for this

(ordered) data is

L(Q,Λ|t′) = P (t′|Q,Λ) ≥ P (t′, chain always in state 1|Q,Λ) = ν1 λ
n
1 e

−(λ1+q12) tobs

Intuitively this scenario “chain always in state 1” corresponds to limiting cases 1

and 2 above. For a non-trivial MMPP at least one of the intensity parameters

must be non-zero; without loss of generality let this be λ1. Thus the likelihood has

a strictly positive lower bound

Lmin(λ1) :=
qmin
21

qmax
12 + qmin

21

λn
1 e

−(λ1+qmax
12 ) tobs

on the infinite region of the state space

(λ1, λ2, q12, q21) ∈ (0,∞)× (0,∞)× (0, qmax
12 )× (qmin

21 ,∞)

for any positive qmin
21 and qmax

12 . Therefore priors for λ2, q12 and q21 which are

improper over this region will lead to improper posteriors for these parameters.

1.3 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) algorithms provide a framework for simulat-

ing from a target random variable X with distribution π(·) by iteratively generating

a Markov chain X0,X1, . . . with stationary distribution π(·). A Monte Carlo es-

timate of some function of the target random variable may then be obtained; for

example

f̂N :=
1

N

N
∑

1

f(Xi) (1.1)

Methodological development of MCMC is central to Chapter 2 of this thesis, while

Chapter 3 is dedicated to one particular aspect of MCMC theory. The purpose of
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this section is to introduce the various facets of MCMC that will be required in the

following two Chapters. Much of the material in this section is taken from Gilks

et al. (1996) and this should be assumed to be the source if no further reference

is given. MCMC can be applied to discrete or continuous random variables or

mixtures thereof; however only continuous random variables are investigated in

Chapters 2 and 3 and so for simplicity this section is also confined to the exploration

these. We first give an overview of a number of MCMC algorithms and then

discuss the concepts of convergence and mixing of a Markov chain which interweave

naturally with practical Monte Carlo estimation of functions of random variables

and their standard error. We then detail some simple strategies for improving the

efficiency of MCMC algorithms.

1.3.1 MCMC Algorithms

An incredible variety of algorithms are available under the general umbrella of

MCMC. Many of these can be most easily understood in the context of the Metropolis-

Hastings algorithm. We describe this first, including the ideas of stationarity and

reversibility at equilibrium. We detail several sub-classes of algorithm including

the random walk Metropolis before discussing the concept of partial-blocking which

leads naturally to the Gibbs sampler.

1.3.1.1 The Metropolis Hastings Algorithm

The Metropolis-Hastings updating scheme provides a very general class of algo-

rithms which proceed as follows: given current value X, a new value X∗ is proposed

from pre-specified Lesbegue density q (X∗|X) and is then accepted or rejected ac-

cording to acceptance probability
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α(x,x∗) = min

(

1,
π(x∗)q (x|x∗)

π(x)q (x∗|x)

)

(1.2)

If the proposed value is accepted it becomes the next current value (X′ ← X∗),

otherwise the current value is left unchanged (X′ ← X).

Write P (dx′|x) for the conditional probability that the next value X′ is in the

hypercube with opposite corners x′ and x′ +dx′, given that X = x. We also define

the joint measure of two successive realisations from the chain at stationarity as

A(dx, dx′) := π(x) dx P (dx′|x)

it is implicit that this is valid at (x,x′).

The acceptance probability (1.2) is chosen exactly so that the chain is reversible

at equilibrium with invariant distribution π(·). From the definition of α(·, ·)

π(x)q (x∗|x)α (x,x∗) = π(x∗)q (x|x∗)α (x∗,x)

which leads directly to reversibility

A(dx, dx′) = A(dx′, dx)

This in turn implies that π(·) is invariant since
∫

x∈ℜ

dx π(x)P (dx′|x) =

∫

x∈ℜ

dx′ π(x′)P (dx|x′) = π(x′)

Convergence of the chain to π(·) is discussed in Section 1.3.2.

The statistician is free to choose their proposal distribution as they like, and differ-

ent types of proposal distribution lead to different classes of Metropolis-Hastings al-

gorithm. In this thesis we are especially interested in the random-walk Metropo-

lis (RWM), as applied in Metropolis et al. (1953). Here the difference between the
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proposal and the current value (i.e. the proposed jump) is independent of the cur-

rent value and is symmetrically distributed. For a RWM algorithm in d dimensions

we therefore have

q (x∗|x) =
1

λd
r

(

x∗ − x

λ

)

with r(y) = r(−y) for all y. In this case the acceptance probability simplifies to

α(x,x∗) = min

(

1,
π(x∗)

π(x)

)

This algorithm is employed extensively in the simulation study of Chapter 2, and

the process of tuning the scaling parameter λ to maximise the efficiency of the

algorithm is the main subject of Chapter 3.

A related algorithm, the multiplicative random-walk (see for example Della-

portas and Roberts, 2003) is also employed in Chapter 2. This is simply the sym-

metric random-walk applied to the logarithm of each of the (non-negative) target

components. Since taking logarithms shifts mass from the tails to the centre of

the distribution, the multiplicative random-walk is especially efficient at exploring

heavy-tailed targets. When viewed on the original target, proposed jumps are of

course exponential multiples of the current value; the acceptance probability is

then

α(x,x∗) = min

(

1,

∏d
1 x

∗
i

∏d
1 xi

π(x∗)

π(x)

)

In Chapter 3 we will have brief cause to mention two further Metropolis-Hastings al-

gorithms: the independence sampler and the Metropolis adjusted Langevin

algorithm (MALA). In the former, the next value proposed is independent of

the current value: q (x∗|x) = r(x∗), and the acceptance probability is therefore

α = min

(

1,
π(x∗)r(x)

π(x)r(x∗)

)
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The MALA algorithm is a variant on the symmetric random-walk in which the

proposed jump is biased towards the direction of increasing target density:

X∗|x ∼ N

(

x +
λ2

2
∇ log π (x) , λ2Id

)

The bias amount is such that the stationary distribution of the limiting process as

the discretisation approaches zero is π(·).

1.3.1.2 Partial-blocking

For reasons of efficiency or analytical convenience components of the multidimen-

sional target X might be grouped into k sub-blocks which are updated sequentially.

In general write

X = (X1, . . . ,Xk)

where, in this section, and the next Xi is the ith block of components of the current

element of the chain rather than ith element of the chain. It will be convenient to

define the shorthand

x−i := x′
1, . . . ,x

′
i−1,xi+1, . . . ,xk

One complete update of X then consists of k sequential updates for which the ith

component is proposed from qi (x
∗
i |xi,x−i) and accepted with probability

α ((xi,x−i), (x
∗
i ,x−i)) =

π(x∗
i ,x−i)qi (xi|x∗

i ,x−i)

π(xi,x−i)qi (x
∗
i |xi,x−i)

(1.3)

Proposals for each partial update need not have the same form. For example one

could be a random walk Metropolis and the next an independence sampler; this

would be a hybrid algorithm. Acceptance probabilities are still always chosen so

that each partial update is reversible at equilibrium, and the stationary distribu-

tion remains π(·).
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Note that the complete update, being a sequence of k partial-updates, is not in

general reversible at equilibrium. However an adaptation of the algorithm where

a complete update consists of all the above partial-updates and then the same set

of partial-updates in the opposite order is reversible. Alternatively reversibility

can be achieved by performing only a single partial-update on a fixed number

of components but with the components to be updated chosen at random from

the full set; this scheme is often referred to as random scan. Algorithms which

employ partial-blocking are sometimes referred to as “Metropolis-within-Gibbs”; a

somewhat cryptic reference to the Gibbs sampler, which we now describe.

1.3.1.3 The Gibbs sampler

Suppose that the proposal distribution of the ith partial update is actually the

conditional distribution of Xi given X′
1, . . . ,X

′
i−1,Xi+1, . . . ,Xk which we denote

by the shorthand πi(xi|x−i). Then denoting by π−i(x−i) the marginal distribution

of x′
1, . . . ,x

′
i−1,xi+1, . . . ,xk we have that

qi (x
∗
i |xi,x−i) = πi(x

∗
i |x−i) =

π(x∗
i ,x−i)

π−i(x−i)

with a similar result for qi (xi|x∗
i ,x−i). The acceptance probability (1.3) is therefore

1. The name of this algorithm, the Gibbs sampler, arises from its use by Geman

and Geman (1984) to analyse Gibbs distributions, but its application is far more

general. One of the main innovations in Chapter 2 of this thesis is an exact Gibbs

sampler for analysing the Markov modulated Poisson process.

1.3.2 Convergence and mixing of an MCMC Markov chain

Two main (and related) issues arise with regard to the efficiency of MCMC algo-

rithms:
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Convergence: The chain is unlikely to have been initialised from its stationary

distribution (since if this were straightforward there would be no need for

MCMC) and so a certain number of iterations are required for elements of

the chain to be samples from the target distribution π(·).

Mixing: Once stationarity has been achieved the chain produces dependent iden-

tically distributed samples from π(·). A certain number of iterations are

required to explore the target well enough to produce Monte Carlo estimates

of the desired accuracy. This number of iterations is in general more than

would be necessary if the elements of the chain were independent.

Note: in practice most chains never achieve perfect stationarity. In this thesis a

chain is referred to as having ’reached stationarity’ or ’converged’ when the distri-

bution from which an element is sampled is as close to the stationary distribution

as to make no practical difference to any Monte-Carlo estimates.

For an efficient algorithm both the number of iterations required for convergence

and the number of iterations needed to expore the target should be relatively

small. Figure 1.2 shows so called “traceplots” of the first 1000 iterations for each

of three chains exploring a standard one-dimensional Gaussian target distribution

π(x) = φ(x) and initialised at x = 20. The first of these converges slowly and

then mixes poorly; the second converges quickly but mixes poorly and the third

converges relatively quickly and mixes well.

In Chapter 2 of this thesis we will be concerned with practical determination of a

point at which a chain has converged. The method we employ is simple heuristic

examination of the trace plots for the different components of the chain. Note that
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Figure 1.2: Trace plots for exploration of a standard Gaussian initialised from x = 20

and using the random walk Metropolis algorithm with Gaussian proposal. Proposal scale

parameters for the three plots were respectively (a) 0.24, (b) 24, and (c) 2.4.
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since the state space is multi-dimensional it is not sufficient to simply examine a

single component. Alternative techniques are discussed in Chapter 7 of Gilks et al.

(1996).

The degree to which a chain has converged can be measured by the total variational

distance. For two distributions ν1 and ν2 on state space E with sigma algebra σ(E),

this is defined as

||ν1 − ν2|| := 2 sup
A∈σ(E)

|ν1(A)− ν2(A)|

A measure of the degree of convergence of a chain initialised at x and run for n

iterations is therefore ||P n(x, ·)− π(·)||, where P i(x, ·) is the distribution of a chain

after i iterations from initial point at x.

Theoretical criteria for ensuring convergence of MCMC Markov chains are exam-

ined in detail in Chapters 3 and 4 of Gilks et al. (1996) and references therein, and

will not be discussed here. We do however wish to highlight the concept of geomet-

ric ergodicity. A Markov chain is geometrically ergodic with stationary distribution

π(·) if

||P n(x, ·)− π(·)|| ≤M(x)rn (1.4)

for some positive r < 1 and M(·). Geometric convergence of the Gibbs sampler

and of the RWM is discussed in Chapter 3 of Gilks et al. (1996). As well as relating

to the speed of convergence, geometric ergodicity also guarantees a central limit

theorem for Monte Carlo estimates such as (1.1) for functions f(·) such that

∫

dxπ(x) |f(x)|2+ǫ <∞ (1.5)
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for some small ǫ > 0. In this case

N1/2
(

f̂N − Eπ [f(X)]
)

⇒ N(0, σ2
f ) (1.6)

where ⇒ denotes convergence in distribution and

σ2
f := Varπ [f(X)] <∞

The central limit theorem (1.6) guarantees not only convergence of the Monte Carlo

estimate (1.1) but also supplies its standard error, which decreases as N−1/2.

Note: Total variation distance is a natural measure for defining convergence since

(e.g. Meyn and Tweedie, 1993) geometric convergence as defined in (1.4) actually

guarantees the given level of convergence for f(X) for all integrable functions f(·).

For more general functions, other distance measures may be used to define conver-

gence, for example the f-norm and the V-norm, which is defined in terms of the

f-norm (e.g. Meyn and Tweedie, 1993):

||ν1 − ν2||f := sup
g:|g|≤f

∣

∣

∣

∣

∫

dν1(x) g(x)−
∫

dν2(x) g(x)

∣

∣

∣

∣

|||P1(x, ·)− P2(x, ·)|||V := sup
x

||P1(x, ·)− P2(x, ·)||V
V (x)

for some f ≥ 0, some 1 ≤ V < ∞, and a chain initialised at x. In this thesis,

however our interest in the convergence of a chain is motivated by the desire for a

central limit theorem such as (1.6); this theorem is used implicitly in Chapter 2.

The likelihood of an MMPP with maximum and minimum Poisson intensities λmax

and λmin and with n events observed over a time window of length tobs, is bounded

above by λn
maxe

−λmintobs . In Chapter 2 only parameters and their logarithms are

considered; since exponential priors are employed the posterior then satisfies (1.5).
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We therefore make no further discussion of norms.

A more accurate estimate than (1.1) is likely to be obtained by discarding the

portion of the chain X0, . . . ,Xm up until the point at which it was deemed to have

reached stationarity; iterations 1, . . .m are commonly termed “burn in”. Using

only the remaining elements Xm+1, . . . ,Xm+n (with m+ n = N) our Monte Carlo

estimator becomes

f̂n :=
1

n

m+n
∑

m+1

f(Xi) (1.7)

Convergence and burn in are not discussed any further here and for the rest of this

section the chain is assumed to have started at stationarity and continued for n

further iterations. For a stationary chain, X0 is sampled from π(·), and so for all

k > 0 and i ≥ 0

Cov [f(Xk), f(Xk+i)] = Cov [f(X0), f(Xi)]

This is the autocorrelation at lag i. Therefore at stationarity

σ2
f = lim

n→∞
nVar

[

f̂n

]

= Var [f(X0)] + 2

∞
∑

1

Cov [f(X0), f(Xi)]

If elements of the stationary chain were independent then σ2
f would simply be

Var [f(X0)] and so a measure of the inefficiency of the Monte-Carlo estimate f̂n

relative to the perfect i.i.d. sample is

σ2
f

Var [f(X0)]
= 1 + 2

∞
∑

1

Corr [f(X0), f(Xi)] (1.8)

This is the integrated autocorrelation time (ACT) and represents the effective num-

ber of dependent samples that is equivalent to a single independent sample. Al-

ternatively n∗ = n/ACT may be regarded as the effective equivalent sample size if
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the elements of the chain had been independent.

To estimate the ACT in practice one might examine the chain from the point

at which it is deemed to have converged and estimate the lag-i autocorrelation

Corr [f(X0), f(Xi)] by

γ̂i =
1

n− i

n−i
∑

j=1

(

f(Xj)− f̂n

)(

f(Xj+i)− f̂n

)

(1.9)

Naively, substituting these into (1.8) gives an estimate of the ACT. But as noted

for example in Geyer (1992) this estimate is not even consistent. For sensibly large

n most of the estimated terms (1.9) consist the mean of products of two effectively

independent realisations of f(X)− f̂n , and have finite variance O(1/(n− i)). This

is evident in Figure 1.3c which shows the estimated autocorrelation function from

the last 700 iterations of the simulated chain in Figure 1.2(c). The sum of these

terms consists of random noise with variance at least O(1).

The simple solution employed in Chapter 2 is to visually inspect the estimated

autocorrelations and then truncate the sum (1.8) at a lag l after which the auto-

correlations appear to be mostly noise. This gives the estimator

ACTest := 1 + 2
l
∑

i=1

γ̂i (1.10)

Geyer (1992) gives references for regularity conditions under which this estimator

is consistent. He also discusses extensions of this window estimator and compares

these with alternatives.
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Figure 1.3: Estimated autocorrelation functions up to lag-60 for iterations 301 to 1000

of the trace plots shown in Figure 1.2. Graphs correspond to proposal scale parameters

of respectively (a) 0.24, (b) 24, and (c) 2.4.
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1.3.3 Improving the efficiency of MCMC algorithms

We now examine some simple strategies for improving the efficiency of MCMC

algorithms.

For algorithms such as the RWM, the multiplicative random-walk, and the MALA,

the scaling parameter of the jump proposal distribution may be tuned to improve

the efficiency of the mixing. If proposed jumps are too small then most will be

accepted but the distance moved will be small; if proposals are too large then they

will rarely be accepted and again the target will be explored inefficiently. Figure

1.2 shows the exploration of a univariate standard Gaussian target via the RWM

algorithm with a Gaussian proposal but three different scale parameters. Station-

arity is achieved in all three runs by the 300th iteration but mixing is extremely

slow in the first and second runs where the scale parameter is respectively too

small and too large. In the third run the scale parameter is close to its optimal

value and mixing is nearly as efficient as is possible with a Gaussian proposal.

The relative mixing efficiencies of the three chains may also be compared through

the corresponding autocorrelation plots in Figure 1.3. These show estimated au-

tocorrelatation functions up to lag-60 for each of the three chains from the 300th

iteration onwards. The area under the graphs (prior to them being dominated by

random variation) gives an estimate of the ACT; this is clearly much higher for

scale parameters of 0.24 and 24 than it is for a scale parameter of 2.4. Optimal

scaling for the RWM algorithm is the subject of the third Chapter of this thesis and

a detailed literature review is contained therein. Optimal scaling for the MALA

and RWM algorithms is also reviewed in Roberts and Rosenthal (2001).
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Figure 1.4: Contour plot for a two-dimensional Gaussian density with σ2
1 = σ2

2 = 1, and

correlation ρ = 0.95.

Consider a target in which individual components are highly correlated; we will

work with the example of a two component target the contours of which form a

very flattened ellipse at 45 degrees to the axes, as shown in Figure 1.4. A spheri-

cal proposal distribution for a single block Metropolis-Hastings update will clearly

explore the target very inefficiently: any scale parameter which allows reasonably

sized jumps along the major axis of the ellipse will usually be rejected as most pro-

posals will have a significant component along the minor axis. Sequential partial

updates (for example using a Gibbs sampler or the RWM) along the x1 and x2

axes will also be constrained due to the narrowness of the ellipse, and exploration

will again be slow.

The single block update would be made more efficient if proposals were from an
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elliptical distribution with a similar shape and orientation as the target. The shape

of the target is of course unknown, but might be estimated from the chain output

as the chain evolves, and this is the basis behind adaptive direction sampling as

considered for example in Chapter 6 of Gilks et al. (1996). Alternatively, consider

the reparametrisation: y1 = (x1 + x2)/2 and y2 = (x1 − x2)/2; the first of these

corresponds to the major axis of the ellipse and second to the minor axis. It is easy

to see that a Gibbs sampler using y1 and y2 would proceed much more efficiently

than that using x1 and x2. However, in general, it might be difficult to sample from

the conditional distribution of Y1 given y2 and vice versa. A sequentially updating

Metropolis-Hastings algorithm does not suffer from this problem. Scaling of the

proposal along the major axis could be increased relative to that along the minor

axis and the target would be explored efficiently.

Therefore one approach to increasing the mixing effiency of a partial-blocking al-

gorithm (such as the RWM) is to make the correlation of the new parameters (with

respect to the target distribution) as close as possible to zero. A similar approach

has the parameters as eigenvectors of the Hessian of the target at the target’s mode

(if it has a single mode). Note that (at a mode) these are also the eigenvectors

of the Hessian of the log of the target distribution. These eigenvectors are then

approximately orthogonal in the main mass of the target. In the special case of

a Gaussian target these two strategies (aiming for zero correlation or eigenvectors

of the Hessian) are in fact equivalent. In Chapter 2, good mixing of the standard

MMPP parameterisation in certain situations is related to approximate orthogo-

nality at the mode.
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The different curvature or scales of variation along the principal axes may be

thought of as corresponding to different amounts of information about the param-

eters corresponding to each of the axes. Conversely the effects on the target of a

unit jump from the mode along principal axes with two different curvatures will

be very different. In Chapter 2, a reparameterisation of the MMPP motivated by

different scales of variation in the likelihood leads to an approximate orthogonality

close to or at the posterior mode in some situations. Note that the above strategies

are motivated by heuristic consideration of the Gaussian-like distribution in Figure

1.4. It is easy to produce counter examples wherein, for example, under the stan-

dard parameterisation, the correlation with respect to the target is zero, and yet

the chain is in fact reducible. Alternative strategies to increase mixing efficiency

are considered in Chapter 6 of Gilks et al. (1996) and in Papaspiliopoulos et al.

(2003).

1.3.4 Other aspects of MCMC

MCMC is most commonly used in Bayesian statistics, where it explores the poste-

rior distribution of model parameters. Several aspects of such exploration specific

to Chapter 2 are now discussed.

1.3.4.1 Extending the state space

Some problems involve hidden data models or missing data; in such cases analytical

expressions for the posterior conditional distributions may only be straightforward

to write down in terms of the parameters, the observed data and some other un-

known data. In such circumstances it is common to extend the statespace of the

Markov chain to include the unknown data. The chain then explores the joint
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distribution of the parameters and the unknown (or hidden) data. If the hidden

data is not of interest then once stationarity and good mixing have been confirmed

it may be ignored in any subsequent analysis. The Gibbs sampler in Chapter 2 ex-

tends the state space in just this manner, although in its application to occurences

of a DNA motif the hidden data is also analysed as it is of interest in its own right.

1.3.4.2 Label-switching

Certain likelihoods, such as those for mixture distributions and for the Markov

Modulated Poisson Process, are invariant to relabelling of the states. With d

states there are d! identical modes and there is an innate unidentifiability of the

parameters. If the joint prior distribution on the parameters is similarly invariant

then so is the posterior. For inference using MCMC this is apparent in the phe-

nomenon of label-switching wherein the (MCMC) chain passes from one mode to

another, which is equivalent to a permutation of the states. Figure 1.5 shows trace

and density plots for the first 10 000 iterations of the Gibbs sampler of Chapter

2 applied to a simulated data set with two states (replicate 1 of S4: 100 seconds

of an MMPP simulated using parameters q12 = q21 = 1 and λ = (10, 13)t). Fre-

quent label switching is apparent from the sharp jumps in the trace plots and

multimodality of the kernel density estimates. Label-switching effects are not visi-

ble in the plots for q12 and q21 as the corresponding true parameter values are equal.

Even if the priors are not exchangeable they will still modulate the multimodal

likelihood, and often produce a multi-modal posterior. Such a posterior is illus-

trated in Figure 2.8. Because of the difference between the priors, the mass in the

second mode is less than a hundredth of that in the main mode. To remove the
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Figure 1.5: Trace and kernel density plots for the first 10 000 iterations of the Gibbs

sampler of Chapter 2 on a simulated data set (replicate 1 of S4) with two states.
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second mode completely it would be necessary to set a joint prior for the two states

that (for example) forces an ordering on the states.

1.4 Diffusions and efficiency

1.4.1 Diffusions

Diffusion ideas are not employed in the main body of this thesis. However the

summary of earlier work on optimal-scaling presented in Section 3.1.1 and the

discussion of expected square jump distance in Section 3.1.4 both require a lim-

ited understanding of one-dimensional Brownian motion and stochastic differential

equations (SDE’s), and in particular the notion of the speed of a diffusion. A

very simplistic and intuitive explanation follows; for more detail see for example

Øksendal (1998).

The canonical 1-dimensional Brownian motion Xt is a stochastic process for which

changes over disjoint time intervals are independent and satisfy

∆Xt ∼ N(0,∆t)

where ∆Xt := Xt+∆t−Xt. The relationship in the limit as ∆t→ 0 corresponds to

the SDE

dXt = dBt

The diffusion Wt = kXt corresponds to Brownian motion increments of size dWt =

k dBt and satisfies ∆Xt ∼ N(0, k2∆t). This (intuitively) establishes the connec-

tion between the coefficient of dBt and the variance term of the normal increment.
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We return to the Brownian motion Xt and add a deterministic drift µ(Xt). Incre-

ments over small time intervals now approximately satisfy

∆Xt ∼ N(µ(Xt)∆t, ∆t)

and correspond to the SDE

dXt = µ(Xt) dt+ dBt

Finally consider the change in Xt over time interval n∆t (with n∆t small and n

an integer). Small increments are still approximately independent, so for small ∆t

∆Xt ∼ N(nµ(Xt) ∆t, n∆t)

Conceptually this is the same as would have been observed over interval ∆t if the

diffusion had been speeded up by a factor n. In general therefore for a diffusion

with constant speed h we have (approximately)

∆Xt ∼ N(hµ(Xt) ∆t, h∆t) (1.11)

with equality in the limit as ∆t→ 0. This corresponds to the stochastic differential

equation

dXt = h µ(Xt) dt+ h1/2dBt (1.12)

If the drift term satisfies

µ(·) = −1

2
∇ log π(·)

then the diffusion has stationary distribution π(·) and is known as a Langevin

diffusion.
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1.4.2 Autocorrelation for diffusions

The autocorrelation at time t0 and lag-t for some function f(·) of a Langevin

diffusion with speed h is defined as

ρh,f(t; t0) := Corr [f (Xt0) , f (Xt0+t)]

We will assume Xt is stationary so that the correlation is independent of t0, and

drop t0 from the notation. By the same argument as at the end of the previous

section we may define a new diffusion X̃t which is stochastically identical to Xt

but with speed 1: X̃ht := Xt. Therefore

ρh,f(t) = ρ1,f (ht)

For continuous process Xt the integrated autocorrelation time is

Ih(t) =

∫ ∞

0

dt ρh,f(t) =

∫ ∞

0

dt ρ1,f (ht) =
1

h

∫ ∞

0

dt ρ1,f (t) (1.13)

Thus minimising the integrated ACT is equivalent to maximising the speed of the

diffusion.

1.5 Beta functions and hyperspheres

In Chapter 3 we are concerned with spherically symmetric random variables of

general dimension d, for which marginal one-dimensional and marginal radial dis-

tributions will turn out to be related through beta random variables. This section

gives an overview of basic results on the beta function and beta random variables

that will be required. It also introduces the formula for the (d-1)-dimensional

’surface area’ of a hypersphere in ℜd, which is used in Chapter 3.



CHAPTER 1. INTRODUCTION AND BACKGROUND MATERIAL 29

1.5.1 Beta functions and Beta random variates

For a > 0 and b > 0, the (complete) Beta function is

B(a, b) =

∫ 1

0

dz za−1(1− z)b−1

(equivalently) = 2

∫ π/2

0

dψ sin2a−1 ψ cos2b−1 ψ

=
Γ(a)Γ(b)

Γ(a + b)

In Chapter 3 we will require an asymptotic appromation to B
(

1
2
, d−1

2

)

, which we

obtain now via Stirling’s approximation:

Γ(b+ 1)

(2π)1/2bb+1/2e−b
→ 1

From this

d1/2 Γ
(

d−1
2

)

Γ
(

d
2

) → 21/2

and therefore

d1/2B

(

1

2
,
d− 1

2

)

→ (2π)1/2 (1.14)

A Beta(a, b) random variate has density function f(x) = 1
B(a,b)

xa−1(1− x)b−1

1.5.2 The surface area of a hypershpere

The (d-1)-dimesnional ’area’ of a hypershpere of radius r in ℜd is adr
d−1 where

ad = 2πd/2

Γ(d
2
)
. The first few terms are: a1 = 2, a2 = 2π, a3 = 4π
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The formula arises from the equality

(2π)d/2 =

∫

ℜd

dx e−
1
2(x2

1+···+x2
d) =

∫ ∞

0

dr adr
d−1e−

1
2
r2

= adΓ(d/2)2d/2−1

We also note that

ad/ad−1 =
π1/2Γ(d−1

2
)

Γ(d
2
)

= B

(

1

2
,
d− 1

2

)

(1.15)



Chapter 2

Bayesian analysis of the Markov

modulated Poisson process

2.1 Introduction

A Markov Modulated Poisson Process (MMPP) is a Poisson process whose inten-

sity depends on the current state of an independently evolving continuous time

Markov chain. Points from the MMPP are often referred to as the observed data

and the underlying Markov chain as the hidden data.

MMPP’s are used in modelling a variety of phenomena, for example:

• The arrivals of photons from single molecule fluorescence experiments (Burzykowski

et al., 2003; Kou et al., 2005). Here the arrival rate of photons at a recep-

tor is modulated by the state of a molecule which (in the simplest model

formulation) alternates between its ground state and an excited state.

• Frequency of bank transactions where a customer’s bank details have been

31
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obtained by a criminal and there are intermittent “contamination” periods

where both the customer and the criminal are accessing the account (Scott,

1999).

• Wet deposition of a radionuclide emitted from a point source (Davison and

Ramesh, 1996).

• Requests for web pages from users of the World Wide Web (Scott and Smyth,

2003); these show bursts of activity followed by periods of almost no activity.

Fischer and Meier-Hellstern (1992) note many further examples of the use of

MMPP’s for modelling overflow in telecommunications networks and in modelling

packetised voice and data streams.

In some applications the exact timings of all observed events are known and in oth-

ers data are accumulated over fixed intervals. In the latter situation the observed

data often appear as either a count of the number of events in each interval or a

binary indication for each interval as to whether there were no events or at least

one event.

MMPP parameters can be fitted to data by matching certain theoretical moments

to those observed (see Fischer and Meier-Hellstern (1992) and references therein).

However, it is possible to calculate the likelihood of arrival data for an MMPP (for

example Asmussen (2000); see also Section 2.4). Ryden (1996) summarises several

likelihood approaches.

Here we consider Bayesian analysis and focus on exploring the posterior distri-

bution via Markov chain Monte Carlo (MCMC). Metropolis-Hastings algorithms



CHAPTER 2. BAYESIAN ANALYSIS OF THE MMPP 33

(e.g. Gilks et al., 1996) provide a standard mechanism for Bayesian inference about

parameters when the likelihood is computable. This approach is employed for ex-

ample by Kou et al. (2005). Alternatively an approximate Gibbs sampler has been

developed in Scott (1999) and Scott and Smyth (2003). This Gibbs sampler is

only applicable to event-time data, and restricts the possible transitions of the

underlying Markov chain. The approximation is based on requiring that certain

transitions of the underlying chain only occur at event-times (see Section 2.5 for

further details). For the examples considered in Scott (1999) and Scott and Smyth

(2003) this approximate Gibbs sampler is very efficient.

The key presentation of this chapter is an exact Gibbs sampler which alternately

samples from the true conditional distribution of the hidden chain given the param-

eters and the data and then the conditional distribution of the parameters given

the hidden chain and the data (Section 2.5). As background to this (Section 2.2)

we detail the forward-backward algorithm (Baum et al., 1970). We then exhibit

(Section 2.3) a generic algorithm for sampling from the exact distribution of a con-

tinuous time Markov chain over a known interval given the start and end states.

This is an extension of the technique developed in Fearnhead and Meligkotsidou

(2004) and is key to the construction of our Gibbs sampler.

Section 2.4 reviews the derivation of the likelihood function for MMPP’s for the

data-formats mentioned above (exact timings, and either interval counts or binary

indicators). The likelihood function is necessary for Metropolis-Hastings inference,

and the extended state spaces introduced in its derivation are fundamental to the

construction of our Gibbs sampler.
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Section 2.5 details the Gibbs sampler itself for all three data formats. Priors are

discussed, as is the use of the Gibbs sampler for model choice. Finally, limiting

forms of the observed information matrix are derived and used to assess when the

Gibbs sampler is likely to be most efficient and to suggest possible reparameterisa-

tions for Metropolis-Hastings schemes. There then follows (Section 2.6) a detailed

comparison between the Gibbs sampler and various Metropolis-Hastings random

walk algorithms for simulated event time data on two-dimensional MMPP’s. Here

we find that the Gibbs sampler is more efficient than many of the Metropolis-

Hastings algorithms tested, sometimes by an order of magnitude. In Section 2.7

we apply the Gibbs sampler to choose between one, two, and three dimensional

models to explain variations in the frequency of occurence of the Chi site in E.coli

DNA. One advantage of the the Gibbs sampler is that it allows us to sample from

the exact conditional distribution of the underlying Markov chain given the data,

and this allows us to identify regions of high and low Chi site intensity. The chapter

concludes in Section 2.8 with a discussion.

2.2 The forward-backward algorithm

The forward-backward algorithm (Baum et al., 1970) applies to any discretely

observed Hidden Markov Model (HMM) and allows sampling of the state of the

hidden chain at the observation times given the states at the start and end of the

observation window. The algorithm is easily extended to the case where there is a

prior distribution on the initial state and no knowledge of the end state of the chain.

We first describe a general HMM. Let an unobserved (discrete or continuous time)
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Markov chain evolve over a d-dimensional state space. We observe a second pro-

cess over a window [0, tobs] at specific times t′1, . . . , t
′
n. Suppose that the value of

the observed process at time t′k is dk, and define d := (d1, . . . , dn)
t. For notational

convenience define t′0 = 0, t′n+1 = tobs and t′ = (t′0, . . . , t
′
n+1). Also write sk for the

state of the unobserved Markov chain at time t′k. The likelihood of the observed

process depends on the state of the hidden process via a likelihood vector l(k) with

k = 1, . . . , n where l
(k)
i := P (dk|Sk = i). From this define a likelihood matrix

L(k) = diag(l(k)).

Let T(k) be the kth transition matrix of the Markov chain (i.e. T
(k)
ij is the probabil-

ity that the unobserved process is in state j just before t′k given that it is in state

i at t′k−1).

We define probability matrices

A(n+1)
s,sn+1

= P (sn+1|sn = s)

A(k)
s,sn+1

= P (dk, . . . , dn, sn+1|sk−1 = s) (0 < k ≤ n)

And note that

P (dk, . . . , dn, sn+1|sk−1) =

d
∑

sk=1

P (sk|sk−1)P (dk|sk)P (dk+1, . . . , dn, sn+1|sk)

Therefore the matrices may be calculated via a backwards recursion

A(n+1) = T(n+1)

A(k) = T(k)L(k)A(k+1) (0 < k ≤ n)

These matrices accumulate information about the chain through the data. The

final accumulation step creates A(0), where A
(0)
s0,sn+1 = P (d, sn+1|s0) is proportional
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to the likelihood of the observed data given the start and end states.

Using the Markov property we therefore have

P (Sk = s| d, sk−1, sn+1) = P (Sk = s| dk, . . . , dn, sk−1, sn+1)

=
T

(k)
sk−1,s l

(k)
s A

(k+1)
s,sn+1

A
(k)
sk−1,sn+1

(2.1)

Using (2.1) we may proceed forwards through the observation times t′1, . . . t
′
n, simu-

lating the state at each observation point in turn. This algorithm is often presented

in the equivalent formulation of a forwards accumulation of information and a back-

wards simulation step through the observation times.

If the start and end states of the chain are unknown, but a prior distribution µ

on the state of the hidden process is provided then with a slight adjustment to the

algorithm we may simulate the states at the start and end times of the chain as

well as at the observation times.

The start state is simulated from

P (S0 = s|d) =
µs [A(1)1]s
µt A(1)1

(2.2)

where 1 is the d-dimensional vector of ones.

The state sk (k > 0) is then simulated from

P (Sk = s|d, sk−1) =
T

(k)
sk−1,s l

(k)
s [A(k+1)1]s

[A(k)1]sk−1

(2.3)

The observation times in a Markov Modulated Poisson Process correspond to actual

events from the observed Poisson process. Therefore not only do the observations
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contain information about the state of the hidden chain, but so do the intervals

between observations, since these contain no events. In Section 2.4 we derive

likelihoods through accumulation steps modified to take this into account. In a

similar way we can use the forward-backward algorithm to simulate the state of

the hidden chain at observation times for the first stage of our Gibbs sampler.

The second stage of the Gibbs sampler simulates a realisation from the exact

distribution of the full underlying Markov chain conditional on the data. This

is more challenging and relies on a technique for simulating a realisation from a

continuous time Markov chain over an interval given the start and end states.

2.3 Simulating a continuous time Markov chain

over an interval given the start and end states

Let continuous time Markov chain Wt have generator matrix G, and let it start the

interval [0, t] in state s0 and finish in state st. We describe a method for simulating

from the exact conditional distribution of the chain given the start and end states.

The behaviour of Wt on entering state i until leaving that state can be thought of

in terms of a Poisson process of rate ρi := −gii and a set of transition probabilities

pij = gij/ρi (i 6= j)

= 0 (i = j)

The Poisson process is started as soon as the chain enters state i; at the first event

from the process the chain changes to a state j determined at random using the

transition probabilities for state i. A new Poisson process is then initiated with
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intensity corresponding to the new state.

An alternative formulation uses events from a single dominating Poisson process Ut

to determine when transitions may occur; crucially the intensity ρ of the Poisson

process is independent of the chain state. We call events in this dominating Pois-

son process “U-events”. Probabilities for the various state changes are presented

in the form of a transition matrix M.

The intensity of the dominating process must necessarily be at least as high as

the highest (in modulus) diagonal element of G. With ρ = max ρi the stochastic

transition matrix for the discrete time sequence of states at “U-events” is

M :=
1

ρ
G + I

For any state i with ρi < ρ, M specifies a non-zero probability of no change in the

state, so that the rate of events that change the state is ρi. Considering an interval

of length t straightforward expansion of the transition matrix for the interval gives

eGt = e−ρIteρMt =
∞
∑

r=0

e−ρt (ρt)
r

r!
Mr (2.4)

The (i, j)th element of the left hand side is P (Wt = j|W0 = i). If we define NU(t)

as the number of U -events over the interval of length t then the (i, j)th element on

right hand side can be interpreted as

∞
∑

r=0

P (NU(t) = r) P (Wt = j|W0 = i, NU(t) = r)

Thus conditional on start and end states s0 and st, the distribution of the number

of dominating U -events is given by

P (NU(t) = r) =
e−ρt (ρt)r

r!
[Mr]s0,st

[eGt]s0,st

(2.5)
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We have used a single dominating Poisson process with fixed intensity independent

of the chain state. Therefore conditional on the number of dominating events, the

positions of these events and the state changes that occur at the events are inde-

pendent of each other and may be simulated separately. Furthermore, since Ut is

a simple Poisson process the U -events are distributed uniformly over the interval

[0, t].

Suppose that r dominating U -events are simulated at times t∗1, . . . , t
∗
r , and let these

correspond to (possible) changes of state of Wt to s∗1, . . . , s
∗
r. For convenience we

define t∗0 := 0 and s∗0 := s0.

Now

P (Wt = st|W0 = s0) = [Mr]s0,st

The start and end state for each interval are assumed known, and so we employ

the forward-backward algorithm of Section 2.2 with L(k) = I and T(k) = M to

simulate the state change at each U -event

P (Wt∗j
= s|Wt∗j−1

= s∗j−1,Wt = st) =
[M]s∗j−1,s[M

r−j ]s,st

[Mr−j+1]s∗j−1,st

(j = 1, . . . , r) (2.6)

Our algorithm then becomes

(i) Simulate the number of dominating events using (2.5).

(ii) Simulate the position of each dominating event from a uniform distribution

over the interval [0,t].

(iii) Simulate the state changes at the dominating events using (2.6).
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2.4 Likelihood for MMPP’s

We now focus exclusively on MMPP’s. Let a (hidden) continuous-time Markov

chain Xt on state space {1, . . . , d} have generator matrix Q and stationary distri-

bution ν.

An MMPP is a Poisson process Yt whose intensity is λi when Xt = i, but in

all other ways is evolving independently of Xt. We write λ := (λ1, . . . , λd)
t and

Λ := diag(λ).

We are interested in Bayesian inference about λ,Q, and Xt. Here we review deriva-

tions of likelihood for the three different data types mentioned in the introduction.

Likelihoods are required for inference about λ and Q using Metropolis-Hastings

schemes (see Section 2.5). The accumulation steps and extended state spaces used

here are essential also for our Gibbs sampler which allows inference for λ,Q, and

Xt is detailed in section 2.5.1.

The Y process is (fully or partially) observed over an interval [0, tobs] with tobs

known and fixed in advance. We employ the symbol 1 for the matrix or (horizon-

tal or vertical) vector all of whose elements are one, and similarly 0 is a matrix or

vector all of whose elements are zero.

We are interested in inference for three commonly encountered data formats

D1 Exact times are recorded for each of the n observed events (see Kou et al.

(2005), and Scott and Smyth (2003) for example uses of this data format).
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D2 A fixed series of n+ 1 contiguous accumulation intervals of length ti is used,

and associated with the ith interval is a binary indicator bi which is zero if

there are no Y -events over the interval and one otherwise (see for example

Davison and Ramesh, 1996).

D3 A fixed series of n+ 1 contiguous accumulation intervals of length ti is used,

and associated with the ith interval is a count ci of the number of Y -events

over the interval (see for example Burzykowski et al., 2003).

In each case it is possible to derive the likelihood function. We summarise the three

derivations; for more details see Asmussen (2000), Davison and Ramesh (1996), and

Burzykowski et al. (2003) respectively.

2.4.1 Likelihood for event-time data

We first consider the data format D1. We write NY (t) for the number of Y -events

in the interval [0, t], so that NY (0) = 0 and NY (tobs) = n, the total number of

events. For notational convenience we set t′0 = 0, t′n+1 = tobs and let t′1, . . . , t
′
n be

the event times for the n events. Define tk = t′k − t′k−1, k = 1, . . . , n + 1; these are

respectively the time from the start of the observation period to the first event, the

inter-event times, and the time from the last event until the end of the observation

period. We define t := (t1, . . . , tn+1)
t.

We first derive a form for

P
(0)
ij (t) := P (there are no Y events in (0, t) and Xt = j | X0 = i)

We define a meta-Markov process Wt on an extended state space {1, . . . , d, 1∗},

and let Wt combine Xt and Yt as follows: Wt matches Xt exactly up until just
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before the first Y event. At the first such event W moves to the absorbing state

1∗. So if the first Y -event occurs at time t′

for t < t′, Wt = Xt

for t ≥ t′, Wt = 1∗

The generator matrix for Wt is

Gw =





Q−Λ λ

0 0



 (2.7)

So the transition matrix at time t is

eGwt =





e(Q−Λ)t (Q−Λ)−1(e(Q−Λ)t − I)λ

0 1



 (2.8)

From the definition of W we see that

P
(0)
ij (t) = [e(Q−Λ)t]ij (2.9)

So the likelihood of the observed data, and that the chain ends in state j given

that it starts in state i is the (i, j)th element of

e(Q−Λ)t1Λe(Q−Λ)t2Λ . . .Λe(Q−Λ)tn+1

This is the A(0) matrix of the forward-backward algorithm as described in Section

2.2. Assuming that the chain starts in its stationary distribution, the likelihood of

the observed data is therefore

L(Q,Λ, t) = νte(Q−Λ)t1Λ . . . e(Q−Λ)tnΛe(Q−Λ)tn+11 (2.10)
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2.4.2 Likelihood for accumulation interval formats

We now consider data formats D2 and D3 and for simplicity assume all the interval

lengths to be equal (ti = t∗ , i = 1, . . . , n+ 1). Extension to the more general case

is straightforward.

Define

P
(s)
ij = P (there are s Y -events over (0, t∗) and Xt∗ = j|X0 = i)]

and

P ij = P (there is at least one Y -event over (0, t∗) and Xt∗ = j|X0 = i)]

With bi as the binary indicator for at least one event in the ith interval, the likeli-

hood for D2 is therefore

νt

(

n+1
∏

i=1

P(0)1−bi
P bi

)

1

and with count ci of the number of events for each interval the likelihood for D3 is

νt

(

n+1
∏

i=1

P(ci)

)

1

P(0) is given by (2.9) and so it remains to calculate the matrices P(c) (c > 0), and P.

Since the probability of finishing interval (0, t∗) in state j given starting state i is

the (i, j)th element of eQt∗ , we see that

P = eQt∗ − e(Q−Λ)t∗

For format D3 define cmax = max ci and create a new meta-process Vt on state

space S = (1(0), . . . , d(0), 1(1), . . . d(1), . . . , 1(cmax), . . . , d(cmax), 1∗). If the number of



CHAPTER 2. BAYESIAN ANALYSIS OF THE MMPP 44

Y -events observed up until time t in the accumulation interval containing t is

N∗
Y (t), then for N∗

Y (t) ≤ cmax Vt = X
(N∗

Y (t))
t and otherwise Vt = 1∗. For example if

at time t, the hidden process is in state 3 and there have been 7 events so far in

the accumulation interval containing t, then the meta-process Vt is in state 3(7)

The generator matrix for Vt is

Gv =































Q−Λ Λ 0 . . . 0 0

0 Q−Λ Λ . . . 0 0

0 0 Q−Λ . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 . . . Q−Λ λ

0 0 0 . . . 0 0































(2.11)

and the block of square matrices comprising of the top d rows of eGvt∗ gives the

(d× d) conditional transition matrices P(r).

2.5 Bayesian approach

We are interested in Bayesian analysis of MMPP’s. In the Bayesian framework,

beliefs about the parameters before examining the data are collected into a prior

distribution on the parameter vector. This is then modified by the data to produce

a posterior parameter distribution.

Metropolis-Hasting algorithms (see Section 1.3.1.1) provide one possible Bayesian

approach to inference for parameters of an MMPP, and this approach is adopted

by Kou et al. (2005) for example. The prior is multiplied by the likelihood for
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a specific parameter vector to obtain the posterior distribution up to a constant

of proportionality. However all Metropolis-Hastings algorithms need to be tuned,

and this can be time consuming.

Scott (1999) describes an approximate Gibbs sampler for event-time observed data

on two-state MMPP’s. This was mentioned briefly in Section 2.1, and is now ex-

panded upon. By assuming that transitions from state-1 to state-2 occur only at

event times the possible behaviours of the chain over each closed inter-event in-

terval are divided into 5 classes. These classes are specified in terms of the start

and end states of the chain and whether or not there is a state change over the

interval. The forward-backward algorithm is then applied to sample from the exact

distribution of these classes for each interval in turn.

For each interval, given the chain-class, both the state at the end of each event

interval and the amount of time spent in state 1 over the interval are condition-

ally independent of each other and of the values for previous inter-event intervals.

These are sampled, together with the initial state, for the entire chain. With con-

jugate Gamma priors, the sampled data provide sufficient statistics for draws of a

new set of parameter values.

Scott and Smyth (2003) generalise this process to a d-dimensional Markov Poisson

cascade. Here a Markov chain modulates an ordered superposition of Poisson pro-

cesses. Each Poisson process may only be active if all “lower” processes are also

active. In a similar manner to the previous paper it is assumed that each activa-

tion and deactivation step is associated with an event from the “higher” process.
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Several deactivations may occur simultaneously, corresponding to just one event,

thus the chain may transition from a given state to any “lower” state; however

the chain may only transition to a higher state via all intermediate states. The

formulation again allows a draw from an underlying Markov chain, and at the same

time stops any activation and subsequent deactivation with no associated event.

We aim to demonstrate a Gibbs sampler that samples from the underlying hidden

chain Xt and then from the parameter vector given the underlying chain. Unlike

the algorithms of Scott (1999) and Scott and Smyth (2003) our solution contains

no constraint forcing certain state changes to occur at observed event times, and

it allows all possible transitions between states. Our Gibbs sampler may also be

applied to all three of the data formats described in Section 2.4

As a shorthand we write the state of the chain at event-times and at the start and

end of the observation period as Si = Xt′i
. The distribution of the new parameter

vector depends on the underlying chain through the starting state (νs0) and three

further sufficient statistics, which we now define.

We write t̃i for the total time spent in state i by the hidden chain, rij for the

number of times the chain transitions from state i to state j (rii = 0 ∀i), and ni for

the number of Y -events that occur while the chain is in state i. We correspondingly

define t̃ = (t̃1, . . . , t̃d)
t, n = (n1, . . . , nd)

t, and R as the matrix with elements rij .
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2.5.1 Gibbs sampler

Our Gibbs sampler acts on augmented state-space {λ,Q, Xt}, and each iteration

has 3 distinct stages:

1. Given the parameter values (λ,Q) use the second form of the the forward-

backward algorithm, specified by (2.2) and (2.3) in Section 2.2), to simulate

the state of the hidden chain Xt at the start and end of the observation

interval (t′0 = 0 and tobs = t′n+1) and at a set of time points t′1, . . . , t
′
n. For

data format D1 t′1, . . . , t
′
n correspond to event times; for formats D2 and D3

t′1, . . . , t
′
n+1 are the end-points of accumulation intervals.

2. Given the parameter values and the finite set of states produced in stage 1,

apply the technique of Section 2.3 to each interval in turn to simulate the

full underlying hidden chain Xt from it’s exact conditional distribution.

3. Simulate a new set of parameter values.

We now describe how each of the stages may be implemented for each of the three

data formats.

Data format D1

For stage 1 we apply the forward-backward algorithm of section 2.2 modified to

take account of the fact that observation times t′1, . . . , t
′
n correspond exactly to

events of the observed process and that therefore there are no Y -events between

observation times. For the kth interval, which has width tk = t′k − t′k−1, the tran-

sition matrix is T(k) = e(Q−Λ)tk , and the likelihood vector for the kth observation
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point is l(k) = λ.

This process is exactly equivalent to straightforward application of the second form

of the forward-backward algorithm to the meta-process Wt of section 2.4.1 on the

extended state space {1, . . . , d, 1∗}, but replacing the d-dimensional vector 1 with

the d+ 1-dimensional vector (1, . . . , 1, 0)t. For the kth interval, the transition ma-

trix is now T(k) = eGwtk , where Gw is defined in (2.7) and eGwt is given explicitly

in (2.8). The likelihood vector is l(k) = (λ, 0)t.

Stage 2 applies the technique of Section 2.3 directly to extended state space

{1, . . . , d, 1∗} with generator matrix Gw.

Figure 2.1 shows the first two stages for data format D1.

Stage 3 is especially simple if conjugate gamma priors are used for the parame-

ters since the likelihood for the full data (observed data and complete underlying

Markov chain) is

L(xt, t|Q,λ) ∝ νs0 ×
d
∏

i=1

∏

j 6=i

(

q
rij

ij e
−qij t̃i

)

×
d
∏

i=1

λni
si
e−λi t̃i (2.12)

Thus independent priors λi ∼ Gam(αi, βi) produce independent posteriors

λi ∼ Gam(αi + ni, βi + t̃i) (2.13)

Were it not for the factor νs0, which is itself a function of Q, choosing independent

priors qij ∼ Gam(γij , δij) (j 6= i) would lead to independent posteriors

qij ∼ Gam(γij + rij , δij + t̃i) (2.14)
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2 1
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1 1(a)

(b)

(c)

Figure 2.1: The Gibbs sampler (a) first simulates the chain state at observation times

and the start and end time; for each interval it then simulates (b) the number of dom-

inating events and their positions, and finally (c) the state changes that may or may

not occur at these dominating events. The figure applies to a two-state chain with

λ2 + q21 > λ1 + q12 .

However since νs0 is bounded between 0 and 1 we may employ rejection sampling,

simulating Q from (2.14) and accepting with probability νs0(Q).

Data format D2

For stage 1 we apply the second form of the forward-backward algorithm with

likelihood vector l(k) = 1 and transition matrix dependent on the binary indicator

(bk) for the interval

T(k) = P(0)1−bk
P bk

For stage 2 we first consider the meta-processW t on state space {1, . . . , d, 1∗, . . . , d∗}

with W t = Xt when Yt = 0 and W t = X∗
t otherwise.
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This has generator matrix

Gw =





Q−Λ Λ

0∗ Q





For a given interval suppose that we have simulated Xt starting in state s0 and

ending state s1. On the extended state space this corresponds to starting in state

s0 and finishing in state s1 if there have been no events over the interval, otherwise

finishing in s∗1 . We simulate the underlying chain from the algorithm of section

2.3. This also supplies the time of the first event in the interval, which we use for

simulating the new parameters in stage 3.

In stage 3, for accumulation interval i define t∗ij as the amount of time that the

hidden chain spends in state j between the start of the interval and either the

time of the first event (if there is a first event) or the end of the interval; write

t∗·j =
∑

i t
∗
ij. Let n∗

j be the number of intervals for which the chain is in state j at

the first event of the interval. Then the likelihood is

L(xt, t|Q,λ) ∝ νs0 ×
d
∏

i=1

∏

j 6=i

(

q
rij

ij e
−qij t̃i

)

×
d
∏

j=1

λ
n∗

j

j e
−λjt∗·j

We then proceed as with data format D1.

Data format D3

For this data format we consider the meta-process Vt on extended state space

{1(0), . . . , d(0), 1(1), . . . d(1), . . . , 1(cmax), . . . , d(cmax), 1∗} as defined in section 2.4.2.

For the application of the forward-backward algorithm in stage 1, the transition

matrices are T(k) = P(ck) and the likelihood vectors are l(k) = 1. For stage 2, in
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simulating from the exact distribution of the underlying chain for an interval where

the start state is s0, the end state is s1 and there are ck events observed we use the

generator matrix Gv as defined in (2.11) with start state s0 but end state s
(ck)
1 .

The algorithm also simulates from the exact distribution of the times at which each

of the ck events occurs over the interval, therefore we may perform stage 3 exactly

as for data format D1.

2.5.2 Choice of prior

As discussed in Section 1.2.1, the likelihood of an MMPP is bounded below as

certain combinations of parameters approach 0 or ∞ and care must be taken in

the choice of priors. That improper priors are inappropriate may also be seen from

the behaviour of our Gibbs sampler. For example, there is a non-zero probability

that the Gibbs sampler will simulate a chain that never enters a particular state

s. The conditional posterior distribution of λs is then identical to the prior.

In Section 2.5.1 we saw that the Gibbs sampler is simplest to implement when pa-

rameters have independent Gamma priors. With little prior knowledge we might be

tempted to apply priors with a low ratio of mean to standard-deviation, and there-

fore a shape parameter less than one. However such a density function approaches

infinity as the argument approaches zero, and since the likelihood is bounded below

the posterior distribution for each parameter contains a (probably unintended) in-

finite mode at zero. The vaguest “safe” prior is therefore exponentially distributed.

Note also that Gamma priors combined with a likelihood that is bounded below

as some parameters tend to infinity (with others fixed) will produce posterior tails
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that are heavier than Gaussian.

To place priors in context, a Gam(αi, βi) prior for λi is equivalent to having previ-

ously observed the chain in state i for βi seconds and noted αi Y -events. Similarly

a Gam(γi,j, δi,j) prior on qi,j is equivalent to having previously observed the chain

in state i for δi,j seconds (in total) and noted γi,j jumps from state i to state j.

It might seem odd to have somehow managed to observed the chain in state i

for different time periods depending on the states jumped to. If, as seems more

intuitive, δi,j = δi ∀i, j then we may consider priors for the qi,j in terms of indepen-

dent gamma priors for the modulus of each of the diagonal elements ρi = −qi,i =
∑

j 6=i qi,j and a Dirichlet prior for fi := (qi,1/ρi, . . . , qi,i−1/ρi, qi,i+1/ρi, . . . , qi,d/ρi).

ρi ∼ Gam

(

∑

j 6=i

γij , δi

)

fi ∼ Dir(γi,1, . . . , γi,i−1, γi,i+1, . . . , γi,d)

The parameter ρi governs the (exponentially distributed) time we expect Xt to

remain in state i after arriving, and about which we might have a more intuitive

feel. We would (for example) hope that the residence time is likely to be less than

tobs since if the chain remains in a single state for the entire observation period

there is little justification in using an MMPP to model the data. Similarly we

might expect ρi not to be several orders of magnitude larger than λi since we are

then either in limiting case (3) of Section 1.2.1, or the state has no impact on the

observed data and is redundant. From these restrictions it seems more intuitive to

think of the prior for Q in terms of gamma/Dirichlet combinations.
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We finally note that truncating the priors for ρi or λi does not affect their conjugacy

with the full likelihood. Flat priors truncated within set limits such as extremes

from the previous paragraph may therefore be used.

2.5.3 Model choice

2.5.3.1 Theory for model choice

We wish to compare models using posterior model probabilities

Pi =
P (Mi|t)

∑r
j=1 P (Mj|t)

where M1, . . . ,Mr are the models under consideration. We will assume uniform

prior model probabilities, which leads to

Pi =
P (t|Mi)

∑r
j=1 P (t|Mj)

and we must therefore ascertain the probability of the observed data for each model.

For a given model we denote the prior and posterior distributions of the parameters

by π(·) and P (·) respectively. With likelihood f(·)

P (t) =
f(t|θ)π(θ)

P (θ|t)

Chib (1995) considers estimating the posterior probability of the data from the

output of a Gibbs sampler which samples from the conditional distribution p(x|t, θ)

of hidden data x and then from the posterior distribution of the parameters given

the full data P (θ|t,x). With Gibbs sampler output {x(g)} for g = 1, . . . , G he

notes that an appropriate Monte Carlo estimator of P (θ|t) at θ∗ is

P̂ (θ∗|t) =
1

G

G
∑

g=1

P (θ∗|t,x(g))
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He therefore suggests estimating the marginal likelihood from

log P̂ (t) = log f(t|θ∗) + log π(θ∗)− log

(

1

G

G
∑

g=1

P (θ∗|t,x(g))

)

The arbitrary value θ∗ should be chosen close to the posterior mode to reduce the

variance of the estimator. By running the Gibbs sampler for several competing

models we may estimate the marginal probabilities for the data given each model

and hence the posterior model probabilities.

2.5.3.2 Implementation of model choice

For each realisation of the hidden chain Xt that is produced by the Gibbs sampler

we must calculate the posterior probability of θ∗ given the observed data and the

hidden chain.

From the expansion of the full-data likelihood (2.12), with independent gamma pri-

ors, the posterior λi’s follow independent gamma posteriors (2.13). However, when

multiplied by independent gamma priors (2.12) gives the posterior distribution of

Q as

P (Q|xt) ∝ νs0(Q)×
d
∏

i=1

∏

j 6=i

Gam(qij ; γij + rij, δij + t̃i) (2.15)

where Gam(x; a, b) is the density function of a gamma random variable with shape

parameter a and rate parameter b evaluated at x. The normalisation constant for

this density is not known and so we estimate it by Monte-Carlo integration. For

each realisation of the hidden chain we repeatedly sample Q from the distribution

of independent gammas that results from ignoring the factor νs0 in (2.15). For

each Q we calculate the stationary distribution ν and we find the mean (over the

samples) of the sth
0 components of this vector. This gives the inverse of the nor-
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malisation constant.

2.5.4 The information matrix

The observed Fisher information matrix at a particular point in parameter space

is the local curvature of the log-likelihood function at that point. Specifically, for

parameter θ and log-likelihood l(θ)

Vij = − ∂2l

∂θi∂θj

The information matrix may suggest reparameterisations for inference via Metropolis-

Hastings algorithms and it also impacts on the efficiency of the Gibbs sampler.

For analytical convenience, throughout this section we consider the observed in-

formation rather than its expectation. We will however be discussing observed

information matrices calculated from two different likelihoods:

V∗ the information matrix calculated from the likelihood for the (observed) event

time data.

V the information matrix calculated from the likelihood for the (observed) event

time data and the (hidden) underlying Markov chain

In this section these are referred to respectively as the observed information and

the complete (or full) information. We first obtain an intuition into variations in

the efficiency of our Gibbs sampler.

2.5.4.1 Efficiency of our Gibbs sampler algorithm

Louis (1982) showed that for hidden data problems, the observed and complete
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information are related as follows

V ∗
ij = ER[Vij]− (ER[UiUj]−ER[Ui]ER[Uj ])

where U is the score function for the full data, and ER[.] denotes expectation taken

over the distribution of the full data given the observed data.

Defining

CovR[Ui, Uj] := ER[UiUj ]− ER[Ui]ER[Uj ]

We write the equation more simply as

V ∗
ij = ER[Vij ]− CovR[Ui, Uj] (2.16)

Therefore, as would be expected, the more information the observed data contains

about the hidden chain, the smaller the second term and the closer observed in-

formation is to the complete information.

Sahu and Roberts (1999) investigated the geometric rate of convergence to sta-

tionarity of a Gibbs sampler on a Gaussian approximation to the joint posterior

distribution of the observed and missing data. They show that the geometric rate

of convergence of the Gibbs sampler is equal to the maximum eigenvalue of the

matrix

I−V∗V−1

Thus the closer the information from the observed data is to the full data informa-

tion, the more efficient the algorithm. Although the data from an MMPP is not in

general Gaussian, this relationship suggests that the efficiency of a Gibbs sampler

increases with the amount of information about the underlying chain extractable
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from the observed event data.

2.5.4.2 Reparameterisations and limiting forms for the information

matrix

As discussed in Section 1.3.3, a random walk Metropolis algorithm with partial up-

dates and parameters close to the eigenvectors of the Hessian at the log-posterior

mode is likely to be tuneable so that it is more efficient than a similar algorithm

with a different parameterisation. This strategy arose through consideration of

possibly very different scales along each principal axis of the target near the mode.

In situations where the data are much stronger than the prior we may reasonably

approximate the log-posterior curvature by the information matrix; the different

sizes of the principal axes then correspond to different amounts of information in

the data about the parameters that correspond to these axes.

If an MMPP with stationary distribution ν is observed over a reasonably long

time window compared to the convergence time of the hidden Markov chain then

components of ν give the approximate fractions of time that the chain spends

in each state. The overall average intensity of the MMPP is therefore approxi-

mately λ := νtλ. Since the overall number of events is observed, intuitively λ

should be reasonably well determined by the data compared to any other parame-

ter λ⊥ := ξtλ for any ξ with ξtν = 0. This reparameterisation motivates algorithm

M4 in Section 2.6.

We now describe two limiting forms for the information matrix, justifying the
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“default” parameterisation (λ,Q) and another possible reparameterisation, corre-

sponding to algorithm M5 in Section 2.6. The limiting approximations are rela-

tively easy to derive and are suitable when the data contain either almost complete

or very little information about the hidden chain.

1. The limit of complete knowledge of the underlying chain

From (2.12) the log-likelihood of the full (observed and hidden) data is

l(t, chain | λ,Q) = log νs0+

d
∑

i=1

∑

j 6=i

(

rij log qij − qij t̃i
)

+

d
∑

i=1

(

ni log λi − λsi
t̃i
)

Therefore the score for the λ parameters is

ui :=
∂l

∂λi

=
ni

λi

− t̃i (2.17)

and the observed Fisher information matrix for the λ parameters for the full

data is

Vij := − ∂2l

∂λi∂λj
=
ni

λ2
i

δij (2.18)

Similarly the score for the Q parameters is

∂l

∂qij
=

1

νs0

∂νs0

∂qij
+
rij

qij
− t̃i (2.19)

and the observed information is

− ∂2l

∂qij∂qkl
= − 1

νs0

∂2νs0

∂qij∂qkl
+

1

ν2
s0

∂νs0

∂qij

∂νs0

∂qkl
+
rij

q2
ij

δikδjl (2.20)

Second derivatives involving components of both λ and Q vanish.
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Equation 2.16 combined with (2.17)-(2.20) would give a form for the infor-

mation matrix for the observed data. For simplicity we just write down the

portion of the information matrix corresponding to components of λ. For all

i = 1, . . . , d and j = 1, . . . , d:

V ∗
ij = ER

[

Ni

λ2
i

]

δij − CovR

[

Ni

λi
− T̃i,

Nj

λj
− T̃j

]

(2.21)

If the observed data contains complete information about the chain then

CovR

[

Ni

λi
− T̃i,

Nj

λj
− T̃j

]

= 0

and so the Λ portion of the information matrix is diagonal

V ∗
ij = ER

[

Ni

λ2
i

]

δij =
ni

λ2
i

δij (2.22)

Non-diagonal terms in the Q portion of the information matrix that are not

associated with shrinking covariances consist of derivatives of the stationary

components. These do not increase as the observation window increases but

the sufficient statistics do, therefore for large enough observation windows

the full data information matrix is approximately diagonal; with the limit

corresponding to the simple form of the full data likelihood. This suggests

that with a large enough observation window, a tuned random walk Metropo-

lis algorithm with partial updates using the standard parameterisation will

be reasonably efficient.

2. The limit of no knowledge of the underlying chain
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We now investigate the two-dimensional MMPP with λ1 ≈ λ2. First repa-

rameterise, setting

λ := ν1λ1 + ν2λ2 and q := q12 + q21

where ν is the stationary distribution of the chain. Now Taylor expand the

likelihood in the relative intensity difference

δ := (λ2 − λ1)/λ

After some algebra (see Appendix A) we obtain

l(λ, q, δ, ν1) = n log λ−λtobs+2δ2ν1ν2f(λt, qt)+δ3ν1ν2(ν2−ν1)g(λt, qt)+O(δ4)

(2.23)

for some f(·, ·) and g(·, ·). At points where δ = 0 (which implies that the ob-

served data contains no information about the chain) the information matrix

V∗(λ, q, δ, ν1) has a particularly simple form, with all components zero apart

from

V ∗
λ,λ

=
n

λ
2 and V ∗

δ,δ = 4ν1ν2f(λt, qt)

The ν1 and q elements are zero since when λ1 = λ2 the two states are indis-

tinguishable and there can be no information on the chain in the observed

data. Further the MMPP has degenerated into a simple Poisson process,

which is reflected in the information on λ. The information matrix suggests

that when there is very little indication as to the behaviour of the underlying

chain a reparameterisation to λ and δ may be preferable. However, in (2.23)

all variations of O(δ2) are captured by the three parameters λ, q and

α := 2δ(ν1ν2)
1/2
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Thus for fixed λ and q and small enough δ, the parameter α should have a

bigger impact on the likelihood than

β := δ(ν2 − ν1)

Hence there might be more information about α than about β since with this

reparameterisation the log-likelihood is

l(λ, q, δ, ν1) = n log λ− λtobs +
1

2
α2f(λt, qt) +

1

4
α2βg(λt, qt) +O(δ4)

with both α and β being O(δ). This motivates algorithm M5 in Section 2.6.

We note that Davison and Ramesh (1996) reparameterise to λ, q, α2/4, and α2/4δ2

for their simulation study of information loss through collecting binary response

data over accumulation intervals rather than exact event times. However they cite

the only reason for this reparameterisation as its invariance to label-switching.

2.5.5 Implementation of the Gibbs sampler

Gibbs sampler code used in Sections 2.6 and 2.7 was written in C, as was the

code for all the Metropolis-Hastings algorithms used for comparison in Section

2.6. Matrix exponentials were calculated by truncating (2.4). The truncation was

set so that the error in each element of the matrix exponential was less than a

pre-determined tolerance (this was efficient as errors decay faster than geometri-

cally, and accurate as it involves summing only positive values). The sum can be

evaluated efficiently for all interval lengths by calculating and storing the required

powers of M once for each iteration. The powers of M are also then used when

simulating the underlying chain.
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2.6 Simulation studies

We aim to test how the performance of our Gibbs sampler depends on features of

the data, and to compare it with a number of random walk Metropolis-Hastings

algorithms. For simplicity and because this contains the most information, we

simulate data in event-time format.

Also for simplicity we confine ourselves to 2-dimensional MMPP’s, and mostly to

runs of tobs = 100 seconds with q12 = q21 = 1. We also examine longer data sets,

and data produced using asymmetric generators. For the core comparisons we

perform runs on several replicate data sets.

We choose all qij >> 1/tobs so that the hidden chain changes state many times

over the observation period, thus allowing a chance of inferring the values of the Q

parameters (provided the visits to the states are discernible). Similarly we choose

each λi >> qij so that most visits to a given state will contain several observed

events, making it easier to identify the separate states as well as infer λ. Thus in

our simulated data, the relative difference δ := (λ2 − λ1)/λ provides the main

guage as to ease of inference. The larger this difference the greater our knowledge

of the underlying chain, the easier it is to distinguish the parameters, and conse-

quently too, the lighter the posterior tails. Table 2.1 lists the core simulated data

sets; additional simulated data sets are detailed in Appendix B.

The many options for random walk algorithms include choices between

1. Partial and complete blocking of parameters. If the former, then sequential

updating, random scan, or some other updating method could be chosen.
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Dataset λ1 λ2 q12 q21 t replicates

S1 10 90 1 1 100 3

S2 10 30 1 1 100 3

S3 10 17 1 1 100 3

S4 10 13 1 1 100 3

Table 2.1: Parameter values for the core simulated data sets.

2. Performing the random walk on the posterior of the random variable Y, or

on the posterior of (log Y1, . . . , log Yd). As discussed in Section 1.3.1.1, these

are respectively known as additive and multiplicative random walks.

3. Different re-parameterisations of the components of λ and Q

4. Different distributions for the proposed jump.

It is found in Section 3.3.4.2 that the choice between Gaussian proposals and pro-

posals that decay exponentially does not signifiantly alter the optimum efficiency

on the targets examined. For this reason, and for simplicity we use Gaussian jump

proposals in all of our random walk simulations.

For random walk Metropolis updates the variances of the jump proposal distribu-

tion(s) must be tuned to achieve optimal mixing of the (MCMC) chain (see Section

1.3.3 and the whole of Chapter 3). In various situations in the limit as the number

of dimensions d → ∞ the optimum acceptance rate is approximately 0.234 (see

Sections 3.1.1 3.3.1.7, 3.3.1.8, and 3.3.2.2). Our block updates have d = 4 and

sequential updates d = 1, and for these dimensions the optimal acceptance rate

depends on both target and proposal. We find in Sections 3.3.4.1 and 3.3.4.2 that
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for a Gaussian jump proposal on a Gaussian target the optimal acceptance rates

for 1-dimensional and 4-dimensional updates are approximately 0.44 and 0.30 re-

spectively; but for a Gaussian target with an exponentially decaying proposal the

corresponding values are 0.31 and 0.24. In each case however, efficiency as a func-

tion of acceptance rate has a relatively flat mode, indicating that the exact choice

of acceptance rate is relatively unimportant provided that it is not too close to

zero or one . We choose to tune our random walk algorithms (approximately) to

the acceptance rate for the Gaussian, since although posteriors are not Gaussian,

close to a mode they may be approximated as such.

The chain is run for a reasonable number of iterations, until it appears to have

forgotten its starting position. Subsequent acceptance rates are examined and for

sequential updates we simply alter each parameter to give an acceptance rate hope-

fully closer to 0.44 and re-iterate the procedure. For block updates it is possible to

achieve an acceptance rate of 0.30 with jumps tuned approximately correctly for

only one parameter, and all other proposed jumps having variances smaller than

the optimal. In this case we must carefully increase the parameters re-iterating

many times until all have achieved their maximal value such that the acceptance

rate is still about 0.30.

Our main comparison is between the Gibbs sampler and a multiplicative sequen-

tial random walk (M1). We choose this latter firstly because we believe (Section

2.5.2) that posterior distributions contain heavy tails, and multiplicative random

walks are generally better at exploring heavy tails than additive random walks (see

Section 1.3.1.1). Tuning can be very time consuming and so we choose sequential
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updates since parameters may then be tuned individually.

We undertake comparisons with other random walk algorithms, the full list being

M1 The multiplicative sequential random walk, with all parameters updated in-

dividually.

M2 The additive sequential random walk, with all parameters updated individ-

ually.

M3 The block multiplicative random walk, with all parameters updated at once.

M4 An additive random walk with reparameterisation suggested in Section 2.5.4.2.

M5 A mixed multiplicative/additive random walk with reparameterisation sug-

gested in Section 2.5.4.2.

For algorithm M4, given Q (and hence ν) we perform a sequential update on

λ := νtλ. We then pick a random direction ξ perpendicular to ν and perform a

sequential update on ξtλ; for a d-dimensional MMPP this is equivalent to a block

update on the remaining d − 1 degrees of freedom in λ . Components of Q are

then updated sequentially. All updates are additive.

For algorithm M5 we use the reparameterisation (λ, q, α, β) as defined in Section

2.5.4.2. Parameters are updated sequentially, with multiplicative random walks

on λ, q and α and an additive random walk on β, since it may take negative val-

ues. The parameter α as originally defined may also take negative values and so

might not be suitable for a simple multiplicative random walk scheme. However

α > 0 corresponds to λ2 > λ1 which, as described later in this section, is exactly



CHAPTER 2. BAYESIAN ANALYSIS OF THE MMPP 66

0 5 10 15 20 25

0.
00

0.
05

0.
10

0.
15

              

−6 −4 −2 0 2

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

              

λ1 log10 q12

d
en

si
ty

d
en

si
ty

Figure 2.2: Density plots for λ1 and log10(q12) for 20 000 iterations of the Gibbs sampler

on replicate 1 of S4. Plots for the other two parameters are very similar due to frequent

label-switching.

the ordering we perform on the output from the standard parameterisation before

calculating ACT’s. We therefore simply choose a positive initial value for α.

We suspect (Section 2.5.2) that vague gamma priors with shape parameter less

than 1, might cause spurious modes close to the origin. To illustrate this we per-

form single runs of 20 000 iterations with the Gibbs sampler on S3 and S4 with

sensible prior means but shape parameter 0.1 . Figure 2.2 shows posterior den-

sities for (unordered) λ1 and log10(q12) from the Gibbs sampler run on the first

replicate of S4 with gamma prior means of λ1 = λ2 = n/tobs and q12 = q21 = 1, but

shape parameter 0.1.

As suspected there is a clear second mode for λ1 close to zero; the heavy tails for

log10(q12) indicate that q12 itself also has a large second mode very close to zero.
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For S3 results are similar but the second modes are less pronounced as the likeli-

hood tails off that much more quickly away from its two modes.

In our main comparisons for the Gibbs sampler and M1 we perform 100 000 itera-

tions on the first replicate of each data set, and 10 000 iterations on the second and

third replicates of S1-S4. For M2-M4 we perform 10 000 iterations on the first and

second replicates of S1-S4. Algorithm M5 is expected to perform well only when

λ1 ≈ λ2; we therefore treat this as a subsidiary investigation and simply perform

10 000 iterations on replicate 1 of S1-S4.

In the absence of further information it seems sensible to use the same prior distri-

butions for each state. In the above runs the prior for each parameter is exponential

with the mean for each q component always set to 1. The mean for each λ com-

ponent is n/tobs where n is the number of simulated events in the data set and tobs

is the observation period.

Since our priors are exchangeable and the likelihood of an MMPP is invariant un-

der permutation of states, so too is the joint posterior. The (MCMC) chain may

therefore be subject to label-switching (see Section 1.3.4.2). For label-switching to

occur on the posterior of a two-dimensional MMPP which has the two (symmetric)

modes reasonably well separated, the MCMC chain must pass through the region

between the two modes, which generally corresponds to a low posterior density.

The frequency of label-switching can therefore provide a heuristic indication of the

ability of the chain to explore areas away from the main posterior mass (e.g. Celeux

et al., 2000). Hence we place no restriction on our MCMC algorithms and allow
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label-switching to occur.

With frequent label-switching, estimated marginal posterior distributions for each

component will be very similar since they are sampled from the same (by symme-

try) overall distribution. For example in a two-dimensional MMPP, the estimated

posterior mean and variance for λ1 will be approximately the same as those for

λ2; similarly for q12 and q21. We wish to use the integrated autocorrelation time

(ACT) for each component as our main measure of the degree of mixing of that

component of an MCMC chain, but this too can be misleading in the presence

of label-switching. If a component mixes well within each posterior mode, and

occasionally switches between them, then the overall ACT may be higher for this

chain than for one that mixes less well and is confined to a single mode.

We overcome these two label-switching problems by (if necessary) permuting the

states in each parameter vector of the MCMC output so that λ1 ≤ λ2. This is

equivalent to using a joint prior distribution on λ1 and λ2 with this constraint

built in. An argument can be made (e.g. Celeux et al., 2000) for a more discern-

ing discrimination mechanism which takes into account the shape of the posterior

distribution. We first note that the particular technique used only makes a strong

difference in cases where there is significant mass between the symmetric modes.

Secondly, our main interest is in the ACT’s of the parameters as a measure of the

efficiency of a given algorithm and these will be compared for different algorithms

on the same posterior. Moreover different functionals of parameters will give dif-

ferent ACT’s so that there is no absolutely correct measure of efficiency in any

case. Ordering output according to λ1 and λ2 is a simple approach that nonethe-
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less lends the desired properties to our ACT’s. The ordering has been performed

in all ACT’s and qq plots shown for the standard parameter vector, but not for

trace plots or density plots.

Initial values for all of the above runs are the true parameter values, which are

known since the data is simulated. To investigate the tail behaviour of the Gibbs

sampler and each of algorithms M1-M4 we identify two tail excursions from the

main runs and perform three runs with each algorithm starting in each of these

two tails.

2.6.1 Accuracy

We wish to compare the efficiencies of the different algorithms using their ACT’s,

however (for example) an algorithm that poorly explores a heavy tail may have a

lower ACT than one that better explores the whole posterior. We therefore first

assess the accuracy of the sampling distributions of the different algorithms. Using

qq plots we visually compare the sampling distributions of the 100 000 iteration

runs of the Gibbs sampler and M1. We then compare the Gibbs sampler and al-

gorithms M1-M4 with a best estimate of the true posterior.

For runs S1, S2, there is no discernable difference between the sampling distribu-

tions of M1 and M2 (this is also the case for additional comparisons using datasets

simulated from the same λ but where (q12, q21) = (0.5, 2.0) or (2.0, 0.5)). With

such a strong difference between the λ’s it is relatively easy to discern the two

states of the hidden chain and so the posterior has relatively light tails, and both

algorithms can well explore the main posterior mass.
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For S3 and S4, there are two places where the distributions differ noticeably: S3

for large λ2 and S4 for small λ1. Figure 2.3 shows the plots for S3, along with

plots comparing the first 10 000 iterations of each run with iterations 11 000 to 100

000 of the exact same run. Since the ACT’s for either algorithm are all less than

100 these plots are effectively comparing two independent runs of each algorithm.

If an algorithm explores the posterior well, the two sampling distributions should

both be close to the true posterior and so the qq plots should be a straight line.

In general over all the S3 and S4 runs as well as over the additional runs with

different Q or longer tobs the Gibbs sampler has a better self-similarity than M1.

In particular for the two cases where the Gibbs and M1 qq plots differ strongly, it

is M1 that exhibits the poorer self-similarity.

We wish to compare the 10 000 iteration runs of all the algorithms against a “true

posterior”. In most cases it matters little whether we use output from the Gibbs

sampler or M1 to represent this true posterior, but (from the previous paragraph)

in the two cases where they disagree we are inclined to trust the output from the

100 000 iteration Gibbs sampler rather than from the M1 runs.

Figure 2.4 shows a comparison for the S4 data set between iterations 11 000 to 100

000 of the Gibbs sampler run with iterations 1-10 000 of the Gibbs sampler and

each of algorithms M1-M4; qq plots for algorithm M5 are given in Figure B.1. Each

algorithm (including M5) performs worse for this data set than for any other in

replicate 1. The plots illustrate two points that recur through all the comparisons:

1. Quantile positions compare reasonably with their confidence limits so there
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Figure 2.3: qq plots for runs of the Gibbs sampler and M1 on replicate 1 of S3. For each

parameter, plots compare the the first 10 000 iterations of the Gibbs sampler against

iterations 11 000 to 100 000, then the first 10 000 iterations of M1 against iterations 11

000 to 100 000, and finally all 100 000 iterations of M1 against the full 100 000 iterations

of the Gibbs sampler.
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Figure 2.4: qq plots for replicate 1 of S4, comparing the first 10 000 iterations of the

Gibbs sampler and of algorithm M1-M4 against iterations 11 000 - 100 000 of the Gibbs

sampler. Dashed lines are approximate 95% confidence limits obtained by repeated

sampling from iterations 11 000 to 100 000 of the Long Gibbs data; sample sizes were

10 000/ACT, which is the effective sample size of the data being compared to the Long

Gibbs run.
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is no reason to doubt the overall sampling accuracy of any algorithm

2. Both M2 and M4 appear to stick sometimes at relatively low qij values.

The slight overlap outside of the confidence limits for high λ2 and low q12 in algo-

rithm M5 is due to an excursion of about 40 iterations to λ2 ≈ 40 to 50, log10 q12 ≈

−5 to−4 << log10 q21; this also adversely affects the ACT’s, as discussed in Section

2.6.2.1.

The second point is confirmed by a cursory examination of the trace plots (not

shown, but see Figure 2.5 for similar behaviour) where over the 10 000 iterations

there are many instances of one or other of the Q parameters remaining unchanged

at a relatively low value for 20 or more iterations. This is because the chain is close

to a degenerate state similar to Case 2 in Section 1.2.1 of Chapter 1, where qij is

small, qji is O(1), λi ≈ n/tobs, but λj is far from the overall mean value. Additive

updates to qij will most of the time propose making it O(1), taking λ far from

n/tobs. The likelihood for such a state is low, and so the move is usually rejected.

We wish to examine the behaviour of the algorithms in the tails of the posterior

distribution, and therefore start the Gibbs sampler and each of algorithms M1-M4

at some low-probability point in parameter space. (As a subsidiary algorithm M5

has not been examined in the same detail as the other algorithms, however the

short excursion to high λ2 and low q12, mentioned earlier in this section, suggests

reasonable tail behaviour). It is unsatisfactory to simply pick a random point

far from the main mass as this might be of such low density that its vicinity is

in practice never visited by any of the algorithms, and the comparison would be

meaningless.
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Examining the output of our simulation study we identify two excursions where at

least one parameter is far from its modal value: the M4 run on replicate 2 of S3,

and the M2 run on replicate 1 of the additional data set with λ = (10, 13), q12 =

2.0, q21 = 0.5. We pick specific parameter vectors from these excursions as starting

points for our runs, and shall refer to these runs respectively as Excursions 1 and 2.

Runs for Excursion 1 start with λ1 = 13.9, λ2 = 4.4, q12 = 1.4, q21 = 9.2. The log-

likelihood at this point is 2158.4, compared with a modal log-likelihood of 2167.3.

Runs for Excursion 2 start with λ1 = 12.9, λ2 = 56.2, q12 = 0.00157, q21 = 0.1878.

The log-likelihood at this point is 1909.4, compared with a modal log-likelihood of

1912.2.

For Excursion 1 the log-likelihood gives a clear delineation between the tail and

the main mass, and so we use a cut-off value of 2163.3 (about a 50th of the modal

value), above which the algorithm is deemed to have joined the main posterior

mass. Excursion 2 is actually close to a region where the log-likelihood is approx-

imately 1911 but which is not part of the main posterior mass and is not in the

neighbourhood of the main posterior mode. The log-likelihood in this area appears

to stay always below 1911.7, whereas in the main mass it often exceeds this value.

Therefore we use 1911.7 as the cut-off value for Excursion 2.

For each excursion we perform 3 runs of each algorithm. Table 2.2 shows the

mean number of iterations taken to reach the main posterior mass. We note the
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Ex Gibbs M1 M2 M3 M4

1 28 21 84 143 113

2 4 53 279 132 38

Table 2.2: Mean number of iterations to find the main posterior mass for the 3 runs of

each algorithm in each of the two excursions.

consistently good performance of the Gibbs sampler, and that the multiplicative

sequential random walk (M1) appears to perform better than the additive sequen-

tial random walk (M2). Taking CPU times into account, with the Gibbs sampler

and the block multiplicative random walks respectively about 3 and 4 times faster

than the sequential random walks (see Section 2.6.2.1), the performance of the

Gibbs sampler is even more impressive, and those of the sequential and block mul-

tiplicative random walks are comparable.

The additive random walk performs so poorly in Excursion 2 as it takes a long

time for λ2 to reach sensible values, and (for reasons already noted) the algorithm

spends long periods with none of its proposed updates to q12 being accepted (Fig-

ure 2.5 shows the first 500 iterations of the first run for M2).

Due to our method of choosing the two excursions, the starting point for each is

necessarily a point where some algorithm performs poorly. It so happens that both

of the algorithms in question (M2 and M4) are additive random walks, and we have

therefore biassed our testing against additive random walks. A more complete set

of tail tests would find alternative tail starting points where the Gibbs sampler or

the multiplicative random walks perform poorly. Such points, however, are not
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obvious from our results.

2.6.2 Efficiency

We now compare efficiencies of the algorithms, mainly through estimated autocor-

relation times, but also, through label-switching.

2.6.2.1 Integrated autocorrelation time

The integrated autocorrelation time of a parameter gives the effective number of

consecutive realisations equivalent to one independent realisation of that param-

eter. Thus it provides a measure for direct comparison of efficiencies between

algorithms. However different algorithms take different amounts of time to pro-

duce a fresh realisation of the parameter vector. A more practical measure of

efficiency is therefore the time to produce a single (in effect) independent realisa-

tion of a parameter. The exact timing and CPU used should not be important so

we use timings relative to those of the Gibbs sampler. Our measure of efficiency is

therefore

ACTrel = ACT × time per iteration (algorithm)

time per iteration (Gibbs)

Lower values correspond to greater efficiency.

Timings relative to the Gibbs sampler are consistent at about 3.2 for (M1), 3.1

(M2), 0.8 (M3), 3.0 (M4), and 3.5 (M5) (see Table B.6). The most CPU intensive

operation is the forward-backward accumulation step used to calculate the likeli-

hood in (M1-M5) and to begin sampling the states at event times in the Gibbs

sampler. The Gibbs sampler and M3 apply this once per iteration, whereas M1,

M2, M4 and M5 apply it once per parameter.
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Different functions of a particular parameter will posses different ACT’s. Intuition

reinforced by the trace plots and qq plots of section 2.6.1 leads us to believe that

some of the algorithms behave poorly at low values of qij and this would not be

picked up if we simply examined the ACT’s of the parameters. We therefore use

the ACT’s of log(q12) and log(q21) instead.

We compare estimated relative autocorrelation times for the parameters λ1, λ2,

log q12 and log q21 with states ordered so that λ1 < λ2 for the first 10 000 iterations

in every run performed. Results for the core runs are shown in Table 2.3. Results

for additional runs are given in Appendix B.

There is a great deal of variability across parameters and replicates due to ran-

dom variation, as well as (inevitably) imperfect tuning of the random walk al-

gorithms. Further, different replicates are different datasets, and while simulated

from the same parameter values these will have different properties, especially when

δ := (λ2 − λ1)/λ is small.

Despite all the variability it is clear that the Gibbs sampler is more efficient than

the Metropolis-Hastings algorithms M1-M4 and more efficient than M5 on runs S1

and S2. The contrast in efficiency is most striking for S1 where the Gibbs sampler

is consistently at least an order of magnitude more efficient than any of the other

algorithms; for most of the other datasets the Gibbs sampler is at least twice as

efficient as random-walk algorithms M1-M4. However M5 performs simlarly to the

Gibbs sampler on S3 and arguably outperforms the Gibbs sampler on S4, the sce-
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Data Alg λ1 λ2 q12 q21

S1 Gibbs 1.2 1.2 1.4 1.4

M1 14.0 14.1 13.3 14.9

M2 13.5 12.9 15.3 12.8

M3 11.8 10.5 10.5 9.8

M4 7.9 82.4 14.3 14.8

M5 9.5 14.2 105.0 161.5

S2 Gibbs 4.2 3.3 5.8 6.0

M1 22.0 19.4 28.2 28.6

M2 19.1 20.6 29.6 27.3

M3 10.5 15.2 16.6 18.5

M4 12.5 25.7 27.4 25.1

M5 13.2 14.6 27.2 29.9

S3 Gibbs 24.2 18.3 33.3 23.6

M1 63.7 49.5 76.4 68.5

M2 101.5 84.8 104.6 73.3

M3 38.2 24.9 34.3 32.0

M4 74.8 55.2 85.2 72.1

M5 17.7 22.0 23.2 18.5

S4 Gibbs 32.2 28.9 35.5 53.0

M1 90.7 91.0 106.1 127.7

M2 99.6 130.0 110.9 155.4

M3 73.9 62.1 86.9 85.1

M4 76.1 94.2 109.3 109.9

M5 23.6 70.6 10.6 8.2

Table 2.3: ACTrel for replicate 1 of simulated data sets S1-S4.
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nario closest to that for which it was designed. A qualitatively similar pattern is

observed in all additional replicates (see Tables B.2, B.3, and B.4). In general the

Gibbs sampler appears to be the most efficient algorithm on most of the simulated

datasets we analysed. The only exceptions occur for datasets where the Poisson

intensities corresponding to the two different states of the chain are similar; in

these cases sometimes M5 is the most efficient of all the algorithms.

For S1 (and additional datasets with very different λ1 and λ2 - see Appendix B) the

reparameterisation M5 is very inefficient due to the poor mixing of the q parame-

ters. However for all other datasets the reparameterisation is at least as efficient

as any of the other sequential random-walks, and is often much more efficient than

these. Further investigation of the exploration of S4 by algorithm M5 showed that

the high ACTrel for λ2 is due to the short excursion to high λ2 and low q12 already

mentioned in Section 2.6.1.

The multiplicative sequential random walk (M1) does not appear to be any more

efficient than its additive counterpart (M2). We must recall though that the ACT

measures the efficiency of an algorithm at exploring the portion of the parameter

space that it actually explores. It does not penalise an algorithm that completely

misses a heavy tail for example, and we have already remarked that M1 appears

to explore heavy tails better than M2.

To assess the success of the reparameterisation M4 we compare the two additive

random walks. For data set S4, for 7 of the 8 ACT’s across the 2 replicates the

M4 reparameterisation performs better than M2, perhaps justifying the reparam-
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eterisation in this case. For parameter λ2 in both replicates of S1, M4 behaves

noticeably worse than M2 and in all other cases there is no clear difference be-

tween the performance of the two algorithms. The reparameterisation does not

produce the hoped for improvement in S3, nor in the additional replicates (see

Appendix B) similar to S3 except with tobs = 400 instead of 100. An explanation

for these results is presented in 2.6.3.

It is also noticeable that the ACT’s for all algorithms tend to increase with de-

creasing (λ2−λ1)/λ, and therefore heavier posterior tails, which are naturally more

slowly explored.

2.6.2.2 Label-switching

Label-switching can provide another indication of an algorithm’s ability to explore

areas of low mass. In many of the runs either the region between the modes is of

such low density that switching does not occur for any algorithm, or the modes are

so close together that all algorithms are effectively switching nearly every iteration.

However for replicates 1 and 2 of S3 and replicate 1 of S4 the spacing of the modes

allows a meaningful comparison of frequency of label-switching. Table 2.4 shows

the mean number of label switches per 10 000 iterations (recall that for replicate

1, both the Gibbs sampler and M1 were run for 100 000 iterations).

Overall it appears that M4 is best able to switch between the modes. Firstly

we note that λ is invariant to label-switches; secondly that for S3 and S4 we

will often find ν1 ≈ ν2 and so parameter λ⊥ := ν2λ1 − ν1λ2 (for which large

jumps are performed) is approximately parallel to the line (in λ-space) between
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Data Gibbs M1 M2 M3 M4

S3 rep. 1 20 12 1 2 9

S3 rep. 2 1 0 0 0 2

S4 rep. 1 20 15 13 9 97

Table 2.4: Mean number of label-switches per 10 000 iterations for replicates 1 and 2 of

S3 and replicate 1 of S4.

the two modes. The Gibbs sampler label-switches more frequently than any of the

Metropolis-Hastings random walks with the standard parameterisation.

2.6.3 Information matrices and efficiency

Some of the results in Section 2.6.2.1 may be explained through the properties

of the observed information matrices. As discussed in Section 2.5.4.2, the closer

this matrix is to diagonal with respect to a particular parameterisation, the more

efficient this parameterisation is likely to be under a (tuned) sequentially updat-

ing MCMC scheme. An approximate measure of the closeness of a (symmetric)

matrix to diagonality is obtained by examining the eigenvectors, normalised to be

of length 1. If the matrix is in fact diagonal then each of these will have a single

non-zero component, which will be of length 1. We examine the largest component

of each normalised eigenvector; the closeness of these to 1 gives a measure of the

closeness of the matrix to diagonal.

The information matrix for the observed data (V∗) was estimated at the posterior

mode by numerical differentiation of the log-likelihood for the observed data. Ta-

ble 2.5 shows the observed-data information matrices for replicate 1 of S1 and S4
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Data Information Matrix

S1



















5.33 −0.06 0.50 0.17

−0.06 0.47 −0.13 −0.21

0.50 0.013 51.62 −7.00

0.17 −0.21 −7.00 37.55



















S4



















1.71 0.20 4.19 −4.78

0.20 2.67 3.21 −7.35

4.19 3.22 16.27 −20.76

−4.78 −7.34 −20.76 34.64



















Table 2.5: Information matrices for S1 and S4 at the MLE, estimated by numerical

differentiation.

with repsect to the standard parameterisation (λ1, λ2, q12, q21). Table B.5 shows

the same matrices for replicate 1 of S2 and S3.

The information matrix for S1 is very close to diagonal, as predicted by (2.22), with

all eigenvectors having one component of at least 0.92. By contrast, the maximum

component for the eigenvectors of the information matrix for S4 range between

0.57 and 0.82. Information matrices for S2 and S3 lie between these extremes.

Information matrices were transformed to the following reparameterisations (see

Section 2.5.4.2 for notation): (λ1, λ2, ν1, q), (λ, δ, ν1, q), (λ, λ⊥, q12, q21) (correspond-

ing to algorithm M4), and (λ, q, α, β) (corresponding to M5). In each case we looked

at the maximum component of each (normalised) eigenvector. For S1 all param-

eterisations except M4 performed well; for M4 the maximum components were
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between 0.76 and 0.78, but for the eigenvectors of the other matrices all maximum

components were at least 0.92. The best parameterisation for S1 was (λ1, λ2, ν1, q),

with all maximum components > 0.999. For S2, S3, and S4 the best parameteri-

sation was (λ, q, α, β) with all maximum components at least 0.98.

The success of the (λ, q, α, β) reparameterisation for S2 (and even for S1) is per-

haps surprising as it was suggested by an expansion valid for λ1 ≈ λ2. The results

indicate that this might be a good reparameterisation over a broad range of data

information on the hidden chain. Q parameters might be explored more efficiently

if the multiplicatice random walk could somehow be worked into updates for β as

well as α.

The approximately diagonal nature of the λ-components of the information ma-

trices of S1 and S2 also provides insight into the mixing properties of M4 for these

data sets. The reparameterisation of M4 has λ = ν1λ1+ν2λ2 and λ⊥ = ν2λ1−ν1λ2.

However for S1 and S2 we have q21 ≈ q12 and so ν1 ≈ ν2 ≈ 1/2; the new parameters

are at approximately 45 degrees to the optimum and the best random walk will

propose roughly equal scaling for both parameters, constrained by the parameter

for which there is most information: the smaller parameter, λ1. Therefore λ2 will

be explored less efficiently and the ACT’s will be higher, as found in Section 2.6.2.1.
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2.7 Analysis Chi site data for E.coli

2.7.1 Background and the E.coli data

In recent years there has been an explosion in the amount of data describing both

the genomes of different organisms, and the biological processes that effect the

evolution of these genomes. There is much current interest in understanding the

function of different features of the genome and what affects the biological processes

such as mutation and recombination. One approach to learning about these is via

genome segmentation (e.g. Li et al., 2002): partitioning a genome into regions that

are homogeneous in terms of some characteristic (e.g GC content), and then look-

ing for correlations between this characteristic and either another characteristic,

or a biological process of interest. For example regions with high recombination

rates are known to correlate with regions of high GC content (Kong et al., 2002)

which has led to various possible explanations of how recombination hotspots may

have evolved Eyrie-Walker and Hurst (2001); Marais (2003); Galtier et al. (2001).

Here we consider segmentation of a bacterial genome based on the rate of occurence

of a particular DNA motif - called the Chi site. The Chi site is a motif of 8 base

pairs: GCTGGTGG. It is of interest because it stimulates DNA repair by homol-

ogous recombination (Gruss and Michel, 2001), so the occurence of Chi sites has

been conjectured to be related to recombination hotspots.

Our data is for E.coli DNA and consists of the position (in bases) of Chi sites

along the genome. Figure 2.6 shows a schematic of the circular double stranded

DNA genome of E.coli, with the two strands represented by the inner and outer
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laggingleading

T O

Figure 2.6: Schematic of the leading and lagging strands on the inner and outer rings

of the E.coli genome split by the replication origin (O) and terminus (T), together with

the direction relevant for Chi site identification.

rings. There is a 1-1 mapping of bases between the outer and inner strands (C

↔ G and A ↔ T) so that each uniquely determines the other. The figure also

indicates a directionality associated with different halves of each strand as split by

the replication origin (O) and terminus (T). The molecular mechanisms of DNA

replication differ between the two half-strands and they are termed leading and

lagging, as indicated in the figure.

The 1-1 mapping between base pairs together with the reversing of directional-

ity between inner and outer strands implies that searching for the Chi site in the

outer strand is equivalent to searching for CCACCAGC in the inner strand. This

sequence is different enough from the sequence for the Chi site in the inner strand

that occurences of the Chi site in the inner and outer strands are effectively inde-

pendent. Occurence of Chi sites in leading and lagging halves are also independent
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since these are separate parts of the genome. Thus our data consists of four in-

dependent sets of positions of Chi sites - along leading and lagging halves of both

inner and outer strands. Figure 2.7 shows the cumulative number of events along

the genome for each of these data sets.

The replication and repair mechanisms for leading strands are different to those for

lagging strands so in general we might expect them to have different compositional

properties (densities of nucleotides and oligonucleotides). A bias in the frequency

of Chi sites favouring leading strands has been noted in several genomes, includ-

ing E.coli (e.g. Karoui et al., 1999) and is evident from the figure. A more open

question is whether there is variation within the leading and/or lagging strands,

rather than just between the leading and lagging strands.

Our aim is to first determine whether Chi sites appear to occur uniformly at ran-

dom within each of the leading and lagging strands, or whether there is evidence of

the intensity of the occurence of Chi sites varying across either strand. Secondly,

if there is variation then we would like to infer the regions with strong evidence for

either a high or low intensity of Chi sites.

The E.coli genome (defined as single strand length) is 4 639 675 bases long so each

of the individual halves are 2319.838 kilobases (kb) long. Henceforth we use units

of kb.
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Figure 2.7: Cumulative number of occurences of the Chi site along the genome for

leading (+) and lagging (△) halves of the outer strand and leading (×) and lagging (∇)

halves of the inner strand.
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2.7.2 Model and prior

We analyse the positions of occurences of the Chi site along first leading then lag-

ging strands using our Gibbs sampler. These positions are discrete bases and our

Gibbs sampler applies to continuous data, however each of the four strands is over

2319kb long and contains less than 400 occurences of the 8-base Chi site, so it is

reasonable to model this discrete process as continuous. Furthermore, a straightfor-

ward approach to discrete modelling would involve applying the forward-backward

algorithm across the entire genome, which would be computationally prohibitive.

One of our aims is to perform model choice, and the choice of model will depend

on the priors for each model; in particular we cannot use uninformative priors (e.g.

Bernardo and Smith, 1995, Chapter 6). For the results presented here, exponential

priors are used for each λi and for each total intensity with which the underlying

Markov chain leaves state i, ρi’s; uniform priors are employed for each vector of

transition probabilities.

We first analyse the inner leading and lagging strands and use the results from

these to inform priors for analyses of the outer leading and lagging strands, which

we use to perform model choice. We also tested robustness of our results to varia-

tion in the priors.

We analyse the inner strands using exponential priors, the means of which are

chosen empirically from the data for each strand. The mean for all λ parame-

ters is set to n/tobs, where n and tobs are respectively the number of Chi sites

and the total length in kb of the strand. The mean for all q parameters needs to
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be somewhere between 1/tobs and n/tobs for an analysis to be feasible so we set

it to
√
n/tobs. These latter choices are rather arbitrary, but the resulting poste-

riors are only used to inform the (weak) priors for the analyses of the outer strands.

Since states for the analyses of the inner strand are exchangeable, we order the

results such that λ1 ≤ λ2 and use the posterior means as means for the exponential

priors in the analysis of the outer strands. Since the runs for the outer strands have

non-exchangeable priors, we may not order the output and must treat it exactly

as it appears.

For each strand we analyse the 1-d case analytically and the 2-d and 3-d cases

using 100 000 iterations of our Gibbs sampler.

2.7.3 Results

Figure 2.8 shows trace plots for the first 20 000 iterations and ACF’s over the first

10 000 iterations for the 2-d run on the lagging strand of the outer ring. The trace

plot for λ1 shows one of only 6 mode-switch-and-return’s (all brief), indicating that

the different priors fix quite firmly the ordering of the states. These brief switches

do however exert a strong (and spurious for our purposes) influence on the ACF’s,

and so we show ACF’s for a period in which there is no mode-switching; the mixing

appears to be satisfactory.

Posterior model probabilities for the leading and lagging strands are calculated

according to the method described in Section 2.5.3 and are given Table 2.6. They
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Figure 2.8: Trace plots for the first 20 000 iterations and and ACF’s for the first 10

000 iterations of the Gibbs sampler for the lagging strand of the outer ring with non-

exchangeable priors derived from the run for the lagging strand of the inner ring.

Dataset 1-D 2-D 3-D

lagging (outer) <0.01 0.83 0.17

leading (outer) 0.30 0.44 0.26

Table 2.6: Posterior model probabilities for leading and lagging halves of the outer

strand.
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indicate a clear choice of a two-dimensional model over a one-dimensional model

for the lagging strand. There is also substantial evidence for a two-dimensional

model in preference to a three-dimensional model. From the model probabilities

alone there is nothing to choose between one, two, and three dimensional models

for leading strands. An alternative view on the evidence is found through contour

plots of the posterior for λ in the 2-component models (Figure 2.9). For the lagging

plot the two components of the modal λ differ by nearly an order of magnitude,

whereas for the leading plot the ratio between the larger and smaller components

is less than two. Moreover the lagging plot shows only a single mode as the second

mode, corresponding to the mode switch noted in the trace plots, has approxi-

mately 1/20th the mass of the main mode. By contrast the leading plot shows

two modes with a great deal of mass between them, including the neighbourhood

of some of the points (λ∗, λ∗) which correspond to a simple Poisson process. The

two plots indicate a clear choice of a model with (at least) two different λ values

for lagging strands and uncertainty between one and two λ values for the two-

dimensional model.

For the two-dimensional model for lagging strands the posterior mean parameter

values correspond to intensities of 20.8 and 92.1 Chi sites per megabase (Mb), and

an intensity of 16.0 transfers per Mb from the lower state to the higher state and

21.1 transfers per Mb from the higher state to the lower state. The one-dimensional

model for leading strands has posterior mean intensity of 164.7 Chi sites per Mb.

Evaluation of posterior model probabilities is subject to Monte-Carlo error which

depends on the special parameter value θ∗. However experimentation showed the
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Figure 2.9: Contour plots of λ1 vs. λ2 from all 100 000 iterations for the lagging and

leading strands

first decimal place of log10(P (t| model)) to be extremely robust to even quite large

variations of θ∗ from the posterior mean value, only altering when there was vir-

tually no posterior mass at the parameter value. Posterior model probabilities

may also be sensitive to the exact prior used, and since the data contains less

information about the Q parameters than the λ parameters, the Q priors may

be particularly influential. Further analyses of the outer and inner rings were

performed with exchangeable exponential priors for λ and with exchangeable ex-

ponential, (approximately) normal, and truncated exponential priors for each ρi.

There was little change in the posterior means for the ordered λ vector, but a great

deal of variability in Q as expected. However the posterior model probabilities al-

ways indicated at least a two-state model for lagging strands and little to choose

between one and two state models for leading strands.

A possible biological explanation for our results is given by how replication differs
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on leading and lagging strands. Leading DNA strands are replicated continuously

whereas lagging strands are replicated in fragments. It may be the fragmentary na-

ture of replication that is causing the hetrogeneity in rate of occurrence of Chi sites.

We can use the output of the Gibbs sampler to perform segmentation of the lagging

strands based on the intensity of occurence of Chi sites. Figure 2.10 plots the mean

(over 1000 chains sampled every 100 iterations) intensity against position along the

genome. This gives a “smoothed signal” of Chi site intensity which could be used

to evaluate correlations with (say) recombination rates across the genome. An al-

ternative segmentation might be based on the posterior probabilities that a given

point along the genome is in each of the possible states - for this segementation, at

each point the chain is simply set to the state with the highest posterior probability.

2.8 Discussion

We have presented a novel approach to simulating directly from the conditional dis-

tribution of a continuous time Markov process and shown how this can be used to

implement a Gibbs sampler for analysing MMPPs. The Gibbs sampler can analyse

data where the event times are directly observed, and also data where the number

of events or even only the presence/absence of events is known for a sequence of

time intervals.

The Gibbs sampler has a number of advantages over standard Metropolis-Hastings

samplers. Firstly, the Gibbs sampler requires no tuning; tuning for Metropolis-

Hastings algorithms can be time consuming - especially for long datasets where
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Figure 2.10: Mean λ value at each point in the lagging strand, derived from 1000

effectively independent simulations of the parameter vector and the underlying chain.
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the algorithm takes longer to run and for algorithms involving blocking of param-

eters. Further such tuning is valid for the area of the posterior being explored

whilst the tuning takes place (hopefully the mode); there is no guarantee that it

will be appropriate for as yet unseen tail areas that the algorithm should eventually

explore.

Secondly, our simulation results suggest that the Gibbs sampler is more efficient

than many Metropolis-Hastings random walks for fixed CPU time. For a wide

range of data sets that we analysed the relative ACT (taking CPU time into ac-

count) of the Gibbs sampler was always smaller than the relative ACT for any

of the standard Metropolis-Hastings algorithms tested, sometimes by an order of

magnitude. In general, the more information about the hidden underlying Markov

chain contained in the data, the more efficient the Gibbs sampler. Finally, a by-

product of the Gibbs sampler is that we can investigate the posterior distribution

of the underlying chain.

There has been previous work on developing a Gibbs sampler for MMPP’s. Scott

(1999) and Scott and Smyth (2003) present an approximate Gibbs sampler that

can be applied to certain MMPP’s, assuming the event times are directly observed.

Their approximation is to assume that certain state changes coincide precisely with

observed events. In many situations this approximation will be negligible; Scott

(1999) models times at which a bank account is accessed, where a criminal may or

may not have obtained the bank details; it is argued that it is sensible to define

the arrival of a criminal as the time at which he/she first accesses the account.

Further Scott and Smyth (2003) argue that forcing state changes to start and
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end at event times “eliminates the possibility of pathological bursts containing no

events”. However their Gibbs sampler also places restrictions on the allowable

state changes: all transitions to states with lower intensities than the current state

are permitted, but out of all the (ordered) states with higher intensity than the

current state, transitions are only permitted to the state immediately adjacent

to the current one. Also the approximation of restricting state changes to event

times will become less accurate as the rates of the generator for the hidden chain

increase towards the same order of magnitude as the intensities of the observed

process. Our Gibbs sampler avoids these issues and there is little extra cost in

implementing it.

Blackwell (2003) and Bladt and Sorensen (2005) use rejection sampling to sam-

ple from the exact distribution of a discretely observed continuous-time Markov

process. A chain is simulated forward from a given observed state, and if the

simulated state at the next observation time does not match the corresponding

observed state then the chain is rejected and the process repeated until a match is

achieved. A similar technique could replace stage 2 of our Gibbs sampler, where

we simulate from the hidden chain and the observed event process and accept the

hidden chain if the chain finishes in the correct state and there are no observed

events. This is efficent only when the number of rejected chains is small. It is

straightforward to calculate the expected number of simulations until acceptance

for an interval of known length given the start and end states. We calculated this

for the simulated states at event times at every iteration of our Gibbs sampler for

every one of the 1164 intervals in the S4 data set. On average for about 700 of the

intervals 3 or fewer chain simulations were expected to be required. However the
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distribution of the expected number of simulations had a very heavy right hand

tail, with about 200 intervals requiring at least 10 simulations and about 20 requir-

ing more than 100 simulations, so that the mean expected number of simulations

per interval was around 20. This number is likely to increase as the number of

hidden states increases. In practice stage 2 of our Gibbs sampler takes a very

small proportion of the CPU time and this would be likely to remain small if re-

jection sampling were to be used instead, unless the number of rejections was large.

Both our simulation study and consideration of the form of the information matri-

ces for MMPPs gives insight into how to implement Metropolis-Hastings schemes.

Multiplicative random walks are preferable to additive random walks since they

mix better on the more heavy tailed posteriors (for example the additive random

walks sometimes stick at low q values). The efficiency of the standard parameteri-

sation (Λ,Q) increases with increasing information in the observed data about the

the hidden underlying chain, since at the extreme of complete knowledge the in-

formation matrix is approximately diagonal with respect to this parameterisation.

By examining the information matrices for simulated datasets at the modal val-

ues we checked a variety of alternative parameterisations for the two-dimensional

MMPP’s when there is less knowledge about the underlying chain. The most

promising, (λ, q, α, β) is based on the form of a cubic Taylor expansion of the log-

likelihood for small (λ2 − λ1)/λ. An implementation of this parameterisation was

found to outperform all the other Metropolis-Hastings algorithms on datasets con-

taining relatively little information about the hidden chain, and on such datasets

its performance was comparable with that of the Gibbs sampler.
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The posterior distribution for MMPPs can be highly complicated; with multiple

modes (due to the invariance of the likelihood to label-switching), and heavy tails

(for example, due to degeneracy into a lower dimensional MMPP). In particular,

it is not possible to use improper priors for MMPPs, as these lead to improper

posteriors. Since we are mainly interested in comparing algorithms using ACT’s

rather than in the posterior distribution itself we use symmetric priors and (as

post-processing) order the states according to components of the intensity vector.

Stephens (2000) and Celeux et al. (2000) discuss possible better ways of labelling

states if the main interest is in summarising the posterior distribution.

We considered the application of MMPPs to modelling the occurence of a specific

DNA motif in E.coli. We found evidence for heterogeneity in the occurrence of

this DNA motif, the Chi site, in the lagging strand; which may have a biological

explanation in terms of the replication process on this strand. The output of our

Gibbs sampler also enables us to segment the lagging strand into regions of high

and low intensity of these Chi sites. Ideally we would like to use this segmentation

to test for correlation of high Chi site intensity with regions of high recombination

rates, but unfortunately data is not currently available on the variation in recom-

bination rate in E.coli.



Chapter 3

Optimal scaling of the random

walk Metropolis

3.1 Introduction

The random walk Metropolis algorithm (RWM) is introduced in Section 1.3.1.1.

Consider the behaviour of this algorithm as a function of some overall parameter

for the scale of proposed jumps. If most proposed jumps are small compared with

some measure of the scale of variability of the target distribution then, although

these jumps will often be accepted, the chain will move slowly and exploration of

the target distribution will be relatively inefficient. If the jumps proposed are rel-

atively large compared with the target distribution’s scale, then many will not be

accepted, the chain will rarely move and will again explore the target distribution

inefficiently. This suggests that given a particular target and form for the jump

proposal distribution, there may exist a finite scale parameter for the proposal such

that the algorithm will explore the target as efficiently as possible. This chapter is

concerned with the definition and existence of an optimal-scaling, its asymptotic

100
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properties, and the process of finding it. We start with a review of current litera-

ture on the topic, which is concerned with asymptotic properties.

3.1.1 Existing results for optimal scaling of the RWM

Previous theoretical investigations into optimal scaling of the RWM reviewed in

this section have all taken the same general approach. The chain is “speeded up”

by a factor of some positive power of dimension d. Provided the scale parameter of

the proposal distribution decreases with d just quickly enough to compensate for

the speed up, a single component of the new chain is shown to approach a Langevin

diffusion, as defined in Section 1.4.1, as d→∞. The speed of this diffusion is then

optimised in terms of the d-independent constant of proportionality in the scale

parameter.

Roberts et al. (1997) investigate optimal-scaling on target densities of the form

π (x) =
d
∏

1

f(xi) (3.1)

using Gaussian jump proposals

Y(d) ∼ N(0, σ2
dId) (3.2)

For a random walk on a d dimensional target they define a speeded up (discrete)

process which at time t is Z
(d)
t = X

(d)
1 [td], the first component of the chain after

iteration [td] (here [x] denotes the largest integer less than or equal to x). It is

shown that, subject to conditions on the first two derivatives of f(·), if the proposal

standard deviation is chosen to be σd = l/d1/2 (or l/(d−1)1/2) for some l > 0, then
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Z(d) D−→ Z where Z satisfies an SDE of the form

dZt =
1

2
h(l) (log f (Zt))

′ dt+ h(l)1/2 dBt (3.3)

with speed

h(l) := 2l2Φ

(

−1

2
lI1/2

)

(3.4)

Here

I := E

[

((log f)′)
2
]

(3.5)

is a measure of the roughness of the target and

2Φ

(

−1

2
lI1/2

)

(3.6)

corresponds to the acceptance rate.

Maximising the speed of this diffusion leads to setting l = 2.38
I1/2 , so that the standard

deviation is

σd =
2.38

I1/2d1/2

This leads to an optimal acceptance rate of approximately 0.234; a value that is

independent of f(·).

Roberts and Rosenthal (2001) also examine optimal-scaling, this time on “stretched”

target distributions of the form

d
∏

1

Cif(Cixi) (3.7)

with the Ci sampled from some fixed distribution with E [Ci] = 1, and using

Gaussian jump proposals as in (3.2). In Theorem 5 of the paper σd = l/d1/2 as in

Roberts et al. (1997), and W
(d)
t := C1X

(d)
1[td] ; this is the (scaleless) first component
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of the Markov chain after iteration [td]. It is then shown that W
(d)
t converges to a

limiting diffusion process Wt satisfying an SDE of the form (3.3) with speed

h∗(l) =
C2

1

b
× h(lb1/2) (3.8)

with h(·) as defined in (3.4), I the same measure of the roughness of f(·) as in

(3.5), and

b := E
[

C2
i

]

Analogously with the result for i.i.d. components, the speed of the diffusion is

maximised when lb1/2 = 2.38/I1/2 and this still corresponds to an optimal accep-

tance rate of 0.234. Further, the overall speed at this optimum is the optimum

speed for the i.i.d. target but multiplied by the factor C2
1/b.

In the paper this is then compared with the diffusion that would arise if the target

were of the form

π (x) =

d
∏

1

C f(Cxi) (3.9)

The relative efficiency between the “stretched” target and this target, if C1 = 1 is

given as E [C2
i ] /E [Ci]

2. However some confusion arises from this discussion because

it is unclear exactly what is being compared, and because the target is referred to

as having the form (3.1), i.e. setting C = 1. (Note that there is further confusion

with the ensuing Theorem 6 since in this Theorem the C ′
is for an elliptical proposal

are taken to be squared scale parameters rather than the inverse scale parameters

that they denoted in Theorem 5). The following is intended to clarify the intent

of the paper, addressing several general points before focusing on the above. In

Section 3.4 some of these ideas will be tied in with new results derived in Section

3.3.2. Throughout this discussion the Ci’s are inverse scale parameters.
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We first note that the speed (C2
1/b

2)×h(lb1/2) and efficiency factor C2
1/b are those

of the scaleless (“transformed”) diffusion Wt. The stochastically identical diffu-

sion (Wt/C1) exploring the first component of the original target’s space has speed

(1/b2) × h(lb1/2) and efficiency factor 1/b compared to the exploration of a tar-

get with i.i.d. components with unit scale parameters. If the expectation of the

inverse scale parameters Ci were not constrained to 1 (for example each Ci was

multiplied by a factor E [Ci]) then the optimum speed of the diffusion Wt/C1 ex-

ploring the original target would be multiplied by the factor 1/E [Ci]
2 but the speed

of the scaleless diffusion Wt would be unchanged. Therefore (3.8) holds even

if E [Ci] 6= 1. Further, multiplying each Ci by a factor k will multiply E [C2
i ] by k2,

so the reduction factor b needs no adjustment to specifically account for changes

in E [Ci]. Hence the speed of the diffusion (W/C1) exploring the original target

remains (1/b2)× h(lb1/2) even if E [Ci] 6= 1.

Compare this with the special case (3.9) where Ci = C ∀ i and therefore b = C2.

Naturally the speed of the scaleless diffusion Wt reduces to (3.4), the same as

that for i.i.d. target components (3.1). However the speed of the diffusion Wt/C

exploring the original space is now

h∗∗(l) =
1

C2
h(lC1/2)

Therefore the limiting ratio of optimum efficiencies in the original space for ex-

ploration of the first component of a “stretched” target with axes Ci and a target

with all axes identically scaled by E [Ci] is

rel.efforig :=
efforig(stretched target and spherical proposal)

efforig(i.i.d. target and spherical proposal)
=

E [Ci]
2

E [C2
i ]

(3.10)
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In the transformed (scaleless) space this ratio is given by (3.8)

rel.efftrans :=
efftrans(stretched target and spherical proposal)

efftrans(i.i.d. target and spherical proposal)
=

C2
1

E [C2
i ]

(3.11)

If a “typical” component is considered, where C1 = E [Ci] then the ratio (3.11)

becomes the same as (3.10).

It is then noted that exploration of a stretched target using a similarly stretched

Gaussian proposal is equivalent to exploring a non-stretched target (3.9) using a

spherical Gaussian proposal. Therefore (3.11) still holds in this case.

Bedard (2006c) also considers targets of the form (3.7) but allows each Ci(d) to be

dependent on dimension such that the squared scale parameter of the ith component

Ci(d)
−2 = Ki/d

γi. Note for this review, notation and the groupings of the compo-

nents have been significantly altered and simplified from the original paper to be

more consistent with notation in the rest of this Chapter. Let the number of the

squared scale parameters proportional to d−γi be denoted ni(d), and let the num-

ber of distinct powers of d be m <∞. The set of constants {Kj} that correspond

to components varying according to any one particular power d−γj are assumed to

arise from a distribution satisfying E [K−2] < ∞. Further it is assumed (without

loss of generality) that for each of these distributions, E
[

K−1/2
]

= 1; E [K−1] is

denoted bi. Denote by α the smallest power such that as d→∞

ni(d) d
γi

dα
<∞ ∀ i

The sequence of transformed chains is considered

Z
(d)
t :=

[

X
(d)
1 [dαt], . . . , X

(d)
d [dαt]

]
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using a spherical Gaussian proposal as in (3.2) with σd = l/dα/2 for some fixed l.

It is shown that Z(d) approaches a limiting diffusion Zt whose ith component Zi

satisfies an SDE of the form (3.3) with speed

h(l) = 2l2Φ

(

−1

2
lE1/2

)

where the weighted roughness

E = I × lim
d→∞

m
∑

1

bi ni(d) d
γi

dα

is proportional to I, the roughness measure defined in (3.5). However this diffusion

limit is shown to hold if and only if

lim
d→∞

dλ

∑d
1 d

γi

= 0 (3.12)

where λ is the largest power of d that is repeated only finitely often.

It is noted that the simple hierarchical model X1 ∼ N(0, 1), Xi ∼ N(X1, 1), i =

2, . . . , d can be transformed to a Gaussian target with independent components and

variances of O(d), O(1/d), and of O(1) with multiplicity d−2. Such a target fails to

satisfy the necessary and sufficient condition (3.12) for the theorem, and so 0.234

may not be the optimal limiting acceptance rate in this case. Bedard (2006b)

investigates more general targets of the form (3.7) with Ci(d) dependent on dimen-

sion and which fail to satisfy (3.12). It is found that the optimal scaling must be

σ2(d) = l2/dλ where, as above, λ is the largest power of d repeated only finitely

often. A limiting process is found that is a Langevin diffusion on components cor-

responding to the smaller powers γ (i.e. those with relatively stretched axes), and

a discrete Metropolis-Hastings accept reject step on each of the remaining compo-

nents. In these cases it is found that the asymptotically optimal acceptance rate
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is no longer necessarily 0.234. Bedard (2006a) investigates the application of these

results in several standard settings such as the Normal hierarchichal model and a

variance components model.

Neal and Roberts (2006) again consider target densities of the form (3.1) and

spherical Gaussian proposals with standard deviation σd = lc/d
1/2, but use the

random walk Metropolis algorithm with partial blocking (also known as “random

walk Metropolis within Gibbs”; see Section 1.3.1.2). Components to update are

chosen by random scan rather than sequentially. At each iteration the proposed

jump is along only a subset of all the d components. This subset is of size dcd (with

cd ≤ 1 and cd → c) and is chosen freshly at random each iteration. It is shown

(again subject to differentiability conditions on f(·)) that the process U
(d)
t := X

(d)
1 [dt]

converges to a diffusion Ut again satisfying an SDE of the form (3.3), with speed

hc(l) = 2cl2cΦ

(

−1

2
lc(cI)

1/2

)

(3.13)

This has the same form as (3.4) but with c l2c replacing l2. Thus the optimal

scaling is

σd =
2.38

c1/2I1/2d1/2

and this again corresponds to an optimal acceptance rate of 0.234. Most impor-

tantly however, it is clear from (3.13) that the optimal speed does not depend

on c. Thus there is no advantage in using large block updates and possibly some

slight disadvantage since these are generally computationally more expensive. This

is contrary to the generally held intuition that “block-updating improves MCMC

mixing”. It is accepted that partial updates on a target with independent compo-

nents might have special properties not shared by partial updates on more general
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targets so an alternative target is considered.

X(d) ∼ N(0,Σ(d)(ρ))

where Σ
(d)
ii (ρ) = 1 and Σ

(d)
ij (ρ) = ρ(j 6= i) with 0 < ρ < 1. A limiting diffusion is

found for which the optimal scaling (and hence the optimal speed) is reduced by a

factor (1− ρ)1/2

σd =
2.38(1− ρ)1/2

c1/2I1/2d1/2

However the limiting optimal acceptance rate is once more 0.234 and once again

the optimal speed is independent of c.

To test empirically for even more generality, a simulation study is detailed on three

different targets: the N
(

0,Σ(d)(ρ)
)

distribution for which the theoretical results

have been shown to hold, as well as t50

(

0,Σ(d)(ρ)
)

and a target with independent

components that follow a double-exponential (exp (− |xi|)). Tests are carried out

for different values of ρ, c and d, and efficiency is measured by square jumping dis-

tance along the first component of the chain (multiplied by the normalising factor

d/(1 − ρ)). It is found to be remarkably consistent for each target across all the

c, d and ρ values studied.

Through this same general approach an optimal acceptance rate of 0.234 has also

been shown to hold for the RWM as applied to

• a spatially homogeneous Gibbs distribution (Markov random field) where the

correlations decay at least exponentially quickly with distance (Breyer and

Roberts, 2000)

• a discrete target with i.i.d. components each having mass p at the origin
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and 1− p at 1. Here a fixed fraction f of the components are updated each

iteration, with the components themselves chosen at random each time, and

with f acting in place of a scale parameter (Roberts, 1998).

These two results are also summarised in Roberts and Rosenthal (2001).

3.1.2 Motivation for this chapter

The above results are all asymptotic and apply to exploration of a single com-

ponent of certain specific classes of target distributions. Several questions arise

immediately:

1. Real problems are finite dimensional. In such finite dimensional problems is

there always an optimal scale parameter?

2. There is clearly a one-to-one mapping between the scale parameter and the

form (3.6) corresponding to the acceptance rate that arises from the limiting

diffusion. This justifies the use of one as a proxy for the other. In (real)

finite dimensional problems is there always a one-to-one mapping between

acceptance rate and scale parameter?

3. Are there further classes of distributions for which the limiting optimal ac-

ceptance rate is 0.234 ? If so, how does the optimal scale parameter behave

in these cases and how does the use of partial blocking affect efficiency?

4. Are there classes of distributions for which the limiting optimal acceptance

rate is not 0.234? If so, is it possible to characterise them?

5. The results reviewed in Section 3.1.1 optimise the scaling parameter for the

limiting process along a single component. Does taking the infinite dimen-
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sional limit of the optimal scale parameters for a sequence of finite dimen-

sional processes lead to the same results? Does considering all components

at once affect this?

The theory and ideas presented in this chapter go some way towards addressing

each of the above questions.

3.1.3 A new approach

We wish to analyse expectations of acceptance rate and of some measure of ef-

ficiency of a RWM algorithm when the Markov chain is stationary. As will be

discussed in more detail in Section 3.1.4 we take the expected square jumping dis-

tance (ESJD) as our measure of efficiency. In general these expectations (ESJD

and acceptance rate) are sums of integrals across four different regions of the prod-

uct space (ℜd×ℜd) where ℜd is the state-space of the Markov chain. Through two

“exchangeability lemmas” we reduce these sums to a single term (see Section 3.2).

We then investigate ESJD and expected acceptance rate for the random walk

Metropolis algorithm on spherical (Section 3.3.1) and then elliptical (Section 3.3.2)

target distributions with Lesbegue density monotonically decreasing from the ori-

gin. Our key successes are

(i) Exact forms for the acceptance rate and ESJD in finite dimension d, in terms of

simple expectations that may be evaluated numerically, and help to address

Questions 1 and 2 above.

(ii) Limiting results as dimension d → ∞ that address Questions 3, 4 and 5

above, extending the class of target distributions for which the asymptotically
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optimal acceptance rate is known to be 0.234 and providing classes for which

different limiting optimal acceptance rates apply. Conditions on the limit

theorems give valuable insight into when and why the different results apply.

We also examine the effects of partial blocking on spherical and elliptical targets

(Section 3.3.3) in the limit as d → ∞. Then in Section 3.3.4, through exact

forms for expected acceptance rate and ESJD we examine specific combinations of

target and proposal in finite dimensions, and compare behaviour with both finite

dimensional and limiting theoretical results. A final simulation study points out

fundamental difficulties with the idea of a single optimal scaling for targets which

vary on at least two radically different scales.

3.1.4 Elliptically symmetric distributions and expected square

jump distance as a measure of efficiency

The most general target distributions that we shall examine in this Chapter possess

elliptical symmetry. If a d-dimensional target distribution has elliptical contours

then there is a simple invertible linear transformation T : ℜd → ℜd, consisting

of stretching along orthogonal principal components, which produces a spherically

symmetric target. Of course T is not unique; to fix it (up to an arbitrary rotation)

we define T to be the transformation that produces a spherically symmetric target

with unit scale parameter. Here the exact meaning of “unit scale parameter” may

be decided arbitrarily or by convention. The scale parameter βi along the ith prin-

cipal axis of the ellipse is the ith eigenvalue of T−1 since T−1 maps the spherically

symmetric unit target to the elliptical target under consideration.

Let X and X′ be consecutive elements of a stationary chain exploring a d-dimensional
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target distribution. We wish to express the efficiency of the chain in terms of some

amalgamation of the expected distances that it will move along each principal axis.

A naive measure would be

S2
d, naive := E

[

|X′ −X|2
]

(3.14)

where expectation is with respect to the joint law of consecutive elements X and

X′ at stationarity.

We argue that this is not the most natural measure of efficiency for an elliptical

target. Consider for simplicity a two dimensional ellipse with the target distri-

bution “stretched” along x1 and “squashed” along x2. An efficient scheme would

optimise exploration of the whole target and so require larger jumps along the x1

axis and smaller jumps along the x2 axis. In general we would like the relative sizes

of the jumps along ith principle axis to be proportional to the relative spacing of

the contours along that axis, which is in turn proportional to the scale parameter

βi. An alternative perspective is attained by considering the transformed target

T (X); this is spherically symmetric and so in the transformed space we do wish

to give equal weight to equal size jumps along any axis.

Either of the above consideration leads to the following definition of the expected

square jump distance (ESJD) for an elliptical target:

S2
d := E

[

||X′ −X||2β
]

:= E

[

d
∑

1

1

β2
i

(X ′
i −Xi)

2

]

(3.15)

where X ′
i and Xi are the components of X′ and X along the ith principal axis. For

a spherical target βi = β ∀ i and the ESJD is proportional to the naive definition

(3.14). Later, when considering spherically symmetric targets, we therefore simply
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optimise this naive definition, or equivalently set β = 1. It is possible to define a

more general ESJD, provided the target has a finite covariance Σ,

S2
d := E

[

(X′ −X)
t
Σ−1 (X′ −X)

]

(3.16)

For an elliptical target with finite covariance matrix, definitions (3.15) and (3.16)

differ only by a constant of proportionality since with respect to the principal axes

Σ ∝ diag(β2
1 , . . . , β

2
d) .

We shall be concerned with maximising the ESJD rather than examining a single

component and maximising the speed of a limiting diffusion. This shift of emphasis

compared to the current literature is driven by what is feasibly achievable through

the new theory that we develop. That the ESJD takes into account the efficiencies

along all components has both advantages and disadvantages. However ESJD is

often a reasonable measure of overall efficiency as we now discuss.

We first provide a simple relationship between ESJD along a single component,

and lag-1 autocorrelation at stationarity (when the variance is finite). Define σ2
i :=

Var [Xi] = Var [X ′
i], and note that E [X ′

i −Xi] = 0, so

E
[

(X ′
i −Xi)

2
]

= Var [X ′
i −Xi] = 2σ2

i (1− Corr [Xi, X
′
i]) = 2σ2β2

i (1− Corr [Xi, X
′
i])

where σ2 is the variance along any component of the target with unit scale pa-

rameter. Thus maximising ESJD along any component is in fact equivalent to

minimising the lag-1 autocorrelation of that component. Similarly for an elliptical

target the full ESJD is

S2
d = σ2

(

d−
d
∑

1

Corr [Xi, X
′
i]

)
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so maximising the ESJD is equivalent to minimising the sum of the correlations of

individual principal components.

A common practical measure of the efficiency of an MCMC run is the integrated

auto-correlation time along one or more components (see Section 1.3.2). This is

determined not only by the lag-1 autocorrelation but by the expected sum of all

the lagged autocorrelations and relates directly to the variance of Monte-Carlo

estimates. Even along a single component, maximising ESJD is not necessarily

equivalent to minimising the ACT. However, there are several problems with the

integrated ACT in theory and practice.

• The ACT of X and the ACT of some function f(X) may behave very differ-

ently and be optimised by quite different scaling parameters.

• An integrated ACT estimated from a real chain is subject to noise that

increases as the number of lags included in the sum increases.

• Even at low lags the theoretical expected ACT and the observed ACT may

differ radically. Consider for example an (almost) irreducible one-dimensional

algorithm run on the uniform distribution over [−2,−1] ∪ [1, 2]. In practice

only one half of the space will be explored and for an efficient chain the

auto-correlations will decrease quickly with lag. However theoretical auto-

correlations at stationarity will be large and positive even for very high lags.

ESJD does not suffer from the second and third problems in the list. The first

problem (which also affects ESJD) arises from the fact that different functions f(·)

lead to different sequences f(Xi), so that the accuracy of a Monte Carlo estimate of

E [f(X)] depends on f(·). The ACT for any function of the chain can be bounded
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above using the geometric rate of convergence of the chain (e.g. Gilks et al., 1996,

Chapter 3). But this rate is rarely known and in any case only supplies an upper

bound: there is no easy to obtain best measure of efficiency for the chain. However,

a further justification for the use of ESJD is expanded upon below: that (at least

for certain targets) in the limit as d→∞ the scale parameter that maximises the

ESJD also maximises the integrated ACT and does not depend on the function

f(·) (provided f(·) is differentiable).

As discussed in Section 3.1.1, for several forms of target with independent compo-

nents, which are identical up to a scale parameter, the limit of a single component

of the speeded-up Markov chain becomes a Langevin diffusion with speed h. As was

discussed in Section 1.4.2, minimising the integrated ACT is equivalent to max-

imising the speed h. However as the limiting diffusion is approached, the ESJD

along any component is more and more closely approximated by a small increment

in the diffusion along that component. From (1.11)

E
[

|∆Xt|2
]

≈ h2µ2(∆t)2 + h∆t ≈ h∆t

where both approximations become exact as ∆t → 0. Therefore maximising the

ESJD along a single component is also equivalent to maximising the speed of the

diffusion, h. Similarly maximising the total ESJD is equivalent to maximising the

sum of the speeds of the diffusions over all components.

Investigations in this chapter will concern spherically and elliptically symmetric

targets, and the only target with such symmetries covered in Roberts and Rosenthal

(2001) is the Gaussian. Nevertheless it seems plausible that the general principle of

speeding up time to produce limiting diffusion processes will hold. Further evidence
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for this intuition arises from the description in Section 3.4.1 and is discussed briefly

in the context of further work in Section 3.4.3.

3.2 Region exchangeability and some consequences

In this section we present two main Exchangeability Lemmas with extensions. The

lemmas are applicable to any “sensible” Metropolis-Hastings algorithm at station-

arity on (almost) any target with Lesbegue density. They apply to expectations of

certain functionals of the Metropolis-Hastings Markov chain, including expected

square jumping distance and acceptance rate, and lead to a simplification of their

closed form.

3.2.1 Definitions and assumptions

The general form of the Metropolis-Hastings algorithm was described in Section

1.3.1.1. As in that introductory section we will only be concerned with an element

of the Metropolis-Hastings Markov chain at stationarity and the element immedi-

ately following it. We therefore define the current instance of the chain X := Xm,

the proposed next instance of the chain X∗ := X∗
m+1, and the actual next instance

of the chain X′ := Xm+1. We also define the proposed jump Y∗ := X∗
m+1 −Xm

and the actual jump Y := Xm+1−Xm. The acceptance rate α(x,x∗) has the form

given in (1.2).

The target distribution is assumed to posses a Lesbegue density π(·) and the pro-

posal to posses Lesbegue density q (x∗|x). It is assumed that the chain has reached

stationarity, so that the marginal distributions of both X and X′ are π(·). The
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law for X′ given X = x is denoted P (dx′|x) and the joint law of two successive

elements is π(x)dx P (dx′|x) which we denote

A(dx, dx′) := π(x)dx q (x′|x)α(x,x′) 11{x′ 6=x} dx
′

+ π(x)dx

∫

dx∗ q (x∗|x) (1− α(x,x∗)) 11{x′=x} (3.17)

We assume that the space of possible values for element x of a d-dimensional chain

is ℜd, and partition the space of possible values for x∗ (and so for x′) given x into

the following four disjoint regions:

the identity region Rid(x) := {x}; this is a null set under q (·|x), but is in

general not null under P (·|x).

the equality region Req(x) := {x′ ∈ ℜd : x′ 6∈ Rid(x), π(x′)q(x|x′)
π(x)q(x′|x)

= 1}; we as-

sume initally that Req(x) is null under q (·|x) (and therefore under P (·|x))

for all x, but later relax this assumption for certain q (·|·).

the acceptance region Ra(x) := {x′ ∈ ℜd : α(x,x′) = 1, x′ 6∈ {Req(x) ∪

Rid(x)}}; this is the remainder of the region where we are guaranteed to

accept the proposal.

the rejection region Rr(x) := {x′ ∈ ℜd : α(x,x′) < 1}; this is the region where

there is a positive probability that we will reject the proposal.

For vectors (x,x′) in ℜd ×ℜd we employ the shorthand

RID(x,x′) := {(x,x′) : x ∈ ℜd,x′ ∈ Rid(x)}

REQ(x,x′) := {(x,x′) : x ∈ ℜd,x′ ∈ Req(x)}

RA(x,x′) := {(x,x′) : x ∈ ℜd,x′ ∈ Ra(x)}

RR(x,x′) := {(x,x′) : x ∈ ℜd,x′ ∈ Rr(x)}
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3.2.2 Exchangeability, ESJD and expected acceptance rate

An exchangeability between the regions Ra(·) and Rr(·) follows directly from their

definitions

x′ ∈ Ra(x)⇔ x ∈ Rr(x
′)

so that

RA(x,x′) = RR(x′,x)

and vice versa. For example in the context of the RWM, if a proposed jump from

x to x+y∗ sees a reduction in the stationary density, and therefore a probability of

rejection, the reverse jump would lead to an increase in the density and therefore

guaranteed acceptance.

This leads to the main results of this section: two Exchangeability Lemmas (Lem-

mas 1 and 2), which apply to any Metropolis-Hastings algorithm that uses a single

block update, subject to minor conditions on the target distribution. These con-

ditions may be relaxed in the case of symmetric proposals and this is examined in

Section 3.2.3. Equivalent lemmas apply when components are updated in several

blocks rather than all at once; these extensions are derived in Section 3.2.4. The

Exchangeability Lemmas provide a simpler form for the ESJD and expected ac-

ceptance rate than might be naively obtained though simply plugging in the joint

law (3.17); they form the basis of all our subsequent work. In all of the lemmas, X

and X′ are consecutive elements of any chain produced from a Metropolis-Hastings

algorithm which has reached stationarity, subject to conditions on the target and

proposal distributions to be specified.

Some of the lemmas apply to expectations of acceptance rates; these expectations
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are with respect to the joint law of current position and proposed move:

A∗(dx, dx∗) := π(x)q (x∗|x) dx dx∗ (3.18)

Others apply to classes of functions h(X,X′) which satisfy the symmetry condition

h(x,x′) = c× h(x′,x) ∀ x,x′ (with c = ±1) (3.19)

and (potentially) the further condition

h(x,x) = 0 ∀ x (3.20)

The equality region is also required to be null

∫

Req(x)

dx′ q(x′|x) = 0 ∀ x (3.21)

Note that (3.21) implies both

∫

REQ

dx dx′ π(x)q(x′|x) = 0

and
∫

REQ

dx dx′ π(x)q(x′|x)h(x,x′) = 0

In calculating the expectation of functions h(X,X′) we must use the joint law

(3.17). The first lemma allows us, to reduce such expectations to a single simple

integral over the acceptance region, the second allows the same simplification for

the expected acceptance rate.

Lemma 1 Consider two consecutive elements, X and X′, of some Metropolis-

Hastings Markov chain with stationary Lesbegue density π(·), proposal Lesbegue

density q (x′|x) and joint law A(dx, dx′). At stationarity, for any function h(·, ·)

satisfying (3.19)

∫

(x,x′)∈RA

A(dx, dx′) h(x,x′) = c×
∫

(x,x′)∈RR

A(dx, dx′) h(x,x′)
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If in addition (3.20) and (3.21) hold then

E [h(X,X′)] = (1 + c)×
∫

(x,x′)∈RA

dx dx′ π(x) q (x′|x) h(x,x′)

Proof: The first result is a consequence of region exchangeability, reversibility,

and the symmetry of h(·, ·) which we apply consecutively below, and then relabel:
∫

(x,x′)∈RA

A(dx, dx′)h(x,x′) =

∫

(x′,x)∈RR

A(dx, dx′)h(x,x′)

=

∫

(x′,x)∈RR

A(dx′, dx)h(x,x′)

= c×
∫

(x′,x)∈RR

A(dx′, dx)h(x′,x)

= c×
∫

(x,x′)∈RR

A(dx, dx′)h(x,x′)

Equation (3.20) states that h(x,x′) = 0 in RID. Further, α(x,x∗) = 1 ∀ (x,x∗) ∈

REQ(x,x∗), and (3.21) holds. Therefore
∫

(x,x′)∈RID∪REQ

A(dx, dx′)h(x,x′) = 0

and RID and REQ contribute nothing to the overall expectation of h(X,X′). Since

α(x,x∗) = 1 ∀ (x,x∗) ∈ RA(x,x∗) the second result follows from the first.

Setting h(x,x′) = ||x′ − x||2β =
∑d

1
1
β2

i
(x′i − xi)

2 in Lemma 1 leads to the following:

Corollary 1 Consider any stationary Markov chain that has been produced by a

Metropolis-Hastings algorithm with both target and proposal being Lesbegue den-

sities, with the target in fact elliptical, and with equality region satisfying (3.21).

The expected square jumping distance for the chain at stationarity is the same over

the acceptance and rejection regions and equal to half the complete expectation, and

therefore

S2
d = 2

∫

(x,x′)∈RA

π(x)q (x′|x) ||x′ − x||2β (3.22)
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Clearly the Lemma also applies to the naive ESJD, |x′ − x|2. We now examine the

acceptance rate α(x,x∗) = min
(

1, π(x∗)q(x|x∗)
π(x)q(x∗|x)

)

, using joint law (3.18) and again

simplifying its expectation to a single term.

Lemma 2 Let X be an element from some Metropolis-Hastings Markov chain with

stationary Lesbegue density π(·), proposal Lesbegue density q (x∗|x) and acceptance

rate α(x,x∗). At stationarity

∫

(x,x∗)∈RA

A∗(dx, dx∗) α(x,x∗) =

∫

(x,x∗)∈RR

A∗(dx, dx∗) α(x,x∗)

If in addition (3.21) holds then the overall expected acceptance rate is given by

E [α(X,X∗)] = 2

∫

(x,x∗)∈RA

dx dx∗ π(x)q (x∗|x)

Proof: After simplifying the expression we apply region exchangeability, relabel,

and note that α(x,x∗) = 1 ∀ (x,x∗) ∈ RA.

∫

(x,x∗)∈RR

A∗(dx, dx∗) α(x,x∗) =

∫

(x,x∗)∈RR

dxdx∗π(x)q (x∗|x)× π(x∗)q (x|x∗)

π(x)q (x∗|x)

=

∫

(x,x∗)∈RR

dxdx∗π(x∗)q (x|x∗)

=

∫

(x∗,x)∈RA

dxdx∗π(x∗)q (x|x∗)

=

∫

(x,x∗)∈RA

dxdx∗π(x)q (x∗|x)

=

∫

(x,x∗)∈RA

A∗(dx, dx∗) α(x,x∗)

which proves the first part of the lemma. Since q(·, ·) is a density, Rid(x) is null

with respect to q(·|x). Further, (3.21) holds so both REQ and RID are null with

respect to π(x)q (x∗|dx). The second part of the lemma then follows immediately

as the acceptance rate in RA is 1.
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Lemmas 1 and 2 hold for stationary chains only and thus suggest a number of possi-

ble tests for stationarity. These are discussed briefly in Section 3.4.3 as possibilities

for further work but are not the main focus of this Chapter.

3.2.3 Extension for symmetric proposals

If the proposal distribution is symmetric (i.e. q (x∗|x) = q (x|x∗)) then we may

extend Lemmas 1 and 2 to deal with cases where REQ is not null.

With a symmetric proposal, the acceptance probability becomes

α(x,x∗) = min(1, π(x∗)/π(x))

and REQ(x,x∗) = {(x,x∗) : π(x) = π(x∗)}.

With each x ∈ ℜd we associate an equivalence class C∗(x) = {x∗ : π(x) = π(x∗)},

and a portion of the equality region REQ:

C(x) = (C∗(x)× C∗(x)) ∩ (ℜd × ℜd \ RID)

Consider those disjoint sets defined by C(·) that posses non-zero Lesbegue measure.

At most a finite number of these can share any given non-zero measure since the

total measure is less than or equal to 1. Also as each has non-zero measure the

differing measures may be ordered. Combining these two ideas we see that there

are a countable number of such classes, which we denote Ci. We then partition

REQ into the union of a null set and

C1 ∪ C2 ∪ . . .
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Each of the product spaces Ci is then partitioned into product spaces C
(1)
i and C

(2)
i

via the following rule: for any distinct unordered pair (x,x∗) arbitrarily assign one

ordered couplet (x,x∗) to C
(1)
i ; assign the other ordered couplet (x∗,x) to C

(2)
i .

These product spaces are then exchangeable in the same sense as the acceptance

and rejection regions are exchangeable:

(x,x∗) ∈ C(1)
i ⇔ (x∗,x) ∈ C(2)

i

The following may then be proved in a similar manner to Lemmas 1 and 2:

Lemma 3 Define C
(b)
i as above and let X and X′ be two consecutive elements

of any stationary Metropolis-Hastings Markov chain on Lesbegue target density

π(·) using symmetric Lesbegue proposal density q (x′|x). For any scalar function

h(x,x′) satisfying (3.19) and (3.20)

E [h(X,X′)] = (1 + c)×
∫

(x,x′)∈RA∪C
(1)
1 ∪C

(1)
2 ∪...

dxdx′ π(x)q (x′|x) h(x,x′)

and the expected acceptance rate of proposals X∗ satisfies

E [α(X,X∗)] = 2×
∫

(x,x∗)∈RA∪C
(1)
1 ∪C

(1)
2 ∪...

dxdx′ π(x)q (x′|x)

3.2.4 Extension for partial blocking

We now consider the effect of updating components separately using several sub-

blocks rather than a single block. Partition the complete space into k sub-spaces:

ℜd = E1 ⊕ · · · ⊕ Ek and update x = (x1, . . . ,xk) to x′ = (x′
1, . . . ,x

′
k) via k sub-

blocks using k separate proposal Lesbegue densities with an accept/reject stage

after each. As in Section 1.3.1.2 we define

x−i := x′
1, . . . ,x

′
i−1,xi+1, . . . ,xk (3.23)
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so that the proposal for the ith sub-block is

qi (x
∗
i |xi,x−i) (3.24)

Also define

ℜd
−i = E1 ⊕ · · · ⊕ Ei−1 ⊕ Ei+1 · · · ⊕ Ek

Denote the acceptance, rejection, identity and equality regions for the ith update

as in Section 3.2.1 but with the subscript i. The joint law A(dx, dx′) may be

decomposed into the product of the conditional joint laws Ai(dxi, dx
′
i|x−i) within

each block:

A(dx, dx′) = A((dx1, . . . , dxk), (dx
′
1, . . . , dx

′
k))

= A1(dx1, dx
′
1|dx−1) . . . Ak(dxk, dx

′
k|dx−k)

=

k
∏

1

Ai(dxi, dx
′
i|dx−i) (3.25)

where the last line merely introduces a convenient shorthand for the individual

conditional laws and does not indicate independence. We will also require the

marginal law for each block

A−i(dxi, dx
′
i) :=

∫

ℜd
−i×ℜd

−i

dx1dx
′
1 . . . , dxi−1dx

′
i−1dxi+1dx

′
i+1 . . . dxkdx

′
k A(dx, dx′))

Consider only functions h(·, ·) of the form

h(x,x′) =

k
∑

1

hi(xi,x
′
i) (3.26)

This includes for example h(x,x′) = ||x− x′||2β, provided each subspace Ei is the

span of some subset of the principal axes. In these circumstances Lemma 1 may

be extended:
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Lemma 4 Consider a Metropolis-Hastings Markov chain with stationary Lesbegue

density that is updated using k partial blocks on orthogonal subspaces as defined in

(3.24). Let h(·, ·) be a scalar function which decomposes according to (3.26), with

each hi(·, ·) satisfying (3.19) with the same c. Let the chain be stationary and let

X and X′ be two consecutive elements (after a complete set of partial updates) of

the chain, with joint law A(dx, dx′) and marginal laws A−i(dxi, dx
′
i) for each of

the partial blocks. Then

∫

(xi,x′
i)∈RAi

A−i(dx, dx
′) hi(xi,x

′
i) = c×

∫

(xi,x′
i)∈RRi

A−i(dx, dx
′) hi(xi,x

′
i)

If in addition hi(x,x) = 0 ∀i and furthermore each Reqi
and corresponding qi(·|·)

satisfy (3.21), then

E [h(X,X′)] = (1 + c)×
k
∑

1

∫

(xi,x′
i)∈RAi

A(dx, dx′) hi(xi,x
′
i)

Proof: Once the chain has reached stationarity, X is still a draw from the station-

ary distribution after any of the partial updates. Also the acceptance probabilities

for partial updates are chosen exactly so that the chain is reversible at stationarity

across each partial update. Thus the conditional law for the ith block is symmetric

and hence so is the marginal law

A−i(dxi, dx
′
i) = A−i(dx

′
i, dxi)

Acceptance and rejection regions for each partial update are chosen to be exchange-

able and the first result then follows by applying the first part of Lemma 1 to each

partial update. Next, combining (3.25) and (3.26) we obtain

∫

ℜd×ℜd

A(dx, dx′)h(x,x′) =

k
∑

j=1

∫

ℜd×ℜd

k
∏

i=1

Ai(dxi, dx
′
i|x−i) hj(xj,x

′
j)

=

k
∑

j=1

∫

Ej×Ej

A−j(dxj , dx
′
j) hj(xj ,x

′
j)
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The second result then follows by applying the second part of Lemma 1 to each

partial update.

Setting h(x,x′) = ||x− x′||2β provides the following:

Corollary 2 Consider any stationary Markov chain that has been produced by a

Metropolis-Hastings algorithm on an elliptical target density with partial updates

on spaces Ei, each spanned by some subset of the principal axes, and where (3.21)

holds for Reqi
and corresponding proposal Lesbegue density qi(·|·). In this situation

the integrated square jumping distance is the same over the acceptance and rejection

regions and equal to half the complete expectation, and therefore

E

[

||X′ −X||2β
]

= 2
k
∑

1

∫

(xi,x′
i)∈RAi

π(xi)q (x′
i|xi) ||x′

i − xi||2β (3.27)

Since each partial update is reversible at equilibrium and the acceptance and re-

jection regions are exchangeable Lemma 2 may also be applied to the acceptance

probability for each partial update, leading to the following:

Lemma 5 Consider a Metropolis-Hastings Markov chain that is updated using k

partial blocks on orthogonal subspaces as defined in (3.24). Let X be any element

from the chain at equilibrium; let Xi (i = 1, . . . , k) be the component along the

ith partial block after i − 1 further partial updates and let X∗
i be the proposed

next partial update. Write the marginal law for each proposed partial update as

A−i(dxi, dx
∗
i ). At stationarity

∫

(xi,xi∗)∈RAi

A−i(dx, dx
∗) αi(xi,x

∗
i ) =

∫

(xi,x∗
i )∈RRi

A−i(dx, dx
∗) αi(xi,x

∗
i )

If in addition (3.21) holds for each Reqi
and its corresponding qi(·|·) ∀i then

E [αi(X,X
∗)] = 2×

∫

(xi,x∗
i )∈RAi

A(dx, dx∗) αi(xi,x
∗
i )
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3.3 The random walk Metropolis

We will start by defining the random walk Metropolis algorithm and restating

the Exchangeability Lemmas and the definition of ESJD in terms specific to this

algorithm. Next we consider optimal scaling of the random walk Metropolis on

spherically symmetric targets in both finite dimensions and then in the limit as

d → ∞ (Section 3.3.1). We then generalise some of the results to elliptically

symmetric targets (Section 3.3.2) and examine the effects of partial blocking on

efficiency as dimension d → ∞ (Section 3.3.3). In Section 3.3.4 exact analytical

and computational results for the variation of expected acceptance rate and ESJD

with scale parameter are compared with theory from the previous sections. A sim-

ulation study is also conducted on unimodal targets each of which varies on two

radically different scales.

First consider a d-dimensional random walk Metropolis algorithm where the jump

proposal distribution has an overall scale parameter λ. As in Section 1.3.1.1 we

write

q (x∗|x) =
1

λd
r((x∗ − x)/λ) =

1

λd
r(y∗/λ)

Here r(·) is the Lesbegue density function for a jump proposal with unit scale pa-

rameter. The exact meaning of “unit scale parameter” is arbitrary and may (for

example) be taken from the conventional parametrisation if one exists. For the

symmetric random walk we also specify that r(y) = r(−y).

Since q (x∗|x) = q (x|x∗) the acceptance probability simplifies to

α (x,x∗) = min

(

1,
π(x∗)

π(x)

)

= min

(

1,
π(x + y∗)

π(x)

)
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For a d-dimensional random walk we also define the expected acceptance rate as

αd := E[α(X,X∗)]

where the expectation is with respect to the joint law for the current value X

and the proposed value X∗. We consider only spherical and elliptically symmetric

targets for which the ESJD is as defined in (3.15), or equivalently

S2
d =

d
∑

i=1

1

β2
i

E[Y 2
i ]

Expectation here is with respect to the law for the realised jump Y. If both π(·)

and r(·) are spherically symmetric then S2
d/d = E[(Yi)

2]/β2 is the ESJD over any

single component, and maximising this is equivalent to minimising the expected

lag-1 autocorrelation over that component. As noted in Section 3.1.4 for spheri-

cally symmetric targets maximising the ESJD is equivalent to maximising the naive

ESJD (3.14). Since the latter involves no floating constant of proportionality (or

simply sets the target scale parameter to 1) we will consider this as our definition

of ESJD throughout our examination of spherically symmetric random variables

in Section 3.3.1.

As before, we denote the target Lesbegue density function as π(x). In the region

RA, where acceptance is guaranteed, we have x′ = x∗ and y = y∗ so that for

integrals over RA we need not distinguish between proposed and accepted values.

Therefore from Corollary 1 and Lemma 2

αd(λ) =
2

λd

∫

RA

dx dy π(x) r (y/λ) (3.28)

S2
d(λ) =

2

λd

∫

RA

dx dy |y|2 π(x) r (y/λ) (3.29)
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3.3.1 Spherically symmetric unimodal target distributions

In Section 3.3.1.1 for isotropic (spherically symmetric) unimodal targets we de-

rive analytical forms valid at any dimension d for expected acceptance rate and

ESJD in terms of simple expectations of the target’s marginal distribution function

along a single axis. Consequences for optimal-scaling in finite dimensions are then

explored in Section 3.3.1.2, while Section 3.3.1.3 rewrites the exact forms from Sec-

tion 3.3.1.1 in terms of the more intuitive marginal radial distribution and density

functions.

Progressing to asymptotic optimal-scaling behaviour, we start (Sections 3.3.1.4 and

3.3.1.5) with some limit theory for marginal radial and marginal one-dimensional

distribution functions of spherically symmetric random variables. Limiting results

for optimal scaling are split into three sections: we first obtain simple limiting forms

for expected acceptance rate and ESJD in terms of the limiting marginal radial

distribution (Section 3.3.1.6). We then explore the existence (Section 3.3.1.7) and

the properties (Section 3.3.1.8) of an optimal scaling in the limit as d → ∞ and

examine the consequences for the limiting acceptance rate.

3.3.1.1 Expected acceptance rate and ESJD for a finite dimensional

target in terms of its marginal one-dimensional distribution

function

Let the target density of spherically symmetric d-dimensional random variable

X(d) be πd(x) = fd(|x|) with fd(x) a strictly monotonically decreasing function

in non-negative x. For clarity of exposition we sometimes drop the subscript or

superscript d and refer simply to X, π(x), and f(|x|). We will relax the strictness
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of the monotonicity later in this section.

Now consider x and x + y as two points in the same space ℜd rather than a single

point in the product space ℜd × ℜd. Thus RA corresponds to the region where

π(x + y) > π(x), but

π(x + y) > π(x) ⇔ |x + y|2 < |x|2

⇔ 2x.y + y.y < 0

⇔ x.ŷ < −1

2
|y| (3.30)

where ŷ is the unit vector in the direction of y. So

(x,x + y) ∈ RA ⇔ y ∈ ℜd and x·ŷ < −1

2
|y|

Figure 3.1 shows the geometric intuition behind the equivalence between |x+y|2 <

|x|2 and x·ŷ < −1
2
|y|. Here the component of x in the ŷ direction is denoted x1

and the vector component of x perpendicular to y is x−. The contribution of |x−|2

to |x|2 and |x + y|2 is the same and so the only quantities relevant to the compar-

isons between the two magnitudes are x2
1 and (x1 + |y|)2. The latter is clearly the

smaller if and only if |y| < −2x1 , as occurs in the figure.

Denote the one-dimensional marginal distribution function of the target X(d) along

unit vector ŷ as F1|d(x). Since X(d) is spherically symmetric, this is independent of

ŷ, and we simply refer to it as the one-dimensional marginal distribution function

of X(d).
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x x−

y

x1 x1 + |y|0

Figure 3.1: For proposed jump y, current position x is decomposed into x1, the compo-

nent parallel to y, and x−, the vector component perpendicular to y.

Thus (3.28) and (3.29) become

αd(λ) =
2

λd

∫

ℜd

dy r (y/λ)F1|d

(

−1

2
|y|
)

S2
d(λ) =

2

λd

∫

ℜd

dy |y|2r (y/λ)F1|d

(

−1

2
|y|
)

Substituting y′ = 1
λ
y and relabelling we obtain

αd(λ) = 2

∫

ℜd

dy r (y)F1|d

(

−1

2
λ|y|

)

S2
d(λ) = 2λ2

∫

ℜd

dy |y|2 r (y)F1|d

(

−1

2
λ|y|

)

Or equivalently
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αd(λ) = 2E

[

F1|d

(

−1

2
λ |Y|

)]

(3.31)

S2
d(λ) = 2λ2

E

[

|Y|2 F1|d

(

−1

2
λ |Y|

)]

(3.32)

where expectation is with respect to measure r(·) with unit scale parameter.

We now relax the “strict monotonicity” condition to “monotonicity”. First consider

the simple example of a uniform ball:

π(x) = c if |x| ≤ 1

= 0 if |x| > 1

for some constant c. The rejection region {(x,x′) : |x| ≤ 1 ≤ |x′|} is null with

respect to the stationary distribution and, provided we start the algorithm in the

support of π(·) the acceptance region {(x,x′) : |x′| ≤ 1 ≤ |x|} is also null. How-

ever one part of the equality region R∗
EQ := {(x,x′) : |x′| ≤ 1, |x| ≤ 1,x 6= x′} has

Lesbegue measure 1.

We partition R∗
EQ into

C(1) := {(x,x′) : |x′| < |x| ≤ 1}

C(2) := {(x,x′) : |x| < |x′| ≤ 1}

C(null) := {(x,x′) : |x| = |x′| ≤ 1,x 6= x′}

and apply Lemma 3. The third set is null and the first two sets correspond exactly

to the acceptance and rejection region in our standard problem with strict mono-

tonicity (consider for example altering the density slightly so that it has a small
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downwards slope away from the origin when |x| ≤ 1 and is 0 thereafter).

Now consider a general spherically symmetric density function with

|x1| < |x2| ⇒ π(x1) ≥ π(x2)

For brevity we will sometimes refer to such functions as unimodal and isotropic.

These functions differ from the strictly monotonic by containing a (possibly count-

ably infinite) series of plateaus. For target π(·), write f(|x|) = π(x) and let the ith

plateau be over the region ai < |x| ≤ bi with bi ≤ ai+1. Compare this function with

the strictly monotonic function g(|x|) defined with a linear interpolation replacing

each plateau:

g(x) = f l
i −

x− (ai − ǫ)
(bi + ǫ)− (ai − ǫ)

×
(

f l
i − fh

i

)

(for x ∈ [ai − ǫ, bi + ǫ], any i)

= f(x) elsewhere.

for some small ǫ > 0, and where

f l
i =

f(ai − ǫ) + f(ai)

2
and fh

i =
f(bi + ǫ) + f(bi)

2

If plateaux i and i + 1 are adjacent or nearly adjacent, simply define g(·) in the

overlap region of size at most 2ǫ as the maximum of the two possibilities. For

target g(|x|), regions REQ, RA, and RR only differ from those of f(|x|) when both

x and x′ occupy the same plateau (extended at each end by ǫ). But the entire

portion of any space with x and x′ on the same plateau (and x 6= x′) is an equality

region for f(·) and so may be treated as for the uniform ball and partitioned into

a null set and two non-null regions which correspond exactly to the acceptance and

rejection regions of target g(|x|). Let ǫ→ 0 to see that equations (3.31) and (3.32)

apply for any unimodal isotropic target density.
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The marginal distribution function F1|d(−λ |Y| /2) is bounded and decreasing in λ.

Also limx→∞ F1|d(−x) = 0 and by symmetry, provided the marginal distribution

function is continuous at the origin, limx→0 F1|d(−x) = 0.5. Applying the bounded

convergence theorem to (3.31) we therefore obtain the following, true whatever the

dimension of the random walk:

Corollary 3 Let λ be the scaling parameter for any RWM algorithm on a unimodal

isotropic target Lesbegue density. In this situation the expected acceptance rate

at stationarity αd(λ) decreases with increasing λ with limλ→0 αd(λ) = 1 and

limλ→∞ αd(λ) = 0 .

In fact this result holds true for all unimodal elliptically symmetric targets, as will

be discussed in Section 3.3.2.

Now suppose X(d) ∼ N(0, λ2
t Id). Here F1|d(x) = Φ(x/λt) , where Φ(·) is the

distribution function of a standard Gaussian, and we have exactly that

αd(λ) = 2E

[

Φ

(

−1

2

λ

λt

|Y|
)]

(3.33)

S2
d(λ) = 2λ2

E

[

|Y|2 Φ

(

−1

2

λ

λt
|Y|
)]

(3.34)

where expectation is with respect to proposal density r(·) with unit scale parame-

ter. No other distributions are both spherically symmetric and have independent

components and hence such a simple one-dimensional marginal distribution inde-

pendent of the axis. Nevertheless (3.31) and (3.32) will prove extremely useful

when considering both finite dimensional behaviour and the limit as d→∞.
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For many spherically symmetric target distributions it is more intuitive to think in

terms of the marginal radial distribution, which is easily derived from the general

density function in ℜd. In this case analytical results in terms of simple expecta-

tions of marginal radial densities and standard functions are possible (see Section

3.3.1.3). We first examine the validity of the principal of optimal-scaling in finite

dimensions.

3.3.1.2 Optimal scaling for spherically symmetric unimodal targets in

finite dimensions

In this Section we use (3.32) to explore behaviour of the ESJD for finite dimensional

unimodal spherically symmetric targets. We prove the existence of at least one

(finite) optimal scaling, subject to conditions on the moments of the target and

proposal. Results from this section will later be shown to apply to more general

unimodal elliptically symmetric distributions (see Section 3.3.2). We introduce the

notation rd(y) for the density of |Y| for general proposal Y.

Lemma 6 Consider a spherically symmetric unimodal d-dimensional target Les-

begue density π(x) with 1-dimensional marginal distribution function F1|d(x). Let

π(·) be explored through a RWM algorithm with proposal Lesbegue density 1
λd r(y/λ).

Consider the expected square jump distance along any component of the Markov

chain at stationarity, S2
d(λ). If Eπ

[

|X|2
]

<∞ and Er

[

|Y|2
]

<∞ then

lim
λ→0

S2
d(λ) = 0 (3.35)

lim
λ→∞

S2
d(λ) = 0 (3.36)

S2
d(λ) > 0 for all λ ∈ (0, c) (3.37)

for some c with 0 < c ≤ ∞.
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Proof: Since E
[

|Y|2
]

is finite we may apply the dominated convergence theorem

to prove (3.35).

lim
λ→0

S2
d(λ) = lim

λ→0
2λ2

EY

[

|Y|2 F1|d

(

−1

2
λ |Y|

)]

= lim
λ→0

(

2λ2
)

× EY

[

|Y|2 lim
λ→0

F1|d

(

−1

2
λ |Y|

)]

= lim
λ→0

(

2λ2
)

× EY

[

1

2
|Y|2

]

= 0

To show (3.36) we first construct an upper bound for S2
d(λ).

S2
d(λ) = 2λ2

EY

[

|Y|2 F1|d

(

−1

2
λ |Y|

)]

= 2λ2

∫ ∞

0

dy rd (y) y2

∫ −λ
2
y

−∞

dx f1|d(x)

= 2λ2

∫ ∞

0

dy rd (y) y2

∫ ∞

λ
2
y

dx f1|d(x)

= 2λ2

∫ ∞

0

dx f1|d(x)

∫ 2x
λ

0

dy rd (y) y2

≤ 2λ2

∫ ∞

0

dx f1|d(x)

∫ 2x
λ

0

dy rd (y)

(

2x

λ

)2

= 8Ef1|d

[

X2

∫ 2x
λ

0

dy rd (y)

]

Now Ef1|d
[X2] ≤ Ef

[

|X|2
]

<∞ so by the dominated convergence theorem

lim
λ→∞

S2
d(λ) ≤ 8Ef1|d

[

X2 lim
λ→∞

∫ 2X
λ

0

dy rd (y)

]

= 0

since rd (y) is a Lesbegue density.
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Finally, since Erd
[Y 2] <∞ there is an a for which 0 <

∫ b

0
dy rd (y) y2 <∞ for

all b > a and so

S2
d(λ) ≥ 2λ2

∫ b

0

dy rd (y) y2F1|d

(

−1

2
λy

)

≥ 2λ2F1|d

(

−1

2
λb

)
∫ b

0

dy rd (y) y2

But F1|d(x) is the distribution function of a symmetric Lesbegue density and so is

strictly positive for x greater than some −ǫ. Thus S2
d is certainly strictly positive

for 0 < λ < 2ǫ/b, proving (3.37).

Note that the ESJD need not be stricly positive for all λ ∈ (0,∞). Consider for

example a proposal which has density zero inside the sphere of radius λ and a

target which has mass only inside the unit sphere. The acceptance probability will

be zero everywhere for λ > 2.

The next corollary follows immediately from Lemma 6, and validates our search

for optimal scaling(s) in finite dimensions for unimodal isotropic targets.

Corollary 4 Consider a spherically symmetric unimodal d-dimensional target Les-

begue density π(x). Let π(·) be explored via a RWM algorithm with proposal Lesbe-

gue density 1
λd r(y/λ). If Eπ

[

|X|2
]

<∞ and Er

[

|Y|2
]

<∞ then the ESJD of the

Markov chain at stationarity attains its maximum at a finite non-zero value (or

values) of λ.

3.3.1.3 Expected acceptance rate and ESJD for a finite dimensional

target in terms of its marginal radial density

We seek expressions for the expected acceptance rate and the ESJD in terms

of marginal radial densities or distribution functions. We start by deriving the

one-dimensional marginal distribution function of a spherically symmetric random
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variable in terms of its marginal radial distribution function. The derivation is

straightforward and is given below; alternatively the marginal one-dimensional

distribution function may be deduced from standard results on the partitioning of

components of spherically symmetric distributions (e.g. Fang et al., 1990, Section

2.3).

We introduce some further notation; write F d (r) and fd (r) for the marginal radial

distribution and density functions of d-dimensional spherically symmetric target

X(d); these are the distribution and density functions of
∣

∣X(d)
∣

∣. We continue to

denote the marginal distribution of X(d) along any particular axis by F1|d(x).

Lemma 7 For any d-dimensional spherically symmetric random variable with

marginal radial distribution function F d (r) the 1-dimensional marginal distribution

function along any axis is

F1|d(x1) =
1

2

(

1 + sign(x1) E

[

F d

(

|x1|
U

1/2
d

)])

(3.38)

where sign(x) = 1 for x ≥ 0 and sign(x) = −1 for x < 0. Here

U1 = 1

Ud ∼ Beta

(

1

2
,
d− 1

2

)

(d > 1)

Proof: To allow for a possible point mass at the origin we define

pd := F d (0)

Clearly

F1|d(0) = P (X1 < 0) + P (X1 = 0) =
1

2
(1− pd) + pd =

1

2
(1 + pd) =

1

2

(

1 + F d (0)
)
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O

θ

dθ

x1

r

S ′

S

Figure 3.2: A d-dimensional spherical shell S at distance r from the origin, and a

(d− 1)-dimensional spherical shell S′ ⊂ S at angle θ to the x1 axis.

and the result therefore holds for x1 = 0. For x1 > 0, by symmetry we have

F1|d(−x1) = 1 − F1|d(x1) and so the result for −x1 would follow from a proof for

+x1. Also for d = 1 and for x1 > 0, F1|1(x1) = (1−p1)/2+p1+1/2×
(

F 1(x1)− p1

)

.

We need therefore only consider d ≥ 2 and x1 > 0.

Following the notation of Section 1.5.2, the probability mass per unit “area” of a

d-dimensional hyperspherical shell at radius r > 0 is

dF d (r)

ad rd−1

Consider the d-1 dimensional hyperspherical shell consisting of that part of the

original shell at angle [θ, θ+ dθ) to the x1 axis (see Figure 3.2). The total mass in
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this shell is

dF d (r)

adrd−1
× r dθ ad−1(r sin θ)d−2 =

ad−1

ad
sind−2 θ dF d (r) dθ

Since F1|d(0) = (1 + pd)/2, for non-negative x1

F1|d(x1) =
1 + pd

2
+
ad−1

ad

∫ π/2

0

dθ sind−2 θ

∫ x1/ cos θ

0+

dF d (r)

=
1 + pd

2
+
ad−1

ad

∫ π/2

0

dθ sind−2 θ
(

F d (x1/ cos θ)− pd

)

Now substitute u1/2 = cos θ so that −2 sin θ dθ = u−1/2du and recall (1.15) for the

ratio ad/ad−1 to obtain

F1|d(x1) =
1

2

(

1 + pd +

∫ 1

0

du gd(u)
(

F d

(

x1/u
1/2
)

− pd

)

)

=
1

2

(

1 +

∫ 1

0

du gd(u) F d

(

x1/u
1/2
)

)

Here

gd(u) :=
1

B
(

1
2
, d−1

2

)u−1/2 (1− u)(d−3)/2 (0 ≤ u ≤ 1)

0 (u < 0 or u > 1)

which is the density function of a Beta
(

1
2
, d−1

2

)

random variable.

Lemma 7 applies whatever the form of the radial distribution function F d (·). In

our investigations in to the random walk Metropolis algorithm we are concerned

only with targets that posses a density with respect to the Lesbegue measure in

ℜd. In this case both the marginal one-dimensional and radial density functions

f1|d(·) and fd (·) exist trivially, and consequently the corresponding distribution

functions are continuous. Further F d (0) = 0 as there can be no point mass at the



CHAPTER 3. OPTIMAL SCALING OF THE RWM 141

origin (or anywhere else), and hence

E

[

F d

(

x1

U
1/2
d

)]

=

∫ ∞

0

dGd(u)

∫ x1/u1/2

0

dF d (x)

=

∫ ∞

0

dF d (x)

∫ x2
1/x2

0

dGd(u)

= E

[

Gd

(

( x1

X(d)

)2
)]

where X(d) =
∣

∣X(d)
∣

∣ and Gd(u1) =
∫ u1

0
du gd(u) is the distribution function of

a Beta(1/2, (d − 1)/2) random variable with Gd(u1) = 1 for u1 ≥ 1. We may

therefore re-write (3.38) as

F1|d(x1) =
1

2

(

1 + sign(x1) EX(d)

[

Gd

(

( x1

X(d)

)2
)])

(d ≥ 2) (3.39)

Substituting (3.38) into (3.31) and (3.32) we obtain

αd(λ) = 1− EY,U

[

F d

(

λ |Y|
2U1/2

)]

(3.40)

S2
d(λ) = λ2

EY,U

[

|Y|2
(

1− F d

(

λ |Y|
2U1/2

))]

(3.41)

where U ∼ Beta(1/2, (d − 1)/2). The above forms are interesting because they

express both the expected acceptance rate and ESJD in terms expectations; fur-

ther, these expectations are over quantities whose distributions are known to the

statistician and from which he or she could simulate. However the marginal ra-

dial distribution function of any specific target density may not be easy to obtain.

Alternative forms of more practical use when examining the behaviour of specific

combinations of target and proposal are obtained by substituting (3.39) into (3.31)

and (3.32). To simplify the notation we first define for non-negative u

Kd(u) := 1−Gd(u
2)

so that Kd(0) = 1 and Kd(u) = 0 for u ≥ 1; also K1(u) = 1 for 0 ≤ u < 1. Then
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αd(λ) = EY,X(d)

[

Kd

(

λ |Y|
2X(d)

)]

(3.42)

S2
d(λ) = λ2

EY,X(d)

[

|Y|2
(

Kd

(

λ |Y|
2X(d)

))]

(3.43)

These expectations depend on Y only through |Y|, so writing rd (y) for the marginal

radial density of |Y| we obtain the expected acceptance rate and ESJD in terms

of straightforward double integrals.

αd(λ) =

∫ ∞

0

dy

∫ ∞

1
2
λy

dx rd (y) fd (x)Kd

(

λy

2x

)

(3.44)

S2
d(λ) = λ2

∫ ∞

0

dy

∫ ∞

1
2
λy

dx rd (y) fd (x) y2Kd

(

λy

2x

)

(3.45)

Obtaining the marginal radial density of the proposed jump may itself require a

multi-dimensional integral, but in the event that Y(d) is also spherically symmet-

rical then rd (|y|) = ad |y|d−1 rd(y). For certain simple combinations of target and

proposal the double integral may be reduced to a single integral or even removed

completely (see Section 3.3.4.1), but even if this is not possible, a simple R routine

will quickly evaluate the integrals numerically for various values of λ and d and the

behaviour of the optimal scaling and acceptance rates can be ascertained (Section

3.3.4.2).

In the event that r(y) is not spherically symmetric but is easy to simulate from,

then one or both of the expectations in (3.40) and (3.41) or (3.42) and (3.43) may

be evaluated by Monte Carlo approximation.

3.3.1.4 Limit theorems for spherically symmetric distributions

This section is dedicated to limit theorems for the marginal one-dimensional dis-

tribution function of a spherically symmetric distribution. We will show that if
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the modulii of a (suitably rescaled) sequence of spherically symmetric random

variables converges in probability to a non-zero constant then the sequence of

(rescaled) one-dimensional marginal distributions converges to a standard Gaus-

sian. More generally, even when rescaled convergence in probability is not achieved,

provided the sequence of (suitably rescaled) marginal radial distribution functions

converges weakly then the sequence of (rescaled) marginal one-dimensional distri-

bution functions converges weakly to a scaled mixture of normals. The first result

clearly follows as a special case of the second, however we prove it separately using

a much simpler argument that gives an intuition into the underlying reason for

the mixture form. The mixture result itself follows from a theorem in Fang et al.

(1990); we provide an alternative proof from first principles in Appendix C.

We first define some notation for the convergence of random variables that will

be used throughout the rest of this chapter. Weak convergence, also known as

convergence in distribution, is denoted by
D−→ ; convergence in probability is

denoted
p−→ and convergence in mean square by

m.s.−→ . We now recall some

properties of convergence in probability, which will subsequently be used without

further comment or reference. For any random variable Z with P (Z =∞) = 0

and any two sequences of random variables Xn
p−→ a, Yn

p−→ b 6= 0

XnYn
p−→ ab , Y k

n

p−→ bk for any k, and XnZ
p−→ aZ

As well as being essential to the proof of Theorem 1, the following simple gener-

alisation of the weak law of large numbers for triangular sequences of chi-square

random variables will also play a part in the discussion of convergence in proba-

bility for elliptically symmetric random variables in Section 3.3.2.1. A proof which

mirrors exactly that for the weak law of large numbers, is given for the sake of
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completeness in Appendix C.

Lemma 8 Let {Z(n) : Z(n) ∼ N(0, In)} be a sequence of independent random

variables in ℜn.
∣

∣Z(n)
∣

∣

n1/2

p−→ 1

We may simulate a spherically symmetric random variable X(d) on ℜd by simulating

a random direction and independently simulating a random length R(d). This may

be taken as defining a spherically symmetric random variable; for equivalence with

other possible definitions see Theorem 2.3 of Fang et al. (1990). Fix a p-dimensional

space Vp (p ≤ d) which is ℜp, possibly rotated within ℜd. Let Z(d) ∼ N(0, Id)

be independent of R(d), and let Z(p|d) ∼ N(0, Ip) be the p-component marginal

distribution of Z(d) over Vp ≤ ℜd (in the context of vector spaces, “≤” denotes

“is a subspace of”). Then with X(p|d) denoting the p-dimensional random variable

consisting of the components of X(d) in Vp, we may write

X(d) =
Z(d)

|Z(d)| × R
(d) and X(p|d) =

Z(p|d)

|Z(d)| ×R
(d)

We may of course relate X(d) to any other spherically symmetric random variable

in this manner, but the Gaussian is the only spherically symmetric random variable

with independent components and therefore a simple form for the distribution of

any p-component marginal.

Theorem 1 Let X(d),X(p|d),Z(d),Z(p|d) and Vp be defined as above. If there ex-

ist kd such that the marginal radius, R(d) := |X(d)| satisfies R(d)/kd
p−→ 1 then

d1/2

kd
X(p|d) p−→ Z(p|d) ∼ N(0, Ip).
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Proof: |Z(d)|2 ∼ χ2
d , so from Lemma 8 |Z(d)|/d1/2 p−→ 1. Also R(d)/kd

p−→ 1,

and so

d1/2

kd
X(p|d) = Z(p|d) × R(d)/kd

|Z(d)|/d1/2

p−→ Z(p|d)

In actual fact our subspace Vp will be a one-dimensional subspace of ℜd but it

will not be fixed as d → ∞. However since X(d) is spherically symmetrical, the

marginal distribution along any given one-dimensional subspace of ℜd is the same

as that along any other one-dimensional subspace, at least one of which converges

in probability to Z(1|d) ∼ N(0, 1). Convergence in probability implies convergence

in distribution and it follows that any 1-component projection of X(d) (suitably

rescaled) converges in distribution to a standard Gaussian.

From real analysis we have the following result (a proof of which is given for

completeness in Appendix C):

Lemma 9 Let Gd(x) be a sequence of monotonic functions, with identical finite

upper and lower bounds. If the sequence converges to a continuous limit G(x) then

it does so uniformly in x.

Thus for the one-dimensional marginal distribution function we obtain:

Corollary 5 Let {X(d)} be a sequence of d-dimensional spherically symmetric ran-

dom variables with one-dimensional marginal distribution functions F1|d(·), and let

there be a kd such that
∣

∣X(d)
∣

∣ /kd
p−→ 1. Then

F1|d

(

kd

d1/2
x1

)

→ Φ(x1) uniformly

A general sequence of d-dimensional isotropic random variables may not satisfy the

criterion of convergence in probability of the rescaled modulus. However, provided
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the (suitably rescaled) sequence of marginal distribution functions of the modulii of

the random variables converges to some distribution function Θ (r) then the (suit-

ably rescaled) one-dimensional marginal distribution function converges to that of a

scaled mixture of normals; the intuition behind this result is clear from Theorem 1.

Convergence of the sequence of characteristic functions of a sequence of d-dimensional

isotropic random variables to that of a mixture of normals is proved as Theorem

2.21 of Fang et al. (1990). Clearly the marginal distribution along any given axis

is a mixture of one-dimensional standard normals and so a single component may

be written as X1 = RZ with Z a standard Gaussian and R the mixing distribution.

We require a result for the limiting marginal one-dimensional distribution function

to which we apply Lemma 9 to give uniform convergence. We therefore obtain the

following:

Theorem 2 Let {X(d)} be a sequence of d-dimensional spherically symmetric ran-

dom variables. If there exist kd such that
∣

∣X(d)
∣

∣ /kd
D−→ R where R has distribution

function Θ(r) with Θ(0) = 0. then the sequence of marginal one-dimensional dis-

tributions of X(d) satisfies

F1|d

(

kd

d1/2
x1

)

→ Θ(x1) := ER

[

Φ
(x1

R

)]

uniformly in x1 (3.46)

where Φ(·) is the standard Gaussian distribution function.

For an alternative proof of this theorem (from first principles) see Appendix C.

∣

∣X(d)
∣

∣ posseses a Lesbegue density and therefore no point mass at the origin; how-

ever the rescaled limit R may posses such a point mass. We now examine the
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consequences of this possibility, in particular for the continuity of Θ(·) . It will be

shown in Lemma 10 that if Θ (0) = p > 0 then Θ(x) is discontinuous at the ori-

gin. In such circumstances Theorem 2 continues to hold except that Lemma 9 no

longer applies and convergence is therefore no longer uniform in x1. It would also

be necessary to specify Φ(x1/0) to be 0 if x1 < 0 and 1 if x1 ≥ 0 (since distribution

functions are right-continuous). This specification is unnecessary in the theorem

as it stands since Φ(·) is bounded and therefore with no point mass at the origin

the term Φ(x1/0) makes zero contribution to the expectation.

Insistence on Θ (0) = 0 ensures continuity of Θ(x1) for all x1 ∈ ℜ since by the

bounded convergence theorem

lim
x1→k

Θ(x1) = lim
x1→k

ER [Φ (x1/R)] = ER

[

lim
x1→k

Φ (x1/R)

]

The above holds whether the limit is approached from above or below and possible

discrepancies between the two at x1 = 0 due to the extended definition for R = 0

are avoided.

If Θ (0) = p > 0 then consideration of R as the mixture

R = 0 with probability p

= R∗ with probability 1− p

where R∗ has no mass at the origin, leads directly to the following:

Lemma 10 Let X(d) be a sequence of spherically symmetric random variables with

an associated scaling kd such that
∣

∣X(d)
∣

∣ /kd
D−→ R where R has distribution func-

tion Θ(r). Consider the limiting marginal one-dimensional distribution function
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Θ(x) of a spherically symmetric random variable; this is continuous for x 6= 0 and

lim
x↑0

Θ(x) =
1

2
(1− p) and Θ(0) =

1

2
(1 + p)

where p := Θ (0).

Note that Θ (x) (and hence also Θ(x)) is only unique up to a constant: if scaling

kd produces Θ (x) then scaling akd will produce Θ (ax).

The condition of convergence of the rescaled modulus to 1 or to random variable R

will turn out to be the key determinant in the behaviour of the optimal acceptance

rate as d→∞; we now examine the limiting behaviour in more detail.

3.3.1.5 Limiting forms for the rescaled modulus of the target

For many of the standard sequences of density functions (e.g. πd(x) ∝ |x|a e−|x|c)

there is a kd such that
∣

∣X(d)
∣

∣ /kd
p−→ 1. Clearly this is equivalent to

∣

∣X(d)
∣

∣ /kd
p−→ c

for any c ∈ (0,∞), with each kd divided by c. However choosing the sequence kd

to have values too small by a factor which tends to infinity produces a point mass

of 1 at ∞, and similarly choosing the values too large by this factor results in a

point mass of 1 at 0, neither of which are informative.

It is easy to construct d-dependent density forms for which there is no rescaling

sequence kd that gives convergence in probability to 1. For example if πd(x) ∝

|x|−d+1 e−
1
2
|x|2 then the marginal radial distribution function is always a standard

Gaussian. It is also easy to construct (highly artificial) sequences {X(d)} such

that there is no scaling to give any convergence, except to 0 or ∞ (for example

πd(x) ∝ |x|−d+1 e−
sin2 d

2
|x|2).
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Also of interest are sequences of random variables with the same functional form

for density in terms of the radial distance. However even in such cases as these,

where the only explicit dependence on d is through the normalisation constant,

there are spherically symmetric random variables for which there is no re-scaling

such that
∣

∣X(d)
∣

∣ /kd
p−→ 1. Consider for example πd(x) = fd(|x|) where

fd(x) =
1

(2πed)1/2
x−

1
2

log x =
1

(2πed)1/2
e−

1
2
(log x)2 (3.47)

Then

fd+1 (x) ∝ xde−
1
2
(log x)2

log fd+1 (x) = const + d log x− 1

2
(log x)2

(

log fd+1 (x)
)′

=
d

x
− log x

x

Thus fd+1 (x) is maximised at x = ed and this therefore must be the re-scaling

factor kd that could potentially lead to some limiting distribution. We substitue

u = x/ed and find its density function hd+1(u)

hd+1(u) ∝ ude−
1
2
(log u+d)2

∝ ude−
1
2
(log u)2e−d log u

= e−
1
2
(log u)2

The rescaled density is therefore independent of d and in fact exhibits the same

form as the original density as a function of the radius

hd(u) =
1

(2πe)1/2
e−

1
2
(log u)2 (3.48)

This is because U = logX has Gaussian density with mean d, and dividing X by

ed−1 is equivalent to subtracting d−1 from U . The result is a Gaussian with mean
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1, which is the density of the transformed X at d = 1.

We therefore seek a sufficient condition for there to exist a sequence kd such that
∣

∣X(d)
∣

∣ /kd
p−→ 1 when the density of spherically symmetric X(d) only depends on

dimension through the normalisation constant. We will find that polynomial tail

behaviour of the log density guarantees the required convergence.

Define

g(|x|) := − log f(|x|) (3.49)

We assume throughout that g(r) is twice differentiable everywhere on the interval

[0,∞) and define

h(r) := r(rg′(r))′ (3.50)

Also write the d-dimensional marginal radial density as

f ∗
d (r) := cdr

d−1 exp (−g(r)) (3.51)

where c−1
d =

∫∞

0
dr rd−1 exp (−g(r)). Note that g(r) being twice differentiable im-

plies that both g′(r) and g(r) are bounded on any compact interval [0, s] for s <∞

and that therefore f ∗
d (r) has support [0,∞).

Finally let rd be any maximum of the marginal radial density and define the mod-

ulus of the rescaled target as U (d) :=
∣

∣X(d)
∣

∣ /rd. Then the density of U (d) is

f ∗∗
d (u) ∝ ud−1 exp (−g(urd)) (3.52)

The following Lemma provides intuition behind our use of the function h(r).
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Lemma 11 Let rd be any maximum of the marginal radial density function f ∗
d (·)

and let g(·), h(·), and f ∗∗
d (·) be defined as in (3.49), (3.50), and (3.52). Then

(log f ∗∗
d (1))′′ = −h(rd)

Proof: The derivatives of the log-density of the rescaled modulus are

(log f ∗∗
d (u))′ =

d− 1

u
− rdg

′(urd)

(log f ∗∗
d (u))′′ = −

(

d− 1

u2
− r2

dg
′′(urd)

)

At the maximum, u = 1 , and d− 1 = rd g
′(rd), from which

(log f ∗∗
d (u))′′ = −

(

rdg
′(rd) + r2

dg
′′(rd)

)

= −h(rd)

Thus h(r) is the (negative) curvature of the log-density of the rescaled modulus at

its maximum.

We will now show that for large enough d, and subject to a simple condition on h(·)

the maxima rd are unique and provide an increasing sequence tending to infinity.

We will then show that using the rd as a rescaling sequence produces the desired

convergence in probability to 1.

Lemma 12 If h(r) > 0 for all r > r∗ then for all d > d0 (for some d0 < ∞) the

marginal radial density function has a single maximum rd, with rd →∞ monoton-

ically as d→∞.
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Proof: First note that

log f ∗
d (r) = log cd + (d− 1) log r − g(r)

so that

(log f ∗
d (r))′ =

d− 1

r
− g′(r) (3.53)

and any local maximum rd must satisfy

rd g
′(rd) = d− 1 (3.54)

Differentiability of g(r) implies differentiability of f ∗
d (r) and since g(r) is bounded

for finite r, f ∗
d (r) has support thoughout [0,∞). Further, f ∗

d (0) = 0 for d > 1.

Any differentiable density function f ∗
d (r) with support throughout [0,∞) and with

f ∗
d (0) = 0 must have at least one local maximum (otherwise it could not integrate

to 1).

Set d0 = 1 + supr∈[0,r∗] rg
′(r) so that by (3.54) for d > d0, any maximum must

occur at rd > r∗ Now

(rg′(r))′ = h(r)/r > 0 for r > r∗

so for r > r∗, rg′(r) is always increasing. Thus for d > d0 there can be at most

one solution to rg′(r) = d− 1 , and f ∗
d (r) posseses exactly one local maximum.

Further as rg′(r) is increasing and since rdg
′(rd) = d− 1 then rd must increase

monotonically with d. Suppose that it approaches some limit and so rd ≤ r0 for

all d. Since g′(r) is bounded for finite r it has a finite upper bound b on [0, r0], so

d− 1 = rdg
′(rd) ≤ r0b which is a contradiction for all d > r0b+ 1.
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It is actually possible to show far more for the rescaled modulus than simple con-

vergence in probability to 1; the following is proved in Appendix C.

Lemma 13 If there exist positive k and a such that

h(r)/ra → k as r →∞ (3.55)

then there is a sequence {rd} with rd →∞ as d→∞, such that

1

a
(kra

d)
1/2

((
∣

∣X(d)
∣

∣

rd

)a

− 1

)

D−→ N(0, 1)

The desired convergence in probability result follows immediately from Lemma 13

since a > 0 and rd →∞ as d→∞.

Corollary 6 If there exist positive k and a such that

h(r)/ra → k as r →∞

then there is a sequence rd with rd →∞ as d→∞ such that

∣

∣X(d)
∣

∣

rd

p−→ 1

The condition (3.55) implies that h(rd) is increasing polynomially in rd, which itself

is increasing in d, without bound. Thus the (negative) curvature of the log density

at the maximum is increasing in d without bound, which intuitively corresponds

to convergence in probability. Lemma 13 shows limiting normality and so is far

stronger than is required for there to be a rescaling which produces convergence in

probability to 1 of the modulii. It therefore seems likely that a weaker condition

than (3.55) may be sufficient.
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3.3.1.6 Limit theorems for expected acceptance rate and ESJD

We now return to the RWM and consider ESJD and expected acceptance rate on

a unimodal spherically symmetric target as d→∞.

We have found that the scaled one-dimensional marginal distribution function

of the target approaches some continuous limiting distribution function Θ(·) as

d→∞ whenever the rescaled radial distribution function approaches some limit-

ing distribution function Θ (·) with Θ (0) = 0. In all further discussions the relation

Θ (0) = 0 is assumed to hold. The limiting marginal distribution function is in

general a scaled mixture of normal distribution functions, but in the special case

that Θ (r) has a single discontinuous step of height 1 at r = 1 (or at any other

finite value) then the scaled mixture of normals reduces to the standard Gaussian

cumulative distribution function Φ(·).

Consider a sequence of jump proposal random variables {Y(d)} with unit scale

parameter. If there exist k
(d)
y such that

∣

∣Y(d)
∣

∣ /k
(d)
y converges to unity (in a sense

to be defined) then simple limit results are possible. Since the working statistician

is free to choose Y(d) this convergence condition can be ensured in advance. If the

standard parametrisation of Y(d), gives scaling k
(d)
y we define Ỹ(d) := Y(d)/k

(d)
y so

that Ỹ(d) converges (in a sense to be defined) to 1.

We also define a rescaled scaling parameter

µ(d) :=
1

2

d1/2k
(d)
y

k
(d)
x

λ (3.56)
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Applying Lemma 9 gives

F1|d

(

−1

2

k
(d)
x

d1/2
λ |Y|

)

→ Θ

(

−1

2
λ |Y|

)

uniformly

for some continuous distribution function Θ(·) representing either a Gaussian

(Corollary 5) or a scaled mixture of Gaussians (Theorem 2).

The key result of this section (Theorem 3) requires two further Lemmas. The

former is a standard result (see for example Grimmett and Stirzaker (2001) section

7.2), and the latter is proved in Appendix C.

Lemma 14 For all bounded continuous functions g(·)

Xn
D−→ X ⇔ E [g(Xn)]→ E [g(X)]

Lemma 15 Let {Ud} be a sequence of random variables such that

Ud
m.s.−→ 1

and let {Gd(·)} be a sequence of functions with 0 ≤ Gd(u) ≤ 1. Then

E [Gd (Ud)]→ c⇒ E
[

U2
dGd (Ud)

]

→ c (3.57)

Theorem 3 Let {X(d)} be a sequence of d-dimensional unimodal spherically sym-

metric targets and let {Y(d)} be a corresponding sequence of jump proposals. If

there exist k
(d)
x such that {F d (·)}, the sequence of marginal radial distribution func-

tions of {
∣

∣X(d)
∣

∣}, satisfies F d

(

k
(d)
x x

)

→ Θ (x) with Θ(0) = 0, then for fixed µ,

(i) If there exist k
(d)
y such that |Y(d)|/k(d)

y
p−→ 1 then

αd(µ)→ 2Θ (−µ) (3.58)
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(ii) If in fact |Y(d)|/k(d)
y

m.s.−→ 1 then

d

4k
(d)
x

2S
2
d(µ)→ 2µ2Θ (−µ) (3.59)

where Θ(x) is the marginal one-dimensional distribution function corresponding to

Θ(x).

Proof: First note that −1
2
λ
∣

∣Y(d)
∣

∣ = −µ
∣

∣

∣
Ỹ(d)

∣

∣

∣
× k

(d)
x /d1/2 whence (3.31) and

(3.32) become

αd(µ) = 2E

[

F1|d

(

−µ
∣

∣

∣
Ỹ(d)

∣

∣

∣

k
(d)
x

d1/2

)]

S2
d(µ) =

8µ2k
(d)
x

2

d
E

[

∣

∣

∣
Ỹ(d)

∣

∣

∣

2

F1|d

(

−µ
∣

∣

∣
Ỹ(d)

∣

∣

∣

k
(d)
x

d1/2

)]

(3.60)

(i) Θ(−µx) is bounded, and continuous by Lemma 10 and we are given that
∣

∣

∣
Ỹ(d)

∣

∣

∣

D−→ 1, so by Lemma 14

E

[

Θ
(

−µ
∣

∣

∣
Ỹ(d)

∣

∣

∣

)]

→ E [Θ (−µ)] = Θ (−µ)

and given ǫ > 0 we may find a d1 such that for all d > d1

∣

∣

∣
E

[

Θ
(

−µ
∣

∣

∣
Ỹ(d)

∣

∣

∣

)]

−Θ (−µ)
∣

∣

∣
<
ǫ

2

Also from Theorem 2 ∃ d2 such that for all d > d2 and for all
∣

∣

∣
Ỹ(d)

∣

∣

∣

∣

∣

∣

∣

∣

F1|d

(

−µ
∣

∣

∣
Ỹ(d)

∣

∣

∣

k
(d)
x

d1/2

)

−Θ
(

−µ
∣

∣

∣
Ỹ(d)

∣

∣

∣

)

∣

∣

∣

∣

∣

<
ǫ

2

Thus

E

[∣

∣

∣

∣

∣

F1|d

(

−µ
∣

∣

∣
Ỹ(d)

∣

∣

∣

k
(d)
x

d1/2

)

−Θ
(

−µ
∣

∣

∣
Ỹ(d)

∣

∣

∣

)

∣

∣

∣

∣

∣

]

<
ǫ

2
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Writing

F1|d

(

−µ|y| k
(d)
x

d1/2

)

−Θ (−µ) =

(

F1|d

(

−µ|y| k
(d)
x

d1/2

)

−Θ (−µ|y|)
)

+ (Θ (−µ |y|)−Θ (−µ)) (3.61)

we separate the two expectations and apply the triangle inequality for d >

max(d1, d2) to find
∣

∣

∣

∣

∣

E

[

F1|d

(

−µ
∣

∣

∣
Ỹ(d)

∣

∣

∣

k
(d)
x

d1/2

)

−Θ (−µ)

]∣

∣

∣

∣

∣

≤ ǫ

(ii) Since convergence in mean square implies convergence in probability the first

part of the Theorem continues to hold. The second half then follows directly

from (3.60) and Lemma 15, by substituting Ud =
∣

∣

∣
Ỹ(d)

∣

∣

∣
, c = 2Θ(−µ), and

Gd = 2F1|d

(

−µ
∣

∣

∣
Ỹ(d)

∣

∣

∣

k
(d)
x

d1/2

)

.

The special case where
∣

∣X(d)
∣

∣ /k
(d)
x

p−→ 1 merits explicit note.

Corollary 7 Let X(d) be a d-dimensional unimodal spherically symmetric target

distribution and let Y(d) be the jump proposal distribution. If there exist k
(d)
x such

that
∣

∣X(d)
∣

∣ /k
(d)
x

p−→ 1 then for fixed µ,

(i) If there exist k
(d)
y such that |Y(d)|/k(d)

y
p−→ 1 then

αd(µ)→ 2Φ (−µ) (3.62)

(ii) If in fact |Y(d)|/k(d)
y

m.s.−→ 1 then

d

4k
(d)
x

2S
2
d(µ)→ 2µ2Φ (−µ) (3.63)

where Φ(x) is the cumulative distribution function of a standard Gaussian.

With these asymptotic forms for expected acceptance rate and ESJD we are finally

equipped to examine the issue of optimal-scaling in the limit as d→∞.
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3.3.1.7 The existence of an asymptotically optimal scaling

It was shown in section 3.3.1.2 that there is at least one finite optimal scal-

ing for any spherically symmetric unimodal finite-dimensional target with finite

second moment provided the second moment of the proposal is also finite. We

now investigate the existence of a finite optimal scaling as d → ∞. We assume

throughout that there is a sequence {k(d)
y } such that the rescaled proposal satisfies

∣

∣Y(d)
∣

∣ /k
(d)
y

m.s.−→ 1.

We first consider the special case where there is a sequence k
(d)
x such that the

rescaled target satisfies
∣

∣X(d)
∣

∣ /k
(d)
x

p−→ 1. Differentiating (3.63) we see that in the

limit, as d→∞
1

µ

dS2
d

dµ
∝ Dp(µ) := 2Φ(−µ)− µφ(−µ)

This is plotted in Figure 3.4(a) and is zero for a maximum in the ESJD at

µ̂p :≈ 1.19 (3.64)

Substituting into (3.62) provides the expected acceptance rate at this optimal

scaling

α̂p :≈ 0.234 (3.65)

More generally we have
∣

∣X(d)
∣

∣ /k
(d)
x

D−→ R. First consider the equivalent cases of

classes of target distributions for which limiting rescaled radius has a point mass

at zero or infinity or both. A point mass p at infinity for R is not strictly forbidden

in Theorem 3. However such a point mass does imply (using Theorem 2) that

Θ(x1) → p/2 as x1 → −∞. Therefore the rescaled ESJD given in (3.59) tends

to infinity as µ → ∞ and there is no finite optimal scaling µ̂ corresponding to

k
(d)
x . Of course, if the limiting marginal radial distribution contains a point mass
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at infinity then there may be a possible alternative rescaling k
∗(d)
x that shifts this

mass to (0,∞); however any mass that was in (0,∞) with the first scaling k
(d)
x

would then move to the origin; and this is strictly forbidden in Theorem 3. In

general, targets that vary on at least two very different scales are not amenable to

the current approach. Indeed the very idea that there is a single optimal-scaling

is highly debatable. A simulation study is conducted to this end in Section 3.3.4.3

and the concept of an optimal scaling in such cases is discussed. For the remaining

theory in this Chapter however we only consider targets for which the rescaled

limiting radius has no point mass at either the origin or infinity.

Differentiate (3.59) to find that in the limit as d→∞
1

µ

dS2
d

dµ
∝ D(µ) := 2Θ(−µ)− µθ(−µ) = 2Eθ(r)

[

Φ
(

− µ
R

)]

− Eθ(r)

[ µ

R
φ
(µ

R

)]

We seek zeros of D(·) that correspond to maxima. Substituting V = R/µ gives

D(µ) = Eµθ(µv)

[

2Φ

(

− 1

V

)

− 1

V
φ

(

1

V

)]

Figure 3.3 shows the graph of 2Φ
(

−1
v

)

− 1
v
φ
(

1
v

)

, which has a zero at v∗ ≈ 1/1.19,

is positive for all v > v∗ and asymptotes to 1. By making µ sufficiently small, as

much of the mass as we like of Lesbegue density µθ (µv) can be made to reside

in the interval v ∈ (v∗,∞). Therefore D(µ) is always positive for small enough µ

(in other words the ESJD always increases initially as the scaling parameter is in-

creased from zero). For an optimal scaling to exist for a continuously differentiable

ESJD we require D(µ) < 0 for some finite µ. As we shall discover, this condition

will not always hold.

Here we consider three further examples; the respective derivative functions D(µ)

are plotted in Figure 3.4.
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• If the marginal radial distribution is exponential, µθ (µr) = µe−µr, and the

derivative function D(µ) < 0 for all µ > 2.86 (Figure 3.4(b)).

• Consider a slight alteration of the example density (3.47) from Section 3.3.1.5:

fd(x) ∝ 11{x≤1} + exp
(

−1
2
(log x)2

)

11{x>1}. This is unimodal (in the extended

sense of Section 3.2.3) and has the same limiting marginal radial distribution

(3.48). Its tail decays more slowly than the exponential example above and

there is no finite optimal µ (Figure 3.4(c)).

• Consider R as the polynomially tailed t3 distribution, which has finite second

moment. For this also there is no finite optimal µ (Figure 3.4(d)).

We now briefly examine the relationship between the limit of the maxima of the

finite dimensional expected square jump distances {S2
d} and the maximum (or lack

thereof) of the limiting expected square jump distance. A proof of the following

result is given in the Appendix C.
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(c) θ (r) ∝ exp
(

−1
2
(log r)2

)

(a) θ (r) = δ(r − 1) (b) θ (r) = exp(−r)

(d) θ (r) ∝
(

1 + r2

3

)−2

µµ

µµ
D

(µ
)

D
(µ

)

D
(µ

)

D
(µ

)

Figure 3.4: The derivative function D(µ) of the expected squared jump distance when

the limiting radial distribution is a) a point mass at 1; b) the unit exponential; c) the

heavy tailed limit (3.48); d) Student’s t with 3 degrees of freedom.
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Lemma 16 Let {hd(x)} be a sequence of functions defined on [0,∞), Let the point-

wise limit of the sequence, h(x), be continuously differentiable and have a finite

number of local maxima.

(i) If h(x) has a local maximum at x∗ <∞ then x∗ is a limit point of local maxima

of hd(x).

(ii) If h(x) is strictly monotonically increasing in x then denoting by x∗d the small-

est x at which hd(x) achieves its global maximum: limd→∞ x∗d =∞

We will be working with a form for the limiting ESJD. The scaling µ which max-

imises this is usually the same as the limit of the scalings that optimise the sequence

of ESJD’s. However there are sequences of distributions where this is not the case,

such as the mixture of normals in (3.99). Statements made through the remainder

of this chapter concern optimising the limit function. To clarify this we define the

asymptotically optimal rescaled scaling (AORS) to be the value µ̂ that opti-

mises the limiting ESJD, simiarly the asymptotically optimal scaling (AOS) is

defined to be λ̂d = (2k
(d)
x µ̂)/(d1/2k

(d)
y ). Finally the asymptotically optimal ac-

ceptance rate (AOA) is the limiting expected acceptance rate that results from

using the AORS.

Consider a sequence of random variables with limiting (rescaled) marginal radial

distribution corresponding to Figure 3.4(a) or 3.4(b). If the ESJD of each element

in the sequence has a single maximum, then by Lemma 16 the limit of these max-

ima is the maximum of the limit function, subject to the scaling k
(d)
x .

Alternatively for sequences of random variables with limiting (rescaled) marginal

radial distribution functions as in Figures 3.4(c) or 3.4(d) the limiting µ∗ is ∞,
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and the limiting optimal acceptance rate is therefore zero. Note that if in an

attempt to counteract this effect, bigger rescalings k
(d)
x were used, the limiting

radial distribution would simply be a point mass at zero.

3.3.1.8 Asymptotically optimal scaling and acceptance rate

For µ to be optimal we require D(µ) = 0, or

2Θ(−µ) = µθ(−µ) (3.66)

There may not always be a solution for µ (see Section 3.3.1.7) but when there is,

denote this value as µ̂. Optimal scaling is therefore achieved by setting µ = µ̂, so

that re-arranging (3.56) we obtain the following corollary to Theorem 3:

Corollary 8 Let {X(d)} be a sequence of d-dimensional spherically symmetric uni-

modal target distributions and let {Y(d)} be a sequence of jump proposal distribu-

tions. If there exist k
(d)
x and k

(d)
y such that the marginal radial distribution function

of X(d) satisfies
∣

∣X(d)
∣

∣ /kd
D−→ R where R has distribution function Θ(r) with

Θ(0) = 0, and |Y(d)|/k(d)
y

m.s.−→ 1 and provided there is a solution µ̂ to (3.66) then

the asymptotically optimal scaling is

λ̂d = 2µ̂
k

(d)
x

d1/2k
(d)
y

This has some especially interesting consequences in certain specific situations,

which are investigated further in Section 3.3.4.2:

If we have chosen to propose jumps from the same distribution as the target (up to

a scaling constant), or more generally if k
(d)
x = k

(d)
y then AOS is λ̂d = 2µ̂/d1/2

If k
(d)
x /k

(d)
y ∝ d1/2 (e.g. exponential target and Gaussian proposal) then the AOS

λ̂d is a fixed non-zero constant.
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As discussed in Section 3.3.1.7, if
∣

∣X(d)
∣

∣ /k
(d)
x

p−→ 1 we obtain a AORS of µ̂p ≈

1.1906 and a corresponding acceptance rate of α̂p ≈ 0.234.

Let us now explore the asymptotically optimal acceptance rate, if it exists. We

will show that the AOA is at most α̂p with the upper bound achieved if and only

if the marginal radius of the rescaled target converges in probability to 1.

Define

α∞(µ) := lim
d→∞

αd(µ)

From Theorems 2 and 3

α∞(µ) = 2Θ (−µ) = 2ER

[

Φ

(−µ
R

)]

where R is the marginal radius of the limit of the sequence of scaled targets and

P (R ≤ r) = Θ (r). In the theorem that follows the rescaled marginal radial

distribution must have no point mass at 0 - this is an explicit condition of Theorem

3, on which this theorem relies. Following the discussion in Section 3.3.1.7 the

Theorem can only apply to distributions for which the limiting marginal radius

has no point mass at infinity. It is not necessary to state this however since it is

implied by the condition that there be an optimal value µ̂.

Theorem 4 Let {X(d)} be a sequence of d-dimensional spherically symmetric uni-

modal targets and let {Y(d)} be a sequence of jump proposals. Let there exist k
(d)
x

and k
(d)
y such that |Y(d)|/k(d)

y
m.s.−→ 1 and

∣

∣X(d)
∣

∣ /k
(d)
x

D−→ R for some R with no

point mass at 0. If there is an asymptotically optimal acceptance rate it is

α∞(µ) ≤ α̂p ≈ 0.234



CHAPTER 3. OPTIMAL SCALING OF THE RWM 165

Equality is achieved if and only if there exist k
(d)
x such that

∣

∣X(d)
∣

∣ /k
(d)
x

p−→ 1.

Proof: Observe that

θ(−µ) = E

[

1

R
φ
(

−µ
R

)

]

So (3.66) becomes

2E

[

Φ
(

−µ
R

)]

= E

[ µ

R
φ
(

−µ
R

)]

(3.67)

For a given distribution of R, this has solution µ̂, from which the optimal acceptance

rate is

α̂ := α∞(µ̂) = 2E

[

Φ

(

− µ̂
R

)]

Now substitute V := Φ
(

− µ̂
R

)

so that for µ ≥ 0 and R ≥ 0 we have v ∈ [0, 0.5].

Also define

h(v) := −Φ−1(v) φ(Φ−1(v))

The optimal acceptance rate is therefore

α̂ = 2 E [V ]

and (3.67) is satisfied, becoming

2 E [V ] = E [h(V )] (3.68)

But

d2h

dv2
= 2

Φ−1(v)

φ(Φ−1(v))
≤ 0 for v ∈ [0, 0.5]

the inequality being strict for v ∈ (0, .5), which corresponds to r ∈ (0,∞). There-

fore by Jensen’s inequality

E [h(V )] ≤ h (E [V ]) (3.69)

Since the second derivative of h(·) is strictly negative except at the (finite) end

points, equality is achieved if and only if all the mass in V is concentrated in one
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place v0; this corresponds to all the mass in R being concentrated at −µ̂/Φ−1(v0).

This is exactly the situation
∣

∣X(d)
∣

∣ /k
(d)
x

p−→ 1.

Substitute m := −Φ−1 (E [V ]), so that (3.68) and (3.69) combine to give

2Φ(−m) ≤ m φ(m)

When there is equality the single solution to this equation is m̂ = µ̂p. Figure 3.4

(a) shows the graph of y = 2Φ(−v) − v φ(−v) from which we observe that the

inequality is strict if and only if m > µ̂p and hence 2Φ(−m) ≤ 2Φ(−µ̂p).

Therefore the optimal acceptance rate is

α̂ = E [V ] = 2Φ(−m) ≤ 2φ(−µ̂p) ≈ 0.234

with equality achieved if and only if
∣

∣X(d)
∣

∣ /k
(d)
x

p−→ 1.

We considered limiting forms for
∣

∣X(d)
∣

∣ /k
(d)
x in Section 3.3.1.5; in Section 3.3.4.2.

we will examine acceptance rate for specific examples where convergence in prob-

ability to 1 is not achieved.

3.3.2 Elliptically symmetric distributions

As discussed in Section 3.1.4 an elliptically symmetric target X may be defined

in terms of an associated orthogonal linear map T such that T(X) is spherically

symmetric with unit scale parameter. We write X∗ = T(X) and Y∗ for the corre-

sponding jump proposal. Since T(·) is linear the jump proposal satisfies

Y∗ = T(X + Y)−T(X) = T(Y)
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The expected square jump distance (3.15) is preserved under the transformation

since (choosing axes corresponding to the principal axes)

E

[

∑ 1

β2
i

Y 2
i

]

= E

[

∑

Y 2
∗i

]

Naive ESJD (3.14) is clearly not preserved. Suppose now that the target X has

elliptical contours monotonically decreasing from the origin. Since X∗ is spherically

symmetric, the acceptance region in the transformed space is the region where

|X∗ + Y∗| < |X∗|. Further, the quantity we wish to optimise is |Y∗|2. We may

therefore apply (3.31) and (3.32) in the transformed space. Write F ∗
1|d(·) for the

one-dimensional marginal density of spherically symmetric X∗ = T(X), and recall

that Y∗ = T(Y), where Y has unit scale parameter. We wish to optimise the

ESJD

S2
d(λ) := 2λ2

E

[

|Y∗|2F ∗
1|d

(

−1

2
λ|Y∗|

)]

(3.70)

Here expectation is with respect to Lesbegue measure r∗(·) of Y∗. The acceptance

rate in the original space is the same as that in the transformed space and is

therefore given by

αd(λ) = 2E

[

F ∗
1|d

(

−1

2
λ |Y∗|

)]

(3.71)

Similar explicit formulae apply for calculation of acceptance rate and ESJD in terms

of double integrals in the transformed space (analogues of (3.44) and (3.45)). Fur-

thermore Lemma 6 and Corollaries 3 and 4 are now seen to hold for all unimodal

elliptically symmetric targets.

Our goal is now to find conditions on the scale parameters βi such that Corollary 7

applies in the transformed space. When dealing with each target random variable
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with elliptical contours we will convert it to a spherically symmetric random vari-

able by a simple invertible linear map. For the limit results to continue to apply

we will need the condition of convergence in probability to 1 of the modulii of the

rescaled targets and the condition of mean square convergence of the modulii of

the rescaled jump proposals to carry through the transformation. Section 3.3.2.1

investigates convergence implications for sequences of orthogonal linear maps on

sequences of spherically symmetric distributions in general and Section 3.3.2.2 re-

lates these results to the random walk Metropolis.

3.3.2.1 Orthogonal linear maps on spherically symmetric distributions

In this section we show that, subject to conditions on the eigenvalues of a sequence

of orthogonal linear maps between spherically symmetric and elliptically symmetric

random variables, both convergence in probability and convergence in mean square

of the modulus do carry through the mapping. Throughout this section and the

next we will employ the following shorthand for the arithmetic mean of the squares

of a set of d-dependent scalar values α1(d), . . . , αd(d)

α2(d) :=
1

d

d
∑

1

αi(d)
2

We employ a similar shorthand for the corresponding harmonic mean

α̃2(d) :=

(

1

d

d
∑

1

1

αi(d)2

)−1

In Lemma 18 we will relate convergence in probability of the modulus of linear

mappings on a general set of spherical distribution with increasing dimension to

convergence in probability of the sequence modulii of isotropic Gaussians. As

prelude we first offer a condition for convergence in probability of a sequence of

linear combinations of Chi-squared random variables.
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Lemma 17 Let V1, V2, . . . be a sequence of independent identically distributed χ2
1

random variables and let a1(d), a2(d), . . . be a sequence of sequences of positive

coefficients. Define amax(d) := maxi=1,...d ai(d). Then
∑d

1 ai(d)Vi
∑d

1 ai(d)

p−→ 1 if and only if
amax(d)
∑d

1 ai(d)
→ 0

Proof: We first prove implication from left to right. If the right hand side fails

then there is some δ > 0 such that there exists a sequence d1, d2, . . . tending to

infinity for which

amax(dk)
∑dk

1 ai(dk)
= δk ≥ δ

Since all the Vi are non-negative

Vjmax ≥
1 + ǫ

δ
⇒ δkVjmax ≥ 1 + ǫ

⇒ δkVjmax +

∑

−jmax
ai(dk)Vi

∑dk

1 ai(dk)
≥ 1 + ǫ

⇒
∑dk

1 ai(dk)Vi
∑dk

1 ai(dk)
− 1 ≥ ǫ

⇒
∣

∣

∣

∣

∣

∑dk

1 ai(dk)Vi
∑dk

1 ai(dk)
− 1

∣

∣

∣

∣

∣

≥ ǫ

where jmax(k) is the subscript of the largest eigenvalue amax(dk), and
∑

−jmax
in-

dicates a sum over all indices from 1 . . . dk excluding jmax. Therefore

P

(∣

∣

∣

∣

∣

∑dj

1 ai(dj)Vi
∑dj

1 ai(dj)
− 1

∣

∣

∣

∣

∣

≥ ǫ

)

≥ P

(

Vjmax ≥
1 + ǫ

δ

)

= P

(

χ2
1 >

1 + ǫ

δ

)

> 0

We now prove the implication from right to left. Define Xd :=
∑d

1 ai(d)Vi and note

that E [Xd] =
∑d

1 ai(d), and since the Vi are independent, Var [Xd] = 2
∑d

1 ai(d)
2.

Therefore

Var [Xd]

(
∑d

1 ai(d))2
=

2
∑d

1 ai(d)
2

(

∑d
1 ai(d)

)2 ≤
2amax

∑d
1 ai(d)

(

∑d
1 ai(d)

)2 =
2amax
∑d

1 ai(d)



CHAPTER 3. OPTIMAL SCALING OF THE RWM 170

Combining this with Chebyshev’s inequality we obtain

P

(∣

∣

∣

∣

∣

Xd
∑d

1 ai(d)
− 1

∣

∣

∣

∣

∣

≥ ǫ

)

= P

(∣

∣

∣

∣

∣

Xd −
∑d

1 ai(d)
∑d

1 ai(d)

∣

∣

∣

∣

∣

≥ ǫ

)

≤ Var [Xd]

ǫ2
(

∑d
1 ai(d)

)2

≤ 2amax

ǫ2
∑d

1 ai(d)

For a given ǫ > 0 this can be made as small as we like.

Consider orthogonal linear map S with eigenvalues αi applied to Z ∼ N(0, Id).

Since Z is spherical we may without loss of generality choose as axes the principal

axes of the linear map. Thus |S(Z)|2 =
∑

α2
iZ

2
i which is the form described by

Lemma 17. This translates to the following corollary:

Corollary 9 Let Z ∼ N(0, Id) and orthogonal linear transformation S(d) : ℜd →

ℜd have eigenvalues α1(d), . . . , αd(d). Define αmax(d) := maxi=1,...d αi(d). Then
∣

∣S(d)(Z)
∣

∣

(

∑d
1 αi(d)2

)1/2

p−→ 1 (3.72)

if and only if

αmax(d)
2

∑d
1 αi(d)2

→ 0 (3.73)

We now relate our general U to a Gaussian Z, first tackling the continued conver-

gence in probability to 1 of a transformed target and then examining convergence

in mean square.

Lemma 18 Let S(d) be a sequence of orthogonal linear maps on ℜd with eigen-

values α1(d), . . . , αd(d). Write α2(d) := 1
d

∑d
1 αi(d)

2 and let U(d) be a sequence of

spherically symmetric random variables in ℜd. Then
∣

∣S(d)
(

U(d)
)∣

∣

(

α2(d)
)1/2

p−→ 1⇔
∣

∣U(d)
∣

∣

p−→ 1
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provided the eigenvalues of S(d) satisfy (3.73).

Proof: We decompose U(d) into a Gaussian related to direction and a scalar

length as in the introduction to Theorem 1, so

∣

∣S(d)
(

U(d)
)∣

∣ =

∣

∣

∣

∣

S(d)

(

Z(d)

|Z(d)|R
(d)

)∣

∣

∣

∣

=
R(d)

|Z(d)|
∣

∣S(d)
(

Z(d)
)∣

∣ (3.74)

From Lemma 8,
∣

∣Z(d)
∣

∣ /d1/2 p−→ 1 so that

∣

∣S(d)
(

U(d)
)∣

∣

(

α2(d)
)1/2

p−→ 1⇔ 1

d1/2

∣

∣S(d)
(

Z(d)
)∣

∣

(

α2(d)
)1/2

R(d) p−→ 1

Since R(d) =
∣

∣U(d)
∣

∣, applying Corollary 9 gives the desired result immediately.

Proof of a corresponding result for convergence in mean square requires the follow-

ing simple scaling relation between the second moments.

Lemma 19 Let S(d) be a sequence of orthogonal linear maps on ℜd with eigenval-

ues α1(d), . . . , αd(d) and let U(d) be a sequence of spherically symmetric random

variables in ℜd then

E

[

∣

∣U(d)
∣

∣

2
]

=
1

α2(d)
E

[

∣

∣S(d)
(

U(d)
)∣

∣

2
]

Proof: Since U(d) is spherically symmetric we may without loss of generality

consider it with axes along the principal components of S(d).Then

E

[

∣

∣S(d)
(

U(d)
)∣

∣

2
]

= E

[

d
∑

1

αi(d)
2
(

U
(d)
i

)2
]

=

d
∑

1

αi(d)
2

E

[

(

U
(d)
i

)2
]

But U(d) is spherically symmetric so this is

d
∑

1

αi(d)
2
E

[

(

U
(d)
1

)2
]

=
1

d

d
∑

1

αi(d)
2

d
∑

1

E

[

(

U
(d)
i

)2
]

= α2 E

[

∣

∣U(d)
∣

∣

2
]
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We will also require Scheffe’s Lemma (e.g. Williams, 1991) which relates conver-

gence of the second moment and convergence in probability (to a constant) with

convergence in expectation.

Lemma 20 (Scheffe’s Lemma): If E

[

(

Y (n)
)2
]

→ 1 and Y (n) p−→ 1 then

E
[

Y (n)
]

→ 1.

We are now in a position to prove the analogue of Lemma 18 for convergence in

mean square.

Lemma 21 Let S(d) be a sequence of orthogonal linear maps on ℜd with eigenval-

ues α1(d), . . . , αd(d) and let U(d) be a sequence of spherically symmetric random

variables in ℜd. Then

∣

∣U(d)
∣

∣

m.s.−→ 1⇔
∣

∣S(d)
(

U(d)
)∣

∣

(

α2(d)
)1/2

m.s.−→ 1

provided the eigenvalues of S(d) satisfy (3.73).

Proof: From Lemma 19

E













∣

∣S(d)
(

U(d)
)∣

∣

(

α2(d)
)1/2

− 1







2




− E

[

(∣

∣U(d)
∣

∣− 1
)2
]

= −2






E







∣

∣S(d)
(

U(d)
)∣

∣

(

α2(d)
)1/2






− E

[∣

∣U(d)
∣

∣

]







So it is sufficient to prove that subject to (3.73)

E
[∣

∣U(d)
∣

∣

]

→ 1⇔ E







∣

∣S(d)
(

U(d)
)∣

∣

(

α2(d)
)1/2






→ 1

We first require convergence of the second moment and convergence in probability.

Lemma 19 in fact gives equivalence of second moments:

1

α2(d)
E

[

∣

∣S(d)
(

U(d)
)∣

∣

2
]

= E

[

∣

∣U(d)
∣

∣

2
]

= 1
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Convergence in mean square implies convergence in probability so applying Lemma

18 and subject to (3.73)

∣

∣U(d)
∣

∣

m.s.−→ 1⇒
∣

∣S(d)
(

U(d)
)∣

∣

(

α2(d)
)1/2

p−→ 1 and

∣

∣S(d)
(

U(d)
)∣

∣

(

α2(d)
)1/2

m.s.−→ 1⇒
∣

∣U(d)
∣

∣

p−→ 1

We have proved equivalence of second moments and convergence in probability so

the desired result follows by Scheffe’s Lemma.

In Lemmas 18 and 21 the eigenvalue condition (3.73) applies to the map which

transforms a spherically symmetric random variable to an elliptically symmetric

random variable. It is crucial to the understanding of the application of Lemmas

18 and 21 to limiting forms for the random walk Metropolis that the reader keep

the directionality of this map in mind.

3.3.2.2 Extension of limit results to unimodal elliptically symmetric

targets

For Corollary 7 to be applicable in the transformed space we require there to exist

k
∗(d)
x and k

∗(d)
y such that

∣

∣T(d)
(

X(d)
)∣

∣

k
∗(d)
x

p−→ 1 and

∣

∣T(d)
(

Y(d)
)∣

∣

k
∗(d)
y

m.s.−→ 1 (3.75)

The working statistician is free to chose a jump proposal such that
∣

∣Y(d)
∣

∣ /k
(d)
y

m.s.−→ 1.

Lemma 21 makes explicit precisely when mean square convergence continues through

to the transformed space if Y(d) is spherically symmetric.

We also require convergence in probability of the transformed target T(d)
(

X(d)
)

.

The most simply stated theorem would make no reference to the transformed space

and would therefore be working with convergence in probability in the original
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space and require from this the equivalent convergence in the transformed space.

This would impose an additional constraint on the transformation (see Note 1

below). However the more natural convergence to request would be that of the

sequence of transformed targets themselves since these are spherically symmetric

and have unit scale parameter (this is analogous to the situation considered by

Bedard (2006c)). We first consider spherically symmetric proposals.

Theorem 5 Let {X(d)} be a sequence of elliptically symmetric targets created by

linear maps from spherically symmetric sequence {X(d)
∗ }, and let {Y(d)} be a se-

quence of spherically symmetric proposals. Let there exist k
∗(d)
x and k

(d)
y such that

X
(d)
∗

k
∗(d)
x

p−→ 1 and
Y(d)

k
(d)
y

m.s.−→ 1

Write {T(d)} for the sequence of linear maps such that T(d)
(

X(d)
)

= X
(d)
∗ is spher-

ically symmetric with unit scale parameter and denote by νi the eigenvalues of T(d).

Also define

k∗(d)
y =

(

ν2
)1/2

k(d)
y (3.76)

If

νmax(d)
2

∑

νi(d)2
→ 0 (3.77)

then for fixed

µ :=
1

2

d1/2k
∗(d)
y

k
∗(d)
x

λ (3.78)

the expected acceptance rate and the ESJD satisfy

αd(µ) → 2Φ (−µ) (3.79)

d

4k
∗(d)
x

2S
2
d(µ) → 2µ2Φ (−µ) (3.80)
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where Φ(x) is the cumulative distribution function of a standard Gaussian. Fur-

thermore, the naive ESJD in the original space is

S2
d, naive

∼ 1

ν2
S2

d (3.81)

Proof: Apply Lemma 21 with U(d) = Y(d)/k
(d)
y and S(d) = T(d) to see that the

second half of (3.75) holds with the new rescaling factor as in (3.76). We may

therefore apply Corollary 7 in the transformed space with µ as defined in (3.78).

Since acceptance is the same in the two spaces, this leads directly to (3.79) and

(3.80).

We now seek the naive ESJD in the original space. Here, the proposed squared

jumping distance is
∣

∣Y(d)
∣

∣

2
, and using (3.76)

(

ν2
)1/2

∣

∣Y(d)
∣

∣

k
∗(d)
y

m.s.−→ 1

Equation (3.32) gives

S2
d = 2λ2

E

[

|Y∗|2 F1|d

(

−1

2
λ |Y∗|

)]

Considering the equivalent jumps in the original space

S2
d, naive

= 2λ2
E

[

|Y|2 F1|d

(

−1

2
λ |Y∗|

)]
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Rearranging (3.78) and applying Lemma 15 we obtain

S2
d, naive

(µ) =
8µ2

(

k
∗(d)
x

)2

d
(

k
∗(d)
y

)2 E

[

∣

∣Y(d)
∣

∣

2
F1|d

(

−µ
∣

∣Y(d)
∗

∣

∣

k
∗(d)
x

d1/2k
∗(d)
y

)]

=
8µ2

(

k
∗(d)
x

)2

d

(

1

ν2

)

E



ν2

(
∣

∣Y(d)
∣

∣

k
∗(d)
y

)2

F1|d

(

−µ
∣

∣Y(d)
∗

∣

∣

k
∗(d)
x

d1/2k
∗(d)
y

)





∼ 4µ2k
∗(d)
x

2

d ν2
× αd(µ)

=
1

ν2
S2

d

Notes:

1. If instead of convergence in probability of the (spherical) target in the trans-

formed space, we are given convergence in probability of the elliptical target

X(d) we must additionally ensure that this leads to convergence in probability

in the transformed space. We apply Lemma 18 with spherically symmetric

U(d) = 1

k
(d)
x

(

β2
)1/2

T(d)
(

X(d)
)

and S(d) =
(

T(d)
)−1

to obtain

∣

∣X(d)
∣

∣

k
(d)
x

=
1

k
(d)
x

(

β2
)1/2

∣

∣

∣

(

T(d)
)−1 (

T(d)
(

X(d)
))

∣

∣

∣

(

β2
)1/2

p−→ 1

⇔ 1

k
(d)
x

(

β2
)1/2 ∣

∣T(d)
(

X(d)
)∣

∣

p−→ 1

provided

βmax(d)
2

∑

βi(d)2
→ 0 (3.82)

Here βi := 1/νi are the eigenvalues of
(

T(d)
)−1

and the scale parameters of

X(d). This also allows us to relate the target rescalings in the two spaces

k(d)
x =

(

β2
)1/2

k∗(d)
x (3.83)
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2. Naturally (3.80) leads to the same optimal µ̂p as for a spherically symmetric

target, so the optimal acceptance rate is still approximately 0.234 and the

optimal scaling satisfies

λ̂ = 2µ̂p
k
∗(d)
x

d1/2k
(d)
y

× 1
(

ν2
)1/2

If we knew nothing of the target shape then we would by default choose a spheri-

cally symmetric proposal. However given knowledge of the target shape we might

choose a proposal with the same shape and orientation as the target; intuitively

this is the optimum choice of proposal shape. Similar ideas for independent compo-

nents are discussed by Roberts and Rosenthal (2001) and reviewed in Section 3.1.1.

Such a proposal is spherically symmetric in the transformed space. In a simi-

lar manner to Note 1 we apply Lemma 21 with spherically symmetric U(d) =

1

k
(d)
y

(

β2
)1/2

T(d)
(

Y(d)
)

and S(d) =
(

T(d)
)−1

to obtain

∣

∣Y(d)
∣

∣

k
(d)
y

m.s.−→ 1⇔ 1

k
(d)
y

(

β2
)1/2 ∣

∣T(d)
(

Y(d)
)∣

∣

m.s.−→ 1

provided (3.82) holds. This also provides a relation between the rescaling factors

k(d)
y =

(

β2
)1/2

k∗(d)
y (3.84)

Therefore (3.79) and (3.80) of Theorem 5 apply in the transformed space, but now

with the additional condition (3.82).

Also from (3.84)
∣

∣Y(d)
∣

∣ /

(

(

β2
)1/2

k
∗(d)
y

)

m.s.−→ 1 and we again apply Lemma 15 as

in the proof of Theorem 5 to find

S2
d, naive = β2S2

d (3.85)
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We now wish to compare the efficiencies of the two proposal shapes subject to

(3.77) and (3.82) i.e. a spherical proposal or an elliptical proposal with the same

principle axes and eigenvalues (up to a constant of proportionality) as the target.

One logical choice of the relative efficiency of the two proposal shapes is the ratio

of the optimal ESJD when using a spherical jump proposal to the optimal ESJD

when using the perfect elliptical shape.

If this definition is applied to our standard ESJD (3.15) then the relative efficiency

is 1. To see this, note that since k
∗(d)
x is that for the spherical target with unit scale

parameter, the optimal ESJD is independent of the proposal’s elliptical shape (in

the transformed space): i.e. there is always a proposal scale parameter that will

produce the optimal ESJD.

However if we take the definition as applying to our naive ESJD in the original

space (3.14) then, since the optimum S2
d does not depend on the shape of the

target, we obtain (in the limit as d→∞)

rel.eff :=

(

S2
d, naive

)

sph
(

S2
d, naive

)

ell

=
1

β2ν2
=
β̃2

β2
=
ν̃2

ν2
(3.86)

where the tilde symbol denotes the harmonic mean. This is analagous to (3.105)

which will be deduced in Section 3.4.2 from a theorem of Roberts and Rosenthal

(2001).

We note that the harmonic mean is always less than or equal to the arithmetic

mean, so that the optimal spherical proposal is never more efficient than the opti-

mal elliptical proposal, and briefly consider two specific cases:

(i) If σ2 = V ar[β2
i ] << E[β2

i ] = µ then β̃2/β2 ≈ 1− σ2/µ2.
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(ii) If βi = d for odd i, and βi = 1 for even i then β2 ≈ d2/2 and β̃2 ≈ 2 so

β̃2/β2 ≈ 4/d2.

Note that case (ii) satisfies both the criteria (3.77) and (3.82) on the scale param-

eters of the target distribution and is similar to Example 3 in Bedard (2006a).

It is only when both transformed target and transformed proposal are spherically

symmetric that S2
d/d is the expected square jump distance along any given compo-

nent; otherwise the ESJD is simply an average over all components. In the latter

case some components may be explored better than others.

We might ask if is possible to speed up exploration of the ith component of X at

the expense of the other components by altering the scale parameter λ to be closer

to the optimum for that component. A moment’s thought tells us this cannot be

done while still updating all components in a single block. On spherically sym-

metric target X∗, multiplying the optimal λ̂ by a factor c is guaranteed to reduce

the overall ESJD and hence (as we have not changed the shape of the proposal)

the ESJD along all individual components in the transformed space and in the

original space. Of course changing the shape of a proposal does allow us to speed

up exploration of some components at the expense of others. An extreme case

would be choosing a proposal which only ever updated the first component. This

would of course never properly explore the target, but it does lead on to the idea

partial blocking (see also Sections 1.3.1.2 and 3.1.1) where axes are partitioned

into groups with each group updated separately.
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3.3.3 Partial blocking: asymptotic results

We now consider the effect of updating components separately using several sub-

blocks rather than a single block, and compare the limiting efficiency of such a

scheme with that of a single block update.

As in Section 3.2.4 split the complete space into k components: ℜd = E1⊕· · ·⊕Ek.

Write dim
(

ℜd
)

= d, dim (Ei) = di and require that di → ∞ as d → ∞ for all i,

with di/d → fi, for some fi. We also require that k remain fixed as d → ∞, and

update x = (x1, . . . ,xk) to x′ = (x′
1, . . . ,x

′
k)

1. Either via a single block update proposal

q (x∗|x) = q1 (x∗
1|x1, . . . ,xk) . . . qk (x∗

k|x1, . . . ,xk) (3.87)

2. Or via k sub-blocks using k separate proposals with an accept/reject stage

after each

q1 (x∗
1|x1,x−1) to qk (x∗

k|xk,x−k) (3.88)

where x−k is as defined in (3.23).

3.3.3.1 Partial blocking on spherical targets

Restricting ourselves to the RWM on a unimodal spherically symmetric target we

write y := x∗ − x and yi = x∗
i − xi. We will show that the limiting optimal ESJD

using a single block and the limiting optimal ESJD’s in each of the partial blocks

are all equal.

Since xi ⊥ xj∀i 6= j we have |x|2 =
∑k

1 |xi|2 so the acceptance regions are as

follows
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1. The single block acceptance region is

{(x,y) : π(x1 + y1, . . . ,xk + yk) > π(x1, . . . ,xk)}

which (see Section 3.3.1.1) reduces to

{

(x,y) : x·ŷ ≤ −1

2
|y|
}

2. With partial blocking, the acceptance region for block i is

{y1 : π(xi + yi,x−i) > π(xi,x−i)}

which similarly reduces to

{

(xi,yi) : xi·ŷi ≤ −
1

2
|yi|
}

For the single block update at equilibrium, the chain is reversible and we may apply

Exchangeability Lemmas 1 and 2 and all the ensuing theory in order to maximise

the ESJD. For the k block updates at equilibrium we may similarly apply Lemmas

4 and 5. Since each acceptance region has the same form within its subspace as

the acceptance region for the full update within the full space, all the optimality

theory so far derived applies to optimising the ESJD across each partial space as

well.

Recall that we may decompose any spherically symmetric random variable as

X(d) =
Z(d)

|Z(d)| × R
(d)

where Z(d) ∼ N (0, Id). Decompose both sides into the sub-spaces Ei to see that

X
(di)
i =

Z
(di)
i

|Z(d)| × R
(d)
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Here X(d) = X
(d1)
1 ⊕ · · · ⊕X

(dk)
k and Z(d) = Z

(d1)
1 ⊕ · · · ⊕ Z

(dk)
k . If R(d)/k

(d)
x

p−→ 1

then by Lemma 8

∣

∣X(d)
∣

∣

k
(d)
x

p−→ 1 and
d1/2

∣

∣

∣
X

(di)
i

∣

∣

∣

d
1/2
i k

(d)
x

p−→ 1

Hence the re-scaling factor for X
(di)
i is

k(di)
xi

=

(

di

d

)1/2

k(d)
x

Consider now the ESJD’s (or equivalently the naive ESJD’s as the target is spheri-

cal). These have the same form for complete and partial blocks, up to a constant of

proportionality, and are therefore maximised at the same scaling µ̂p. The optimal

ESJD for the single block update satisfies

d

4µ̂2
pk

(d)
x

2S
2
d(µ̂p)→ 2Φ (−µ̂p)

The optimal ESJD for each partial update satisfies

di

4µ̂2
p

(

k
(di)
xi

)2S
2
di

(µ̂p)→ 2Φ (−µ̂p)

But di/
(

k
(di)
xi

)2

= d/k
(d)
x

2
, so, in the limit as d → ∞ the ratio of optimal ESJD’s

is
S2

di
(µ̂p)

S2
d(µ̂p)

= 1

Thus in the limit as d→∞, and provided there is a k
(d)
x such that

∣

∣X(d)
∣

∣ /k
(d)
x

p−→ 1,

the optimal ESJD for a partial update is the same as that for a complete update.

3.3.3.2 Partial blocking on elliptical targets

We now examine partial blocking on an elliptical target in the limit as d → ∞,

where each subspace Ei is the span of some subset of the principal axes. We as-
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sume that the original target is explored using spherical proposals, that the spher-

ical transformed target satisfies X
(d)
∗ /k

∗(d)
x

p−→ 1, and that the eigenvalues of the

orthogonal linear map transforming elliptical X(d) to X
(d)
∗ satisfy (3.77). For an

elliptical target explored using a spherical proposal and a single block update, the

total naive ESJD is β̃2S2
d (see Theorem 5). Here S2

d is the ESJD and is equivalent

to the naive ESJD in the transformed space, where the target is spherical; βi are

the scale parameters in the original space and β̃2 = 1/ν2 denotes the harmonic

mean of their squares.

In the previous section we showed that the optimal ESJD for a partial block on

a spherical target is equal to the optimal ESJD for a full block. However ESJD’s

are (by definition) invariant under transformation from a spherical to an elliptical

target. Thus if a ratio of true ESJD’s is taken as our measure of relative efficiency

then on elliptical targets there is clearly no difference between updating via a single

block or via partial blocking. However the naive total ESJD summed over all k

partial blocks in the original space is

S2
d

k
∑

1

β̃2
i

Hence the relative efficiency with respect to naive ESJD’s, of updating using k

partial blockings compared to k updates using a single block is

∑k
1 β̃

2
i

k β̃2

But

β̃2 =

(

1

d

k
∑

i=1

di
∑

j=1

1

β2
ij

)−1

=

(

1

d

k
∑

i=1

di

β̃2
i

)−1
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So partial blocking is more efficient if and only if

1

k

k
∑

1

β̃2
i >

(

k
∑

i=1

di

d

1

β̃2
i

)−1

(3.89)

Equation (3.89) may be interpreted as a comparison between an arithmetic mean

and a weighted harmonic mean. If the weights are all equal (i.e. the relative

number of dimensions of each of the blocks is the same) then the inequality holds

as the arithmetic mean is greater than the harmonic mean. Equality clearly arises

when (for example) the harmonic mean squares of the scale parameters in each

of the partial blocks is the same. However if there is a discrepancy between the

blocks’ scales and much greater weight is given to blocks with larger β̃2
i than to

those with the smaller β̃2
i then the inequality does not hold. In other words if our

blocking structure consists of large blocks with large scale parameters and much

smaller blocks with small scale parameters then this can be less efficient than using

a single block update. The limiting results for partial blocking are summarised in

the following theorem.

Theorem 6 Consider two stationary symmetric random walk Metropolis algo-

rithms on an elliptically symmetric unimodal target distribution X = (X1, . . . ,Xk)

with Xi ∈ Ei, ℜd = E1 ⊕ · · · ⊕ Ek and each Ei the span of a subset of the principal

axes of the target. Let the first algorithm use a single proposal of the form given

in (3.87) and the second use k sub-blocks as in (3.88). Provided that for all i,

di := dim(Xi)→∞ as d := dim(X)→∞ with di/d→ fi, and there is a k
(d)
x such

that |X| /k(d)
x

p−→ 1 as d→∞ then, in the limit as d→∞

(i) The optimal ESJD after any of the k stages of the partial blocking algorithm

is equal to the optimal ESJD for the single-block algorithm.
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(ii) For blocking such that di/d → 1/k ∀ i, the naive ESJD after all k stages of

the second algorithm is at least as large as the naive ESJD after k repeats

of the first. However if the dimensions of each partial block are unequal it

is possible for the naive ESJD after all k partial updates to be less than the

naive ESJD after k single block updates.

(iii) If the scaling parameters for each block have the same harmonic mean square

then the naive ESJD for each partial-block is the same as that for the single

block.

3.3.4 Optimal scaling of the random walk Metropolis for

specific combinations of finite dimensional target and

proposal

This section is concerned with the behaviour of the RWM on real (as opposed to

limiting) finite dimensional spherically symmetric unimodal targets.

In Section 3.3.1.3 explicit results were derived for expected acceptance rate and

ESJD on spherically symmetric unimodal targets in terms of simple double inte-

grals involving the marginal radial density functions for the target and proposal.

In Section 3.3.4.1 we simplify the formulae for specific combinations of target and

proposal to a single integral for the general d-dimensional case and to simple ana-

lytical expressions for 1-dimensional targets. The former are then used to increase

the efficiency of some of the numerical calculations in Section 3.3.4.2, and the latter

are of interest purely for the simplicity of form.
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In Section 3.3.4.2 the exact formulae are applied to finding the expected acceptance

rate and ESJD for a variety of targets and proposals across a range of dimensions.

Values are calculated using simple numerical integration routines written in R

which produce in a few seconds graphs of optimal scalings and acceptance rates

that would otherwise have required an extensive set of simulation studies. Be-

haviours are found to agree with a simulation study from the literature, and with

the asymptotic results of Sections (3.3.1.7) and (3.3.1.8).

Section 3.3.4.3 details a simulation study involving real MCMC runs to illumi-

nate the problem of defining a single true “optimal-scaling” on a target for which

different portions vary on radically different scales.

3.3.4.1 Analytical results

In deriving analytical results we restrict attention to target densities of the form

π(x) ∝ exp
(

− 1
α
|x|α

)

and proposal densities q (y) ∝ |y|β exp
(

− 1
α
|y|α

)

This in-

cludes as special cases

(i) Gaussian target with Gaussian proposal

(ii) (Spherical) exponential target with (spherical) exponential proposal

First note that the full expressions for the d-dimensional marginal radial densities

are

fd (x) =
1

α
d
α
−1Γ

(

d
α

)
xd−1 exp

(

− 1

α
xα

)

rd (y) =
1

α
β+d

α
−1Γ

(

β+d
α

)
yβ+d−1 exp

(

− 1

α
yα

)
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where the normalising constants are obtained through the changes of variable

z1 = 1
α
xα and z2 = 1

α
yα.

It is convenient to define the joint normalising constant

Ad(α, β) :=

(

α
β+2d

α
−2 Γ

(

d

α

)

Γ

(

β + d

α

))−1

Substitution into (3.44) and (3.45) produces

αd(λ) = Ad(α, β)

∫ ∞

0

dy

∫ ∞

1
2
λy

dx xd−1yβ+d−1 exp

(

− 1

α
(xα + yα)

)

Kd

(

λy

2x

)

S2
d(λ) = Ad(α, β)λ2

∫ ∞

0

dy

∫ ∞

1
2
λy

dx xd−1yβ+d+1 exp

(

− 1

α
(xα + yα)

)

Kd

(

λy

2x

)

We then apply the following change of variable

u =
y

x
and v =

1

α
(xα + yα)

from which

x =

(

αv

1 + uα

)1/α

, y = u

(

αv

1 + uα

)1/α

and
∂(x, y)

∂(u, v)
=

1

αv

(

αv

1 + uα

)2/α

Hence

αd(λ) = Ad(α, β) α
β+2d

α
−1 ×

∫ ∞

0

dv

∫ 2/λ

0

du v
β+2d

α
−1 uβ+d−1

(1 + uα)
β+2d

α

exp (−v)Kd

(

λu

2

)

and

S2
d(λ) = Ad(α, β) α

β+2d+2
α

−1 λ2 ×
∫ ∞

0

dv

∫ 2/λ

0

du v
β+2d+2

α
−1 uβ+d+1

(1 + uα)
β+2d+2

α

exp (−v)Kd

(

λu

2

)
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Integrating out v we obtain

αd(λ) =
α

B
(

d
α
, β+d

α

)

∫ 2/λ

0

du
uβ+d−1

(1 + uα)
β+2d

α

Kd

(

λu

2

)

(3.90)

S2
d(λ) =

α1+2/α

B
(

d
α
, β+d

α

)

Γ
(

β+2d+2
α

)

Γ
(

β+2d
α

) λ2

∫ 2/λ

0

du
uβ+d+1

(1 + uα)
β+2d+2

α

Kd

(

λu

2

)

(3.91)

We now consider two special cases, obtaining exact results when d = 1.

Gaussian target and Gaussian proposal: substituting α = 2 and β = 0 gives

αd(λ) =
2

B
(

d
2
, d

2

)

∫ 2/λ

0

du
ud−1

(1 + u2)d
Kd

(

λu

2

)

(3.92)

S2
d(λ) =

4λ2d

B
(

d
2
, d

2

)

∫ 2/λ

0

du
ud+1

(1 + u2)d+1
Kd

(

λu

2

)

(3.93)

For d = 1, since K1(v) = 1 for 0 < v < 1, this reduces to

α1(λ) =
2

π

∫ 2/λ

0

du
1

1 + u2

S2
1(λ) =

4λ2

π

∫ 2/λ

0

du
u2

(1 + u2)2

But substituting u = tan θ and defining γ := 2/λ

∫ 2/λ

0

du
u2

(1 + u2)2 =

∫ tan−1 γ

0

dθ sin2 θ =
1

2

(

tan−1 γ − γ

1 + γ2

)

Therefore

α1(γ) =
2

π
tan−1 γ (3.94)

S2
1(γ) =

8

πγ2

(

tan−1 γ − γ

1 + γ2

)

(3.95)

Maximising (3.95) numerically gives an optimal-scaling of λ̂ ≈ 2.426 (or

γ̂ ≈ 0.8243) which corresponds to an optimal acceptance rate of 0.4389 and

an ESJD of 0.7442.
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Exponential target and exponential proposal: substituting α = 1 and β = 0

gives

αd(λ) =
1

B (d, d)

∫ 2/λ

0

du
ud−1

(1 + u)2d
Kd

(

λu

2

)

(3.96)

S2
d(λ) =

2d(2d+ 1)λ2

B (d, d)

∫ 2/λ

0

du
ud+1

(1 + u)2d+2
Kd

(

λu

2

)

(3.97)

When d = 1, with γ := 2/λ again, these reduce to

α1(λ) =

∫ γ

0

du
1

(1 + u)2
=

γ

1 + γ

S2
1(λ) =

24

γ2

∫ γ

0

du
u2

(1 + u)4
=

8γ

(1 + γ)3

S2
1 and α1 are thus related by the simple analytical expression

S2
1 = 8α1(1− α1)

2 (3.98)

Thus S2
1 attains a maximum of 32/27 at α1 = 1/3; at this maximum γ = 1/2

and λ = 4.

Note that in both these special cases S2
1(λ) → 0 as λ → ∞ and as λ → 0, it is

positive on (0,∞) and attains a (single) maximum, all of which is in agreement with

Lemma 6 and Corollary 4. Further αd(λ) is a monotonically decreasing function

of λ taking values throughout (0, 1] as stated in Corollary 3.

3.3.4.2 Computational results

In this section we compare results for Gaussian and exponential targets using either

Gaussian or exponential jump proposals. Initially we consider the effect of varying

the scale parameter at fixed dimension, before proceeding to explore variation of

optimal-scaling and acceptance rate with dimension.



CHAPTER 3. OPTIMAL SCALING OF THE RWM 190

0 1 2 3 4

0.2
0.4

0.6
0.8

1.0

0 1 2 3 4

0.0
0.2

0.4
0.6

0.8

0.0 0.2 0.4 0.6 0.8

0.2
0.4

0.6
0.8

1.0

α5

α
5

S
2 5

S
2 5

λ

λ

Figure 3.5: Plots for a Gaussian target with a Gaussian jump proposal at dimension

d = 5: (i) ESJD against scaling, (ii) acceptance rate against scaling, and (iii) ESJD

against acceptance rate.

Figure 3.5 shows the effect of changing the scale parameter when using a Gaus-

sian jump proposal distribution to explore a Gaussian target at dimension d = 5.

Increasing the scale parameter from 0 to ∞ decreases the acceptance rate from

1 to 0, as deduced in Corollary 3. Further, following Lemma, 6 the ESJD does

indeed approach zero as the scale parameter approaches either zero or infinity, and

as noted in Corollary 4 it achieves a global maximum somewhere between these

extremes. The third graph shows ESJD plotted against acceptance rate. Since

acceptance rate is a monotonic function of the scale parameter, this graph also

shows a single maximum.

Figure 3.6 repeats the plot of ESJD against acceptance rate for the other three

combinations of target and proposal. All three show the same general features as
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Figure 3.6: Plots of S2
5 vs. α5 for: (i) a Gaussian target with an exponential proposal,

(ii) an exponential target with a Gaussian proposal, and (iii) an exponential target with

an exponential proposal.

the plot for a Gaussian target with Gaussian proposal. The optimal ESJD’s for

both of the plots with a Gaussian target are very similar (1.145 and 1.035 respec-

tively for Gaussian and exponential jumps) as are those for the exponential target

(6.345 and 5.880 respectively), indicating that the choice of the type of (spherically

symmetric) jump proposal makes little difference to the optimal efficiency.

For each combination of target and proposal simple numerical routines are em-

ployed to find the scaling λ̂ that produces the largest ESJD. Substitution into

(3.44) gives the corresponding optimal acceptance rate α̂. Figure 3.7 shows plots

of optimal acceptance rate against dimension for the four combinations of Gaus-

sian or exponential target and Gaussian or exponential proposal. Note that the

first of these is entirely consistent with Figure 4 in Roberts and Rosenthal (2001),
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Figure 3.7: Plots of the optimal acceptance rate α̂ against dimension for the four combi-

nations of a Gaussian or exponential target and either a Gaussian or exponential proposal.

The asymptotic optimum acceptance rate of 0.234 is shown as a dotted line.

which shows optimal acceptance rates obtained through repeated runs of the RWM

algorithm.

The rescaled modulus of sequences of either spherically symmetric exponential or

Gaussian random variables (increasing in dimension) can be made to converge in

probability (and mean square) to 1. The asymptotic theory of Section 3.3.1.8 in-

dicates that in such cases the optimal acceptance rate should converge to 0.234

as d → ∞ and this appears to be true in all four cases examined. We note also

that in all four cases the limit is approached from above; it would be interesting

to investigate criteria for this. The same theory indicates that asymptotically the

optimal scale parameter should behave as λ̂ ∼ 2µ̂pk
(d)
x /(d1/2k

(d)
y ) with µ̂p ≈ 1.19.

From Lemma 8 a standard Gaussian distribution has kd = d1/2 ; a standard ex-
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Figure 3.8: Plots of the optimal scale parameter λ̂ against dimension for the four combi-

nations of a Gaussian or exponential target and either a Gaussian or exponential proposal.

Optimal values from the asymptotic theory appear as a dotted line.

ponential distribution has kd = d since the marginal radius is a Gamma random

variate. The corresponding asymptotic behaviours for the different combinations

are detailed in Table 3.1. Plots of λ̂ against d are shown in Figure 3.8 with the

expected asymptotic behaviour marked by a dotted line in each graph. All behave

asymptotically as expected; for a Gaussian target very close agreement is attained

even in one-dimension.

We now consider targets for which the rescaled modulus converges to some dis-

tribution other than a point mass at 1. Again using simple numerical integration

of equations (3.44) and (3.45) we investigate the following three combinations of

target and proposal
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Target Proposal k
(d)
x k

(d)
y λ̂asymp

Gaussian Gaussian d1/2 d1/2 2.38/d1/2

Gaussian Exponential d1/2 d 2.38/d

Exponential Gaussian d d1/2 2.38

Exponential Exponential d d 2.38/d1/2

Table 3.1: Asymptotic optimal scaling behaviour for specific combinations of target and

proposal.

1. A Gaussian proposal and a target with density

πd(x) ∝ 1

xd−1
e−

1
2
x2

2. An exponential proposal and a target with density

πd(x) ∝ 1

xd−1
e−x

3. A Gaussian proposal and a target with density

πd(x) ∝ 11{x≤e−(d−1)} + e−
1
2(log(x/e−(d−1)))

2

11{x>e−(d−1)}

All three targets are chosen so that a rescaling factor of k
(d)
x = 1 places all the

radial mass in (0,∞) as d → ∞. Clearly the marginal radial distributions of the

first two targets are the unit Gaussian and unit exponential respectively, indepen-

dent of dimension. The two segments of the third target simply ensure that it is

unimodal; it has similar limiting properties to (3.47).

Figure 3.9 shows the variation of acceptance rate and optimal scaling with dimen-

sion for combinations (1) and (2). Scaling parameter plots are of log λ̂ against



CHAPTER 3. OPTIMAL SCALING OF THE RWM 195

2 4 6 8 10 12 14
0.0

0.1
0.2

0.3
0.4

0.5
2 4 6 8 10 12 14

0.0
0.1

0.2
0.3

0.4
0.5

0.0 0.5 1.0 1.5 2.0 2.5

−1
.5

−1
.0

−0
.5

0.0
0.5

0.0 0.5 1.0 1.5 2.0 2.5

−2
−1

0
1

α
5

α
5

dd

Gauss targ / Gauss prop

Gauss targ / Gauss prop

Exp targ / exp prop

Exp targ / exp prop

log dlog d
lo

g
λ̂

lo
g

λ̂

Figure 3.9: Plots for target and proposal combinations (1) and (2); acceptance rate

is plotted against dimension with asymptotes of approximately 0.10 and 0.06 shown

dotted; log λ̂ is plotted against log d with similar graphs for the asymptotically expected

behaviour if the rescaled target modulus had converged in probability to 1.

log d so as to more easily compare with the asymptotically expected behaviour.

As argued in Section 3.3.1.7 acceptance rates for each combination do approach

asymptotically optimal values (approximately 0.10 and 0.063 respectively) both

of which are less than 0.234 as was proved to be the case in Theorem 4. With

k
(d)
x = 1 Corollary 8 implies that asymptotically λ̂ ∼ 2µ̂/d for combination (1),

and λ̂ ∼ 2µ̂/d3/2 for combination (2). The dotted lines correspond to these formu-

lae with µ̂ = µ̂p ≈ 1.19. The optimal scale parameters clearly behave as expected,

in both cases with µ̂ > µ̂p.
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For combination (3) the optimal acceptance rate is expected to tend to zero as

d → ∞ (see Section 3.3.1.7). For d = 1 and d = 2 the optimal acceptance rates

are approximately 0.111 and 0.010 respectively. Figure 3.10 shows plots of ESJD

against scale parameter, acceptance rate against scale parameter and ESJD against

acceptance rate for this combination at d = 3. The graphs are heuristically the

same is those for the Gaussian target and proposal at d = 5 (Figure 3.5). However

the optimal acceptance rate is approximately 5.7 × 10−4 and it certainly appears

therefore to be approaching a limiting asymptotically optimal value of 0. This

neatly brings together Lemma 6 and Corollary 4 for finite dimensional targets

and Lemma 16 for the infinite dimensional limit. For each actual target in finite

dimension d there is a finite optimal scaling and non-zero optimal acceptance rate.

However as d → ∞ the (rescaled) optimal scaling (µ̂) tends to infinity and the

optimal acceptance rate tends to zero.

3.3.4.3 Simulation study on a target with a mixture of scales

In Section 3.3.1.8 we examined the limiting behaviour of the random walk Metropo-

lis algorithm in terms of the limiting rescaled radial distribution. We considered

convergence in distribution to 1 and convergence in distribution to some positive

random variable with no mass at the origin or infinity. In Section 3.3.1.7 we consid-

ered limiting radii with masses at either or both of these extremes and argued that

the optimality theory developed in this chapter could not apply. In this section we

detail simulation studies on targets with a mixture of two very different scales of

variation and discuss the implications for optimal scaling.

If each finite dimensional radial distribution contains a mixture of scales then intu-
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Figure 3.10: Plots for target and proposal combination (3) at d = 3; (i) ESJD vs scaling;

(ii) expected acceptance rate vs scaling; and (ii) ESJD vs expected acceptance rate.

itively it would seem that a simple RWM with a single scale parameter could only

efficiently explore one of these scales, and would be very inefficient on the other(s).

If in the limit, the ratio of the mixed scales were to become infinite then rescaling

according to any one of them would spread the radial mass on that particular scale

over (0,∞) but add a point mass at zero or infinity or both.

To illustrate this we explored the target

X(d) ∼







N(0, Id) w.p. 0.5

N(0, 104d Id) w.p. 0.5







(3.99)

for d = 1 and d = 10, using jump proposal Y(d) ∼ N(0, λ2Id). All simulations were

run for 100000 iterations and were started at 0, in the main mass at the smaller

scale, and then repeated, starting at 100d1/2×1, in the main marginal radial mass
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Figure 3.11: Plots (for d = 1 and d = 10) of log (ESJD/d) against log (scale parameter)

for exploration of the Gaussian mixture target in (3.99). Runs started at the origin are

plotted as ‘+’, and runs started at 100d1/2 1 are plotted with ‘x’.

at the larger scale. The scale parameters tested were clustered around the expected

optima for each of the two distributions in the mixture: 2.38 and 238 at d = 1,

and 0.753 and 238 at d = 10.

Figure 3.11 shows the variation of ESJD with scale parameter for d = 1 and

d = 10, starting at the origin, or in the main radial mass of the outer mixture. In

one-dimension the starting point appears immaterial and the mean square jump

distance is maximised at λ ≈ 238. By contrast, in ten dimensions, starting at

the origin leads to a (small) maximum mean square jump distance at λ ≈ 0.753

whereas starting in the outer shell gives an optimal scaling around λ ≈ 238.
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At d = 10 there is a complete lack of mixing between the two components of the

target. Kernel density plots (not shown) for runs started from the origin with small

scale parameters show only the Gaussian on the smaller of the two scales. Density

decreases so quickly away from the origin that all 105 proposed jumps from the

origin on any of the larger scales fail. Plots for runs started away from the origin

show only the Gaussian with the larger of the two scales. The mass at the origin

is concentrated over such a small volume Vs of ℜ10 compared to the larger scale,

that when starting at a point on the larger scale, Vs is never found. This is because

the chance of proposing a jump to Vs when using the larger scaling is almost zero,

and when using the smaller scaling, the ramping up in density near to Vs is never

seen so exploration never approaches Vs and again concentrates on the distribution

with the larger scaling, albeit very inefficiently.

The same processes are at work when d = 1 but are not extreme enough to prevent

mixing between the two components. Kernel density plots for explorations using

scale parameters around 2.38 show a good Gaussian shape to the smaller com-

ponent of the target and a very lopsided density curve for the larger component.

By contrast, with λ ≈ 238, the kernel density estimate on the scale of the larger

component is much closer to the true shape than is that for the smaller component.

If the algorithms were allowed to run forever then clearly all mixture components

would be explored thoroughly no matter what the (non-zero) scaling. However

the whole search for an optimal scaling is motivated by a wish to achieve a good

approximation to a large sample from the target in as few iterations as possible.

We must therefore accept that if in practice the target varies on several very dif-
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ferent scales, then there will be different optimal proposal scalings for exploring

the different scales of the target. Further, that choosing a scaling which maximises

the ESJD will allow efficient exploration of the component of the target with the

largest scale parameter of all the components explored.

When d = 1 the theoretical acceptance rate at the optimal scaling is 0.22 (observed

optimal acceptance rates were between 0.22 and 0.23), one half of the optimum

for a single one-dimensional Gaussian. One half of the time the algorithm will

be within the inner component, where proposals on this optimal scale are almost

always into the outer component and are therefore almost always rejected. Like-

wise when d = 10 the theoretical optimal acceptance rate is 0.26/2 = 0.13 but the

absolute lack of mixing between the two components leads to only one of them ever

being seen and so the observed optimal acceptance rates were around 0.26. Once

more, if we had continued the algorithm for infintely many more iterations then

eventually mixing would have occurred (many times) and the observed acceptance

rate would have reduced to 0.13.

We summarise the three main points arising from the fact that simulations involve

only a finite number of iterations.

• If the target varies on several very different scales, then there will be different

optimal proposal scalings for exploring the different scales of the target.

• Choosing a scaling which maximises the ESJD will allow efficient exploration

of the corresponding scale component of the target,

• Observed optimal acceptance rates may differ from their theoretical values

as they only take account of scale-components of the target that are actually
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explored.

3.4 Conclusion

In this chapter several strands of research have been developed and then linked

together to produce new limiting results. We start with (Section 3.4.1) a relatively

short guide to two of our key limiting results: Theorem 3 and Corollary 7. The

motivation for this is two-fold: firstly it provides a summary of the contribution

made by each of the strands and secondly it provides a useful geometric intuition

into the processes at play in high dimension.

In Section 3.4.2 we draw comparisons between new results in this Chapter and

the existing literature reviewed in Section 3.1.1. We then (Section 3.4.3) list some

ideas for further work, and (Section 3.4.4) summarise and discuss this Chapter as

a whole.

3.4.1 A selective tour of key results

This section provides some simple intuition behind two of our key results on the

limiting behaviour of the RWM. The arguments here are not intended to be rigor-

ous but to give the reader a geometrical feel for the limiting behaviour.

We have assumed a unimodal target density with either spherical or elliptical

symmetry. The main assumptions in Theorem 3 are that the sequence of spherically

symmetric targets X(d) and proposals (with unit scale parameter) Y(d) satisfy

∣

∣X(d)
∣

∣

k
(d)
x

D−→ R and

∣

∣Y(d)
∣

∣

k
(d)
y

m.s.−→ 1 (3.100)
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for some R with no point mass at the origin, and some k
(d)
x and k

(d)
y . We will provide

the main intuition for the special case (3.101), which corresponds to Corollary 7,

and then offer a simple generalisation.
∣

∣X(d)
∣

∣

k
(d)
x

p−→ 1 and

∣

∣Y(d)
∣

∣

k
(d)
y

m.s.−→ 1 (3.101)

Both assumptions (3.101) are satisfied by many common sequences of distributions,

and the working statistician is in any case free to choose his or her proposals

to satisfy the second. It has been shown (Section 3.3.1.8) that subject to these

conditions the optimal scaling is approximately

λ̂ ∼ 2µ̂
k

(d)
x

d1/2k
(d)
y

with µ̂ = µ̂p ≈ 1.19, and that the acceptance rate at this scaling is 0.234. With the

more general conditions (3.100) the form of the optimal scaling is unchanged (but

with µ̂ potentially different from µ̂p) and the optimal acceptance rate less than

0.234. In Section 3.3.4 several specific combinations of target and proposal were

examined (over a variety of dimensions) and found to be completely consistent

with the theory.

We have shown by a simple and intuitive argument (see Theorem 1 and Corollary

5) that the 1-dimensional marginal X(1|d) of any spherically symmetric random

variable which satisfies the weaker of the assumptions (3.101) has

d1/2

k
(d)
x

X(1|d) D−→ N(0, 1)

We have also proved (see Section 3.2.2) two Exchangeability Lemmas. As a direct

consequence of the chain’s reversibility at equilibrium and of an “exchangeability”

between two main regions of integration, for (almost) any Metropolis-Hastings al-

gorithm the expected acceptance rate is twice the probability of proposing a jump
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X(d)/k
(d)
x

Yt

Yr

Yt∗

1

0

Figure 3.12: Rescaled current point X(d)/k
(d)
x on the unit hypershpere, together with

tangential (Yt) and radial (Yr) components of the proposed move, and the radial motion

due to the tangential movement (Yt∗).

that has acceptance probability 1. Further, the naive ESJD is twice the integral of

the squared jumping distance over the region where the acceptance probability is 1.

With assumptions (3.101) the rescaled radial mass is (in some sense) converging

to a point. In other words a chain at stationarity will spend nearly all its time

at a distance approximately k
(d)
x from the origin and make jumps of magnitude

approximately k
(d)
y . Figure 3.12 shows a point in the rescaled target distribution

X(d)/k
(d)
x for which all the mass is on the surface of a hypersphere of radius 1.

With proposal scale parameter λ, we split the next proposed jump λY(d) into radial

and tangential components with magnitudes Yr and Yt; we keep the superscript
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(d) implicit for simplicity of notation. The next proposed point will be on the sur-

face of a hypersphere centred at the current point and with radius approximately

λk
(d)
y /k

(d)
x in the rescaled figure.

The distribution of Yr is simply the marginal 1-dimensional distribution of λY(d)/k
(d)
x

along the radius and so approximately satisfies

1

σ
Yr ∼ N(0, 1) where σ :=

λk
(d)
y

d1/2k
(d)
x

All but one of the d components will be tangential so that, provided
(

k
(d)
x Yt

)

/
(

λk
(d)
y

)

becomes deterministic in the same way as
∣

∣Y(d)
∣

∣ /k
(d)
y we have

(

k
(d)
x

)2

(

k
(d)
y

)2

Y 2
t

λ2

m.s.−→ d− 1

d
→ 1

In practice it is found that near the optimal scaling, the total tangential movement

Yt∗ → 0 as d → ∞ (or note that λk
(d)
y /k

(d)
x ∼ 2µ/d1/2 ). This tangential

movement effects a radial movement Yt∗ as shown in the figure, where (by Taylor

expansion)

Yt∗ =
(

1 + Yt
2
)1/2 − 1 ≈ 1

2
Yt

2 ≈ 1

2
λ2

(

k
(d)
y

k
(d)
x

)2

=: η

Thus the effective proposed radial movement Ye approximately satisfies

1

σ
(Ye − η) ∼ N (0, 1)

The target is unimodal and hence the acceptance probability is 1 exactly when

Ye ≤ 0; so from the first Exchangeability Lemma the expected square jumping
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distance is simply

S2(λ) = 2

∫ 0

−∞

dye
1

σ
φ

(

ye − η
σ

)

(

λk
(d)
y

k
(d)
x

)2

=
8

d

(η

σ

)2
∫ 0

−∞

dv φ
(

v − η

σ

)

=
8

d

(η

σ

)2

Φ
(

−η
σ

)

This depends only on µ := η/σ = 1
2
λ d1/2 k

(d)
y /k

(d)
x . and is maximised at µ̂p ≈ 1.19.

Thus the scaling which maximises the ESJD is

λ̂ = 2µ̂p
k

(d)
x

d1/2k
(d)
y

Finally the first Exchangeability Lemma gives an expected acceptance rate of

αd(λ) = 2

∫ 0

−∞

dye
1

σ
φ

(

ye − η
σ

)

= 2

∫ 0

−∞

dv φ
(

v − η

σ

)

= 2Φ(−µ)

So that the optimal scaling corresponds to one particular expected acceptance rate

2Φ(−µ̂p) ≈ 0.234 irrespective of the target and proposal.

Let us now return to the more general assumptions (3.100). Repeating the above

arguments on a (rescaled) circle of radius R gives Yr as before, but

Yt∗ =
(

R2 + Yt
2
)1/2 − R ≈ 1

2R
Yt

2 ≈ 1

2R
λ2

(

k
(d)
y

k
(d)
x

)2

=
η

R

so that

S2
d(λ) =

8

d
µ2

E

[

Φ
(

− µ
R

)]

(3.102)

αd(λ) = 2E

[

Φ
(

− µ
R

)]

(3.103)

This is Theorem 3 which may therefore be seen to arise from the predictability (in

the limit) of the tangential motion and a need to (on average) balance the outward

radial motion effected by this finite tangential motion against the single component
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of the stochastic radial motion.

The above suggests a possible improvement to the RWM algorithm in high di-

mension, wherein the proposed jump is centred at x − ηx̂ rather than at x, and

compensation for the centrepetal motion is therefore included in the proposal. For

a Gaussian proposal this turns out to be equivalent (in high dimension only) to the

MALA algorithm. The idea of a correction to pull motion back towards the centre

of the target is also reminiscent of the polar slice sampler suggested by Roberts

and Rosenthal (2002).

3.4.2 Comparison with existing literature

We now compare new results derived in this chapter with the existing literature

reviewed in Section 3.1.1. Specifically we examine

• The similarity between our asymptotic form for the ESJD (3.63) and the

form for the speed of the limiting diffusion derived in Roberts et al. (1997).

• The link between our formulae for asymptotic relative efficiencies for ellip-

tical targets explored by spherical and then elliptical proposals (3.86) and

the speed of the limiting diffusion for targets with independent components,

identical up to a scaling, as described by Roberts and Rosenthal (2001).

• The similarities and differences between our results for partial blocking algo-

rithms and those of Neal and Roberts (2006).

• The relationship between the condition (3.77) for the 0.234 limiting optimal

acceptance rate to apply to elliptical targets under a spherical proposal, and
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the condition of Bedard (2006c), for the 0.234 acceptance rate to apply to tar-

gets with independent components up to a scaling, explored with a spherical

Gaussian proposal.

We start with a comparison between the basic formulae for limiting efficiency. The

asymptotic form (3.63) for the ESJD when there is convergence in probability to

1 of the modulus of the rescaled target, as derived in this chapter, is remarkably

similar to the forms for the speeds of the limiting diffusions that appear in the

current literature (e.g. (3.4)). The main differences appear to be the presence

of the rescalings k
(d)
x and k

(d)
y in the new theory, and the roughness constant I

in the diffusion based results. We now examine the two forms more closely and

demonstrate that the apparent differences simply arise from the particular forms

of proposal and target used. For simplicity we consider spherically symmetric

unimodal targets explored using spherically symmetric proposals and contrast this

with the exploration of targets with i.i.d components using a Gaussian proposal

as performed in Roberts et al. (1997). In such cases the ESJD along any single

component is simply 1/d times the overall ESJD. In Section 1.4.1 it was shown

that for a diffusion evolving over a small time interval ∆t, the ESJD along any

single component is approximately the speed of the diffusion, h, multiplied by the

time increment, ∆t. Consider the transformed chain

Z
(d)
(t) = X

(d)
[at] where a =

(

d

k
(d)
x

)2

If as d → ∞, Z
(d)
t were to approach a diffusion Zt then from (3.63) the ESJD for

a single component of Zt in time ∆t would be

(

d

k
(d)
x

)2

∆t× 1

d
S2

d ∼
(

d

k
(d)
x

)2

∆t×
8
(

k
(d)
x

)2

d
µ2Φ (−µ) = 8µ2Φ (−µ) ∆t
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With l = 2µ this is the same as would arise from (3.4) except for the roughness con-

stant I as defined in (3.5). However it was shown in Theorem 1 that as d→∞ each

component of X(d) approaches a multiple, k
(d)
x /d1/2, of a standard Gaussian. Since

(in this case) k
(d)
x = d1/2 the limiting component is exactly a standard Gaussian, for

which I = 1. Hence the newly derived form (3.63) for the limiting ESJD is indeed

very closely related to the existing form (3.4) for the speed of the limiting diffusion.

The optimal scale parameter is given for example in Roberts et al. (1997) as

2.38/d1/2, and not 2.38k
(d)
x /(d1/2k

(d)
y ) as presented in Corollary 8. However the

targets considered in the earlier work had independent components, for which

k
(d)
x = d1/2, and similarly k

(d)
y = d1/2 for the Gaussian proposal employed. The two

forms are again equivalent.

We now consider exploration of a target with independent components as described

by Roberts and Rosenthal (2001). We compare relative efficiencies for different

shaped proposals for this scenario with those for exploration of a unimodal ellipti-

cal target as described in Section 3.3.2.2. In Section 3.1.1 we review Theorem 5 of

Roberts and Rosenthal (2001) in which the speed of the limiting diffusion for the

exploration of the first component of a target of the form (3.7) with a spherical

Gaussian proposal is (C2
1/b) × h(lb1/2) where b = E [C2

i ]. It was noted that this

is the speed of the limiting “scaleless” diffusion and that the equivalent limiting

diffusion on the correct scale has speed (1/b)× h(lb1/2). This was compared with

the speed of the limiting diffusion when exploring such a target with a similarly

shaped Gaussian proposal. Since this is equivalent to exploring a target with i.i.d.

components with a spherical Gaussian proposal, the speed of the limiting “scale-
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less” diffusion was simply h(l) as given in (3.4).

Now sum over all components, first in the “scaleless” space where the ith component

has been multiplied by Ci so that it has scale factor 1. If we were exploring a target

of d dimensions then the ratio of total speeds of travel around the scaleless target

would be approximately

rel.effscaleless =
1

E [C2
i ]

∑d
1 C

2
i

∑d
1 1
≈ E [C2

i ]

E [C2
i ]

= 1 (3.104)

Speeds in the original space are those in the transformed space multiplied by 1/C2
i

and so the ratio of efficiencies along the first (or any other) component remain

the same, but ratio of total speeds of travel around the original target would be

approximately

rel.efforig =
1

E [C2
i ]

∑d
1 1

∑d
1

1
C2

i

≈ 1

E [C2
i ] E

[

C−2
i

] (3.105)

Both formulae become more exact as d → ∞. The latter is strongly reminiscent

of (3.86), its equivalent for the exploration of a unimodal elliptical target with

spherical and then with elliptical proposals. As is also noted in Section 3.3.2.2,

the efficiency ratio of such an exploration in the transformed (scaleless) space is 1,

which concurs with (3.104).

Next consider partial blocking algorithms and compare the new results of Section

3.3.3 with those of Neal and Roberts (2006). We examined partial-blocking algo-

rithms on elliptically symmetric targets for which (after an orthogonal linear map,

if necessary) the rescaled modulus converges in probability to 1. For spherically

symmetric targets, partial blocking was shown to make no difference to the effi-

ciency of the algorithm, as measured by ESJD (or naive ESJD). These results hold

for any jump proposal density including the spherically symmetric, for which the
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ESJD along any component is simply the total ESJD divided by the dimension d.

The results are therefore directly comparable with, and in agreement with those of

Neal and Roberts (2006) who investigated the exploration of i.i.d. product densities

using spherical Gaussian proposals and found the speed of the limiting diffusion

along a single component to be unaffected by partial blocking. We then found

(Section 3.3.3.2) that, with ESJD as a measure of efficiency, this continued to hold

for elliptically symmetric unimodal targets. However if efficiency was measured

through naive ESJD, partial blocking was found to increase the efficiency of the

algorithm for elliptically symmetric targets unless the blocking scheme consisted

of relatively large blocks with large scale parameters and relatively small blocks

with small parameters, in which case the efficiency could actually decrease. At first

glance this appears contrary to the theoretical and simulation results of Neal and

Roberts (2006) for non-i.i.d. targets, which found no change in efficiency; however

Neal and Roberts (2006) consider the random scan algorithm and Section 3.3.3

considers sequential updates. Applying the weak law of large numbers, in the limit

as d→∞ the average scale parameter of a partial block selected by random scan is

the overall mean scale parameter and does not vary between partial blocks. Com-

pared to a single block update, our sequential scan would also produce no change

in efficiency if the partial blocks all had the same mean (or in fact harmonic mean

square) scale parameter. Further, efficiency in the simulation study of Neal and

Roberts (2006) is measured in terms of expected square jumping distance along

the first target component only. For non-spherical targets and proposals this is not

directly comparable with either ESJD or naive ESJD.
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Finally consider the condition (3.12) of Bedard (2006c) for the existence of a lim-

iting Langevin diffusion with asymptotically optimal acceptance rate 0.234. Note

that if the largest power γmax := maxi γi of d occurs infinitely often then (3.12)

certainly holds with λ = γmax and therefore it also holds with λ the largest power

that occurs finitely often. The quoted result is thus equivalent to setting λ = γmax.

This is identical to the condition we require on the inverse scale parameters of

elliptically symmetric targets in Section 3.3.2.2. It ensures continued convergence

in mean square of the rescaled (initially spherical) proposal after the orthogonal

linear transformation that also turns the elliptical target into a spherical target.

3.4.3 Further work

It has not been possible to persue exhaustively all of the concepts and ideas aris-

ing from the work presented in this chapter. This section presents some possible

avenues for future exploration.

The Exchangeability Lemmas of Section 3.2 apply to all but the very unusual

Metropolis-Hastings algorithms. In this chapter we have investigated some of their

implications for the random walk Metropolis but the implications for other algo-

rithms are yet to be explored in detail. Two algorithms have been briefly consid-

ered, though the work is not included in this thesis: the independence sampler,

and the MALA algorithm. Difficulties arise in both cases through the more com-

plex forms of the acceptance regions and in the case of the MALA algorithm also

through the lack of separability of the proposal. However progress appears possible

with both algorithms for certain combinations of target and proposal.
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In Section 3.3.2 we examined exploration of an elliptically symmetric target with

a spherically symmetric proposal. We derived a condition on the eigenvalues of

the ellipse under which the limiting acceptance rate remained 0.234. It would be

interesting to investigate limiting behaviour if this condition were to fail.

Limit theorems might also be possible for more general forms of target. Ideas from

Sections 3.3.1.8 and 3.4.1 about the form of the optimal scaling and on when the

optimal acceptance rate is equal to or strictly less than 0.234 might well carry over

to more general distributions. Intuitively the important point is the curvature of

contours in the d dimensional space. A conjecture would be that if the curvature

is of the same order of magnitude thoughout the main target mass and if this mass

is predominately spread over a relatively thin hyper-shell, then a single optimal

scaling should exist and the optimal acceptance rate would be 0.234. If the hy-

pershell were not “thin” then the acceptance rate would be less than 0.234 and

if the curvature varied enormously across the main target mass then any single

scaling would not suffice to properly explore the target. Such work would entail

a different general approach to that in this thesis and might be better tackled by

considering components of limiting diffusions both tangential to and perpendicular

to the current contour.

The intuition in Section 3.4.1 of a stochastic radial component counteracting a

deterministic tangential motion also suggests an adaptation of the RWM through

the addition of a deterministic inward radial component. If a simple RWM were

tuned to give an acceptance rate of 0.234 then the optimal scale parameter λ̂ would

provide an estimate of the ratio k
(d)
y /k

(d)
x , which is required in calculating the de-
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terministic offset. A more thorough investigation of the relationship between this

and the MALA algorithm could also be undertaken.

Finally it is worth noting that since the Exchangeability Lemmas (Section 3.2.2)

only apply to stationary chains, they provide a means for assessing stationarity,

taking into account all components of a chain. For a stationary chain the num-

ber of proposals in the acceptance region (all of which are accepted) should be

roughly equal to the sum of the acceptance rates of proposals in the rejection re-

gion. Any one of a number of other measures (such as the naive ESJD) to which

the Exchangeability Lemmas apply could be used instead of acceptance rate.

3.4.4 Discussion

We have investigated optimal-scaling of the random walk Metropolis algorithm on

unimodal elliptically symmetric targets using the expected square jumping distance

(ESJD) as a measure of efficiency. In this section we summarise the new results.

We obtained exact analytical expressions for the expected acceptance rate and

the ESJD in finite dimension d. This became feasible through two “exchangeabil-

ity lemmas” (and their extensions) which are valid for most sensible Metropolis-

Hastings algorithms. Initial results were presented for spherically symmetric uni-

modal targets with any proposal. From these exact forms it was straightforward

to show that expected acceptance rate does indeed vary monotonically from 1 to 0

as the proposal scaling parameter increases from 0 to ∞. This bijective mapping

justifies to an extent the use of acceptance rate as a proxy for the scale parameter.

It was also shown that all RWM’s on finite dimensional targets with finite second
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moments posses scaling(s) that maximise the ESJD and that this (or these) are

finite. Explicit forms for expected acceptance rate and ESJD in terms of marginal

radial densities were also used to explore specific combinations of target and pro-

posal in finite dimensions. Numerical and analytical results agreed with our theory

and with a simulation study in Roberts and Rosenthal (2001). All theoretical re-

sults were also shown to extend to elliptically symmetric targets through the use

of a simple orthogonal linear map.

An asymptotic theory was developed for the behaviour of the algorithm as dimen-

sion d → ∞. The asymptotically optimal acceptance rate of 0.234 was shown to

extend to the class of spherically symmetric unimodal targets that can be rescaled

so that their absolute value converges in probability to 1. An asymptotic form for

the optimal scale parameter was also derived. The class for which the results are

valid was then extended to include all elliptically symmetric targets which satisfy

the same condition once they have been transformed to spherical symmetry by an

orthogonal linear map. If the original target is being explored by a spherically

symmetric proposal then an additional constraint applies to the eigenvalues of the

linear map which forbids the scale parameter of the smallest principle component

from being “too much smaller” than all the other scale parameters. This condition

is equivalent to that of of Bedard (2006c), derived for targets with independent

components identical up to a scaling. An expression was derived for the ratio of

the naive ESJD’s for the exploration of an elliptically symmetric target using ei-

ther a spherically symmetric proposal or an elliptical proposal of the same shape

as the target. An equivalent formula was derived in Section 3.4.2 for a target with

similar independent components using a theorem of Roberts and Rosenthal (2001).
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We also considered partial blocking, again on targets for which (after a linear map,

if necessary) the rescaled modulus converges in probability to 1. For spherically

symmetric targets, where results were comparable, they agreed with those of Neal

and Roberts (2006): partial blocking does not affect efficiency. However we found

that partial blocking does affect naive ESJD on elliptically symmetric targets,

whereas partial blocking did not affect efficiency of exploration of the non-i.i.d.

targets investigated by Neal and Roberts (2006). Although the efficiency measure

used to guage exploration of non i.i.d targets is not directly comparable with naive

ESJD (or ESJD) the different choice of update scheme (random scan in Neal and

Roberts (2006) and sequential in Section 3.3.3) is more likely to have lead to the

heuristically different results.

Given that the above limiting results are all dependent on convergence to 1 of the

rescaled modulus of the target, it was of interest to explore the types of target

for which this condition holds, and the limiting behaviour when it fails. A suf-

ficient condition was derived for convergence in probability to 1 of the rescaled

modulus. The condition specifies the limiting behaviour of the target’s tails and

is satisfied by many common distributions; however several counter-examples were

demonstrated. We therefore considered spherically symmetric targets for which

the rescaled modulus converges to some fixed distribution other than a unit mass

at 1. In such cases the asymptotically optimal acceptance rate was shown to be

strictly less than 0.234. However provided the asymptotically optimal acceptance

rate was strictly greater than zero, the optimal scale parameter was shown to ex-

hibit very similar behaviour to that when the optimal acceptance rate was 0.234.
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This theory was supported by numerical results obtained for specific combinations

of target and proposal in finite dimensions. The optimality results do not cover

targets for which the limiting radius has a point mass at the origin or infinity;

this corresponds to at least two very different scales of variation. A simulation

study on spherically symmetric unimodal targets with two very different scales of

variation illustrated this problem and called into question the very concept of a

single optimal scaling in such cases.

The theory for optimal scaling of the random walk Metropolis presented in this

Chapter provides a substantially different approach to the problem; it both agrees

with and extends the existing literature on the subject, as well as providing inter-

esting possibilities for further work.



Appendix A

Cubic expansion of the MMPP

log-likelihood

A Taylor expansion of the log-likelihood of a two-dimensional MMPP with λ1 ≈ λ2

was stated in Section 2.5.4.2. The expansion is derived in detail in this appendix,

starting with a form for a general d-dimensional MMPP and then simplifying the

expression for the two-dimensional case. Further details of the (λ, q, α, β) repa-

rameterisation are also provided.

A.1 General d-dimensional MMPP

For a general MMPP, first reparameterise to (λ,Λ∗, q,Q∗) with

λ = νtλ , Λ = λ(I + Λ∗) , Q = −qQ∗

for some (at present) arbitrary q.
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With this reparameterisation

e(Q−Λ)ti = e−λtie−(Q∗qti+Λ∗λti)

and therefore

L(Q,Λ, t) = λ
n
e−λtobsνte−(Q∗qt1+Λ∗λt1)(I + Λ∗) . . .

. . . e−(Q∗qtn+Λ∗λtn)(I + Λ∗)e
−(Q∗qtn+1+Λ∗λtn+1)1

But

e−(Q∗qti+Λ∗λti) = I− (Q∗qti + Λ∗λti) +
1

2
(Q∗qti + Λ∗λti)

2 + . . .

Expand the likelihood in terms of Λ∗ and for notational simplicity, temporarily

ignore the factor λ
n
e−λtobs and products of powers of λti and qti. Terms in Λ∗ are

then multiples of

νtQ∗
aΛ∗Q∗

b1 with a ≥ 0, b ≥ 0

Terms in Λ2
∗ are multiples of

νtQ∗
aΛ∗Q∗

bΛ∗Q∗
c1 with a ≥ 0, b ≥ 0, c ≥ 0

and terms in Λ3
∗ are multiples of

νtQ∗
aΛ∗Q∗

bΛ∗Q∗
cΛ∗Q∗

d1 with a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0

From their definitions

νtQ = Q1 = νtΛ∗1 = 0

Therefore terms in Λ∗ vanish and remaining square and cubic terms are of respec-

tive forms

νtΛ∗Q∗
bΛ∗1 with b ≥ 0
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and

νtΛ∗Q∗
bΛ∗Q∗

cΛ∗1 with b ≥ 0, c ≥ 0

Note that if quadratic and higher terms in Λ∗ are ignored, the log-likelihood is

that of a simple Poisson process

l(λ,Λ∗, q,Q∗) ≈ n log λ− λtobs (A.1)

A.2 Two-dimensional MMPP

We now focus on the two-dimensional MMPP, setting q := q12 + q21 and δ :=

(λ2 − λ1)/λ. In this case

Λ∗ = δ





−ν2 0

0 ν1



 and Q∗ =





ν2 −ν2

−ν1 ν1





Moreover

Q∗
n = Q∗

Quadratic terms in Λ∗ are therefore multiples of

νtΛ2
∗1 or νtΛ∗Q∗Λ∗1

and cubic terms are multiples of

νtΛ3
∗1 or νtΛ∗Q∗Λ

2
∗1 or νtΛ2

∗Q∗Λ∗1 or νtΛ∗Q∗Λ∗Q∗Λ∗1

But Λ∗1 = δ[−ν2, ν1]
t is a right eigenvector of Q∗ and νtΛ∗ = δ[ν1, ν2] is a left

eigenvector of Q∗, both with eigenvalues 1. Hence in the above products Q∗ has

no effect; both quadratic terms evaluate to δ2ν1ν2, and all cubic terms evaluate to

δ3ν1ν2(ν2 − ν1).
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To cubic terms in δ, the likelihood is therefore

L(λ, q, δ, ν1) ≈ λ
n
e−λtobs

(

1 + 2δ2ν1ν2f(λt, qt) + δ3ν1ν2(ν2 − ν1)g(λt, qt)
)

where f(·, ·) and g(·, ·) are the sums of the many product terms in the expansion

of the likelihood involving respectively two and three occurences of Λ∗. From this,

by a further Taylor expansion, the log-likelihood is

l(λ, q, δ, ν1) = n log λ− λtobs + 2δ2ν1ν2f(λt, qt) + δ3ν1ν2(ν2 − ν1)g(λt, qt) +O(δ4)

This is Equation (2.23).

A.3 The (λ, q, α, β) reparameterisation

The likelihood expansion (2.23) suggests a further reparameterisation (as described

in Section 2.5.4.2) to λ and q as defined above and

α := 2δ(ν1ν2)
1/2 and β := δ(ν2 − ν1)

Parameters λ, α and β (in this order) capture decreasing amounts of variation in

the log-likelihood and so, conversely, it might be anticipated that there be corre-

sponding decreasing amounts of information about the parameters contained in the

likelihood, and so very different scalings required for each. This section provides

further details of the reparameterisation.
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Viewed in terms of the original parameters, we have

λ :=
q21λ1 + q12λ2

q12 + q21

q := q12 + q21

α := 2
(λ2 − λ1)(q12q21)

1/2

q21λ1 + q12λ2

β :=
(λ2 − λ1)(q12 − q21)

q21λ1 + q12λ2

The inverse transformation has intermediate steps

δ = sign(α)(α2 + β2)1/2

ν1 =
1

2
(1− β

δ
)

ν2 =
1

2
(1 +

β

δ
)

and is

λ1 = λ(1− ν2δ)

λ2 = λ(1 + ν1δ)

q12 = ν2q

q21 = ν1q

The Jacobian of the transformation is

∂(λ, q, α, β)

∂(λ1, λ2, q12, q21)
=

|λ2 − λ1|(q12 + q21)
2

(q21λ1 + q12λ2)2(q12q21)1/2



Appendix B

Additional simulated MMPP data

sets and comparisons

Table B.1 lists additional simulated data sets used for comparison between our

Gibbs sampler and the Metropolis-Hastings random walk algorithms (M1-M5). As

with the core runs, in all runs on these additional data sets the priors are invariant

to label-switching. Prior distributions for all q and λ parameters are exponential

with the mean for q components set to 1 (even for HL and LH runs) and the λ

component means calculated as described in Section 2.6.

Tables B.2, B.3, and B.4 show the relative integrated autocorrelation times for the

additional runs. Estimates of the information matrices for replicate 1 of S2 and S3

are given in Table 2.5. CPU timings for 1000 iterations of each algorithm on two

of the data sets appear in Table B.6.
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Figure B.1: qq plots for replicate 1 of S4, comparing the first 10 000 iterations of

algorithm M5 against iterations 11 000 - 100 000 of the Gibbs sampler. Dashed lines

are approximate 95% confidence limits obtained by repeated sampling from iterations

11 000 to 100 000 of the Long Gibbs data; sample sizes were 10 000/ACT, which is the

effective sample size of the data being compared to the Long Gibbs run.
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Dataset λ1 λ2 q12 q21 t replicates

S3* 10 17 1 1 400 2

HL1 10 90 2 0.5 100 1

HL4 10 13 2 0.5 100 1

LH1 10 90 0.5 2 100 1

LH4 10 13 0.5 2 100 1

Table B.1: Parameter values for additional simulated data sets.
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replicate 2 replicate 3

Data Alg λ1 λ2 q12 q21 λ1 λ2 q12 q21

S1 Gibbs 1.2 1.2 1.5 1.6 1.4 1.1 1.4 1.3

M1 13.9 13.9 14.7 15.0 14.8 14.3 14.0 13.7

M2 13.7 13.9 15.0 14.5

M3 37.1 6.3 10.2 10.7

M4 7.5 65.6 12.9 14.1

S2 Gibbs 4.8 4.7 6.4 7.4 5.2 5.1 7.5 8.3

M1 21.7 24.8 29.6 30.8 19.9 22.7 29.4 32.4

M2 22.0 21.7 27.0 30.5

M3 11.7 16.6 16.1 20.2

M4 15.6 26.4 28.4 31.7

S3 Gibbs 10.6 9.1 14.4 17.8 44.4 20.2 70.4 38.5

M1 43.4 39.2 43.3 51.4 173.6 75.3 221.3 91.5

M2 38.9 38.6 46.1 58.7

M3 24.8 25.5 18.0 20.0

M4 115.9 46.6 257.8 59.8

S4 Gibbs 8.1 4.5 9.2 16.0 11.4 3.7 10.1 25.7

M1 128.4 64.1 47.9 52.7 136.4 77.3 48.0 64.8

M2 79.7 63.6 37.7 75.7

M3 127.1 51.7 62.4 66.2

M4 32.2 99.7 36.7 40.7

Table B.2: Estimated ACTrel for replicates 2 and 3 of simulated data sets S1-S4. The

poor mixing of M3 for λ1 on replicate 2 of S1 is simply due to bad tuning (the random

walk standard deviation for λ1 was too small) and serves to emphasise the difficulty of

optimal tuning for block random walks.
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replicate 1 replicate 2

Data Alg λ1 λ2 q12 q21 λ1 λ2 q12 q21

S3* Gibbs 46.3 20.5 73.3 40.3 41.9 23.1 52.1 32.5

M1 127.7 74.1 173.6 102.6 147.7 89.3 162.5 91.5

M2 95.2 69.5 134.4 97.0 107.4 80.6 132.9 78.6

M3 49.1 39.1 61.5 41.5 50.3 41.7 52.6 38.5

M4 142.6 79.5 187.9 93.1 110.9 91.1 115.0 78.6

M5 24.5 16.6 34.7 24.8

Table B.3: Estimated ACTrel for replicates 1-2 of S3*.

Data Alg λ1 λ2 q12 q21 Data λ1 λ2 q12 q21

HL1 Gibbs 2.0 1.2 1.7 1.9 LH1 1.1 1.6 1.6 1.6

M1 12.6 13.7 16.5 17.1 14.9 14.4 14.7 14.9

M2 13.6 13.7 14.4 16.2 13.7 13.5 13.7 16.6

M5 15.0 13.1 213.3 163.4 16.5 26.2 47.0 177.1

HL4 Gibbs 10.3 4.6 9.8 20.4 LH4 39.9 35.4 47.5 31.3

M1 160.9 141.4 50.5 61.4 250.7 188.5 195.8 144.7

M2 117.1 895.8 127.0 84.7 145.2 217.2 198.1 136.6

M5 42.2 45.9 24.1 24.3 22.7 41.7 25.4 22.1

Table B.4: Estimated ACTrel for HL1, LH1, HL4, and LH4
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Data Information Matrix

S2



















2.74 −0.37 2.84 −0.65

−0.37 1.13 −.41 −1.75

2.84 0.41 28.94 −15.57

−0.65 −1.75 −15.57 28.12



















S3



















2.07 −0.13 5.25 −3.84

−0.13 1.72 3.42 −5.18

5.25 3.42 34.96 −29.91

−3.84 −5.18 −29.91 42.90



















Table B.5: Information matrices for replicate 1 of S2 and S3 at the MLE, estimated by

numerical differentiation.

Data Gibbs M1 M2 M3 M4 M5

S1 287.7 915.5 909.2 228.4 905.4 1002.8

S4 57.9 187.9 177.8 46.8 169.4 205.5

Table B.6: CPU timings (secs) for 1000 iterations of each algorithm on replicate 1 of S1

and S4 with an AMD Athlon 1458MHz CPU.



Appendix C

Proofs of limit theorems in

Chapter 3

Proof of Lemma 8:

We require Chebyshev’s inequality (see for example Grimmett and Stirzaker (2001),

Chapter 7).

P (|X − µ| ≥ a) ≤ E [|X − µ|2]
a2

Since
∣

∣Z(n)
∣

∣

2 ∼ χ2
n, E

[

∣

∣Z(n)
∣

∣

2
]

= n and Var
[

∣

∣Z(n)
∣

∣

2
]

= 2n. So by Chebyshev’s

inequality

P

(∣

∣

∣

∣

∣

∣

∣Z(n)
∣

∣

2

n
− 1

∣

∣

∣

∣

∣

> ǫ

)

= P

(∣

∣

∣

∣

∣

∣

∣Z(n)
∣

∣

2 − n
n

∣

∣

∣

∣

∣

> ǫ

)

≤ 2n

n2ǫ2
=

2

nǫ2

Thus
|Z(n)|2

n

p−→ 1 and hence the result.

Note that although the method of proof is identical, this is not just the weak law

of large numbers for χ2
1 random variables since we are considering a sequence of
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sequences of χ2
1 random variables.

Proof of Lemma 9:

Observe that the limit of a series of (identically) bounded monotonic functions is

also bounded (with the same bounds) and monotonic. Without loss of generality

we assume G(x) is increasing (otherwise simply consider G(−x)), with upper limit

1 and lower limit 0 (otherwise simply rescale).

First deal with the ends of the domain. Since G(x) is monotonic with lower limit

0 and upper limit 1 there are x1 and x2 such that G(x) < ǫ/2 for all x < x1 and

1 − ǫ/2 < G(x) ≤ 1 for all x > x2. Also there is a d1 such that for all d > d1,

|G(x1)−Gd(x1)| < ǫ/2 and |G(x2)−Gd(x2)| < ǫ/2. Since the Gd(x) are also

increasing we see that for all d > d1 and all x ∈ (−∞, x1) ∪ (x2,∞)

|G(x)−Gd(x)| < ǫ

Consider [x1, x2] the (compact) remainder of the domain, and recall that G(x)

is continuous throughout this interval. Since G(x) is continuous, it is uniformly

continuous on [x1, x2]. So there is a δ such that |G(x)−G(y)| < ǫ/2 for all |x− y| <

δ. Let P be the net of points
{

x1, x1 + δ/2, . . . , x1 + kδ/2, . . . , x1 +

[

x2 − x1

δ/2

]

δ/2, x2

}

This is a finite net, so there is also a d2 such that for all d > d2, and all x ∈ P ,

|G(x)−Gd(x)| < ǫ/2.

For any x ∈ [x1, x2] \P we may pick any adjacent pair xp, xq ∈ P with xp < x < xq.

Since xq − xp < δ we have G(xq) − G(xp) < ǫ/2; also for all d > d2 we have that
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|G(xp)−Gd(xp)| < ǫ/2 and |G(xq)−Gd(xq)| < ǫ/2. But both G(x) and Gd(x) are

increasing so that for any x ∈ (xp, xq) we have that G(xp) ≤ G(x) ≤ G(xq) and

Gd(xp) ≤ Gd(x) ≤ Gd(xq) therefore |G(x)−Gd(x)| < ǫ. Combined with (uniform)

convergence on P , this gives uniform convergence on [x1, x2].

Proof of Theorem 2:

In proving Theorem 2 we use the following:

Lemma 22 Let Ud ∼ Beta
(

1
2
, d−1

2

)

then d1/2U
1/2
d

D−→ |Z| , where Z ∼ N(0, 1).

Proof: We will show that d Ud
D−→ χ2

1 from which the required result follows

since U
1/2
d is positive.

We may represent any Beta random variate in terms of two independent Gamma

variates (see for example Hogg and Craig, 1995). Here

Ud =
Xd

Xd + Yd

where Xd ∼ Gam
(

1
2
, 1
)

and Yd ∼ Gam
(

d−1
2
, 1
)

. Since Xd + Yd ∼ χ2
d we apply

Lemma 8 to obtain

dUd =
Xd

(Xd + Yd)/d
D−→ χ2

1
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Now, return to the main theorem and swap the order of integration

ER

[

Φ
(x1

R

)]

=

∫ ∞

0

dΘ (r)

∫ x1/r

−∞

dΦ(z)

=
1

2
+ sign(x1)

∫ ∞

0

dΘ (r)

∫ |x1|/r

0

dΦ(z)

=
1

2
+ sign(x1)

∫ ∞

0

dΦ(z)

∫ |x1|/z

0

dΘ(r)

=
1

2

(

1 + sign(x1)EZ

[

Θ

( |x1|
|Z|

)])

(C.1)

where Z ∼ N(0, 1). But from Lemma 7 we have

F1|d

(

kd

d1/2
x1

)

=
1

2

(

1 + sign(x1)E

[

F d

(

|kd x1|
d1/2 U

1/2
d

)])

where Ud ∼ Beta
(

1
2
, d−1

2

)

. So it is sufficient to show that

E

[

F d

(

kdx1

d1/2U
1/2
d

)]

→ EZ

[

Θ

(

x1

|Z|

)]

for X1 ≥ 0

Writing the density of Ud as gd(·) and noting that limd→∞(d− 3)/d = 1, we must

equivalently show that

lim
d→∞

∫ 1

0

du F d

(

kd x1

(d− 3)1/2 u1/2

)

gd(u) =

∫ ∞

0

dv Θ
(x1

v

)

2φ(v)

We first change variables, setting Vd := (d− 3)1/2U
1/2
d . The density function of Vd

is therefore

g∗d(v) =
2

(d− 3)1/2B
(

1
2
, d−1

2

)

(

1− v2

d− 3

)(d−3)/2

(0 ≤ v ≤ d− 3)

0 (v < 0 or v > d− 3)

and we will denote the corresponding distribution function as G∗
d(·). So

∫ 1

0

du F d

(

kd x1

(d− 3)1/2 u1/2

)

gd(u) =

∫ ∞

0

dv F d

(

kd x1

v

)

g∗d(v)
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We must therefore show that

∣

∣

∣

∣

∫ ∞

0

dv Θ
(x1

v

)

2φ(v)− F d

(

kd x1

v

)

g∗d(v)

∣

∣

∣

∣

→ 0

Now

∣

∣

∣

∣

∫ ∞

0

dv Θ
(x1

v

)

2φ(v)− F d

(

kd x1

v

)

g∗d(v)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ ∞

0

dv Θ
(x1

v

)

(2φ(v)− g∗d(v))
∣

∣

∣

∣

+

∣

∣

∣

∣

∫ ∞

0

dv g∗d(v)

(

Θ
(x1

v

)

− F d

(

kd x1

v

))∣

∣

∣

∣

But

∣

∣

∣

∣

∫ ∞

0

dv g∗d(v)

(

Θ
(x1

v

)

− F d

(

kd x1

v

))∣

∣

∣

∣

=

∣

∣

∣

∣

E

[

Θ

(

x1

Vd

)

− F d

(

kd x1

Vd

)]∣

∣

∣

∣

→ 0

since Θ (·) is continuous and

Θ (a)→ F d (kd a)

and this convergence is uniform by Lemma 9. Therefore it remains to show that

∣

∣

∣

∣

∫ ∞

0

dv Θ
(x1

v

)

(2φ(v)− g∗d(v))
∣

∣

∣

∣

→ 0

Since 0 ≤ Θ
(

x1

v

)

≤ 1

∣

∣

∣

∣

∫ ∞

0

dv Θ
(x1

v

)

(2φ(v)− g∗d(v))
∣

∣

∣

∣

≤
∫ ∞

0

dv |2φ(v)− g∗d(v)|

Split the integration region [0,∞) into [0, v∗] ∪ [v∗,∞) with v∗ chosen such that

1−Φ(v∗) < ǫ/8. From Lemma 22 we know that for v ≥ 0, G∗
d(v)→ 2Φ(v)−1, and

by Lemma 9 this convergence is uniform. So there is a d1 such that for all d > d1,

|1−G∗
d(v) + 2Φ(v)− 2| = |G∗

d(v)− 2Φ(v) + 1| < ǫ/4

Thus for all d > d1

1−G∗
d(v∗) < |1−G∗

d(v∗) + 2Φ(v∗)− 2|+ 2− 2Φ(v∗) < ǫ

2
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Hence

∫ ∞

v∗
dv |2φ(v)− g∗d(v)| ≤

∫ ∞

v∗
dv 2φ(v) +

∫ ∞

v∗
dv g∗d(v)

= 2(1− Φ(v∗)) + (1−G∗
d(v

∗)) <
3ǫ

4
(C.2)

In Section 1.5.1 it was shown that (d − 3)1/2B
(

1
2
, d−1

2

)

→ (2π)1/2. Therefore

g∗d(v) → 2φ(v) pointwise. We also note that g∗d(v) is bounded and monotone

decreasing in v, as is 2φ(v). Therefore by a trivial extension of Lemma 9 (since

supv g
∗
d(v) = g∗d(0) → 2φ(0)) the convergence is uniform. Hence there is a d2 such

that for all d > d2 and all v, |2φ(v)− g∗d(v)| < ǫ/4v∗. So for all d > d2

∫ v∗

0

dv |2φ(v)− g∗d(v)| <
ǫ

4
(C.3)

Combining (C.2) and (C.3) we see that for all d > max(d1, d2)

∫ ∞

0

dv |2φ(v)− g∗d(v)| < ǫ

Proof of Lemma 13

Our proof requires the following simple result.

Lemma 23 For any given finite r0 > 0

∫ r0

0

dr f ∗
d (r)→ 0 as d→∞

Proof: First define

I(s) :=

∫ s

0

dr rd−1 exp (−g(r))
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Then

I(r0) < rd−1
0

∫ r0

0

dr exp (−g(r))

and

I(∞) >

∫ ∞

2r0

dr rd−1 exp (−g(r)) > (2r0)
d−1

∫ ∞

2r0

dr exp (−g(r))

Therefore

∫ r0

0

dr f ∗
d (r) =

I(r0)

I(∞)
<

1

2d−1

∫ r0

0
dr exp (−g(r))

∫∞

2r0
dr exp (−g(r)) → 0 as d→∞

Note that both the integrals in this expression are strictly positive as g(·) is bounded

above over any finite interval.

We now prove Lemma 13 itself. Note that we will find (Equation C.10) that the

density of the rescaled modulus f ∗∗
d (u) is approximately that of a Gam(kbd, kbd)

random variable with bd →∞ as d→∞, from which the final result is intuitively

clear but still takes some considerable algebra to prove.

Given ǫ with 0 < ǫ < 1 choose r0 such that for r > r0, (3.55) gives

k(1− ǫ) < h(r)

ra
< k(1 + ǫ)

To simplify notation later on we now define kl := k(1− ǫ) and ku := k(1 + ǫ).

Multiply (3.53) by r and differentiate to find

(

r (log f ∗
d (r))′

)′
= − (rg′(r))

′
= −h(r)

r

Thus for r > r0 we have

−ku r
a−1 <

(

r (log f ∗
d (r))′

)′
< −kl r

a−1 (C.4)
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From (3.55) there is an r∗ < r0 such that h(r) > 0 for all r > r∗ and so by Lemma

12 we may choose d1 such that rd > r0 for all d > d1. Consider first the right hand

inequality for d > d1 and integrate between rd and r to obtain

r (log f ∗
d (r))′ < −kl

a
(ra − ra

d)

Dividing by r and integrating once more produces

log f ∗
d (r)− log f ∗

d (rd) < −
kl

a

(

ra − ra
d

a
− ra

d log

(

r

rd

))

from which

f ∗
d (r) < f ∗

d (rd) exp

(

kl

a2
ra
d

)(

r

rd

)

kl
a

ra
d

exp

(

− kl

a2
ra

)

Substitute u = (r/rd)
a so that dr

du
= rd

a
u1/a−1 and for u > r0

rd
the density for

Ud :=
(∣

∣X(d)
∣

∣ /rd

)a
satisfies

f ∗∗
d (u) < f ∗

d (rd)
rd

a
exp

(

kl

a2
ra
d

)

u1/a−1u
kl
a2 ra

d exp

(

− kl

a2
ra
du

)

To simplify notation define bd := ra
d/a

2. Then for u > r0/rd

f ∗∗
d (u) < f ∗

d (rd)
rd

a
exp (klbd) u

klbd+1/a−1 exp (−klbdu)

= f ∗
d (rd)

rd

a

Γ (klbd + 1/a)

(klbd)
(klbd+1/a) exp (−klbd)

Gam (u; klbd + 1/a, klbd)

where Gam(u; a, b) is a Gamma density function with shape parameter a and rate

parameter b.

Note that bd →∞ as d→∞ but by Stirling’s approximation, as bd →∞

Γ (klbd + 1/a)

(klbd + 1/a− 1)klbd+1/a−1/2 exp (− (klbd + 1/a− 1))
→ (2π)1/2
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So that for u > r0/rd (after some algebra)

(klbd)
1/2 Γ (klbd + 1/a)

(klbd)
(klbd+1/a) exp (−klbd)

→ (2π)1/2

Therefore given any ǫ > 0 there is a d2 > d1 such that for all d > d2

f ∗∗
d (u) < (1 + ǫ)(2π)1/2f ∗

d (rd)
rd

a
(klbd)

−1/2Gam (u; klbd + 1/a, klbd) (C.5)

Similarly, considering the left hand inequality in (C.4) we may by ensuring d2 is

large enough force

f ∗∗
d (u) > (1− ǫ)(2π)1/2f ∗

d (rd)
rd

a
(kubd)

−1/2 Gam (u; kubd + 1/a, kubd) (C.6)

for all d > d2. Now both (C.5) and (C.6) are valid for u > r0/rd, so defining

cd := (2π)1/2f ∗
d (rd)

rd

a
(kbd)

−1/2

we obtain

1− ǫ
(1 + ǫ)1/2

cd Gam (u; kubd + 1/a, kubd) < f ∗∗
d (u)

<
1 + ǫ

(1− ǫ)1/2
cd Gam (u; klbd + 1/a, klbd) (C.7)

for d > d2 and u > r0/rd. But as d→∞ the mean of aGam (k(1± ǫ)bd + 1/a, k(1± ǫ)bd)

random variable approaches 1 and the variance approaches 0. So by Chebyshev’s

inequality the area outside of some region (1 − δ, 1 + δ) tends to 0. Thus, since

r0/rd < 1 we can choose a d3 > d2 such that for all d > d3

1− ǫ <
∫ ∞

r0/rd

du Gam (u; k(1 + ǫ)bd + 1/a, k(1 + ǫ)bd) < 1 (C.8)

But by Lemma 23, we may take d3 large enough to ensure that for all d > d3

1− ǫ <
∫ ∞

r0

dr f ∗
d (r) =

∫ ∞

r0/rd

du f ∗∗
d (u) < 1 (C.9)
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Integrating (C.7) over its range of validity (r0/rd,∞), applying (C.8) and (C.9)

and rearranging, we obtain for d > d3

(1− ǫ)3/2

1 + ǫ
< cd <

(1 + ǫ)1/2

(1− ǫ)2

Substitute back into (C.7) to obtain for d > d3 and u > r0/rd,

(1− ǫ)5/2

(1 + ǫ)3/2
Gam (u; kubd + 1/a, kubd) < f ∗∗

d (u) <
(1 + ǫ)3/2

(1− ǫ)5/2
Gam (u; klbd + 1/a, klbd)

(C.10)

The Gamma random variables in (C.10) both converge in probability to 1 as d→∞

so that for large enough d, the integral between 0 and r0/rd can be made smaller

than ǫ. This taken together with Lemma 23 allows us to bound the moment

generating function for Ud.

f̃
(u)
d (t) >

(1− ǫ)5/2

(1 + ǫ)3/2

(

(

1− t

k(1 + ǫ)bd

)−k(1+ǫ)bd+1/a

− ǫ exp

(

r0t

rd

)

)

f̃
(u)
d (t) <

(1 + ǫ)3/2

(1− ǫ)5/2

(

1− t

k(1− ǫ)bd

)−k(1−ǫ)bd+1/a

+ ǫ exp

(

r0t

rd

)

So the moment generating function of Vd := (Ud − 1)(kbd)
1/2 is bounded

f̃
(v)
d (t) > exp

(

− (kbd)
1/2 t

) (1− ǫ)5/2

(1 + ǫ)3/2

×





(

1− t

(1 + ǫ) (kbd)
1/2

)−k(1+ǫ)bd+1/a

− ǫ exp

(

r0t

rd

)





f̃
(v)
d (t) < exp

(

− (kbd)
1/2 t

)

×





(1 + ǫ)3/2

(1− ǫ)5/2

(

1− t

(1− ǫ) (kbd)
1/2

)−k(1−ǫ)bd+1/a

+ ǫ exp

(

r0t

rd

)





But as bd →∞, for positive or negative ǫ,

exp
(

− (kbd)
1/2 t

)

(

1− t

(1 + ǫ) (kbd)
1/2

)−k(1+ǫ)bd+1/a

→ exp

(

t2

2(1 + ǫ)

)
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So that as d→∞

f̃
(v)
d (t)→ exp

(

1

2
t2
)

This is the moment generating function of a N(0, 1) random variable.

Proof of Lemma 15

We first prove convergence to zero for E [(Ud − 1)2Gd(Ud)] and E [(Ud − 1)Gd(Ud)].

From the convergence in mean square of Ud and the bounds on Gd(·)

E
[

(Ud − 1)2Gd (Ud)
]

≤ E
[

(Ud − 1)2]→ 0

Also convergence in mean square implies convergence in expectation so

|E [(Ud − 1)Gd (Ud)]| ≤ E [|(Ud − 1)|Gd (Ud)] ≤ E [|(Ud − 1)|]→ 0

But

E
[

(Ud − 1)2Gd (Ud)
]

= E
[

U2
dGd (Ud)

]

− 2E [(Ud − 1)Gd (Ud)]− E [Gd (Ud)]

So that

E
[

U2
dGd (Ud)

]

− E [Gd (Ud)]→ 0

and the result follows.

Proof of Lemma 16

(i) If h(·) has a finite number of local maxima and is continuously differentiable

then it has a finite number of local minima. Consider some neighbourhood
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(x∗ − a, x∗ + a) which contains no local minima: in this interval h(·) is de-

creasing away from x∗.

Pick a small δ < a and define ǫ := 1
2
min(h(x∗)−h(x∗− δ), h(x∗)−h(x∗ + δ))

so that for all x ∈ (−x∗−a, x∗−δ]∪ [x∗+δ, x∗+a) we have h(x∗)−h(x) ≥ 2ǫ.

The sequence of hd(x) converges uniformly to h(x) on the compact interval

[x∗ − a, x∗ + a], so we may pick d1 such that for all d > d1 and x ∈ (x∗ −

a, x∗ + a), |h(x)− hd(x)| < ǫ. Thus for all d > d1 and x ∈ (x∗ − a, x∗ − δ] ∪

[x∗ + δ, x∗ + a)

hd(x) < h(x) + ǫ ≤ h(x∗)− ǫ < hd(x
∗)

Therefore over (x∗ − a, x∗ + a), hd(x) achieves its maximum somewhere in

(x∗ − δ, x∗ + δ). But δ can be made arbitrarily small.

(ii) Pick a large k > 0 and positive ǫ ≤ 1
2
(h(2k) − h(k)). Convergence of the

sequence hd(x) is uniform for x ∈ [0, 2k] and so we may pick d1 such that for

all d > d1, and x ∈ [0, 2k], |hd(x)− h(x)| < ǫ. So that for x ∈ [0, k]

hd(x) < h(x) + ǫ ≤ h(k) + ǫ ≤ h(2k)− ǫ < hd(2k)

so x∗d > k, but k may be arbitrarily large.
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