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Abstract

Early English Books Online contains digital facsimiles of virtually every English

work printed between 1473 and 1700; some 125,000 publications. In September

2009, the Text Creation Partnership released the second instalment of transcrip-

tions of the EEBO collection, bringing the total number of transcribed works to

25,000. It has been estimated that this transcribed portion contains 1 billion words

of running text. With such large datasets and the increasing variety of historical

corpora available from the Early Modern English period, the opportunities for

historical corpus linguistic research have never been greater. However, it has been

observed in prior research, and quantified on a large-scale for the first time in this

thesis, that texts from this period contain significant amounts of spelling variation

until the eventual standardisation of orthography in the 18th century.

The problems caused by this historical spelling variation are the focus of this

thesis. It will be shown that the high levels of spelling variation found have a

significant impact on the accuracy of two widely used automatic corpus linguistic

methods – Part-of-Speech annotation and key word analysis. The development

of historical spelling normalisation methods which can alleviate these issues

will then be presented. Methods will be based on techniques used in modern

spellchecking, with various analyses of Early Modern English spelling variation

dictating how the techniques are applied. With the methods combined into a

single procedure, automatic normalisation can be performed on an entire corpus

of any size. Evaluation of the normalisation performance shows that after training,

62% of required normalisations are made, with a precision rate of 95%.
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Chapter 1

Introduction

This thesis presents the research undertaken to build a software solution which

can be used to normalise spelling variation, which, as will be shown, exists in

large quantities in texts from the Early Modern English (EModE) period. It

will be made evident through the research presented that this spelling variation

has a negative effect on the accuracy of software used in the field of corpus

linguistics. The research process will involve taking steps to better understand

the characteristics of EModE text, particularly in terms of its orthography, and to

also quantify the precise effect historical spelling variation has on corpus linguistic

methods. This will aid the development of an interactive tool which will utilise

techniques from modern spell checking to normalise EModE spelling variation.

This introductory chapter will first give an overview of the problem in hand, then

three central research questions will be introduced and discussed. The chapter

will end with a description of the structure for the remainder of the thesis.

1.1 Problem Overview

The computer-aided analysis of natural language text through corpus linguistic

techniques is a well established area of research. Automated methods have been

developed for tasks such as analysing word frequency, finding key words or key

word clusters, finding collocations, and annotating texts with additional levels of

detail such as part-of-speech tags and semantic categories. The majority of studies

within the field of corpus linguistics, and other forms of language analysis, have

focused on the examination of modern ‘clean’ texts. Problems occur, however,

1



1.1 Problem Overview

when using the same techniques with more ‘noisy’ texts containing considerable

amounts of spelling variation; the problems being due to the fact that most

automated methods rely upon consistent spelling.

Early Modern English (EModE) is the most recent period of the English

language for which the general written word contained a large amount of spelling

variation1. Spelling in English was not standardised until the 18th century, before

which the spelling of a word could change depending upon the author, scribe or

publisher – as well as numerous other factors. It is thought that this spelling

variation causes a considerable barrier to accurate and robust analysis in the field

of historical corpus linguistics; however, very few studies have quantified the level

of the problem. One study by Archer et al. (2003) evaluated the effect of spelling

variation when semantically annotating texts from the 17th century, and found

an increase in accuracy when spelling variation was partially normalised. The

precise effect spelling variation has on other corpus linguistic methods needs to

be established.

The EModE period (1500–1700) is of particular research interest due to it

being the earliest period for which a relatively large corpus can be built, largely

due to William Caxton’s introduction of the printing press in 1476. The size

and number of corpora available from the period has increased greatly over

the last 20 years: from corpora such as the Lampeter corpus (Schmied, 1994)

at 1.2 million words and the Corpus of Early English Correspondence (CEEC)

(Nevalainen, 1997) at 5.1 million words to recent digitisation initiatives such

as the Text Creation Partnership (TCP)’s transcriptions of 25,000 books from

ProQuest’s Early English Books Online (EEBO)2, which is estimated to contain

1 billion words. Researchers can avoid the issue of spelling variation by utilising

modernised versions of texts; Culpeper (2002), for example, used a modern edition

in his study of Shakespeare’s Romeo and Juliet. However, modernised versions

of historical texts are more often not available, and moreover, researchers have

questioned the value of some modernised versions, especially for Shakespeare’s

work (see e.g. de Grazia & Stallybrass, 1993). Another potential solution is

1Recent specific forms of language, such as SMS text messaging and Internet chatroom

discussions, contain abnormally large amounts of inconsistent spelling for (mostly) different

reasons.
2http://www.lib.umich.edu/tcp/eebo/description.html

2
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1.1 Problem Overview

to manually normalise the spelling variation within texts; this may be possible

for small amounts of data but for studies using larger corpora of 1–5 million

words, this would be restrictively time-consuming and with the very large datasets

becoming available for research, such as EEBO, a fully manual approach would

be clearly unworkable.

A solution is required which can be used to, at least partially, automatically

normalise the spelling in EModE corpora, supplementing texts with modern

equivalents which automatic corpus linguistic tools should recognise with greater

ease. This pre-processing of texts should result in the corpus linguistic analysis of

the historical data being more accurate and robust. It is important to note from

the outset why dealing with historical spelling variation is not equivalent to two

well researched tasks, namely translation and spelling correction. Firstly, EModE

spelling normalisation does not equate to a translation task whereby words are

generally found in another fixed form, as between, for example, English and

French3. The task is more like modern spellchecking in this respect whereby a word

could be spelt in a variety of forms, some potentially being unique to a particular

author, text or passage. Secondly, it is important to make the distinction that

texts would not be ‘corrected’ per se; it is generally considered that there was

no real notion of a ‘correct spelling’ during the EModE period, especially before

the first dictionaries were published (e.g. Samuel Johnson’s dictionary of 1755).

Moreover, the original spelling forms found should be retained, or at least be easily

retrievable, as the choice of spellings itself can be an important point of interest

– a common criticism of modernised texts is their lack of authenticity, in that the

original orthography is lost. The task is similar to annotation in this respect as

information is to be added to the text, not taken away; the modern equivalent

spellings are for the primary purpose of assisting automatic corpus linguistic tools.

Computer-based methods for dealing with spelling errors in modern texts

have been the subject of research for over 40 years (Damerau, 1964; Kukich,

1992; Mitton, 2010). Techniques have been researched and developed to deal

with problems such as word processing errors, Optical Character Recognition

(OCR) post-processing, Information Retrieval (IR) with noisy texts and the

normalisation of Computer-Mediated Communication (CMC) based texts (e.g.

3That is not to say that automatic translation of texts is an easy task; the research area of

machine translation has received substantial focus itself (e.g. Dorr et al., 1999).

3



1.2 Research Questions

SMS, emails, etc). However, limited research has been completed to develop

techniques to deal with the spelling issues in historical texts, and even less for

specifically EModE spelling variation. Therefore, investigation is required to

establish whether modern spellchecking techniques can be applied to EModE

spelling normalisation and how the characteristics of EModE spelling variation

will dictate which methods are required and how these methods should be

implemented.

1.2 Research Questions

The research presented in this thesis aims to address the problems caused by

EModE spelling variation, particularly in terms of improving the accuracy of

corpus linguistic tools when applied to historical corpora. This will centre around

the development of a spelling normalisation tool, for which the applicability of

methods from modern spellchecking will be investigated. The resulting tool will

act as a pre-processor for corpus linguistic techniques. Research is required to

assess the extent of the problems caused by spelling variation, discover how

modern spellchecking techniques can be applied to EModE spelling variation and

evaluate the effectiveness of the developed software. More formally, there are

three principal research questions to be addressed:

RQ 1 How extensive is Early Modern English spelling variation in terms

of the levels of variation appearing in Early Modern English corpora

and how large an impact does this spelling variation have on corpus

linguistic methodology?

RQ 2 What are the characteristics of Early Modern English spelling varia-

tion and how will these affect the application of modern spellchecking

techniques to historical spelling normalisation?

RQ 3 What levels of performance can the developed normalisation tool

achieve with different levels of training, particularly in terms of pre-

cision and recall, when automatically normalising spelling variation

in Early Modern English corpora?

4



1.2 Research Questions

The first research question is designed to help better understand the problem in

hand, particularly the scale of the effect spelling variation has. The hypothesis is

that spelling variation will have a considerable detrimental effect on the accuracy

of corpus linguistic tools. Presuming that in answering RQ 1 we prove the

correctness of this hypothesis, the need for the remainder of the research to be

undertaken will be justified. The first stage in addressing this research question

will be to look at the ratios between spelling variants and modern spellings in

different Early Modern English texts. Obtaining these ratios will quantify how

much work is required to normalise texts and, presuming that the hypothesis

regarding spelling variation having an impact holds, it naturally follows that

more spelling variation equates to a larger impact. This leads onto the second

stage where the hypothesis will be directly tested by comparing corpus linguistic

methods’ results before and after normalisation, thus assessing the impact of

spelling variation on corpus linguistic tools. The research to answer these

questions should also be of wider interest to researchers working with EModE

corpora; the results will assist in better understanding of the corpora being used

and provide the ability to assess the risk of not normalising spelling variation.

RQ 2 is key to the development of a historical spelling normalisation tool.

The literature contains many issues to consider and many potential solutions

for modern spellchecking – these will be discussed in detail in Section 2.2. In

order to narrow these down to the important issues and likely useful solutions for

dealing with EModE spelling variation, research is required to better understand

common features of the spellings used. The specific characteristics which require

analysis will be presented in the background literature (Chapter 2), where they

can be discussed in more detail. In order to perform the different analyses,

spelling variants linked to their modern equivalents will be required. This is a

problem because very few EModE texts exist containing both original spellings

and normalised forms. The research presented in this thesis results in a tool which

will alleviate this problem; therefore, during the incremental development of the

software these spelling characteristics are studied in tandem to help make decisions

for the next stage of development. Again, these results should be of interest to the

wider research community for better understanding of historical spelling trends

and how these compare to other forms of spelling errors and variation.
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1.3 Structure of Thesis

The final research question, RQ 3, can be answered through the evaluation

of the developed normalisation tool. It is important for any solution to be

able to deal with a large proportion of the spelling variation present in a given

text (i.e. recall4), thus having the desired effect of improving the accuracy of

subsequently applied corpus linguistic tools. However, it is likely to be of greater

importance that high precision5 is maintained, in that any normalisations made

are, in the vast majority of cases, correct. Failure to achieve high precision

would introduce additional noise to the texts being normalised and potentially

have a detrimental effect on the accuracy of corpus linguistic tools – this would

clearly be unacceptable as the overall aim of the research is to improve historical

corpus linguistic accuracy. Due to the importance of recall and precision here, and

with the measures being widely used in Natural Language Processing evaluation

(see e.g. Reynaert, 2008a), it seems sensible to evaluate the performance of the

developed software in these terms. The developed software should be able to deal

with spelling variation in different EModE corpora and a user should be able to

customise and train the tool for a specific corpus. Therefore, the effectiveness of

training the tool should also be evaluated in terms of its effect on both precision

and recall.

The research questions stated here shall be referred to throughout this thesis

in order to discuss further specifics, highlight their necessity and address the

questions raised. This is emphasised in the following section, where the structure

of the thesis is presented.

1.3 Structure of Thesis

There are four main chapters of this thesis in addition to the current Introduction

and a final Conclusions chapter. Chapter 2 presents the background literature

related to the research undertaken, which is split into two main areas. Firstly, the

EModE period is introduced with particular focus falling on its inherent spelling

variation and the application of corpus linguistics to EModE texts. Secondly, the

field of modern spellchecking is discussed in detail, with various related issues

highlighted and techniques for dealing with spelling problems considered. The

4Recall: Ratio of correct normalisations to normalisations necessary.
5Precision: Ratio of correct normalisations to normalisations made.
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characteristics of different types of spelling errors that need to be investigated in

order to address RQ 2 will also be introduced. Finally, the chapter will include

a critical analysis of specific previous research which has attempted to deal with

the problem of historical spelling variation, both in English and other languages.

Whilst Chapter 2 will introduce some of the potential issues arising from

EModE spelling variation, particularly in terms of its effects on corpus linguistic

methodology, Chapter 3 will quantify the levels of variation in various EModE

corpora and evaluate the precise impact of this variation on two automated and

advanced corpus linguistic techniques; thus addressing RQ 1. Various analyses

aimed at addressing RQ 2 will also be described in Chapter 3, identifying and

describing some specific characteristics of EModE spelling variation to take into

consideration when developing an EModE spelling normalisation tool.

With an understanding of the size and properties of the problem in hand,

Chapter 4 will describe how modern spellchecking techniques can be applied

to EModE spelling normalisation. Particular focus will be given to how the

characteristics of EModE spelling variation (as established in Chapter 3) influence

the priorities and decisions made when choosing and adapting methods for

detecting and normalising variants. The specific algorithms developed will be

detailed and discussed before a description is given of a piece of software which

utilises these methods in the form of a spelling normalisation tool.

Chapter 5 will evaluate the performance of the developed normalisation

methods on EModE texts, hence addressing RQ 3. The developed normalisation

tool’s ability to both detect and automatically normalise EModE spelling variants

shall be investigated in terms of precision and recall. A case study will focus

specifically on the tool’s performance in normalising a single EModE corpus. This

will highlight the tool’s effectiveness and usefulness in a real research project for

which it is aimed.

The thesis will end with Chapter 6, the conclusions. Here, the thesis will

be summarised and the research questions revisited in order to establish how

successfully each has been addressed. The chapter will also explore the various

contributions made and highlight any potential areas for future work following on

from the research presented.

7



Chapter 2

Background and Related Work

The research presented in this thesis concerns two broad subjects. Firstly,

Computer Science, due to the research centering around the development of an

interactive piece of software which uses methodology well established in the area

of Natural Language Processing. Secondly, Historical Corpus Linguistics, due

to the overriding aim of the developed software being to aid corpus linguistic

tools and methods in terms of accuracy when dealing with historical texts. The

background presented in this chapter describes two specific areas from these

broader subjects which are relevant to the research in question. In Section 2.1,

the Early Modern period of the English language is introduced, with specific focus

on the inherent spelling variation found in the period’s language, the increasing

number of corpora available from the period, and how spelling variation can

affect historical corpus linguistic studies. The second branch of the background

literature, presented in Section 2.2, focuses on methods used for both detecting

and correcting spelling errors, such as those used in word processing software

to deal with spelling and typing errors, but also research into dealing with

problems caused by different types of spelling variation in other fields, such as

Information Retrieval. Section 2.3 looks at the overlap between these two branches

and the specific focus of this thesis; i.e. methods used to deal with historical

spelling variation, both in English and in historical varieties of other languages.

The chapter concludes with a summary of the presented background reading,

establishing the characteristics of the two areas under investigation and providing

motivation for the research undertaken.
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2.1 Early Modern English

2.1 Early Modern English

In texts describing the history of the English Language, four separate periods

of the language are commonly described: Old English (500–1100 A.D.), Middle

English (1100–1500), Early Modern English (1500–1700) and Modern English

(1700 onwards)1. Many varying political and social factors have influenced English

throughout its history, shaping the phonology, vocabulary, morphology, syntax

and semantics of the language (see Singh, 2005). The Early Modern English

(EModE) period is of significant importance for the study of the English language

as it is the most influential in the formation of the standard modern English we

use today. The period is also of particular interest in the field of corpus linguistics

because it is the earliest period of the English language from which a reasonably

large corpus can be constructed. This was largely due to a sharp increase in book

production through the introduction of the printing press by William Caxton in

1476 and an increasingly literate public (Görlach, 1991: 6).

2.1.1 History

The actual dating of the EModE period is a topic of some contention; Görlach

(1991: 9-11) dedicates a section to the subject. Barber (1997: 1) and Singh

(2005) settle with a period of 1500 to 1700, however, there are reasons to consider

adjusting these endpoints when compiling an EModE corpus. Various events

in the 15th Century point towards the EModE period being dated pre-1500,

including the invention of the printing press in 1476. There was also a significant

reduction in regional differentiation between texts from around 1450 (Görlach,

1985: 1), this was accelerated by the printing press as 98% of all English books

were printed in the London area (Görlach, 1991: 13).

Various authors (e.g. Fisher, 1977; 1984; 1992; Richardson, 1980; Samuels,

1963) discuss the importance of the ‘Chancery Standard’ in the development of

written English. Between 1066 and 1417 all official correspondence in England

was written in Latin or French (Fisher, 1984: 161), this despite the majority of the

population actually speaking English. This is not actually an unusual situation,

Fisher (1992: 1174) explains that similar situations have been exhibited as late as

1There is some disagreement on the precise dating of these historical periods. This shall be

discussed in detail for the Early Modern English period in Section 2.1.1.
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2.1 Early Modern English

the 20th Century in Montreal, India and Norway where most of the population

spoke the vernacular tongue yet official writings were largely in English, English

and Danish respectively. Quite suddenly in August 1417, upon Henry V’s second

invasion of France, all of the King’s correspondence were written in English rather

than French or Latin, this ‘commitment to the vernacular’ was of significant

importance, equivalent to Chaucer’s commitment to English in the literary world

in the 14th century (Richardson, 1980: 727). The official correspondence of Henry

V was dealt with by the Chancery (a similar body to the English civil service

of today, responsible for the King’s administration), who, until the end of the

fifteenth century, dealt with virtually all of the national bureaucracy of England

(from the fifteenth century onwards the bureaucracy was departmentalised into

various offices of the government (Fisher, 1977)). By the early 1430s the Chancery

had developed its own ‘standard’ written English which more closely resembled

today’s modern Standard English than other texts from the period, such as

personal letters. Due to the prestige and authority of any documents written

by the Chancery and the need for a standardised form of English for official

bodies, Chancery English became the most commonly accepted written standard

and thus a forerunner to modern standard English (Richardson, 1980). A study

by Fisher (1984) also shows that Chancery English greatly influenced Caxton and

the written English produced by his printing press from 1476, and Shaklee (1980:

48) argues that Caxton “may have influenced the direction in which the language

grew more than any other single man.” Due to the King’s commitment to written

English and the importance of Chancery English, it could be argued that 1417

should mark the beginning of the EModE period.

The dating of the end of the EModE period is also a subject of debate. 1660

is a common date considered mainly for historical reasons, i.e. the end of the

Civil War, but Görlach (1991: 11) states that by this time “Spelling has, more

or less, become fixed in its modern form.” Another date to be considered is the

introduction of Samuel Johnson’s dictionary in 1755, considered by many to be a

milestone in the English language. Lass (1999: 1) considers 1776 to be significant

as it was the year of the American Declaration of Independence; “the notional

birth of the first (non-insular) extraterritorial English” (it is also conveniently 300

years after the introduction of the printing press by William Caxton). However,

1700 seems to be the preferred choice, Görlach (1991: 11,38-40) explains that by
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2.1 Early Modern English

this date Latin had all but been replaced with English in writing and speech,

and that the language had achieved “considerable homogeneity,” with regional

(written) dialect differences no longer present and “the period of co-existing

variants, so typical of all levels of EModE, being over by 1700.”

An actual definition of the dates EModE represents is not necessarily required

here as it would be foolish to rule out the study of a text simply due to its

age or which period of the English Language it is considered to originate from.

Besides, there is an inevitable overlap in the characteristics of adjacent periods,

indeed Barber (1997) states, “All such divisions are arbitrary, for linguistic change

is continuous.” Clearly, maximising the period in which texts can be studied

from is preferential; however, the lack of texts prior to the advent of the printing

press makes large-scale corpus study difficult. Another problem which would

be encountered in earlier texts (Middle English) would be characters outside

the standard alphabet, this does not include foreign accents as are found in

other European languages – these should be expected due to borrowings from

other languages – but medieval characters such as Z (yogh) or þ (thorn) could

potentially cause problems in terms of encoding and how to transform these to

modern equivalents.

2.1.2 Spelling Variation

The English Language was under significant change throughout the EModE

period, one reason being that Latin and French were rapidly being replaced

by English as the preferred choice of language for print and speech for many

institutions and individuals (see Singh, 2005: 140-147). For the language to obtain

credibility the need for standardisation became apparent as the language “lacked

obligatory rules of spelling, pronunciation, morphology and syntax” (Görlach,

1991: 36), the ‘Chancery Standard’ went some way to achieving this in some

official texts of the period leading up to the introduction of the printing press in

1476, however, in the majority of texts from the EModE period spelling variation

remained a prominent feature. Some common spelling variant examples are shown

in Table 2.1.
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Variant Modern

Equivalent

Notes

“goodnesse” “goodness” ‘e’ often added to end of words.

“brush’d” “brushed” Apostrophes often used instead of ‘e’.

“encrease” “increase” Vowels commonly interchanged.

“spels” “spells” Consonants often doubled or singled.

“deliuering” “delivering” ‘u’ and ‘v’ often interchangeable.

“conuay’d” “conveyed” Many combinations of the above.

Table 2.1: Examples of spelling variants found in Early Modern English

Spelling variation was not solely between different authors, scribes, editors

and printing houses, as one may expect; it is common to find a word spelt several

different ways in the same text or even on the same page. The reasons for so

many variant spellings in EModE texts are numerous; Vallins & Scragg (1965:

71) state:

This freedom of choice in earlier spelling, strange as it seems to us, was

in fact perfectly natural. Although individual compositors normally

held to a single spelling of a word, they occasionally used variant

spellings to ease justification of the lines, or a spelling against their

own usage might creep in from the copy they were using.

Furthermore, texts were often written by numerous scribes who would

sometimes use their own spelling preferences resulting in totally different spelling

conventions from one page to the next. Another reason is that spelling tended

to be influenced by the local dialect and so could differ between regions, this was

especially the case earlier in the EModE period, before the spread of London and

Chancery English was complete. A further point to note is that the language,

and particularly the spelling, of the EModE period cannot be viewed as a single

entity with texts from the beginning of the EModE period being similar to texts

from the end of EModE period; Nevalainen (2006: 4-6), for example, compared the

language from three selected texts dated around 1500, 1600 and 1700, highlighting

significant differences in grammar and spelling. The reasons for the large amount

of spelling variation in EModE texts are wide and varied, what is clear is that the
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task of normalising spelling cannot be equated to a simple translation problem

with words appearing in a different fixed form; words could be spelt in a variety

of different ways and one EModE text may have spelling variations which might

not be found anywhere else.

The eventual ‘complete’ standardisation of spelling was a slow process, Vallins

& Scragg (1965: 65-71) discuss how texts throughout the EModE period and

earlier have frequent spelling variants, however, by the end of the EModE

period variant spellings were becoming less frequent, and by the 18th century

printers were using a single spelling for most words, and the modern spelling

system slowly became fixed (Vallins & Scragg, 1965: 71), this was signified by

the introduction of dictionaries, especially that of Samuel Johnson’s in 1755.

Reduction in spelling variation in the 18th century was also shown by Schneider

(2001); unrecognised word types (i.e. likely spelling variants) by the ENGCG

wordclass tagger (Voutilainen & Heikkilä, 1993) decreased by nearly 10% from

the period 1670-1709 to 1770-1799. However, as stated in RQ 1 (Section 1.2), a

full quantitative analysis of the levels of spelling variation over the whole EModE

period needs to be established.

It should be noted that spelling has still not stabilised completely in Present

Day English, and variation still occurs. Vallins & Scragg (1965: 150-183) dedicate

an entire chapter to the subject of continued spelling variation, entitled “Style

of the House,” in which they point out common discrepancies between printers,

authors and even dictionaries, for example:

• -ise and -ize being interchangeable, e.g. criticise / criticize.

• Mute e before suffix being optional, e.g. judgement / judgment.

• ct and x being interchangeable, e.g. inflection / inflexion.

These and similar issues also occur with the overlap of British and American

spelling (see e.g. Hofland & Johansson, 1982; Shaw, 2008; Swan, 2005: 39-44). The

joining of words with (or without) hyphens can also cause considerable variation

between texts, Fowler (1926, cited by Vallins & Scragg, 1965: 178) states, “The

chaos prevailing among writers or printers or both regarding the use of hyphens

is discreditable to English education.” The use of hyphens is still debated today;

for example, around 16,000 words recently lost their hyphens in the new edition

of the Shorter OED (Rabinovitch, 2007).
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In recent times, technology and other factors have brought about further

variations on standard written English, Sebba (2007) discusses society’s view and

the social reasoning and implications of the varying orthographies found in modern

language. The orthography of Computer-Mediated Communication has received

particular attention in recent research, particularly in terms of normalising texts

(this will be given more attention in Section 2.2). Studies have looked at

the orthography of SMS (Crystal, 2004; 2008; Shortis, 2007; Tagg et al., 2010;

Thurlow, 2003), Instant Messaging (Varnhagen et al., 2009), chat rooms (Al-Sa’di

& Hamdan, 2005; Driscoll, 2002), web pages (Ringlstetter et al., 2006), weblogs

(Tavosanis, 2007) and social networking sites (Shaw, 2008). Spelling variation

is also prevalent in other varieties of English, such as children’s writing (Perera,

1986; Pooley et al., 2008; Smith et al., 1998; Sofkova Hashemi, 2003), non-native

written texts (Granger, 1998; Pravec, 2002) and dialectal variations (Anderwald

& Szmrecsanyi, 2009; Trudgill, 1999; Trudgill & Chambers, 1991; Wales, 2000).

However, the focus of this thesis is on spelling variation in the EModE period and

particularly dealing with its effect on corpus linguistics, to which our attention

now turns.

2.1.3 Corpus Linguistics and Early Modern English

A corpus is “a collection of naturally occurring language text, chosen to

characterize a state or variety of a language” (Sinclair, 1991: 171) and corpus

linguistics is the study of language through corpus-based research (McEnery &

Wilson, 2001), which has become synonymous with using a computer to analyse

a large body of text collected to represent a certain subject. Analysis performed

on corpora may include:

• Simple string searching.

• Word frequency lists.

• Concordances – a list of the occurrences of a word with their immediate

contexts to the left and right.

• Collocations – words which co-occur more often than would be expected by

chance.

• Keywords – looking at which words are significantly more frequent in one

text (or collection of texts) compared to another text (or collection of texts).
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• Annotation – attaching extra information to words, sentences or other points

in the document, or to the whole document. Two of the more common forms

of corpus annotation are:

◦ Part-of-Speech (POS) tagging – Each word is given a grammatical tag

(verb, noun, adjective, etc), further analysis can then be made to find

when and how certain grammatical classes are used (e.g. Garside &

Smith, 1997).

◦ Semantic tagging – Each word is given a semantic category tag which

relates to a particular topic or concept (e.g. climate and weather

conditions). As with POS tagging, these tags can then be used for

further analysis, such as finding key semantic categories (e.g. Rayson,

2008).

Various pieces of software have been created to help perform these tasks

automatically, including: Wordsmith Tools (Scott, 2004), BNCweb (Hoffmann

et al., 2008), CQPweb (Hardie, forthcoming) and Wmatrix (Rayson, 2008). All

of the software listed can perform one or more of the analysis functions described

above, but they are all designed to work with modern English (and in some

cases other modern languages), problems occur when these tools and methods are

used to analyse historical varieties or dialects of English (and other languages),

especially when large amounts of spelling variation occurs – as in EModE.

The construction of EModE and other historical corpora has become an

important focus of research; Kytö et al. (1994) state:

In recent years, interest in the compilation of corpora containing texts

from the earlier periods of English has increased rapidly, together with

the development of new methods and aids for tagging and parsing the

texts in these corpora. The number of computer-assisted studies of the

history of English has soared and there are important major research

projects making effective use of databases of early English.

Many historical English corpora have been created containing texts from

the EModE period, these include the Helsinki, ARCHER (A Representative

Corpus of Historical English Registers), Lampeter and Zurich English Newspapers

(ZEN) corpora (detailed in Kytö et al., 1994), the Corpus of Early English
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Correspondence (CEEC) (Nevalainen, 1997), the Corpus of English Dialogues

(CED) (Culpeper & Kytö, 1997), the Early Modern English Medical Texts

(EMEMT) corpus (Taavitsainen & Pahta, 1997; 2010), the Innsbruck Letters

corpus - part of the Innsbruck Computer-Archive of Machine-Readable English

Texts (ICAMET) corpus (Markus, 1999) and also many different versions of

Shakespeare’s works, for example, the First Folio as printed in 1623, which

can be sourced from the Oxford Text Archive2. Whilst these corpora are

relatively modest in size, compared to large modern corpora such as the British

National Corpus (BNC) at 100 million words (Burnard, 2007) and the Corpus of

Contemporary American English (COCA) at 400 million words (Davies, 2008),

large amounts of text from the period are being digitised through various ongoing

initiatives. One such project undertaken by the Text Creation Partnership

(TCP)3 has transcribed 25,000 books from ProQuest’s Early English Books Online

(EEBO)4. The full EEBO collection contains digital facsimiles of virtually every

English printed work between 1473 and 1700; nearly 125,000 works. Whilst these

digital facsimiles are a very useful resource, the TCP’s ASCII SGML transcriptions

will allow researchers to search and perform corpus linguistic functions on a

much larger dataset than previously available for the EModE period. Further

textual data from the period are being digitised through other schemes including

newspapers by the British Library5, and books by the Open Content Alliance6

and Google Book Search7. A summary of the main corpora available containing

EModE texts is given in Table 2.2.

2http://ota.ahds.ac.uk
3http://www.lib.umich.edu/tcp/eebo/description.html
4http://eebo.chadwyck.com/home
5http://www.bl.uk/reshelp/findhelprestype/news/earlyenglishnews/
6http://www.opencontentalliance.org
7http://books.google.com
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Corpus Genre & Type Period Size

(words)a

ARCHER General/Mixed 1650–1990 1.7 Million

CED Speech-related 1560–1760 1.2 Million

CEEC Letters 1400–1800 5.1 Million

EEBO General/Mixed 1473–1700 c. 1 Billionb

EMEMT Medical texts 1500–1700 2 Million

Helsinki General/Mixed 730–1710 1.6 Million

Innsbruck Letters 1386–1688 170,000

Lampeter Various tracts and

pamphlets

1640-1740 1.2 Million

Shakespeare

First Folio

Plays c. 1590–1613 800,000

ZEN Newspapers 1661–1791 1.6 Million

a The sizes given here are for the whole corpus, some of which may

be outside the EModE period.
b An earlier version of EEBO containing roughly half (12,268) of the

works was analysed and found to contain over 500 million words,

the full version of EEBO is likely to contain around double this.

Table 2.2: Summary of the main Early Modern English corpora

Whilst the corpora described provide sources for a wide-range of research of the

EModE period, the spelling variation prevalent within these texts (as described

in Section 2.1.2) creates a barrier to accurate and meaningful corpus linguistic

results; Culpeper (2007: 69) states, “Early Modern English spelling variation has

been perhaps the major stumbling block for historical corpus linguistics.” In some

cases, it may be possible to avoid this problem by using modernised versions of the

text; Culpeper (2002), for example, utilised a modern edition of Romeo and Juliet

in his study of the Shakespeare play. However, modernised versions of texts are

often unavailable and with the increasing size of EModE corpora being released

(see Table 2.2), the proportion of texts with modernised equivalents is diminishing

further. The effect of ignoring the issue of spelling variation in corpus linguistic

research will now be outlined, starting with simple functions which produce a

cumulative effect on more complicated corpus linguistic techniques.

17



2.1 Early Modern English

Searching for a word is possibly the most basic corpus linguistic function, and

the basis for the majority of more complicated techniques. However, searching in

an EModE corpus can be problematic; using a simple search algorithm would only

return the occurrences of the word when it is spelt exactly the same as the search

query – spelling variants of a word would not be returned. One option is to search

for both the word and its variants, however, it is often difficult to know all of the

possible spelling variants for a word and the lists can be very long, substantially

increasing processing time. To demonstrate this, a relatively simple word such

as would could be spelt in a variety of forms, including: would, wolde, woolde,

wuld, wulde, wud, wald, vvould, vvold, and so on. To return all occurrences of the

lemma would, the user would first need to know all possible spelling variants of the

word and then either search for these in turn or build a complicated search query.

This problem can occur even when looking at small portions of text, or from one

author; for example, Vallins & Scragg (1965: 70-71) showed that it was frequent

within EModE texts for words to be spelt differently even in a short paragraph,

exemplified in this short passage from the Authorised Version of the Bible (1611)

(cited by Vallins & Scragg, 1965: 67):

Though I speake with the tongues of men & of Angels, and haue not

charity, I am become as sounding brasse or a tinkling cymbal. And

though I haue the gift of prophesie, and vnderstand all mysteries and

all knowledge: and though I haue all faith, so that I could remooue

mountaines, and haue no charitie, I am nothing[...]

Linked to the above, creating a simple word frequency list can also become

difficult as each of the different spellings of a word would be listed as a separate

entry, with the actual frequency split between the entries. This may not be as

much of an issue with words at the top of typical word frequency lists; two recent

studies by Lieberman et al. (2007) and Pagel et al. (2007) have shown that more

frequent words are less likely to change over time, and are in the majority of

cases spelt the same now as they have been since Middle and even Old English.

However, further down the frequency list, results would clearly be inaccurate as

in the case of would and charity given above. Furthermore, building a list of

concordances or collocations would be affected in similar ways; concordance lists

would be incomplete if all spelling variants of a word were not searched for, whilst
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collocations would be incomplete and frequencies inaccurate as the search term

and/or its collocates could have multiple spelling forms.

Keyword lists can be used, for example, to analyse the ‘overuse’ or ‘underuse’

of words when comparing one set of texts to another (see e.g. Granger & Rayson,

1998). As keywords are found by comparing frequency lists (Tribble, 2000)

the obvious inaccuracies in frequencies are likely to have a cumulative effect on

keyword analysis. This problem is potentially intensified when evaluating key

word-clusters (e.g. Mahlberg, 2007), as even very low frequency word-clusters

could be considered key, but if any one of the words within a particular cluster

are spelt in different ways throughout a text or corpus the frequency of that cluster

will be reduced. The comparison of frequencies can be performed using a variety

of statistical methods with varying degrees of complexity. Some common statistics

used include the Yule Coefficient (Yule, 1944), the χ2 (chi-squared) test (Pearson,

1904) and the log-likelihood ratio (Dunning, 1993). Due to the complexity of these

statistics, it is difficult to estimate the level of impact inaccurate frequencies will

have on keyword results without first resolving these inaccuracies and comparing

the results before and after; i.e. for EModE, one could normalise spelling and

compare keyword results from the original texts and the normalised texts.

Part-of-Speech (POS) tagging is perhaps the most common form of corpus

annotation, many methods for which have been developed, including manual and

automatic techniques. Automatic POS tagging of English text is possible by

using well-defined rules of the language (for example, words ending -ness are

likely to be nouns), amongst other techniques. However, these methods are based

on modern English and problems are encountered when dealing with variations

of the language, e.g. EModE. The CLAWS POS tagger (Garside, 1987; Garside

& Smith, 1997), for example, uses a dictionary which includes words (or multi-

word units) and suffixes with their possible parts of speech. This dictionary is

based upon modern English and does not include the large amount of spelling

variants (as previously discussed) and the archaic / obsolete words found in

EModE texts. CLAWS also uses a probabilistic Hidden Markov Model (e.g.

the likelihood that an adjective will be followed by a noun) to disambiguate

words which could potentially be several different parts-of-speech. Similarly, these

probabilities are based on modern English and may not apply to EModE; there

are definite differences in the grammar of Present-day English and EModE, as
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discussed by Kytö & Voutilainen (1995) in their application of the ENGCG Parser

to the previously mentioned Helsinki Corpus.

Semantic annotation can also be assigned automatically, but like POS tagging,

it is expected that accuracy suffers when dealing with the characteristics of

EModE. One example of an automatic semantic tagger is the UCREL Semantic

Analysis System (USAS) (Rayson et al., 2004), again this has been developed for

processing modern English. USAS uses CLAWS POS tagged text as its input,

hence, with the characteristics of EModE likely to produce inaccuracies in POS

tagging, it is likely that these inaccuracies will be passed down through USAS.

Also, USAS relies much more heavily on a large dictionary than CLAWS, and

cannot guess the semantic field of a word from its immediate neighbours or from

other surface clues (e.g. the -ness indicates noun rule in CLAWS); this obviously

will cause problems when words which are not in the dictionary are encountered

– which, as previously shown, is common in EModE texts. Another point to

consider is the possibility of a semantic shift in words from EModE to present-

day English. Archer et al. (2003) discuss extending USAS for EModE texts, the

paper reports on an evaluation performed on relatively contemporary texts from

1640, later texts were used to avoid the effect of semantic shift and the differences

in grammar. Error rates were quite low at 2.9% for one text, and 4.0% for another

(the authors indicate that error rates in older texts would be higher), however,

dealing in part with spelling variation produced a reduction in error rates to 1.2%

and 1.4% respectively. It is, therefore, clear that spelling variation is causing

inaccuracies in the semantic annotation.

It has been shown here that spelling variation in EModE will clearly produce

boundaries in the accuracy and meaningfulness of results from corpus based

research, resulting, for instance, in a lack of annotated EModE corpora; Markus

(2002) states “[f]or studies of the Middle and Early Modern English periods [...],

the lack of tagged versions of the corpora concerned has caused considerable

problems of retrieval.” It is clear that the spelling variation can have an effect on

even the most basic techniques of corpus linguistics, such as searching for words or

building frequency lists. A subsequent effect on performance of more complicated

corpus linguistic methods is expected as they rely upon the accuracy of these basic

techniques. Archer et al. (2003) found this to be the case when attempting to

semantically tag even relatively contemporary EModE texts. However, as stated
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in RQ 1 (Section 1.2), a quantification of the level of the effect of significant

amounts of spelling variation on other corpus linguistic techniques would be

desirable, although the exact extent of the problem cannot be quantified without

first normalising an EModE corpus and comparing results before and after the

normalisation. The focus of this background chapter now turns to a review of the

techniques which may help to address the issue of spelling variation.

2.2 Spelling Error Detection and Correction

The use of a computer to assist in the detection and correction of spelling errors

has been the subject of extensive research for over 40 years (e.g. Damerau, 1964;

Jurafsky & Martin, 2000; Kukich, 1992; Mitton, 1996; 2010) give comprehensive

surveys of the subject literature. Virtually all of the literature focuses upon dealing

with modern (largely English) texts, a review of the techniques used will be given

here. Kukich (1992) separates dealing with spelling errors into “three increasingly

broader problems.” These being: (1) Non-word error detection, (2) Isolated-word

error correction, and (3) Context-dependent word correction. For this chapter’s

review of the surrounding literature, the same three problems, and their solutions,

shall be analysed following an overview of the tasks and processes which are

affected by spelling issues.

2.2.1 Spelling Error Tools and Applications

Spelling is a potential problem for a variety of different tasks, each with

characteristics which require individual tailoring of spell checking and correction

techniques. The most commonly known variety of spell checking and correction

occurs within modern word processing software, such as Microsoft Word. Within

these programs the text inputted by the user is analysed and any words which

the systems deems to be invalid or misspelt are highlighted as such. Usually, the

user has the option to view a list of potential replacements for a highlighted word,

one of which is then chosen by the user to be the correct word and the system

replaces the highlighted word with the correction. Recently, similar functionality

has appeared on the web; for instance, the Mozilla Firefox browser8 now has

8http://www.mozilla.com/firefox
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in-line spell checking for web forms, and ‘gadgets’ such as Ask A Word9 can be

added to ‘personalised start pages’ such as iGoogle10 and netvibes11, these take

inputted text, process it and highlight spelling errors and offer replacements in

much the same way as Microsoft Word. Another well known spell checking and

correction tool is Aspell12 which claims to be superior at suggesting replacements

for misspelt words; Aspell is aimed at eventually replacing the popular, although

now dated, ispell13 for UNIX.

Spelling problems are not limited to word processing and other similar user

typing tasks, problems caused by spelling occur in a variety of fields. Information

Retrieval (IR) is one such field; when searching a database the query string may

be similar, but not identical, to desired matches, for such problems approximate

string matching or ‘fuzzy matching’ is often used (see Zobel & Dart, 1995). This

problem particularly occurs in name matching when a user may not know the

‘correct’ spelling of a particular name or the name might have many potential

variant forms, also errors may have been made during data entry into the database.

A similar problem exists in genealogy; for example, searching records for a family

name where the name may have changed over time and/or been inputted into

a record erroneously. Various studies (Cohen et al., 2003; Järvelin et al., 2007;

Pfeifer et al., 1996; Wu & Manber, 1992; Zobel & Dart, 1995; 1996) have focussed

on dealing with this problem, most involve supplementing the query string with

a list of variations in order to increase the recall from the database. A similar

Information Retrieval problem is that of web queries, i.e. in search engines such as

Google14, Yahoo15 and Microsoft’s Bing Search16. In recent years all three of these

search engines have added functionality to deal with misspelled query strings, e.g.

if Google is used to search for the term varient spelling, a link is provided stating

“did you mean variant spelling.” Cucerzan & Brill (2004) discuss a novel method

for this task which involves using the frequency of previous web query strings

to determine if the current given query string is valid or has a misspelling. Also,

9http://www.askaword.com
10http://www.google.com/ig
11http://www.netvibes.com
12http://aspell.net
13http://lasr.cs.ucla.edu/geoff/ispell.html
14http://www.google.co.uk
15http://www.yahoo.com
16http://www.bing.com
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Martins & Silva (2004) evaluate a system using common spell checking techniques

to correct misspelled search queries in their Portuguese search engine. Finally, and

of particular relevance to the research reported in this thesis, recent studies have

centred around dealing with the spelling variation in historical textual databases,

particularly in German (Hauser et al., 2007; Pilz et al., 2006; 2008), and also

less recently with English (Robertson & Willett, 1993) – these will be discussed

further in Section 2.3.

As well as adapting query strings for IR with noisy texts (i.e. containing

spelling variation), many studies have looked at normalising the spelling within

the documents themselves to aid IR and corpus linguistic techniques (as discussed

in Section 2.1.3). Such studies include the post-correction of texts scanned through

Optical Character Recognition (OCR) (e.g. Lopresti, 2008; Reynaert, 2008b;

Ringlstetter et al., 2007a; Strohmaier et al., 2003a; Taghva & Stofsky, 2001) and

handwriting recognition (e.g. Bhardwaj et al., 2008; Pittman, 2007). Recent focus

has fallen upon Computer-Mediated Communication (CMC) spelling variation;

studies have looked into applying spelling correction techniques described in this

section to normalise various forms of CMC, including: SMS (Acharyya et al.,

2009; Aw et al., 2006; Choudhury et al., 2007; Cook & Stevenson, 2009; Kobus

et al., 2008; Tagg et al., 2010; Yvon, 2010), chat (Wong et al., 2006; 2008), emails

(Agarwal et al., 2007; Sproat et al., 2001) and newsgroups (Agarwal et al., 2007;

Clark, 2003; Zhu et al., 2007).

The spelling problems which affect each of these tasks have different character-

istics; for example, for word processing and information retrieval, spelling errors

may be largely due to typographical errors (i.e. slips during typing resulting in

the incorrect insertion of, for example, a q instead of a w due to their proximity

on the keyboard) or due to common human misspellings (e.g. wierd instead of

weird), OCR errors may be largely due to the graphical similarity of letters (e.g.

D / O and rn / m), and name-matching errors may be due to phonetic similarities

(e.g. Bayer / Beyer / Baier). The methods required to detect and correct these

errors will need adjusting depending on these specific characteristics, this section

now turns to discussing these methods.
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2.2.2 Non-word Error Detection

Dictionary Lookup

The first stage of a modern spell checker is to detect spelling mistakes within the

text; this is normally done by looking up each of the text’s words in a dictionary

(Mitton, 1996: 93-95). The actual construction of a dictionary for use in a spell

checker can be difficult in itself. Firstly, the size of the dictionary is an issue; if

the dictionary is too small then many words which one would deem valid would

not be found in the dictionary and thus presumed by the system to be incorrect.

This is more of an inconvenience to the user than a serious issue in traditional

spell checking; the user normally has the option to disregard the word and mark

it as correct, and in the majority of cases can add the word to the dictionary for

future reference by the system. A more serious problem is when the system flags a

word as correct when it is in fact a spelling error (Mitton, 1996: 95); this problem

is intensified with larger dictionaries that contain less frequent words which are

potential misspellings of other words, e.g. if veery, a type of bird, was included

in the dictionary it is easy to see that very could be misspelt to produce the

string veery which would be flagged as correct by the system. These problematic

spellings, known as real-word errors, are discussed in more detail in Section 2.2.4.

The size of the dictionary is also an issue due to space and processing time

constraints, too large a dictionary could make the list unmanageable and too

time-consuming to search. Due to each word type in a text requiring lookup

within the dictionary it is important to make this process as quick as possible.

Various techniques have been developed for quick-searching of a dictionary, the

most common of which is a hash table (Knuth, 1973). The main advantage of hash

tables is the reduction in comparisons needed, however, it is necessary to “devise

a clever hash function that avoids collisions without requiring a huge hash table,”

this problem has caused spelling mistakes to go undetected because they happen

to have the same hash address of a valid word (Kukich, 1992). Other dictionary

search techniques include Tries (Pittman, 2007) and frequency ordered binary

search trees (Knuth, 1973), as well as finite-state automata (Aho & Corasick,

1975) and efforts have been made to reduce search times and storage space by

partitioning the dictionary based on frequency levels, i.e. a table or tree of the

most common words are searched first (Peterson, 1980) and also reducing the
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size of a dictionary by only including the root form of words (Kukich, 1992). It

should be noted that speed and space constraints have become less critical recently

due to the increases in computational capability (Kukich, 1992), i.e. via Moore’s

Law (Moore, 1965). One interesting idea is to derive a specialised dictionary for

the text being analysed based on its topic; Strohmaier et al. (2003b) introduce

research which uses the web as a source for a “dynamic” dictionary, using targeted

search queries.

A group of words which are relatively uncommon in dictionaries used for spell

checking are proper nouns. Due to an infinite amount of potential proper nouns

which could be found within a text it is not sensible to try and list them all

(although adding more frequent proper nouns is a sensible first step). A common-

sense approach to the problem would be to use the rule that proper nouns always

begin with a capital letter in Modern English; this, however, does not work in

all cases as a capital letter is also used to signify the start of a sentence. The

problem is even worse in EModE; Osselton (1998) explains how between 1550 and

1750 there was a distinct increase in the use of a capital letter to begin nouns

where one would not be present in Modern English. This particular problem

with EModE texts rules out using the appearance of a capital letter with any

reliability to distinguish proper nouns in an application for detecting EModE

spelling variation.

N-Gram Analysis

Another less common method for discovering spelling errors is the analysis of the

letter n-grams which make up the word. N-grams are subsequences or portions of

a word of n length, n is usually 1, 2 or 3 (uni-, di-/bi- or tri- grams respectively).

Analysis of the n-grams contained in words from a dictionary or large corpus can

produce binary or frequency matrices; for a binary matrix, 1 is recorded for an n-

gram found during the analysis at co-ordinates relative to the letters of the n-gram,

for a frequency matrix the number of occurrences or the statistical probability is

stored. More information can be captured by also including a dimension which

indicates the position of the n-gram. Checking the validity of a given word involves

checking each n-gram against the stored matrix to see if any n-grams are invalid or

very infrequent, indicating a spelling error or likely source of one; for example, one

would expect the bigram QM or the trigram SHJ to be invalid. Even unigrams
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can be useful when positional information is included, for example a word ending

in Q is unlikely in English.

N-gram analysis negates the necessity to include a dictionary, which, as

previously discussed, can cause some difficulties. However, problems arise because

a word may have valid n-grams but still be a spelling error, resulting in the error

being missed. The process can still be useful, particularly with OCR, where errors

usually result in invalid n-grams; Hanson et al. (1976) used positional binary

trigram arrays on OCR output and found 98% of the errors present. However,

Zamora et al. (1981) used trigram frequency statistics for general spell checking

and found that “although trigram analysis was able to determine the error site

within a misspelled word accurately, it did not distinguish effectively between

valid words and misspellings” (Kukich, 1992).

2.2.3 Isolated Error Correction

In the previous section, methods were described for finding non-word errors within

a text. Early spell checking programs, such as UNIX spell, stopped at this stage,

simply presenting the strings which it considered to be spelling errors to the user.

More recent spell checkers, as discussed in Section 2.2.1, go further by offering

suggestions to the user of what the intended word might be. Various methods have

been developed to search for these alternatives, usually including finding similar

strings, by some metric, from a dictionary. The word ‘isolated’ distinguishes

between looking at each word as an individual entity and the more complex task

of also considering the surrounding context, as described in Section 2.2.4.

Phonetic Matching Algorithms

Phonetic matching has been used for decades to identify strings which have a

similar sound when spoken, regardless of their spelling. They are used frequently

when searching for a name in a database (see Pfeifer et al., 1996; Zobel & Dart,

1996). The most familiar phonetic matching algorithm is Soundex, first patented

in 1918 (Russell, 1918; 1922). The basic Soundex algorithm takes the following

steps:
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1. Replace all but the first letter with the appropriate digit listed below:

(0) A, E, I, O, U, H, W, Y

(1) B, F, P, V

(2) C, G, J, K, Q, S, X, Z

(3) D, T

(4) L

(5) M, N

(6) R

2. Remove any pairs of digits that are the same and occur next to each other

in the string.

3. Remove all occurrences of the digit 0.

4. The Soundex code is the first 4 letters of the remaining string (the string is

padded with zeroes if the string length is less than 4).

The algorithm results in a code of length 4, which is the string’s first letter,

and three numbers representing the next three consonants (apart from H, W or

Y). This can be very useful, as an example, the string disapont (a possible spelling

variant) would have the Soundex code D215, the real word disappoint also has

this code. One of the problems with Soundex is the number of false positives

which occur; as well as disappoint many other real words have the code D215,

including dispense, deceiving and despond, which are all obviously incorrect to a

human reader. Soundex will also not always match two words which are similar

sounding; for instance, increase has the code I526, but encrease has the code E526.

This could be considered a slightly contrived example as it has been found that

misspelling of the first letter is quite rare (Yannakoudakis & Fawthrop, 1983b).

Whether this applies to EModE spelling variation has not been researched; hence,

quantification of this feature and other EModE spelling variation characteristics

is required to better understand how the methods described in the section could

be applied to EModE texts. Regardless, it is clear that Soundex in isolation is not

enough to find the correct replacements for misspellings without also considering

a large number of false positives.
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The Soundex algorithm is still used today in its basic form, although many

extensions of the algorithm have been proposed and developed; yet, still virtually

all phonetic spelling correction algorithms have the same basic structure with

changes often only in the form of pre-processing, varying the code length or

changing the letter-groupings. A well known Soundex variant is Phonix (Gadd,

1988; 1990; Pfeifer et al., 1996), the same basic Soundex algorithm is present

although slightly different letter groupings are used. The main difference in

Phonix is the pre-processing of the string with 160 letter transformation rules

such as ecs mapped to x and gn, ghn and gne mapped to n, these transformations

are designed to increase the accuracy of the letter grouping stage. One issue with

Phonix is the processing time required, this is due to each of the transformation

rules being applied in turn (Zobel & Dart, 1995). Other Soundex variations include

Phonetex (Hodge & Austin, 2001a) which is similar to Phonix but with different

letter groupings and transformation rules, and Editex (Hodge & Austin, 2001a;

Zobel & Dart, 1996) which combines Soundex and Phonix properties with Edit

Distance measures – described later in this section.

Various papers have evaluated the effectiveness of phonetic matching algo-

rithms, including Hodge & Austin (2001a); Pfeifer et al. (1996); Zobel & Dart

(1995; 1996). Zobel & Dart (1995; 1996) found that Soundex and Phonix are

inferior to other techniques such as Edit Distance (see Section 2.2.3) in name

matching, which is surprising considering that name matching was the original

aim of both algorithms. Hodge & Austin (2001a) tested Soundex, Editex and

Phonetex on 360 phonetic misspellings, comparing them to Agrep (Wu & Manber,

1992), Microsoft Word 97 & 2000 and ispell. They found that recall was over

90% for all three algorithms, Phonetex scoring highest with 98%, then Soundex

with 92% and Editex with 90%, for comparison Microsoft Word 97 scored 94%,

Microsoft Word 2000 scored 96%, Agrep 87% and ispell only 69%. However, they

also found that a large number of false positives were also present; Phonetex

finding the correct replacement being 1 of 11.1 potential replacements, Soundex a

20.83:1 ratio and Editex a 1.43:1 ratio (Editex is not just using phonetic matching

techniques however). This shows that high recall is at the cost of low precision;

hence why phonetic matching algorithms are rarely used in isolation for spelling

correction.
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Rule Based Approaches

In certain spellchecking applications there exist groups of letters which are

interchangeable, i.e. one letter (or sequence of letters) is commonly misplaced for

another. One application in which this feature is abundant is OCR; for example,

it is more likely that an e will be mistaken for an o than a t be mistaken for

an m (Mitton, 1996: 105). A similar feature occurs in typed texts where the

proximity of letters on the keyboard leads to common mistakes; for instance,

and mistyped anf and are mistyped arte (Mitton, 1996: 77-92; Yannakoudakis

& Fawthrop, 1983b). There are also some common misspellings by writers, e.g.

recieve instead of receive or definate instead of definite; Mitton (1996: 54-76) gives

a thorough analysis of these errors and Vallins & Scragg (1965: 150-183) describes

some common discrepancies in spelling between different authors, printers and

dictionaries.

The knowledge of these common letter errors can be exploited when correcting

word-errors found in the text. A set of letter replacement rules can be derived

which account for common misreading (for OCR) or mistyping (either typing error

or the user is unsure of the correct spelling) of letters; for example, substitute i

for j (OCR), substitute f for d (typing), or substitute ie for ei (human spelling

misconception). These rules can then be applied to any non-word found in the

text to produce a list of potential candidate replacement strings which can in turn

be filtered to find potential dictionary word replacements. The rules could also

have probabilities attached (see e.g. Mitton, 1996; Yannakoudakis & Fawthrop,

1983a) so that candidate replacements produced by more common letter errors

are ranked higher for replacement when presented to the user. This concept is a

major component of the much cited ‘noisy channel’ method of spelling correction

(see Brill & Moore, 2000; Church & Gale, 1991; Kernighan et al., 1990), where

the letter replacement rule probabilities are used in the ‘error’ or ‘channel model’.

Much of the above may also apply to EModE texts; many texts are OCR

scanned so typical OCR errors are likely to be present, and the rest are manually

transcribed so common typing errors may be present in these texts. However, the

characteristics of EModE texts (see Section 2.1.2) dictate that some spelling errors

are specific to the period. There has been very limited research into the frequency

of specific EModE letter replacements, although some authors have listed common

variations; Fisher (1977), for example, states some commonly interchangeable
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pairs: i / y, u / v and ou / ow, as well as the inconsistency in the presence or

absence of a final e.

String Similarity Measures

A further spelling correction technique involves computing the similarity between

two strings, the most common forms of this measure are the minimum edit distance

algorithms that have been around since Damerau (1964) and Levenshtein (1966)

introduced their algorithms over 40 years ago. The algorithms compute the

similarity of two strings, counting the minimum number of insertions, deletions

and substitutions required to transform one string into the other. Many uses

of these algorithms have been researched, particularly Levenshtein distance;

applications range from DNA analysis to studies of bird song (Kruskal, 1983).

Searching for words with a minimum edit distance of 1 from a misspelling

has been used as a method to find candidate spelling corrections in a number of

studies (see e.g. Church & Gale, 1991; Mays et al., 1991). This has been shown to

be useful with early studies finding that in the majority of cases a misspelling is

only 1 edit away from the intended correct word. The actual coverage of this rule

varies from study to study: Damerau (1964) first calculated that approximately

80% of spelling errors in his study were 1 edit away from the original, however, in

a study of scientific and scholarly texts Pollock & Zamora (1984) found this figure

to be much higher at 94%, conversely, Mitton (1987) found that only 69% of the

spelling mistakes in a corpus of spelling from a range of sources contained only one

edit. For EModE spelling variation, it is difficult to know what the corresponding

percentage would be; this should be investigated along with other characteristics

of EModE spelling variation, as stated in RQ 2 (Section 1.2).

Edit Distance algorithms are generally computationally expensive if used to

check a word against a large dictionary; however, they can be useful for comparing

a string to a subset of the dictionary found by another string analysis method (e.g.

Mitton, 2008; Zobel & Dart, 1995). An application of the Levenshtein Distance

algorithm on a subset of Soundex matches of the string disapont (see page 27) is

shown in Table 2.3. This example shows that the correct replacement disappoint

has the smallest distance, so clearly, in this example, the algorithm is useful for

deciding which replacement is most likely to be correct.
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Phonetic Match Distance Edits

disapont → disappoint 2 Insert p

Insert i

disapont → dispense 4 Delete a

Substitute o → e

Substitute t → s

Insert e

disapont → deceiving 7 Substitute i → e

Substitute s → c

Substitute a → e

Insert i

Substitute p → v

Substitute o → i

Substitute t → g

disapont → despond 3 Substitute i → e

Delete a

Substitute t → d

Table 2.3: An example application of Levenshtein Distance

As shown, Levenshtein’s algorithm returns a count of the minimum edits

needed to convert one string to another, many of the extensions of the algorithm

return a similar figure. Some, such as the Needleman-Wunsch distance algorithm

(Needleman & Wunsch, 1970), designed to search for similarities in amino acid

sequences, assign different values to different edit operations; Levenshtein distance

is equivalent to the Needleman-Wunsch algorithm with each edit operation having

a value of 1. An efficient method to find all words from a dictionary within a

small number of edits from a given string has been presented (Mihov & Schulz,

2004; Mihov et al., 2007), and extended with “symbol dependent edit weights”

(Ringlstetter et al., 2007b), much like the rule-based approach discussed above.

Another technique for computing string similarity is n-gram analysis; this

involves splitting the two strings being compared into arrays of substrings of length

n and then, on a basic level, counting how many n-grams occur in both strings.

An example of the use of this method is described in a proposed spell checking

system by Hodge & Austin (2001b) where unigrams are used for spellings with less

31



2.2 Spelling Error Detection and Correction

than 4 characters, digrams for 4-6 characters and trigrams for spellings with more

than 6 characters. Their hybrid approach (they also used phonetic matching)

produced a recall rate of 93.9% (precision rates were not given). It is important

to take into account the length of words; e.g. using a simple count of n-grams,

water will match as many n-grams with water as it will with waterline (Zobel

& Dart, 1995). Other spelling correction studies which use n-gram techniques

include Järvelin et al. (2007) who used digrams of adjacent and non-adjacent

letters (which they called s-grams) for information retrieval, and Robertson &

Willett (1993) who used n-grams to find words in a dictionary similar to a word

from a historical database (texts from 16th, 17th and 18th centuries) search query

(see Section 2.3.1 for more details).

2.2.4 Context Sensitive Error Detection and Correction

The previous sections have described searching for non-word errors and then

correcting them in isolation. On the surface this may seem sufficient to correct

all of the spelling mistakes in a given text; however, problems occur when words

which are misspelt happen to form strings which are also in the dictionary, thus

deemed by the system to be correct. These errors are generally referred to as real-

word errors and are much more difficult to detect than non-word errors due to

dictionary lookup being of no use by definition, although changing the size of the

dictionary will have an effect on the number of real-word errors present (Peterson,

1986). The extent of this problem is naturally difficult to approximate due to

the difficulty in detection, although a handful of early studies have attempted

to calculate the proportion of spelling errors that are real-word errors: Peterson

(1986) estimated that the probability of an undetected typing error is between

2% and 16%, depending on the size of the word list used, the findings of Mitton

(1987) are much more alarming, 40% of the spelling errors found in his study were

real-word errors. A more recent study found that 31.4% of the spelling errors in

a corpus of dyslexic writers were real-word errors (Pedler & Mitton, 2010: Table

2, 757). The extent of the problem real-word errors may cause when dealing with

EModE spelling variation requires investigation and quantification.

Various methods have been proposed for dealing with real-word errors. A

simple approach has already been touched upon in Section 2.2.2, whereby less
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frequent words are omitted from the dictionary, hence words such as veery (a type

of bird) will be marked as incorrect. Some spell checkers may mark certain words

as infrequent, and indicate this to the user (Mays et al., 1991). However, even for

small dictionaries, real-word errors will still occur between frequent English words.

For instance, the common misconception of there, their and they’re, between are

and our, and between to and too (these are often referred to as confusion sets

(Mitton, 1987)) could all produce spelling errors which remain undetected due to

all of the listed words being frequent in English language. Word-division errors

can also lead to real-word errors; for example, forgot to for got and inform to in

form are both possible errors which result in frequent words which would be found

in any English dictionary (Mitton, 1987) – Grefenstette & Tapanainen (1994) give

a good overview of such tokenization issues and potential solutions.

Due to many real-word errors resulting in words which would be in most

English dictionaries it is apparent that further techniques are often needed to

deal with the problem. As no further information can be gained from analysing

the words individually, the context in which words appear needs to be taken into

account. There have been many different methods presented in the literature, all

of which attempt to search for words which look out of place in the surrounding

context. In general, this is achieved through defining confusion sets which

contain dictionary words likely to be mistakenly used in place of each other. On

observation of a confusion set entry in a text, the local features of the word are

calculated (i.e. its context) and also the features of each word in the confusion set

if that word was placed in the same context as the word observed. If an entry in

the observed word’s confusion set is judged to be more likely, given the context,

than the observed word then a real-word error is flagged and the most likely word

is offered as a correction.

In earlier studies (e.g. Golding, 1995; Golding & Roth, 1999; Golding &

Schabes, 1996; Jones & Martin, 1997; Mangu & Brill, 1997) a small finite set

of common confusion sets was pre-defined, these included the likes of {than,

then}, {passed, past} and {cite, sight, site}. The studies’ evaluations tested

the respective system’s ability to predict the correct word from the small set

of confusion sets when any word from the sets appeared in a test corpus. More

recent studies (e.g. Fossati & Eugenio, 2007; 2008; Reffle et al., 2009; Schaback
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& Li, 2007) create confusion sets by computing the difference between all real-

words found in a lexicon, this is based upon methods normally used for isolated

error correction, such as edit distance and phonetic matching (see Section 2.2.3);

for example, Fossati & Eugenio (2007) include all words within two edits via

Levenshtein Distance (Levenshtein, 1966) as a confusion set.

Different features of a word’s context are considered in different studies in

order to detect (and correct) real-word errors. A popular method is the use

of word-level n-grams (usually bigrams and/or trigrams) (see e.g. Asonov, 2010;

Mays et al., 1991; Reffle et al., 2009; Verberne, 2002; Wilcox-O’Hearn et al., 2008).

This method requires probabilities for observed word n-grams calculated from a

large corpus. When checking a text, the probability of an observed n-gram can

be compared to the probabilities of the n-gram with one of the original words

replaced by each word in its confusion set in turn. The n-gram with the highest

probability is then the most likely correct sequence in the text – if this is different

to the original sequence a real-word error is flagged and the most likely sequence

used as a correction. The main problem with this method is the collection and

storage of the n-gram model; the size of the corpus used has a direct impact on the

coverage of the model and even for fairly large corpora data-sparseness is an issue

due to perfectly valid n-grams just not occurring in the text. With very large

datasets this becomes less of an issue; e.g. the Google n-grams from 1 trillion

words of web text (Brants & Franz, 2006). However, processing time and how

to store such a large matrix in memory becomes an issue, although good hashing

functions will help (see e.g. Cohen, 1997).

Further information can be used ‘above’ the word-level to discern context. A

system using Part-of-Speech (POS) tagging was proposed and partially developed

by Atwell & Elliott (1987), this was based on the CLAWS POS tagger (Garside,

1987; Garside & Smith, 1997). CLAWS assigns POS tags to words based upon

the probability of a word having a particular tag and the probability of POS

tags co-occurring in sequence. The system proposed and developed uses these

probabilities to find locations where an improbable POS tag occurs, this word is

then marked as a potential real-word error. Suggestions for replacements can be

found by selecting similar words which have a more probable POS tag for that

location in the text. The main issue with this method is that the system will not
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be able to detect real-word errors where the observed word’s POS tag matches

the POS tag of the intended word.

Other studies using contextual information with different and combined

approaches include: Fossati & Eugenio (2007; 2008) who combined the trigrams

method with the POS method, looking for unlikely sequences of mixed words

and POS tags, Jones & Martin (1997) who attempted to apply Latent Semantic

Analysis to the problem, Golding (1995) who applied a Bayesian Hybrid method,

Golding & Schabes (1996) who combined a POS and Bayesian method, Bhardwaj

et al. (2008) who utilised manually selected topic based language models for OCR

of handwritten documents, and finally Mangu & Brill (1997), Golding & Roth

(1999) and later Schaback & Li (2007) who used a variety of context features,

such as co-occurrence and POS tags, in machine learning environments.

Despite the modest amount of research in the area of context sensitive spelling

correction, the problem is far from being solved; Reffle et al. (2009) state:

The detection and correction of false friends [real-word errors] is

a notoriously difficult problem of natural language processing and

despite several contributions [...], it is fair to say that the problem

is unsolved from a practical point of view.

Some of the better results in the research for detection and correction of

real-word errors are achieved on a small finite set of common confusion sets,

the performance of the techniques discussed on less common real-word errors

remains unknown. Furthermore, most studies are evaluated using artificially

inserted errors as test data, i.e. words are replaced with alternatives from their

respective confusion set. Whether this reflects naturally occurring real-word errors

remains debatable. Of course, creating an appropriately sized test set of naturally

occurring real-word errors is no small task, largely due to the inherent problem

of detecting such errors. Recently, Pedler & Mitton (2010) have attempted to

solve these two issues with the production of a large list of real-word confusion

sets (c. 6,000 sets) and a real-word error corpus containing 833 real-word errors

by dyslexic writers marked with XML tags in running text. They found that

even with this larger list of confusion sets, there was an upper limit of 70% of

the real-word errors in their corpus detectable with the confusion set approach.

The Microsoft Office 2007 package included a context sensitive spelling corrector
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(Fontenelle, 2006) which uses a trigram language model compressed with Golomb

Coding (Church et al., 2007). However, an “informal preliminary evaluation” by

Wilcox-O’Hearn et al. (2008: 616) found that the system forgoes recall in order to

maximise precision; their test found a precision of 100% but a recall of just 20%.

This trade-off between recall and precision is common in the task (as with many

other natural language processing tasks), high precision is usually preferred as

low precision could potentially insert more errors into the text than are corrected,

thus taking the text further away from a fully corrected version.

The use of contextual information does not need to be limited to dealing

with real-word errors, the information could also be used to rank candidate

replacements found for a non-word error; for instance, probabilities could be

calculated based upon the frequency of the word within the text, the probability of

word bigrams or trigrams constructed by using the replacement, or the most likely

POS or semantic tag based on surrounding tags. In early studies using the “noisy

channel” method of spelling correction (Church & Gale, 1991; Kernighan et al.,

1990), word frequencies are used as the “prior” for candidate scoring; more recent

research by Ringlstetter et al. (2007a) used domain specific bigram models in

much the same way. Alternative methodology by Schaback & Li (2007) exploited

support vector machine learning in a “multi-level feature-based framework” to

deal with both non-word and real-word errors. The contextual information used

included bigrams and collocations (including POS tags).

Spelling variation in EModE is likely to include similar “real-word errors”,

where a variant form matches a dictionary word but another modern word is

the more likely meaning. Such variants could only be normalised with context-

sensitive methods, as described above. However, the extent of such variants in

EModE corpora is not known and is difficult to establish due to the inherent

problem of detecting such variants. Nevertheless, a quantification of the problem

is required in order to better understand the characteristics of EModE spelling

variation to aid the development of a normalisation tool.

2.2.5 Summary

Dealing with spelling errors is a well established and much studied area of research;

an overview of the main considerations and solutions offered has been given
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in this section. Whilst many studies have focused upon a specific method or

application (or small subset of methods and applications), more recent studies

have combined a variety of methods to gain increased performance. They have

also introduced machine learning to allow the normalisation of different sources

of spelling errors. Schaback & Li (2007), for instance, developed a tool which

uses information at the phonetic, character, word, syntactic and semantic levels

to find and rank candidate spelling corrections. Their system can deal with non-

word and real-word errors and be trained via a support vector machine to deal with

different spelling varieties. They boast high recall and precision figures of 90% for

automatic correction17, higher recall figures are achieved when taking into account

an increased number of candidates, up to 97% for the five best. Other research

by Mitton (2008) concentrates on non-word errors and uses a combination of well

known techniques such as edit distance, letter replacement rules and phonetic

matching to find and rank candidate corrections. This combination of techniques

allows for quicker and coarser techniques (such as phonetic matching) to first

find a list of candidates and then the slower but more accurate methods (such

as edit distance) can be used to improve the ranking. Results are given for

different collections of spelling errors. On one collection of “hard to correct”

errors used for testing the Aspell spellchecker, Mitton’s methodology placed the

correct replacement in first position on 71.1% of occasions. This percentage again

increases when more candidates are taken into account, up to 94.4% for the top

ten candidates.

For word processing applications, having the correct word as the top candidate

is perhaps not of key importance as the user can always choose a correction

further down the list, if present; however, when automatic correction is desired,

the top candidate must be correct in most cases to achieve high recall, and more

importantly high precision. A system which erroneously ‘corrects’ words, whether

originally a spelling error or not, on a regular basis will be of little use when pre-

processing texts for applications such as IR or corpus linguistics and could actually

make the situation worse. Reynaert (2008a) discusses the importance of taking

into account recall and precision when evaluating spelling correction tools.

17It should be noted that Reynaert (2008a) disputes, to an extent, the figures presented,

particularly precision as words in real text which would be replaced erroneously have not been

taken into account.
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Despite the amount of research in the field, there remains many research

avenues to explore, both in terms of new methodology and improving established

techniques. Particular issues remain in the detection of real-word errors, detection

coverage and acquiring accurate corrections based on all relevant information in

an interactive environment. Applying the techniques discussed here to different

sources of spelling errors is also an area under increasing research, especially for

CMC data and also historical spelling variation – the focus of this thesis and the

more specific related work discussed in the next section.

2.3 Specific Research Dealing with Historical

Spelling Variation

The previous section described some of the methods used to deal with various

sources of spelling errors. The focus of this thesis, however, is historical

spelling variation and its normalisation. In this section various studies are

introduced which have attempted to address historical spelling variation for

different purposes. Various methods have been used, including some introduced in

the previous section. Studies dealing with specifically historical English spelling

variation are discussed first, followed by research dealing with historical spelling

variation in other languages.

2.3.1 Studies Concerning English

The VARiant Detector (VARD) (Rayson et al., 2005) was developed with the

goal of normalising Early Modern English spelling variation in order to improve

the robustness of corpus analysis tools, particularly semantic annotation with

the UCREL Semantic Analysis System (USAS) (Archer et al., 2003). Their first

step towards this goal was to compile a large “EModE regularisation list”, this

was built through manual inspection of words assigned the Z99 tag by USAS.

The Z99 tag is assigned when USAS fails to assign a semantic tag to a word,

this is likely to indicate a spelling variant due to USAS’s reliance on a modern

dictionary (see page 20). Various EModE corpora were used, including newspapers

from 1653 and 1654, the Nameless Shakespeare and Chadwyk-Healey’s Eighteenth

and Nineteenth Century Fiction collection. They also used the Oxford English
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Dictionary and “other historical sources” to verify their variants and also extend

their list. In total, they collated 45,805 variant to modern equivalent mappings.

The initial version of VARD, evaluated by Rayson et al. (2005), searched for the

variant forms from the regularisation list and replaced them in the text with the

modern equivalent, the original variant spelling being retained within an SGML

tag. VARD was compared to Microsoft Word and Aspell (see Section 2.2.1) to

evaluate its performance against commonly used spelling correction tools. Four

texts (two for the Aspell evaluation) dated 1666–1679 from different categories

of the Lampeter corpus were used in the evaluation. For the Microsoft Word

evaluation, out of 551 variants detected by either program, VARD normalised

71.1% correctly compared to Word’s 48.4%. In the Aspell evaluation 348 variants

were detected by either program, of these VARD correctly normalised 59.8%,

whilst Aspell normalised 35.4% correctly. It was also noted that both Word and

Aspell marked many words as variants incorrectly, for example foreign words and

proper nouns, however, VARD would only regularise words which were included

as variants in its regularisation list. Clearly, VARD was much more useful

than the two modern spell checkers which had been evaluated and the technique

employed deals with a substantial amount of spelling variation. However, only the

normalisation of a small selection of late 17th century texts has been evaluated,

earlier texts from the EModE period are likely to provide increased amounts of

spelling variation and texts from different sources are likely to introduce different

challenges. One potential problem, due to the extensive variety in spelling variant

forms (see Section 2.1.2), is that it is impossible to include all conceivable spelling

variants in a pre-defined list, and even including a large proportion of variants

would require an unreasonable amount of time and effort. Another problem is

that the use of a pre-defined list in the way described is a binary operation, if

a variant from the list is present in a text it will always be normalised with the

mapped modern equivalent. The user may require more control than this as

some mappings may be ambiguous or not appropriate for a given context (see

Section 2.2.4). It is highly unlikely that one list of EModE spelling variants

and their modern equivalents will be applicable to all EModE texts; for this

initial version of VARD to be accurate as a ‘generic’ EModE normalisation tool,

multiple lists will need to be managed for different EModE texts in terms of text

type, genre, date and other factors.
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Schneider (2001) investigated using a modern spell-checker to improve the

accuracy of a wordclass tagger, ENGCG (Voutilainen & Heikkilä, 1993), on

the ZEN corpus, a collection of late 17th and 18th century newspapers (Fries

& Schneider, 2000). Microsoft Word’s spell checker was briefly tested for

appropriateness; it was concluded that whilst it found correct suggestions for

some unrecognised items from ZEN it was “of limited use for a research project”.

Reasons given were that it always operates interactively – difficult when processing

a million-word text, no customisation of the spell checker was possible except for

adding to the dictionary of correct words, and finally the methods used by the

system are “intentionally opaque”. Schneider moved on to trying the open source

application Aspell. This software allows for any dictionary to be used, manual

editing of the phonetic rules used for spelling correction, and transparency on how

the system came to produce a replacement. By providing a manually produced

dictionary from the list of words in the ZEN corpus recognised by ENGCG and

some customisation of the phonetic rules, some success was achieved. However,

it was still apparent that Aspell quite often did not give the correct replacement

as its first choice (no quantification of this was given) – as required for automatic

processing of the text. It also dealt badly with hyphenated forms, and many

problems still occurred where the correct replacement was not included in the

dictionary. Schneider (2001: 209) concluded, “It is a long way from a decent

interactive spelling checker to automatic spelling normalization.” Although, it

was pointed out that even dealing with a small amount of the spelling variation

should considerably improve ENGCG’s recognition rate of the ZEN corpus. It

should also be noted that this study’s concentration was mainly 18th century

English, which contained less spelling variation than EModE texts from earlier

centuries.

Markus (2000) introduced a system for “normalizing” Middle English texts,

although Markus (2002) briefly shows its application with EModE texts. Middle

English has its own features and challenges which are out of the scope of this thesis,

however, this study is worthy of mention due to the unique presentation of the

normalised forms. A set of basic rules were created which could transform some

Middle English spelling into modern equivalents, these rules were then processed

over the text and a (partially) normalised version of the text created. Interestingly

though, each line of the original text is retained with the newly normalised form
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of each line produced in parallel below. By using these parallel lines one can

imagine that it is possible to instruct a corpus tagging program to process only

the normalised lines, whilst maintaining links to the original word forms. Much

greater precision should be achieved than would be possible by tagging the original

text. This early work by Markus (2000; 2002) only achieved a small portion of the

complete spelling normalisation automatically; he planned to improve the rules

used which should have gone some way to addressing this problem. However, it is

questionable how large a percentage of spelling variation can be normalised with

a rule-based approach alone.

Craig & Whipp (2010) describe their methodology for creating more reliable

statistics, particularly frequency lists, when analysing EModE plays and poems,

with an overall aim to aid authorship attribution, including also type token ratio,

collocations and concordances. To achieve their goal, they first normalised a fixed

list of 200 common function words, they found that generally there was only

a small range of variation in these words18, and that they could use “find and

replace” functions to achieve normalisation of these words within the text (the

original spelling was retained as an XML attribute). Examples included bee to

be and al waies to always. For the remainder of the words, mainly lexical, the

problem was much more complicated, they state that “[s]pelling variation with

the lexical words, by contrast, are multiple and unpredictable.” To deal with this,

they created lists of spelling variants which were linked to “an underlying common

lexical item” and when creating statistics counted instances of this common

“headword” instead of the spelling variant. Their list of spelling variants was

sourced by three methods: harvesting variant spellings from a raw text version

of the Oxford English Dictionary, aligning short passages from “old spelling”

Shakespeare with modernised versions and picking out variants where present, and

finally using a basic set of letter replacement rules (e.g. u → v and i → j ) on the

280,000 variant forms sourced by the previous two methods to find other possible

variant forms. In some cases a variant was associated to more than one headword;

for example, weeke could equate to week, weak or wick. Here, disambiguation using

the word’s context was employed. To achieve this, the prose fiction section of the

British National Corpus was used as a reference corpus and statistics calculated

18This gives support to recent studies which have found that more frequent words are less

likely to change over time (Lieberman et al., 2007; Pagel et al., 2007)
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for each of the headword’s collocates. The process worked by looking at which

words appeared either side of the variant form in question (various window sizes

were tested), a composite score was then calculated for each headword based on

how often each of these collocate words appeared in the same position next to

the headword in question within the BNC data. The headword with the highest

composite score was chosen as the most likely headword for the variant due to the

context of that headword best matching the context of the variant form. Their

evaluation found that the immediate context of the variant form (i.e. the very next

and previous words) was most useful in the disambiguation, although including

a larger window of context improved results fairly substantially until −4 and +4

words. They also found that just choosing the most frequent headword produced

similar recall figures, albeit lower precision. Their final results, combining all

of their methods optimally, produced a reduction in word types from 88,075

to 61,471. Before disambiguation, 5,383 words are classed as ambiguous, the

disambiguation only solves 350 of these (although a high precision threshold is

used) and thus showing the “complexity of the disambiguation task”.

Robertson & Willett (1992; 1993) describe their research into using modern

spelling-correction methods to supplement queries on historical text databases

(specifically from the 16th, 17th and 18th centuries). To this end, they developed

a phonetic algorithm with rules customised to historical texts, they also evaluated

other common spelling correction techniques applicability to the task, such as

n-gram analysis and Minimum Edit Distance algorithms. Their evaluation found

that their version of digram matching was the most appropriate method for their

task with a recall rate of 90.7% - 96.7% (minimum and maximum recall in top

20 returned words in 4 different corpora tests), outperforming phonetic matching

with a recall of 73.9% - 93.7%. The digram matching technique was slightly

outperformed in terms of recall by an edit distance algorithm (Needleman &

Wunsch, 1970): 92.7% - 98.4% and a similar Longest Common Sequence algorithm

(see Wagner & Fischer, 1974): 95.4% - 98.3%, however, both of these techniques

required a far greater amount of processing time and thus are too slow for

interactive processing. Their study only evaluated the methods in terms of recall,

the precision of each method does not seem to have been considered. Despite

this and even though the study did not deal specifically with normalising spelling,
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their study shows that modern spell-checking methods can be applied to spelling

variation in historical texts with some success.

2.3.2 Studies Concerning Other Languages

There have also been various studies which deal with spelling variation in historical

varieties of other languages. Whilst it should be taken into account that the

methods described in these studies are generally tailored to these other languages,

it is worth considering the possibility of adapting and applying methods used to

Early Modern English.

Spanish

In their quest to apply automatic POS tagging to a diachronic corpus of Spanish,

Sánchez-Marco et al. (2010) describe two methods for improving the accuracy of

the FreeLing19 POS tagger when used with their corpus. Their initial approach

was to (partially) normalise spelling variation before running the texts through

the POS tagger. This increased the tagging accuracy to 91.5%, up from 77.5%

on the original texts. Despite these promising results, the researchers point to

“shortcomings” of this approach in that the tagging accuracy is still lower than

the expected 95% and above, that the original variant forms are lost in their

normalisation procedure and that there are differences between old and modern

Spanish other than on the orthographic level which will also affect POS tagging

accuracy. Instead, they propose to modify the actual tagger rather than the

texts being processed, adapting the FreeLing tagger to the “diachronic varieties

of Spanish”. It will be interesting to learn from their future work how this

methodology performs compared to their initial approach. One reason to take

preference in modifying the texts rather than the tagger is that the normalised

texts will also be of use when increasing the accuracy of other corpus linguistic

methods, as discussed in Section 2.1.3.

German

Bennett et al. (2009; 2010) describe their ongoing work annotating a corpus of

Early Modern German. Due to the inaccuracies they identify for automatic

19http://www.lsi.upc.edu/~nlp/freeling/
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annotation when dealing with texts containing high levels of spelling variation

(as is the case in Early Modern German), they plan to create a “historical text

processing pipeline” which will include the normalisation of historical German

spelling variation to “improve the output of the POS tagger and lemmatiser and

will thus reduce manual labour”. The pipeline they advocate is similar to an aim

of the research presented in this thesis, i.e. the development of a pre-processor for

corpus linguistics on EModE texts which deals with spelling variation and thus

improves the accuracy of corpus linguistic tools.

Pilz & Luther (2009); Pilz et al. (2006; 2008; 2009) present their work on pro-

ducing a “fuzzy search engine” to increase recall when searching non-standardised

pre-1901 German texts. They use phonetic matching, rule-based approaches and

distance measure via an enhanced Levenshtein Distance algorithm. Interestingly,

they also looked at the meta-data of the text, including the date the text

was written and the geographical origin of the author, in order to decide how

appropriate certain rules and methods are to the text. This research has a different

focus to the research detailed in this thesis (other than the obvious language

differences); the concentration in historical information retrieval is to supplement

the query with possible spelling variants of the modern words found in the query

string, that is, given a modern word, generate all possible spelling variants – recall

is the priority.

Like Pilz et al., Gotscharek et al. (2009) aim to improve Information Retrieval

(IR) when searching historical German texts from the 16th through to the

19th Century. They evaluate the performance of Matching Procedures, which

is essentially using letter replacement rules to find fuzzy matches, and note a

significant drop in performance for texts from earlier centuries. They advocate

the need for Special Lexica, which are a series of mappings between variant forms

and modern equivalents that can be used to input extra search terms which are

equivalent to the modern word form in the search query. They present a tool which

can be used to build these letter replacement rules and the variant form mappings

“in an interleaved way based on corpus analysis”. The web-based tool introduced

allows users to collaboratively decide on the modern form equivalent for variant

forms which are presented from a document or corpus as being potential variants

due to them not appearing in a modern lexicon. They go on to state that the
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addition of mappings from their tool would be required to improve performance

in the earlier texts where the letter replacement rules are less successful.

French

O’Rourke et al. (1997) reported on a study which evaluated modern spelling-

correction methods on 13th century Old French spelling variation. This study

followed on from similar research on Early Modern English texts by Robertson

& Willett (1992; 1993) (see Section 2.3.1 for further details), evaluating the

effectiveness of digrams, trigrams and Longest Common Sequence in terms of

recall in historical database searching. They achieved recall rates of approximately

70%; this being some 15-25% lower than for English, attributed in part to the

greater age of the French text. As with the English data (Robertson & Willett,

1992; 1993), the Longest Common Sequence (LCS) method achieved the highest

recall score, although was much more demanding of computational time. They

thus concluded that digram matching was the most appropriate method, with

it outperforming trigram matching in terms of recall and outperforming LCS in

terms of efficiency. As recall is the most important factor when supplementing

search queries, precision does not seem to have been taken into account.

Dutch

As in other studies described in this section, Koolen et al. (2006) aimed to

improve historical document retrieval, this time introducing what they state is

a cross-language approach, although their case study only shows the results with

17th century Dutch documents. However, unlike other studies, the researchers

performed “document translation” instead of “query translation”. That is,

they automatically normalised the historic texts being searched, rather than

supplementing the modern search queries with spelling variant equivalents. The

(partial) automatic normalisation was achieved through letter replacement rules,

the rules were derived by finding the character differences between historical

words and modern words where the historical and modern words were considered

equivalent. The equivalent historical and modern words were found by three

methods: phonetic matching, sequence (of vowels and consonants) matching and

n-gram matching. It is likely that many of these matches were not actually
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equivalents, however, the researchers counted only frequently occurring letter

replacement rules in the hope that these would be sufficient for normalising

historical variants into their correct modern forms. Evaluating the derived letter

replacement rules on a test-set of 400 historical and modern equivalent word pairs,

their best result was achieved by using all derived rules; 337 of the 400 historical

words were re-written into some form by the rules. However, only 224 of these

were perfectly re-written, i.e. into the correct modern form (see Koolen et al.,

2006: Table 1, pp. 413). Their evaluation of the normalisation’s effectiveness

on historical document retrieval showed some improvement through their partial

normalisation, although it would seem further work is necessary to achieve results

comparable to modern document retrieval.

Brazilian Portuguese

Giusti et al. (2007) describe their work on historical Brazilian Portuguese. In

their efforts to produce “The Historical Dictionary of Brazilian Portuguese” from

a corpus of Brazilian Portuguese texts from the 16th century through to the

early 19th century, they used an approach heavily based upon transformation

rules to “cluster distinct spelling variations around a common form”. The form

around which variants are clustered “is not always the orthographic (or modern)

form” – the aim here was not to normalise the spelling of variants but to detect

potential spelling variants and group equivalent variants together. This method of

detecting spelling variants is interesting as it does not require a modern dictionary,

the transformation rules find relationships between words and “it is expected

that this relation shows spelling variation for any given word”. The method

was successful for the purpose of the task with high precision being achieved,

however, recall was relatively low, although the study theorises that recall could

be improved through the development of further transformation rules with little

effect on precision. One may hypothesise that a similar technique could be used to

cluster proper nouns in a corpus of EModE (or other historical language varieties)

where variation in the spelling of names was frequent; it has been shown that

Shakespeare was spelt in a multitude of forms, even by Shakespeare himself20.

This study focuses on historical Brazilian Portuguese, so whether the techniques

20see http://shakespeareauthorship.com/name1.html
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could be applied to EModE would require further investigation. It is worth noting

that the production of a dictionary of EModE spelling variants, similar to that

produced for historical Brazilian Portuguese, would be extremely useful in the

correction of spelling variants; the data could be used to create an improved

list of variant to modern form mappings, in turn this could be used as a “gold

standard” for the evaluation of spelling correction techniques and also be used

to find new letter replacement rules and statistics. The inclusion of historical

spelling variants in the Oxford English Dictionary has been explored; however,

this is largely a manual process and takes considerable time (see Simpson et al.,

2004).

2.4 Chapter Summary

This chapter has given an overview of the issues, potential solutions and related

work relevant to the research detailed in this thesis. We began with an

introduction to Early Modern English, with particular focus on its inherent

spelling variation and the problems this causes for historical corpus linguistics.

The characteristics of EModE spelling variation dictate that any effort to

normalise EModE texts would not equate to a translation like exercise due to there

being no fixed spelling forms and individual spellings potentially being unique to

that author, scribe or piece of text. The actual size of the spelling variation

problem is difficult to assess; many researchers have acknowledged that spelling

variation is present in large quantities, particularly in earlier texts from the

EModE period, but there is very little quantitative evidence of the ratio of spelling

variants to modern forms and hence how much normalisation is required. This

needs to be addressed with a quantitative analysis of the levels of spelling variation

across different EModE corpora. A number of corpus linguistic techniques have

been discussed, with particular focus on the possible effect that spelling variation

will have on their accuracy. Whilst the effect on basic techniques, such as searching

and frequency lists, are obvious, the effect on more complicated techniques may be

more subtle and difficult to predict. The size of the impact that spelling variation

has on these methods is unknown, with the exception of semantic annotation via

a study by Archer et al. (2003). Therefore, analyses are required to establish the

effect spelling variation has on more complicated corpus linguistic tools.
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The second main strand of the background literature focused upon techniques

used in research and software tools to deal with spelling errors and variants from

a wide range of sources. Whether these methods can be applied to EModE

spelling variation is one of the central research questions of this thesis (see RQ 2 -

Section 1.2). Whilst the specific related work (presented in Section 2.3) has shown

some research using these techniques, none have established a robust enough

solution to deal with the specific problem of EModE spelling variation and its

effect on historical corpus linguistics. Throughout the literature presented in

Section 2.2, the need for the analysis of various EModE spelling characteristics

has been highlighted. These include features such as: the position of character

level variation, particularly for the initial letter – it has been found that for modern

spelling errors initial letter mistakes are relatively rare; whether EModE spelling

variants contain patterns of specific letter replacements, such as those found for

OCR and typing errors; the difference in terms of edits between spelling variants

and their modern equivalents – it has been found that the majority of modern

spelling errors are only one edit away from the intended form; and finally, how

likely an EModE spelling variant is to match an ‘unintended’ dictionary term

– as with real-word errors in modern spellchecking, which can only be detected

through the analysis of contextual information. These spelling characteristics shall

be those investigated in order to address RQ 2 (Section 1.2).

Chapter 3 will build upon the background presented in this chapter by detailing

efforts to provide the highlighted quantitative studies and analyses required to

both reinforce the need for a solution to the problems caused by EModE spelling

variation and to establish the specific characteristics of EModE spelling variation

which will influence the application of modern spellchecking techniques.
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Chapter 3

Analysis of Early Modern English

Spelling Variation

The previous chapter has highlighted a number of areas which require additional

research in order to better understand the problems caused by Early Modern

English (EModE) spelling variation and to establish its precise characteristics.

These will affect the application of modern spellchecking techniques to EModE

spelling normalisation. The aim of this chapter is to bridge that gap by presenting

the results of various quantitative studies of EModE spelling variation and its

properties. The extent of the spelling variation problem shall be dealt with

first. Section 3.1 will describe the process of quantifying the qualitative view of

many scholars that a large amount of spelling variation existed in the EModE

period and, furthermore, show that this level of spelling variation reduced

progressively throughout the period. The problems this spelling variation has

on corpus linguistic methodology shall be dealt with in Section 3.2, with two

advanced automated corpus linguistic techniques evaluated with EModE texts

before and after normalisation. The work presented in Sections 3.1 and 3.2

will address RQ 1 (see Section 1.2). Section 3.3 will begin to address RQ 2

with various EModE spelling variation characteristics, as specified in Section 2.4,

investigated by comparing EModE spelling variant analysis with previous research

and complementary analysis of spelling errors from modern sources. The potential

implication of these characteristics on applying modern spellchecking techniques

(as described in Section 2.2) to EModE spelling variation will also be discussed.

The chapter will end with Section 3.4, which will summarise the findings presented
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and link these to the development of a solution to the problem of EModE spelling

variation, as will be presented in Chapter 4.

3.1 Levels of Spelling Variation in Early Modern

English

In order to address the first part of RQ 1 (Section 1.2), here we discover,

quantitatively, the extent of spelling variation in the EModE period. This is

important because many researchers comment on the large amount of spelling

variation within the period without explicitly quantifying it (see, e.g. Görlach,

1991; Vallins & Scragg, 1965). One exception being Schneider (2001), who, in his

attempts to develop a normalised version of the Zurich English Newspaper (ZEN)

Corpus (1670-1799), produced an overview of the spelling variations contained

within. Schneider found that 3.99% of the tokens and 38.02% of the types1 within

the ZEN corpus were unrecognised by the ENGCG tagger2, and hence could be

considered spelling variants. The corpus was also split into four time periods,

1670–1709, 1710–1739, 1740–1769 and 1770–1799. The percentage of unrecognised

tokens and types reduced in each subsequent time period, from 4.66% tokens and

36.57% types in the 1670–1709 sub-corpus to 2.85% tokens and 26.06% types in

the 1770–1799 sub-corpus.

The EModE period could be considered to be from as early as 1417 and to as

late as 1776 (see Section 2.1.1 for a full discussion on the dating of the period),

hence the ZEN corpus studied by Schneider only covers a small portion of the

full EModE period. A more thorough quantitative study of the spelling variation

in various corpora covering the whole EModE period is required. To this end,

six different corpora were analysed: The ARCHER corpus, Early English Books

Online, the Innsbruck Letter corpus, the Lampeter corpus, the EMEMT corpus,

and a collection of Shakespeare’s works. The ARCHER corpus (A Representative

Corpus of Historical English Registers)3 is a multi-purpose diachronic corpus

covering texts from 1650 to the present day (only texts dated before 1800 were

1Types are distinct instances of a word, i.e. each word is counted once despite its frequency.

Whereas the token count includes all instances of each word.
2See Voutilainen & Heikkilä (1993) for details.
3We used the ARCHER-3.x version of the corpus.
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used in this study). It was built to facilitate the analysis of historical change

in written and speech-based registers. Early English Books Online (EEBO)4 is a

collection of digital facsimiles of virtually every English printed work between 1473

and 1700; nearly 125,000 works. As digital images of texts are of no use in this

study, advantage has been taken of access to 12,268 of the 25,000 works that have

being transcribed into ASCII SGML texts as part of the EEBO Text Creation

Partnership5. The Innsbruck Letter corpus, part of the Innsbruck Computer-

Archive of Machine-Readable English Texts (ICAMET) corpus (Markus, 1999) is

a collection of 469 complete letters dated between 1386 and 1688, a total of 182,000

words. The Lampeter corpus of Early Modern English Tracts (Schmied, 1994) is a

collection of tracts and pamphlets published between 1640 and 1740. Each decade

has two texts from each of the following six domains: religion, politics, economy

and trade, science, law, and miscellaneous; resulting in a corpus of 120 texts and c.

1.1 millions words. The Early Modern English Medical Texts (EMEMT) corpus

(Taavitsainen & Pahta, 1997; 2010) is a collection of specifically medical texts

built to study the evolution of medical writing. The portion of the corpus used in

this particular study covers 1525 to 1700. The collection of Shakespeare’s works

is a digitally-transcribed version of the first folio, which was printed in 1623. This

can be sourced from the Oxford Text Archive6. Shakespeare’s works were written

between c. 1590 and c. 16137. A summary of the corpora used in the analysis

is shown in Table 3.1. The total coverage of the corpora used in the quantitative

analysis dates from 1410 to 1799; thus representing the entire EModE period.

The corpora are all very different, covering various genres and text types. It is

important to note that the corpora are never combined in the analysis and are

always treated as separate entities.

4http://eebo.chadwyck.com/
5http://www.lib.umich.edu/tcp/eebo/
6http://ota.ahds.ac.uk/
7It should be noted that the dates given for Shakespeare’s plays are estimates as there is

considerable debate with respect to precise dating.
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Corpus Genre/Type Yearsa Texts Tokens

ARCHER General/Mixed 1660–1799 364 632,639

EEBO General/Mixed 1470–1709 12,265 535,910,150

EMEMT Medical texts 1540–1699 51 491,384

Innsbruck Letters 1410–1689 436 170,538

Lampeter Various tracts and

pamphlets

1640–1739 120 1,124,131

Shakespeare

First Folio

Plays 1590–1613 36 821,123

a The full decade range was not used from all corpora due to texts dating too

far from the EModE period or a lack of texts and/or words from certain

decades.

Table 3.1: Summary of corpora used in study of EModE spelling variation levels.

The first stage of the investigation involved sampling each corpus at regular

intervals in order to gain a fair representation of the corpus over time. A sample

period of ten years was chosen, hence the texts were split into their relevant

decade (e.g. 1410–1419). This level of sampling did mean a small number of

decades were omitted in certain corpora due to a lack of texts and/or words. The

smaller EMEMT corpus could not be sampled in this way due to many decades

containing only one or two files, or a small number of words; therefore the decision

was made to include everything from the EMEMT corpus with a minimum of two

files per decade. All results were normalised to a percentage in order to compare

corpora with different sample sizes. The sampling sizes for each corpus are shown

in Table 3.2.

For the more general corpora (ARCHER, EEBO and Lampeter), a minimum

of ten texts per decade were required to ensure that one text did not account

for more than 10% of a decade’s sample. Elsewhere, a smaller number of texts

were sufficient due to the fact that the specialised form of the corpora resulted in

less variety of text. Samples were chosen from randomly selected texts from each

decade, with the sample from each text beginning at a randomly selected index

(word count) within the text.
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Corpus Decade

Sample Size

Minimum

Texts

Decades not included

due to a lack of texts

and/or words

ARCHER 4,000 10 1740

EEBO 80,000 10

EMEMT Total possible 2 1620, 1640

Innsbruck 1,200 4 1420, 1430, 1490, 1590

Lampeter 40,000 10

Shakespeare

First Folio

60,000 4

Table 3.2: Corpus sample sizes for study of EModE spelling variant levels.

In order to assess the level of spelling variation in each sample, variants needed

to be detected and counted. To achieve this, each word in each sample was checked

against a dictionary of modern words, if a word was not found in the dictionary

then it was counted as a variant. The dictionary used was a list of modern

words derived from the Spell Checking Oriented Word List (SCOWL)8 and a list

containing words with a frequency of at least 1 per million and a range of at least

50 (out of 100 sectors of the corpus) in the British National Corpus (BNC) (Leech

et al., 2001). This analysis provided figures per decade sample in each corpus

for the percentage of both types and tokens which could be considered spelling

variants. These percentages are comparable to those found by Schneider (2001),

as described on page 50.The variant type percentages are plotted in Figure 3.1

and the variant token percentages are plotted in Figure 3.2. An average variant

percentage over all the available corpora for each decade was also calculated; this

is shown for both types and tokens in Figure 3.3. The general trend line is shown

with a dotted line in all four graphs.

8http://wordlist.sourceforge.net/scowl-readme
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Figure 3.1: Graph showing variant types % in all corpora over time.
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Figure 3.2: Graph showing variant tokens % in all corpora over time.
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Figure 3.3: Average variant percentage over corpora available for each decade.

Figures 3.1–3.3 all show a definite downwards trend in respect of the amount

of spelling variation occurring throughout the EModE period. This not only

corroborates Schneider (2001)’s quantitative analysis of the ZEN Corpus for the

latter part of the EModE period (1670–1799), but also quantifies the trend over

the entire EModE period, verifying many scholars’ claims that the language was

under significant change throughout the period (see, e.g., Görlach (1991: 8–9),

Lass (1999: 56) and Rissanen (1999: 187)). Another point to note is that the rate

of reduction in variation slows from around 1700; this is particularly noticeable

in the graphs representing tokens (Figures 3.2 and 3.3b). This corroborates

Görlach (1991: 11)’s claim that by 1700 the language had achieved “considerable

homogeneity”, with regional (written) dialect differences no longer present and

“the period of co-existing variants, so typical of all levels of EModE, being over”.

There is a noticeable difference between the levels of variant types and variant

tokens in Figures 3.1–3.3. The differences are likely to be related to the underlying

properties of language and the frequency of words, i.e. Zipf’s Law (Zipf, 1932),

but also due to the properties of the EModE spelling variation (as described in

Section 2.1.2). In particular, words will be found spelt in a variety of forms (as

discussed in terms of the effect on word frequency lists in Section 2.1.3, page 18).

In the analysis presented, each spelling of a word will be counted as a separate
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type, therefore the proportion of spelling variant types will increase at a greater

rate than the proportion of spelling variant tokens when more spelling variation is

present, i.e. in earlier periods of EModE. Furthermore, highly frequent words are

less likely to have variation in their spelling, as found to be the case by Lieberman

et al. (2007) and Pagel et al. (2007), and specifically for function words by Craig

& Whipp (2010: 40). The result of this will be that higher frequency words are

less likely to be counted as spelling variants, therefore the proportion of spelling

variant tokens overall will be lower than the proportion of spelling variant types

– by definition, frequency will not effect the variant type percentage.

It should be noted that the variant percentages shown in this section do not

represent absolutely precise variant rates; they are all approximate values due to

the automatic method used to detect variants. First, some variants may appear in

the dictionary as other words, these are known as real-word errors in spellchecking

exercises (see Section 2.2.4), this particular problem shall be evaluated fully in

Section 3.3.1. Secondly, words may not be in the dictionary, and hence considered

variants, but are perfectly valid forms. These may include proper nouns, encoded

words (e.g. with Unicode entity values), words in languages other than English

(e.g. Latin, French or Italian) and words which are simply not in the modern word

list but are perfectly valid (e.g. archaic and obsolete words such as betwixt and

howbeit). All of the problems listed occur in some of the corpora used in this study.

Whilst a large amount of time was spent ‘cleaning’ the texts, it is impossible to

remove all imperfections; EEBO, for example, contains many Unicode entities for

which there is no obvious ASCII replacement, and any word containing one (or

more) of these values will be counted as a variant by the detection method used.

The Lampeter, ARCHER, Innsbruck and EEBO corpora are known to contain

sections of Latin and, in some cases, French and Italian passages; some of these

passages will no doubt have been passed into the corpora samples. Aside from

the odd exception all words in these foreign passages will be counted as variants.

Proper nouns invariably cause problems when detecting spelling variants,

whether in historical texts or in modern spellchecking. Due to the potentially

large number of proper nouns which could be found within any text, it is not

sensible to try and list them all (although adding more frequent proper nouns

is a sensible first step). A common-sense approach to the problem would be to

exploit the rule that proper nouns always begin with a capital letter in Modern
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English; this, however, does not work in all cases as a capital letter is also used to

signify the start of a sentence. The problem is even worse in EModE, particularly

in later EModE texts; as previously stated (p. 25), Osselton (1998) describes how

between 1550 and 1750 there was a distinct climb in the use of a capital letter

to begin nouns where one would not be present in Modern English. The effect of

this proper noun issue is evaluated in Figure 3.4 where the EEBO corpus samples

are analysed as above and also by counting all words beginning with a capital as

non-variants. As can be seen, variant counts are consistently lower if words with

initial capitals are not considered as variants. However, the general downward

trend remains the same with the lines following almost parallel paths. Marking

all initial capital words as non-variants will no doubt lead to an increase in real-

word errors due to ‘abnormal’ capitalisation of words which are also variants,

sentence initial variants and inconsistently spelt proper nouns.
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Figure 3.4: Comparison of variant counts in EEBO corpus samples with

(=original) and without initial capital words.

It is clear that the levels of variation displayed in Figures 3.1–3.4 are

approximations. However, it is reasonable to assume that the level of ‘noise’

leading to inaccuracies is relatively uniform throughout corpus samples and thus

the general trend of spelling variation reducing over time throughout the Early
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Modern English period is maintained. The variant detection method is discussed

in more detail in Section 2.2.2 and shall be fully evaluated in Section 5.1.

3.2 Effect on Corpus Linguistics

Having established the quantity of spelling variation in various EModE corpora,

we now move to addressing the remainder of RQ 1 (Section 1.2): how large

an effect does this spelling variation have on corpus linguistic methodology?

Establishing this effect is key to justifying the research described in this thesis; if it

is shown that spelling variation creates a significant barrier to robust and accurate

historical corpus linguistics with EModE corpora, then a solution is required to

deal with the spelling variation. In Section 2.1.3, various EModE corpora were

introduced and the potential issues spelling variation is likely to have on a number

of corpus linguistics techniques when used with these corpora were discussed. In

this section, we evaluate the precise effect of EModE spelling variation on two

automated advanced corpus linguistic techniques, examining the accuracy of both

automated methods with and without the spelling variation present.

3.2.1 Part-of-Speech Annotation9

The first corpus linguistic method evaluated was Part-of-Speech (POS) annotation

(or tagging). POS annotation involves assigning each word a grammatical tag

(verb, noun, adjective, etc), these can then be used to perform further analysis,

such as disambiguating the grammatical meaning of a word (e.g. “ship” could

be used as a noun or a verb). The importance of grammatical tags in historical

corpora has been highlighted as early as Kytö & Rissanen (1993: 1), who, when

discussing the Helsinki corpus, states “the usefulness of our corpus is diminished

by the absence of grammatical tagging. This means all searches must be based

on words, or their parts or combinations.”

Automatic POS tagging can be achieved with various tools, the CLAWS

tagger (Garside & Smith, 1997) developed at Lancaster University has been

used for this particular evaluation. Since CLAWS uses a hybrid rule-based and

9The research presented in this section was completed in collaboration with Paul Rayson,

Dawn Archer, Jonathan Culpeper and Nicholas Smith (see Rayson et al., 2007).

58



3.2 Effect on Corpus Linguistics

probabilistic approach, it is anticipated that similar results would be observed

with other POS taggers. For modern written text (a BNC sample), CLAWS

achieves 96–97% accuracy (Leech & Smith, 2000) in terms of correct annotation.

Here, we wish to observe the accuracy CLAWS achieves with EModE texts, and

how much of an effect spelling variation has on this accuracy. Archer et al.

(2003) have previously evaluated the performance of another form of automatic

tagging, semantic annotation, on two short, relatively contemporary, EModE

texts. Accuracy rates were high, despite the nature of the texts, at 97.1% for

one text and 96% for the other. Although, after partially dealing with spelling

variation, accuracy increased to 98.8% and 98.6% respectively. Here, earlier and

possibly more challenging texts will be used to establish the accuracy of automated

POS tagging with EModE texts.

For this experiment two sources of EModE text were used: Shakespearean

texts and texts from the Lampeter Corpus. Five Shakespeare plays were sourced

from the First Folio (printed in 1623) provided by the Oxford Text Archive10.

The plays chosen were limited to one genre, comedies, as that was the only

genre which covered his entire writing career. The plays selected were Taming

of the Shrew, Love’s Labour’s Lost, Merry Wives of Windsor, Twelfth Night and

Tempest. These plays evenly spanned his writing career, although the precise

dating of plays is a subject of much debate. A further three texts were taken from

the Lampeter Corpus (Schmied, 1994) to provide a contrast to the Shakespeare

analysis. Three domains are represented: economy and trade (eca1641 ), law

(lawa1643 ) and science (scia1644 ). Due to the size of the texts and to provide

equal balance, a 1,000-word sample was taken from each. This was selected from

a random line position and a minimum of 1,000 running words selected including

up until the end of the sentence or speaker change. Microsoft Word 2003 was used

to perform this task. 5,011 words of Shakespeare text and 3,025 words from the

Lampeter corpus remained for analysis.

In order to perform the evaluation, for each of the eight texts four versions

were produced:

10http://ota.ahds.ac.uk/
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1. The raw texts were automatically POS tagged with CLAWS in its standard

setup.

2. The CLAWS-tagged texts were manually post-edited to correct any tagging

errors in order to produce a gold standard for comparison.

3. The spelling variation in the raw texts were automatically normalised using

an early version of the VARD 2 software (see Section 4.3)11 and then each

(partially) normalised text was POS-tagged with CLAWS.

4. For each text, the spelling variation was manually (and fully) normalised

and then POS-tagged with CLAWS.

The POS tags attached to each word in the gold standard (version 2)

were compared to the other three versions in order to calculate the number of

differences, and hence errors as the gold standard represents 100% accuracy12.

Accuracy was calculated as the percentage of tags which matched the gold

standard tags. The results for the three versions compared to the gold standard

are shown in Table 3.3.

POS tagging accuracy

Shakespeare Lampeter

Automatically POS tagged only 81.94% 88.46%

Variant spellings automatically normalised 84.81% 89.39%

Variant spellings manually normalised 88.88% 91.24%

Table 3.3: Comparison of CLAWS POS tagging accuracy.

The results show a significant drop in tagging accuracy compared to results

achieved with modern written texts (96–97%), this highlights the increased

difficulty when dealing with historical texts. When spelling is fully normalised,

a 6.94% increase in tagging accuracy is observed for the Shakespeare texts and a

2.78% increase observed for the Lampeter texts. This indicates that spelling

11An early version, rather than the final version, of VARD 2 is sufficient here as a formative

evaluation of the effect automatic normalisation has on POS tagging accuracy.
12Clearly, the manual post-editing may still contain errors due to human error, but this was

considered likely to be negligible for the purpose of the evaluation.
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variation is a significant barrier to POS tagging accuracy. However, despite

this increase, the accuracy rates are still some way from those achieved with

modern texts. This is perhaps understandable due to the added difference in

style and genre from the modern written texts used to evaluate CLAWS; a more

accurate comparison would be against CLAWS’ accuracy in tagging modern plays

– at least for Shakespeare. Furthermore, various researchers have indicated the

added problem of grammatical change over time (Britto et al., 1999; Kytö &

Voutilainen, 1995), to which CLAWS will not be sensitive to. In many cases,

full manual normalisation will not be possible with large corpora due to its time-

consuming nature. Hence, the manually normalised results discussed here indicate

an upper boundary to POS tagging accuracy without considering additional

factors to spelling variation. The automatically normalised results show that some

improvement can be gained without manual intervention, but clearly improved

performance in automatic normalisation will lead to increased accuracy in the

POS tagging. How close automatic normalisation can get to manual normalisation

shall be discussed in Section 5.2.

3.2.2 Key Word Analysis

The second corpus linguistic method evaluated was key word analysis. The

process of key word analysis involves looking for words which are significantly more

frequent in one text (or corpus) compared to another text (or corpus). In corpus

linguistics, the standard method is to use one of a number of statistical processes

to compare frequencies and find words which are ‘overused’ or ‘underused’ in a

text compared to a reference corpus, these words are then marked as key and hence

potentially interesting and worthy of further study. One of the earliest large-scale

studies using key word analysis was that of Hofland & Johansson (1982), who

compared British and American English using the Brown family of corpora. Later

studies have looked at the difference between native and non-native language in

learner corpora (Granger & Rayson, 1998) and language change over (modern)

time (Baker, 2009).

Surprisingly, there are relatively few studies of historical data utilising key

word analysis; notable exceptions include studies of classic English literature

(Archer et al., 2009; Culpeper, 2002; Mahlberg, 2007), specific genres, such as
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letters (Markus, 2002) and courtroom language (Archer, 2006) and specific topics

such as swearing (McEnery, 2006). Interestingly, in his key words study, Culpeper

(2002) chose to use a modern edition of Shakespeare’s Romeo and Juliet (Craig,

1914) rather than use a text which would be closer to the original orthography,

such as from the First Folio. This decision was made to avoid as much spelling

variation as possible, not least because “spelling variation is perhaps the greatest

obstacle in the statistical manipulation of historical texts” (Culpeper, 2002: 14).

Many scholars (e.g. Archer et al., 2009; Markus, 2002) have noted that the spelling

variation found in historical texts has a detrimental effect on key word analysis

(and other corpus linguistic techniques); here, the degree of this effect will be

quantified.

In order to discover any effect caused by spelling variation, key word

lists needed to be formulated before and after spelling variation is removed;

thus, any change in the key word list rankings indicates an effect of spelling

variation. As discussed throughout this thesis, producing versions of texts

or corpora with spelling variation removed is no simple task; except for very

small samples, manually normalising texts is an exceedingly time-consuming

process. Fortunately, for this study a version of the Innsbruck Letters Corpus

(the original version was also used in Section 3.1) has been made available

which has been normalised and, importantly, manually checked. The process

of initial normalisation is explained by Markus (2000) for Middle English (see

also Section 2.3.1). The normalised corpus contains parallel line pairs; the first

line in each pair contains the original text, the second line contains a normalised

version of the first line with any spelling variants replaced with modern English

equivalents, for example:

$I schepyng at thys day, but be the grace of God I am avysyd

$N shipping at this day, but by the grace of God I am advised

The corpus was split into two parts, one containing just the original text lines

($I), the other containing the normalised equivalent lines ($N). This resulted in

two separate corpora on which a key word analysis could be completed, and the

differences between the lists analysed. As both corpora were equivalent except for

the spelling variation, any difference between key word lists can be attributed to

the spelling variation alone.
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For this study, log-likelihood (Dunning, 1993) was used to identify key words,

this is calculated as follows. For each corpus (i)13, the total number of words

(tokens) is counted (Ni). Then, for a given word, the raw frequency in each corpus

is observed (Oi). Expected values (Ei) are also required, which are calculated as

shown in Equation 3.1.

Ei =

Ni

∑
i

Oi∑
i

Ni

(3.1)

The log-likelihood (G2) can then be calculated as shown in Equation 3.2.

G2 = 2
∑
i

Oi ln

(
Oi

Ei

)
(3.2)

The higher the value of G2, the more significant the difference between the

observed frequencies (or the more key); at 3.84 the difference is significant at

p < 0.05, at 6.63 the difference is significant at p < 0.01. Overuse or underuse of

a key word can be determined by comparing the relative frequency of the word

in each corpus (i.e. a relative frequency greater than that found in the reference

corpus indicates overuse).

The BNC Written Sampler was used as a reference corpus14, with both the

original and normalised versions of the Innsbruck corpus being compared against

the reference corpus in turn. WMatrix (Rayson, 2009) was used to produce the key

word lists. Any word with a log-likelihood greater than or equal to 6.63 (p < 0.01)

was considered key, both overused and underused words were considered. Any

word with an observed frequency less than 5 in either the Innsbruck Letter Corpus

(before or after normalisation) or the BNC Written Sampler was removed from

the key word list as it was important that both lists contained the same set

of words so that the comparison showed the effect on key word list ranks, not

13In the study described, one corpus was compared against a single reference corpus in turn,

hence i will take the values 1 or 2.
14Although clearly not the best match as a comparable corpus since it is from a different

time period and design to the historical corpora, this effect will be minimised since the same

reference corpus is being used for both before and after normalisation corpus comparisons. For

more details about the BNC Sampler, see http://www.natcorp.ox.ac.uk/corpus/index.xml.

ID=products#sampler.
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the number of extra variants appearing in the original list. After this filtering

process, two key word lists remained; one representing the original corpus and the

other representing the normalised corpus, each containing the same list of words

along with their log-likelihood value representing each word’s keyness in its parent

(original or normalised) corpus. The hypothesis was that whilst there will be some

similarity between the key word list rankings from the original corpus and the

normalised corpus due to them originating from the same texts, a large deviation

in the rankings was expected; therefore showing a degradation in accuracy due to

spelling variation. The aim here was to prove this hypothesis and quantify the

amount of deviation.

In order to calculate the difference between the two key word lists, rank

correlation was used. Rank correlation measures the correspondence between

two different rankings on the same set of items and returns a value between -1

and 1; -1 is returned if one ranking is the exact reverse of the other, 0 is returned

if the rankings are completely independent and 1 is returned if the two rankings

are exactly the same. For this study, two rank correlation statistics were used:

Spearman’s Rank Correlation Coefficient (Spearman, 1904) and Kendall’s Tau

Rank Correlation Coefficient (Kendall, 1938).

The first stage was to produce a set of log-likelihood observation pairs, these

were created by performing a look-up of the log-likelihood values from both lists

for each word. Both rank correlation statistics convert the log-likelihood values

into ranks; that is every word will have a rank associated to it representing where

the word appears in each list sorted descending by log-likelihood. For Spearman’s

Rank Correlation Coefficient the differences (di) between each word’s ranks are

calculated, then the coefficient (ρ) is given as shown in Equation 3.3, where n is

the number of observations.

ρ = 1−
6

n∑
i=1

d2
i

n(n2 − 1)
(3.3)

Kendall’s Tau Rank Correlation Coefficient works slightly differently in that

it looks at the difference between each possible pairing in one list, if the sign of

this difference (whether it is greater than, equal to, or less than 0) is equal to the

sign of the difference between the same pair in the other list a concordant pair is
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counted (nc), otherwise a discordant pair is counted (nd). The coefficient (τ) is

then calculated as shown in Equation 3.4, with n again representing the number

of observations.

τ =
nc − nd

1
2
n(n− 1)

(3.4)

Both rank correlation statistics were calculated on the paired log-likelihoods

as described above using the R statistics package (Ihaka & Gentleman, 1996). The

results are shown in Table 3.4. Both coefficients show that whilst there is some

correlation between the two key word lists, there is a definite difference between

the rankings of the normalised version’s key word list and the original version’s

key word list. We can therefore confirm our original hypothesis (i.e. a deviation

in the rankings of some key words) and conclude that spelling variation does have

an effect on key word analysis of the Innsbruck Letter Corpus.

Rank Correlation Method Score

Spearman’s Rank Correlation Coefficient 0.7045437

Kendall’s Tau Rank Correlation Coefficient 0.5304464

Table 3.4: Rank correlation coefficients found when comparing the original and

normalised versions of the Innsbruck Letter Corpus.

In order to further show the effect of spelling variation on key word analysis,

the study was extended to analyse key word lists before and after normalisation

with samples from different EModE time periods. The hypothesis was that there

would be more differentiation between the key word lists for samples that represent

the earlier centuries of the EModE period, due to the greater levels of spelling

variation evidenced at that time (as shown in Section 3.1). As with the key words

analysis of the Innsbruck Letter Corpus, both original and normalised versions

of a corpus were required, this time sampled at regular intervals throughout

the EModE period. The EEBO corpus was chosen as it covers the EModE

period and has enough texts available per decade to build a large sample - the

same decade samples used in Section 3.1 were utilised. Unfortunately, unlike the

Innsbruck Letters corpus, normalised versions of these samples were not available

for study. However, in order to detect a trend, it was deemed that automatically

(partially) normalised samples were sufficient to detect a trend over time. An
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early version of the VARD 2 normalisation tool (Section 4.3) was used for this

purpose, creating a version of each sample with modern equivalents automatically

inserted for detected variants where possible. For each decade, a similar set of

data to the Innsbruck Letters corpus data used above was now available, albeit

with only partially normalised texts.

Key word lists for each decade sample were produced in the same way as above

using WMatrix and filtered as before. R was again used to calculate Spearman’s

Rank Correlation Coefficient and Kendall’s Tau Rank Correlation Coefficient for

each decade sample. The two coefficients are plotted in Figure 3.5, with the

dotted lines showing the average trend. The two graphs show erratic results for

the earliest decade samples. This is mirrored, to some extent, in the variant

rates shown in Figures 3.1–3.4. This can be explained by examining the samples,

especially that for 1510–19, a local maximum in Figure 3.5. The sample for

1510–19 contains a large section of foreign translations, containing many different

languages. It is not possible to normalise the majority of this section, and so the

normalised version will be more similar to the original version. This is shown

in Figure 3.6, where the amount of spelling variation remaining after automatic

normalisation is both higher and more erratic for the earlier decade samples.
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Figure 3.5: Graphs showing the rank correlation coefficients comparing EEBO

decade samples’ key word lists before and after normalisation.

66



3.3 Spelling Variation Characteristics

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1500  1550  1600  1650  1700

%
 V

ar
ia

nt
 T

yp
es

Decade

Original EEBO Samples
Automatically standardised EEBO samples

(a) Types %

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1500  1550  1600  1650  1700

%
 V

ar
ia

nt
 T

ok
en

s

Decade

Original EEBO Samples
Automatically standardised EEBO samples

(b) Tokens %

Figure 3.6: Graphs showing the frequency of spelling variants in the EEBO samples

before and after automatic normalisation.

Noise in corpora of this nature is unavoidable and will have an influence on

the results, also the effect of spelling variation is underestimated due to spelling

variation still remaining (shown in Figure 3.6). However, the general upwards

trend can be clearly seen for both coefficients, indicating an increase in correlation

between the two key word lists the later the decade of the sample. We can conclude

that a reduction in spelling variation over time produces less effect on key word

analysis, thus proving our hypothesis.

3.3 Spelling Variation Characteristics

In Section 2.2 various issues related to modern spellchecking were introduced,

this was the first step in tackling RQ 2 (Section 1.2), which asks what the

characteristics of EModE spelling variants are and how these affect the application

of modern spellchecking techniques. The next step in answering RQ 2 is to

examine how EModE spelling variants compare to spelling issues found elsewhere

in terms of some of these characteristics, particularly those highlighted in

Section 2.4. This facilitates the application of modern spellchecking methods

to EModE spelling variants, which will be described in Chapter 4.
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The issue of real-word spelling variants will be analysed first and foremost

as this is a key issue in most spelling related problems. The focus will then

turn to various specific character-level spelling features; namely, spelling variation

position, character edit patterns and the levels of edit distance.

3.3.1 Real-Word Spelling Variants

In Section 2.2.4 the issues related to real-word errors in modern spellchecking

were introduced, and whilst many potential solutions have been researched, it is

fair to say that real-word errors still cause considerable barriers to many areas of

natural language research and applications. As highlighted previously, whilst it

is likely that a similar issue will present itself when dealing with EModE spelling

variation, it is unclear how much of an issue it may be. To establish the extent of

the problem, here the levels of real-word spelling variants in EModE texts shall

be quantified; that is, the number of spelling variants which happen to match

another modern dictionary word which clearly is not a modern equivalent to the

intended word. By comparing the levels found to the levels of real-word errors

found in studies of other forms of spelling errors and variation, the relative extent

of the problem shall be known.

Real-word errors, or in this case real-word spelling variants, are notoriously

difficult to locate automatically due to their very nature, especially when just

looking at single words out of context. Fortunately, manually normalised EModE

texts are available for study which contain marked-up normalisations, some of

which may be normalisations of real-word spelling variants. Here we utilise three

sources of manually normalised (or checked) texts already used: the Shakespeare

and Lampeter samples manually normalised for the study detailed in Section 3.2.1

and the automatically normalised and manually checked Innsbruck corpus, as used

in Section 3.2.2. In order to count real-word spelling variants, pairs containing

the original form and the modern equivalent chosen for each normalisation

made were required. For the Shakespeare and Lampeter samples this was fairly

straightforward as the original form and normalised form were present in XML

tags within the text, for example:

<replaced orig="companie">company</replaced>

68



3.3 Spelling Variation Characteristics

Creating a list of the original variants simply involved searching for the “replaced”

tag and collecting the contents of the “orig” attribute. For the Innsbruck corpus,

collecting the original variants was a more complicated process due to the original

and normalised versions of the text only being paired on a line-by-line basis.

In order to access the individual normalisations, a series of scripts were written

to semi-automatically combine the pairs of lines into single lines, similar to those

found in the Shakespeare and Lampeter samples, with the original and normalised

versions of each word appearing in single XML tags. Thus, the example:

$I schepyng at thys day, but be the grace of God I am avysyd

$N shipping at this day, but by the grace of God I am advised

becomes:

<replaced orig="schepyng">shipping</replaced> at <replaced

orig="thys">this</replaced> day, but <replaced orig="be">by

</replaced> the grace of God I am <replaced orig="avysyd">

advised</replaced>

A list of the original variants could now be extracted in the same way as with the

manually normalised samples.

In order to determine the proportion of spelling variants which were real-word

spelling variants, each spelling variant was compared to a modern word list in

a similar process, and using the same word list, as in Section 3.1. Any spelling

variants which appeared in the modern word list were counted as real-word spelling

variants. In some cases, two (or more) words may have been normalised to a single

word, for example:

<replaced orig="to morrow">tomorrow</replaced>

In these cases both words were checked against the modern word list and only

if both strings (or all strings) were present was a real-word spelling variant

counted. From this real-word spelling variant count a percentage of spelling

variant tokens which are real-words can be calculated. A real-word spelling variant

type percentage can also be calculated by only counting each instance of a spelling

variant once when it appears multiple times in the text being analysed. The
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Spelling variants % which are real-word

spelling variants

Tokens Types Tokens Types

Shakespeare 959 573 10.32 8.38

Lampeter 262 161 9.54 4.35

Innsbruck 43,740 13,520 11.58 5.95

Table 3.5: Real-word spelling variant rates found in normalised EModE corpora.

results are shown in Table 3.5 for all three sources. Examples of real-word spelling

variants found include: bee [be], dye [die] and then [than].

Across all three normalised corpora, the real-word spelling variant ratio is

fairly low. This reveals that, at least for the corpora analysed, when a spelling

variant exists in an EModE text, only around 10% of the time will the variant

be a modern dictionary form (limited to the modern word list used in the study).

To put the results in context with other spelling-related issues, previous research,

also discussed in Section 2.2.4, has shown real-word error rates for modern spelling

errors to be higher, and in some cases much higher. Peterson (1986) found

that between 2% and 16% of generated typing errors would be real-word errors

depending on the size of the word-list used for detecting real-words. Mitton (1987)

found much larger levels, with 40% of a large range of spelling errors being real-

words. More recently, Pedler & Mitton (2010) found that 31.4% of spelling errors

in a corpus of dyslexic writers were real-words.

In addition to the previous research, the above procedure used to detect real-

word spelling variants in the EModE texts was also used on modern spelling

errors. This allows for a direct comparison of results as the same method and

word list was used in each case. Two manually normalised corpora were sourced.

The first was a small corpus, approximately 47,000 words, of child language with

spellings manually corrected (see Pooley et al., 2008). The second was a corpus of

essays, approximately 154,000 words, by learners of English from another mother-

tongue background (French, German and Spanish), again with spelling errors

manually corrected (see Lefer & Thewissen, 2007; Rayson & Baron, 2011). As

the corrections in the two corpora were tagged in a similar format as with the

EModE data, real-word errors could be counted as before. The results, shown in
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Table 3.6, again show considerably higher rates of real-word errors compared to

the EModE real-word spelling variants.

Spelling errors % which are

real-word errors

Tokens Types Tokens Types

Child language 3,802 2,791 26.41 22.10

Second language (French) 351 293 34.48 28.28

Second language (German) 432 350 43.52 43.30

Second language (Spanish) 982 764 29.23 21.85

Table 3.6: Real-word error rates found in learner corpora.

The relatively low levels of EModE real-word spelling variants observed is an

important result as it reduces the necessity to take into account context in order

to detect EModE spelling variants, as the large majority can be found through

comparison with a modern word list alone. Whilst not being able to automatically

identify real-word spelling variants will have a limiting factor in terms of how many

normalisations can be successfully made, this must be balanced with the likely

effort required to use context to detect such variants and the quite low success

rates observed in previous research with modern real-word spelling error detection

(as detailed in Section 2.2.4).

3.3.2 Character Level Variation

In this section, various properties of EModE spelling variants at the character

level will be investigated. To achieve this, actual EModE spelling variant

normalisations will be analysed with the normalised form compared to the original

form and the specific character changes counted in terms of what characters have

changed, what position in the variant changes have been made and how many

character changes are required to normalise the original variant. A web-based tool,

named DICER (Discovery and Investigation of Character Edit Rules), has been

developed which can analyse pairs of spelling variants and their normalisations to

produce quantities for the properties being investigated. Given a variant string

and its normalised equivalent, DICER locates the differences between the two

strings and counts how many differences there are, where the differences occur and
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precisely which characters are changed. Given a number of these pairs, quantities

are summed and stored in a database for analysis. DICER will be described in

greater detail in Section 4.4.

Pairs of EModE spelling variants and their normalisations were taken from

three sources. Firstly, the automatically normalised and manually checked

Innsbruck corpus was used again, with variant–normalisation pairs taken from

the processed texts as described previously (in Section 3.3.1). Secondly, a new

source was utilised in the form of manually normalised samples from the Early

Modern English Medical Texts (EMEMT) corpus (see Lehto et al., 2010), variant

normalisations were marked as with the Shakespeare and Lampeter samples used

previously in this chapter15. Finally, the list of “known variants” used in the

initial version of VARD (Rayson et al., 2005) (introduced in Section 2.3.1) was

parsed, this contained just pairs of variants and their modern equivalents16. It

is worth noting that this is not running text like the other sources used here,

hence, any statistics for the variants list are based on types and not tokens.

In addition, the child language and second language spelling errors17 (as used

in Section 3.3.1) provided a basis for comparison to forms of modern spelling

variation where appropriate (similar results from previous research will also be

used for comparison). Each set of variant–normalisation pairs were analysed by

DICER in turn and the resulting quantities examined. The data available for

analysis is summarised in Table 3.718. The separate analyses and findings are

detailed in the following three subsections.

15The Shakespeare and Lampeter samples were not used in this section as they were

considered to contain too few normalisations to detect the specific trends being analysed.
16The list has been cleaned up somewhat since its original use with numerous erroneous

entries deleted or edited.
17The French, German and Spanish texts were combined for these analyses due to the small

size of each language sample individually. Whilst this is not ideal, the focus here is not to

investigate the influence of mother-tongue on spelling errors – Rayson & Baron (2011), for

example, do investigate this.
18The quantities given in Table 3.7 differ slightly in some cases from those given elsewhere,

this is due to different versions of texts being used and/or variants being detected slightly

differently.

72



3.3 Spelling Variation Characteristics

Source Variant–normalisation pairs

Innsbruck 43,579

VARD variants list 44,422

EMEMT samples 5,409

Child language 3,504

Second language 1,458

Table 3.7: Summary of data available for analysis of character level variation.

Edit Distance

Edit distance is a measure of how many characters need to change to get from one

string to another. In terms of spelling variants, we are interested in how many

characters need to change to get from the original spelling to the normalised

form. There are many methods to calculate the minimum edit distance between

two strings; see Section 2.2.3 (String Similarity Measures) for a discussion. Here,

Levenshtein Distance (Levenshtein, 1966) will be used to calculate the minimum

edit distance between each pair. The algorithm determines the minimum number

of deletions, insertions and substitutions needed to transform one string (the

variant form) into another (the normalised form), an example application has

been previously given in Table 2.3. For each pair in each dataset the edit distance

was calculated and the frequency of pairs exhibiting each level of edit distance

recorded. The results of this analysis are shown in Table 3.8.

Edit Distance (% of pairs)

1 2 3 4 5 6+

Innsbruck 58.12 30.02 8.76 2.15 0.69 0.25

VARD variants list 60.47 26.89 9.82 2.16 0.41 0.25

EMEMT samples 61.86 25.11 9.87 2.26 0.48 0.42

Child language 65.35 23.40 7.62 2.31 0.91 0.40

Second language 74.97 14.20 4.05 1.99 0.75 4.05

Table 3.8: Edit distances found for pairs of spelling variants and their

normalisations.

73



3.3 Spelling Variation Characteristics

Knowledge of typical edit distance can be very useful when evaluating a

spelling related problem as it gives an indication of how much effort is generally

required for normalisation. Knowing the number of variants with an edit distance

of 1 is particularly useful as searching for words which are exactly 1 edit away

from a given variant is a common technique when searching for spelling correction

candidates (e.g. Church & Gale, 1991). In analysis of the edit distance of EModE

spelling variants (as shown in Table 3.8), only around 60% of variants are 1 edit

away from their corresponding normalisation. This is a low rate, particularly

when compared to rates found in early studies of modern spelling mistakes; 80%

of spelling errors in one study (Damerau, 1964), 94% in another study of spelling

errors in scientific and scholarly texts (Pollock & Zamora, 1984), although closer

to the EModE figures at 69% in a study of spelling from a range of modern sources

(Mitton, 1987). Higher rates are also found in the two corpora of learner spelling

errors also analysed. Child language errors are only a little higher at 65%, but

second language spelling errors are only 1 edit away 75% of the time.

Due to relatively more EModE variants being 2 or more edits away from their

correct normalisation, only considering potential normalisations only 1 edit away

from the original variant – as is often used in modern spellchecking – would not

be a sensible option as this would leave around 40% of variants impossible to

normalise automatically. The vast majority of EModE variants in the analysis

are within 3 edits of their correct normalisation. Although considering all words

which are up to 3 edits away (or even just up to 2 edits away) from a given variant

would, on the vast majority of cases, give the correct normalisation as an option,

the amount of processing time required and the size of the lists produced would

likely be unmanageable. So, whilst low edit distance is a good indication of a

potential normalisation being correct, it is not as good an indicator as in modern

spellchecking and thus should not be solely relied upon.

Edit Rules

Many spelling error correction methods rely on a set of character edit rules which

dictate which specific characters in a variant can be replaced with other specific

characters to transform it into the correct normalised form. Patterns to help define

these rules exist for many spelling related problems, such as OCR errors, typing

errors and human spelling errors; see Section 2.2.3 (Rule Based Approaches) for
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a full discussion. DICER can be used to automatically elicit and quantify these

patterns, and hence define potential rules. A variant and normalisation pair is

analysed by DICER and character differences detected. A rule is mapped by

taking account of which characters appear in the variant form and not in the

normalised form, and vice versa. The rule may contain any number of characters

on each side, including zero. Deletion rules involve having one or more characters

in the variant form removed and hence replaced with nothing in the normalised

form. Insertion rules add one or more characters to the normalised form where no

characters are present in the variant form. Finally, substitution rules replace one

or more characters in the variant form with another set of one or more characters

in the normalised form. The rules generated and their application on the variant

and normalisation pairs (described in the analysis presented here as rule instances)

are collated into a database which can be viewed through a series of webpages.

The first analysis presented of the rules generated for the five different corpora

looks at the rule types present. Table 3.9 shows the number of rules generated and

how these are distributed between deletion, insertion and substitution operations.

As can be seen, the distribution of rules is similar for all five corpora with

the vast majority of rules generated being substitution rules. Deletion rules

are slightly more frequent than insertion rules in all cases except for the child

language data. Another way of looking at the rule distribution is shown in

Table 3.10, where the number of times each rule is generated for a variant–

normalisation pair is taken into account. Here, whilst still the majority rule type,

the proportion of substitution rules is much reduced – it will be shown in the

analysis to follow that this is due to some insertion and deletion rules having high

frequencies. Furthermore, the difference between deletion and insertion ratios is

more pronounced; now, deletion rules outweigh insertion rules by a considerable

amount in all EModE datasets, whilst insertion rules outweigh deletion rules in

the learner language datasets. The results for the learner datasets correlate with

results found by Mitton (2008: Table 3); out of 11,769 misspellings containing just

one simple error, 48%19 could be corrected with a substitution rule, 33% with an

19This also includes transpositions (6%) which are a restricted form of a substitution where

two letters are swapped, e.g. ei → ie.
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insertion rule20 and 19% with a deletion rule. The differences shown in rule type

distributions between EModE spelling variants and learner spelling errors begin

to make apparent how modern spellchecking techniques cannot be used directly

to deal with EModE spelling variation.

Rules
Rule Type (% of rules)

Deletion Insertion Substitution

Innsbruck 2,027 6.96 5.77 87.27

VARD variants list 2,104 9.22 8.84 81.94

EMEMT samples 431 11.60 9.05 79.35

Child language 864 5.79 8.80 85.42

Second language 437 12.13 11.67 76.20

Table 3.9: Rule types found for pairs of spelling variants and their normalisation.

Rule Type (% of rule instances)

Deletion Insertion Substitution

Innsbruck 27.00 14.50 58.50

VARD variants list 29.65 9.99 60.36

EMEMT samples 35.60 8.17 56.23

Child language 19.02 29.57 51.41

Second language 20.63 23.70 55.67

Table 3.10: Rule type instances found for pairs of spelling variants and their

normalisation.

Attention now turns to the specific rules which are generated by DICER from

the spelling variants and spelling errors found. Tables 3.11–3.15 show the top

ten most frequently generated rules in each of the five datasets. Whilst a greater

number of rules could be considered for each dataset, this level of detail is out of

the scope of this thesis. Here, we consider only the most frequent rules in order to

illustrate the differences in edit rules between the historical and modern datasets.
20The table given by Mitton shows “Omissions” and “Insertions”, these are in terms of how

the misspelling is changed from the correct word, i.e. an omission means a letter is missing from

the misspelling. The results from DICER are in terms of how the misspelling (or variant) needs

to change to successfully correct (or normalise) it.
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Rule % of

total rule

instances

Top position (% of rule

instances)

Example

Delete E 17.94% End (80.47%) longe → long

Sub. Y → I 11.68% Middle(51.73%) thyng → thing

Insert E 5.14% End (57.69%) statut → statute

Sub. U → V 2.24% Penultimate (48.48%) haue → have

Sub. LL → L 2.04% End (71.25%) perill → peril

Sub. TT → T 1.74% End (79.94%) thatt → that

Sub. W → U 1.71% End (41.87%) yow → you

Insert U 1.64% Middle (74.79%) noght → nought

Insert A 1.62% Middle (78.09%) disese → disease

Sub. EE → E 1.62% Middle (47.42%) kep → keep

Table 3.11: Top 10 rules found for pairs of spelling variants and their

normalisations in the Innsbruck corpus.

Rule % of

total rule

instances

Top position (% of

rule instances)

Example

Delete E 18.50% End (70.10%) adde → add

Sub. Y → I 8.05% Middle(77.55%) chalyce → chalice

Sub. ’ → E 6.11% Penultimate (93.77%) startl’d → startled

Sub. U → V 5.24% Middle (75.38%) grieued → grieved

Sub. IE → Y 3.37% End (97.04%) privie → privy

Insert E 3.26% Middle (42.15%) rarly → rarely

Sub. LL → L 2.74% End (61.23%) equall → equal

Sub. V → U 2.33% Start (93.96%) vnpaid → unpaid

Delete U 2.07% Middle (85.55%) graund → grand

Sub. ETH → S 1.63% End (99.78%) eateth → eat

Table 3.12: Top 10 rules found for pairs of spelling variants and their

normalisations in the VARD variants list.
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Rule % of

total rule

instances

Top position (% of

rule instances)

Example

Delete E 26.66% End (74.48%) bodye → body

Sub. Y → I 11.80% Middle (66.14%) strayned → strained

Sub. U → V 5.38% Middle (54.30%) priuate → private

Insert E 3.13% Middle (55.09%) entred → entered

Sub. IE → Y 2.91% End (93.53%) anie → any

Sub. LL → L 2.62% End (86.19%) vitall → vital

Sub. TH → S 2.40% End (100%) cureth → cures

Sub. V → U 2.36% Start (97.55%) vnite → unite

Sub. ETH → S 1.61% End (100%) worketh → work

Sub. E → EE 1.23% Middle (49.41%) Grece → Greece

Table 3.13: Top 10 rules found for pairs of spelling variants and their

normalisations in the EMEMT samples.

Rule % of

total rule

instances

Top position (% of

rule instances)

Example

Delete [space] 7.51% Middle (67.08%) my self → myself

Insert E 4.99% Middle (42.59%) safly → safely

Insert [space] 4.92% Middle (84.04%) weare → we are

Delete E 2.70% Middle (37.61%) useing → using

Insert A 2.52% Middle (78.90%) lerning → learning

Insert ’ 2.01% Penultimate (73.56%) dont → don’t

Insert U 1.80% Middle (71.79%) forth → fourth

Sub. L → LL 1.55% Penultimate (70.15%) realy → really

Insert H 1.48% Second (73.44%) were → where

Insert I 1.48% Middle (87.50%) frend → friend

Table 3.14: Top 10 rules found for pairs of spelling errors and their corrections

in the child language data.
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Rule % of

total rule

instances

Top position (%

of rule instances)

Example

Sub. - → [space] 5.27% Middle (100%) baby-boy → baby boy

Delete [space] 3.23% Middle (88.89%) may be → maybe

Delete S 3.23% End (81.48%) youngs → young

Insert [space] 2.81% Middle (100%) inspite → in spite

Insert E 2.69% Middle (42.22%) lowrs → lowers

Sub. [space] → - 2.33% Middle (100%) full time → full-time

Sub. S → SS 2.21% Middle (83.78%) clases → classes

Delete E 2.21% End (43.24%) muche → much

Sub. E → A 1.86% Middle (80.65%) Kuweit → Kuwait

Delete - 1.74% Middle (100%) lay-out → layout

Table 3.15: Top 10 rules found for pairs of spelling errors and their corrections

in the second language data.

Previously, only qualitative observations have been given for EModE spelling

variant patterns in terms of character differences. Fisher (1977), for example,

states some typical patterns observed: the interchangeability of i / y, u / v and

ou / ow and the inconsistency in the presence of a final e. The DICER analysis

shows that these patterns are present in the three EModE datasets analysed

(Tables 3.11–3.13). Firstly, the inconsistency in the presence of a final e is

corroborated with “Delete E” being the top rule and also most frequent rule

by a considerable amount in all three analyses, the rule is also mostly present at

the end of words. This high occurrence shows that E was consistently appended

to words; this is likely to be an intentional variation added by printers to ease

line justification (Potter, 1969: 40). “Insert E” is also present (3rd, 6th and

4th respectively) in all three EModE analyses, although more commonly found

in the middle of words for the VARD variants list and EMEMT data21. The

interchanging of I and Y is also apparent in the three datasets with the rule

“Substitute Y → I ” appearing as the second most frequent rule in all three

21A high proportion of rule instances were also present at the end of words for both: 26.30%

for the VARD variants list and 36.11% for the EMEMT data.
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EModE datasets22. The interchanging of u / v is also represented in all three

EModE datasets; the rule “Substitute U → V ” appears 4th in the Innsbruck and

VARD variants list analyses and 3rd in the EMEMT analysis, whilst the converse

“Substitute V → U ” appears in the VARD variants list and EMEMT analyses

in 8th position23, with the vast majority of rule instances occurring at the start

of the variant. Finally, the interchanging of ou / ow is also represented, but to a

lesser degree. In the Innsbruck analysis the rule “Substitute W → U ” appears

in 7th position. With further examination using DICER, one can observe which

characters most commonly precede and follow a given rule. Using this, it can

be observed that O precedes the “Substitute W → U ” rule in 88.92% of cases,

somewhat corroborating with Fisher’s observation. In the VARD variants list

analysis, the “Substitute W → U ” rule appears only 50th, with O preceding in

55.5% of cases. In the EMEMT analysis, the rule does not appear until position

75, and with only a third of cases being preceded with O. Evidence of ou in place

of ow is also present in all three analyses, but with much less frequency. Why

this particular pattern is not present in the DICER analysis to the same degree

as others observed by Fisher is open to debate; one potential hypothesis may be

that it is a feature of a particular text type (such as personal letters, as in the

Innsbruck corpus) or of a particular time period.

The DICER analysis also gives rise to new patterns in EModE spelling

variation which may not have been noted previously. Examples include:

“Substitute LL → L” being in the top 10 for all EModE analyses, as well as

“Substitute IE → Y ” and “Substitute ETH → S” being present in the top 10

of the VARD variants list and EMEMT analyses. Furthermore, looking further

down the lists, past the top 10, it is apparent that the singling and doubling of

many characters is a consistent theme – there are many more examples of such

patterns occurring in two or more lists, such as the interchanging of vowels.

Comparing the analyses of the learner datasets (Table 3.14 and Table 3.15)

to the EModE datasets as a whole, there is little overlap; only 4 rules from the

two learner analyses appear in the EModE analyses. This further shows that the

22The converse rule (“Substitute I → Y ”) is also present in all three datasets, but not in the

top 10, appearing 74th in the Innsbruck analysis, 40th in the VARD variants list analysis and

16th in the EMEMT analysis.
23The rule also appears in the Innsbruck analysis, but only in 22nd position.
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characteristics of EModE spelling variation are very different to those of modern

spelling errors, to which the majority of spellchecking techniques are aimed.

Whilst the EModE analyses show some homogeneity, particularly in the most

frequent (top 5) rules – of the 17 amalgamated top 10 rules (from all three EModE

analyses), 5 appear in all three analyses, with a further 3 appearing in at least

two – there are definite differences between individual analyses; for instance, the

Innsbruck analysis features 5 rules in its top 10 which do not appear in either of

the other EModE analysis’ top 10. This may indicate that different text types

(e.g. personal letters) and corpora contain specific rules which characterise the

spelling variation within them. One conclusion from this may be that building a

static solution to normalising EModE spelling variation as a whole would not be

realistic and that a dynamic solution which can be adapted to different EModE

corpora would be more desirable.

Edit Position

As shown for the edit rules, the position in a variant at which a rule is actioned

is also recorded and quantified in the DICER analysis. Table 3.16 shows the

distribution of rule instances (a variant–normalisation pair generating a rule)

applied on the first characters (start), beginning at the second character, in the

middle, beginning at the penultimate character and on the last character(s) (end)

of variants.

Rule position (% of rule instances)

Start Second Middle Penultimate End

Innsbruck 6.55 11.72 30.92 14.41 36.40

VARD variants list 6.51 6.88 37.06 17.77 31.79

EMEMT samples 6.70 8.42 30.51 14.67 39.70

Child language 7.74 13.37 46.65 17.46 14.78

Second language 7.18 8.44 56.67 8.56 19.15

Table 3.16: Positions of rule instances found for pairs of spelling variants and

their normalisation.

The most common position for rule edits on EModE spelling variants is on

the last character(s) of the variant, with the middle of variants the second most
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commonly edited position (the VARD variants list has middle of the variant

slightly ahead of the end). This is quite different to the learner spelling error

datasets which have the middle position quite far ahead as the most frequent

position; again, this shows the differences between EModE spelling variants and

modern spelling errors. Conversely, the start of the word is consistently, in both

the EModE data and learner data, the least frequent edit position. This result

is particularly interesting as many modern spellchecking techniques rely upon

the first letter being correct (Yannakoudakis & Fawthrop, 1983b), particularly

phonetic matching techniques such as Soundex (see Section 2.2.3: Phonetic

Matching Algorithms). As the proportion of rule instances in the EModE analyses

needing to act on the first character is low (even lower than the modern spelling

errors found in the learner datasets), it follows that, for EModE spelling variation,

the first character, in the majority of cases, does not need to be edited for

normalisation. Hence, it may be possible that the assumption that the first letter

is correct, as commonly exploited in modern spellchecking, may carry over to

EModE spelling variation.

3.4 Chapter Summary

The aim of this chapter was to gain a better understanding of the problem of

EModE spelling variation. This has been achieved through several quantitative

analyses, which have verified trends and features previously only reported as

qualitative observations (at least on the scale shown here), and identified new

patterns and observations to aid in the development of a normalisation solution.

The extent of the problem has been evaluated, with high levels of spelling

variation observed in several EModE corpora, with increased variation found in

earlier decades. The effect of this spelling variation on the application of corpus

linguistic methods has also been evaluated for both Part-of-Speech tagging and

key word analysis. It has been shown that EModE spelling variation has a

considerable impact on the results of automated tools. These evaluations have

addressed RQ 1 (Section 1.2), highlighting the necessity of an EModE spelling

normalisation solution.

In Chapter 4 the application of modern spellchecking techniques to EModE

spelling variation will be explored. In order to inform the decisions made when
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applying these techniques, various characteristics of EModE spelling variation

have been investigated. The key area of real-word errors (or in this case, real-

word spelling variants) has been explored, with it being shown that, in two

manually normalised EModE corpus samples and one automatically normalised

and manually checked full EModE corpus, the levels of real-word spelling variants

are substantially lower than real-word error rates found in numerous modern

spelling error sources. This is an important result, as dealing with real-word

errors is a difficult task in modern spellchecking and it is likely that a solution

for dealing with EModE real-word spelling variants would be equally challenging.

Whilst any developed variant detection procedure must take into account real-

word spelling variants, detection using contextual information (as described in

Section 2.2.4) is less of a priority due to these findings.

The methods used for spelling normalisation can also be informed by the results

given in this chapter. Two well-used ‘rules-of-thumb’ in modern spellchecking have

been scrutinised in terms of EModE spelling variation. First, the assumption that

the large majority of spelling errors will be one edit away from the intended word

was shown not to apply to the same extent to EModE spelling variants; around

40% of variants were shown to be more than one edit away from their modern

equivalent. This will obviously make finding candidate normalisations for spelling

variants more difficult. Second, previous research showing that the majority of

modern spelling errors are correct in their first character was shown to also be the

case for EModE spelling variants, with less than 7% of required character edits

applying at the start of a variant. This finding allows for methods utilising this

assumption (generally phonetic matching algorithms) to be applied more easily

to EModE spelling variation.

Rule-based approaches are common in solving many spelling related issues,

such as OCR errors and typing errors. This chapter has shown that such rule-

based approaches may also be applicable to EModE spelling variants, with specific

character edit rules identified, differing to those found in modern spelling error

sources. Whilst the analysis showed overlap between the rule sets found for

different EModE spelling variant sources, it was also found that each dataset had

its own features and applicable rules. This disparity between corpora highlights

the need for an adaptable normalisation solution which can be customised and

trained to the characteristics of the texts to be normalised.
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The spelling variation characteristics analysed and quantified in this chapter

have largely addressed RQ 2. Chapter 4 shall complete the fulfilment of RQ 2 by

detailing how the modern spellchecking techniques described in Section 2.2 are

applied to EModE spelling variation.
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Normalising Early Modern

English Spelling Variation

The problems caused by spelling variation when using corpus linguistic methods

to analyse EModE texts have been detailed and analysed extensively in previous

chapters. This chapter describes the adaptation of modern spellchecking tech-

niques to EModE spelling variation, which can be used to create a spelling nor-

malisation pre-processor which will insert modern equivalents alongside spelling

variants to aid subsequent studies with automated corpus linguistic tools.

Various techniques for both detecting and correcting modern spelling errors

have been introduced and several specific characteristics of EModE spelling

variation which will influence the application of these techniques have been

identified and studied. Here, discussion will focus on the methods chosen for

the specific task of EModE spelling normalisation and how these methods will

be used together to produce a ranked list of modern equivalent candidates

for variants found, which may be used for automatic or manual normalisation.

Throughout the chapter, it shall be shown that the detection and normalisation

procedures developed are flexible, allowing for customisation and training to

tune the normalisation procedure to the corpus being processed. The flexibility

extends to allowing a balance to be struck between the recall and precision of

normalisation, depending on the user’s needs.

The first stage of normalisation will be to identify the spelling variants present

in a given text, Section 4.1 will describe how this can be achieved efficiently and

accurately, whilst at the same time highlighting likely pitfalls in detection. The
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process of finding candidate modern equivalents for these variants and ranking

them in terms of how likely they are to be the correct normalisation will be

discussed in Section 4.2. Bringing these two processes together into a customisable

tool for manual and automatic normalisation shall then be discussed in Section 4.3.

A supplementary tool will be described in Section 4.4, which can be used to analyse

character edits from previous variant normalisations (analyses from this tool have

already been described in Section 3.3.2). The chapter will then be summarised in

Section 4.5.

4.1 Spelling Variant Detection

As discussed in Section 2.2.2, the most common method for finding spelling

errors in modern spellchecking is through dictionary lookup. For the purposes

of finding EModE spelling variants, the same method can be used, as a high

majority of spelling variants are not found in a modern word list (or dictionary).

This was proved to be the case in Section 3.3.1, where the rates of EModE real-

word spelling variants (those found in a modern word list) were shown to be

much lower than the rates of real-word spelling errors found in modern data

– around 10% compared to 22%–43%. Whilst detecting as many variants as

possible is important, adding context-sensitive detection methods would be a very

complex process (see Section 2.2.4) and probably not the most efficient use of

development time for a maximum 10% increase in overall detection – reaching

close to this maximum would also be highly unlikely as rates of real-word spelling

error detection are still fairly modest, even in the latest research (Reffle et al.,

2009).

This section shall discuss the details of a dictionary lookup methodology which

can be used for detecting EModE spelling variants, this will include detailing

sources of modern word lists, describing a suitable data structure which can be

used for fast lookup and looking at how words can be detected from running text.

4.1.1 Dictionary Source

Any dictionary lookup procedure will obviously rely upon a list of words for

reference. As the normalisation procedure being developed shall aim to have all

86



4.1 Spelling Variant Detection

words normalised to their modern form (as opposed to normalising to a consistent

form, regardless of its presence in a modern dictionary), a modern word list is

required for spelling variant detection – any word not in the modern word list

would be considered a variant. There are various sources from which this list

could be created, but it is important to consider the frequency of words chosen.

Including too many low frequency words will increase the likelihood of real-word

spelling variants, whilst not including high frequency words will increase the

likelihood of detecting a variant erroneously. The size of dictionary is also an

issue to consider in terms of processing speed and space constraints.

The first source considered for a modern word list was the British National

Corpus (BNC), which is available as a set of frequency lists (Leech et al., 2001).

The corpus is a valid source due to being relatively modern (collected 1991–1994)

and of British English – EModE is comparable to British English, as opposed to,

for example, American English, due to the first extraterritorial English not being

present until 1776 (American Declaration of Independence) (Lass, 1999: 1). Using

the entire BNC word list would be ill-advised due to the problems highlighted

above, instead words were chosen which appeared in the corpus at least once per

million words and also appeared in 50 out of 100 sectors of the corpus, this range

of use is important to avoid words which only appear frequently in a specialised

context. This filtering process resulted in a list of 26,097 words being available.

Whilst the BNC word list ensured that the majority of variants were detected,

early tests revealed that far too many valid words were also being erroneously

marked as variants. Hence, a further source was considered which could

supplement the BNC word list. The Spell Checking Orientated Word Lists

(SCOWL)1 created by Kevin Atkinson provides a collection of word lists from

a variety of sources which are sorted into separate lists based on frequency and

categories (e.g. language variety, upper/lower case, contractions). A user of

SCOWL can choose the lists which are suitable for their needs. For our purposes,

British words are more appropriate, and less frequent words should be avoided

to reduce the likelihood of variants not being detected (due to being real-word

spelling variants). The following lists were chosen from SCOWL, the number

shown refers to how frequent the words in the list are, e.g. 10 equates to the 10%

most frequent words. An example entry in each list is also given.

1http://wordlist.sourceforge.net/scowl-readme
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• british-words.10 (e.g. flavour)

• british-words.20 (e.g. cancelled)

• british-words.35 (e.g. enrol)

• british-words.40 (e.g. adaptors)

• british-words.50 (e.g. canonise)

• british-words.55 (e.g. behaviours)

• english-contractions.10 (e.g. don’t)

• english-contractions.35 (e.g. o’clock)

• english-contractions.40 (e.g. you’ll)

• english-upper.10 (e.g. Europe)

• english-upper.35 (e.g. April)

• english-upper.40 (e.g. Swiss)

• english-words.10 (e.g. do)

• english-words.20 (e.g. mint)

• english-words.35 (e.g. ravens)

• english-words.40 (e.g. vegan)

• english-words.50 (e.g. sternum)

• special-roman-numerals.35 (e.g. xxvii)

With these lists added to the BNC word list already created, the total number

of words present is now 82,573. Whilst this word list can be used by default, it

would be desirable for a user to be able to add or remove lists (from SCOWL or

any other source) to suit their needs. For example, a user may know that roman

numerals will not be present in their corpus. The effect of using different sized

dictionaries will be investigated in Section 5.1.
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It is worth noting that as the word list is modern, there will be numerous

words present which have only entered the English language after the EModE

period (e.g. Jacuzzi). These words are of little use in variant detection and

could possibly introduce real-word spelling variants. However, it is difficult to

remove such words without first having etymological data, which could be used,

for example, to remove any words which entered the language post-1800.

4.1.2 Dictionary Lookup

Having collected a word list, the next issue to consider is how it shall be stored

and accessed. Every word in a text will need to be compared against the word

list in order to establish which are spelling variants; therefore, lookup needs to

be fast. A common data structure used for dictionaries is a trie (Fredkin, 1960;

Pittman, 2007), due to having quick search, insert and deletion operations, and

also not having problems with collisions, as with hash tables. A trie is a tree with

levels representing successive characters of the (typically string) keys it contains.

For a dictionary of words, the root links to a node for every first letter found in

the dictionary, each of these nodes contains a subsequent link for every second

letter found after the first letter, and so on. The height of the tree is dictated

by the length of the longest word in the dictionary. An example with a small list

of short words is shown in Figure 4.1, the following words have been added: ant,

any, an, ape, at, a, ban, bat, beep, beer, bee, bet, be, caret, care, cart, car, can,

cape, cap, cat, cent.

A node in the trie can be marked as representing the end of a word, these

are shown as underlined in Figure 4.1. All leaf nodes will represent words, but

intermediate nodes may also represent words (e.g. in Figure 4.1: car, care and the

leaf node caret), whilst some intermediate nodes are only present as a prefix of a

longer word (e.g. cen). Three operations are required to make the trie usable as a

dictionary in a spellchecking type setting; lookup, insertion and removal of words.

The algorithms for achieving these three operations shall now be discussed.

Looking up a word in the dictionary trie involves attempting to traverse the

trie using each character in the word to choose the next node. If a node is not

present for a given character, then the word is not in the dictionary. If the end of

the word is reached and a full node path found, then whether the lookup word is
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Figure 4.1: Trie example.

present depends on the last node representing a word. Pseudocode for a lookup

method is shown in Algorithm 4.1.1. The algorithm simply returns a boolean

indicating whether the word is present, it could be easily adapted to return more

data about the word such as its frequency. As the lookup method depends on the

number of characters in the lookup word (in the worst case), it is O(m) where m

is the length of the word.

Algorithm 4.1.1: TrieLookup(string)

node← root
for each char ∈ string

do


if char ∈ node.next

then node← node.next[char]
else return ( false )

return (node.isword)
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Inserting a word into the dictionary trie involves ensuring a path for the word

exists, including adding nodes when not already present for a given character.

This is best explained through example. If one wished to add cane to the trie

shown in Figure 4.1, the trie would first be traversed to the node {root, c, a, n}, e

would then need to be added as child of this node, and finally the new node set to

represent a word. Pseudocode for an insert method is shown in Algorithm 4.1.2.

Here, true is returned if the word was added, false is returned if the word was

already present. The insert method depends on the length of the word being

added, hence is O(m) with m being the length of the word.

Algorithm 4.1.2: TrieInsert(string)

node← root
for each char ∈ string

do


if char /∈ node.next

then node.next[char]← create node
node← node.next[char]

if node.isword = true
then return ( false )

else

{
node.isword← true
return ( true )

The final operation required is a removal function. This can take a similar form

to the previous two operations, traversing the tree to find a path which represents

the word to be removed. Once the path is located, the final node can be set to not

representing a word. However, an additional step is required if the final node is a

leaf node, as this will mean unnecessary nodes exist in the trie, which could slow

future lookups. For example, in Figure 4.1, if cent was removed from the trie,

the node {root, c, e, n, t} (a leaf node) would be set as not being a word. Any

future lookup of a word with the prefix cent would now have to traverse this and

intermediate nodes before finding that the word is not present. Instead, the node

should be removed from the trie and any intermediate unnecessary nodes also

removed; this would mean that a search for a word with the prefix cent would end

when the e is not found as a node following c. Algorithm 4.1.3 shows a method

for achieving this; as the tree is traversed a node path is stored in reverse order.

Once the full path has been found (if present) then each node of the path is looked
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back at, starting with the final character of the word (the node which has been

set to not represent a word). If the node is found to be a leaf node (i.e. has no

child nodes), then the node is removed from the trie. The next node back is then

considered in the same way and if the removal of the last node results in this

node being a leaf node, this node is also deleted. This is repeated until a node is

not made into a leaf node. The algorithm returns true if the word was removed

from the trie, it returns false if the word was already not present in the trie. The

algorithm is dependent on the length of the word being deleted, and hence, is

again O(m) with m representing the number of characters in the word.

Algorithm 4.1.3: TrieRemove(string)

node← root
nodepath← ∅
for each char ∈ string

do


if char ∈ node.next

then

{
nodepath← node+ nodepath
node← node.next[char]

else return ( false )
if node.isword = false

then return ( false )
else node.isword← false

comment: nodepath is reverse path back to root

last← node
if last.next = ∅

then


for each n ∈ nodepath

do


n.next[last.key]← ∅
if n.isword = false and n.next = ∅

then last← n
else return ( true )

These three operations can be used to insert all of the words from the lists

described in Section 4.1.1 into the trie, establish whether words found in a text

should be considered spelling variants by looking up the words in the dictionary

and marking those not found as variants, and for removing words and adding new

words to the dictionary based on user decisions. It is also straight-forward to save

the trie to a file in the form of an alphabetical list by performing a preorder depth-
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first traversal. Loading the trie from the file is a simple process of performing the

insertion operation (Algorithm 4.1.2) with each word in the list.

4.1.3 Tokenization

One further subject to consider, when developing methods for spelling variant

detection, is locating the actual words to lookup in running text. For modern

corpora, such as the British National Corpus (BNC) XML edition (Burnard, 2007),

words are already marked individually (e.g. with <w> tag). However, this is

unlikely to be the case for the majority of EModE corpora, and most texts will

be in plain text form; meaning words will need to be searched for within the

running text. This is an issue of tokenization, which has received much attention,

particularly with it being the first stage of many Natural Language Processing

applications (see e.g. Grefenstette & Tapanainen, 1994). Efficient methods exist

for searching text for strings which match a specific format, regular expressions

(Thompson, 1968) for example. However, it is important to consider what should

constitute a word. Some possible issues to take into account include:

• Apostrophes may indicate possession or a contraction (e.g. John’s, don’t or

’tis), but may also indicate a quotation.

• Should two words split by a hyphen be considered separately?

• How should digits be dealt with? For example, should 1st be considered a

word?

• Diacritics may be present and should be detected as letters, e.g. façade.

• In historical texts especially, alternative characters may be used when a

letter is not clear or to indicate formatting such as superscript.

• Letters may be encoded, e.g. þ (thorn) may be represented with a unicode

representations such as &#00FE;.

A regular expression can be created for searching for words, taking into account

any decisions made for the above potential issues. One example pattern could be:

([\p{L}\’\-\^~=]|(&[#]?[a-zA-Z0-9]+;))+
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This regular expression finds words containing one or more characters which are

considered letters of a word. The meaning of each part is as follows:

• [...] – list of alternative characters.

• p{L} – any character in the category ‘letter’, including diacritics.

• \’ – apostrophe.

• \- – hyphen.

• \^ – caret.

• ~ – tilde.

• = – equals sign.

• &[#]?[a-zA-Z0-9]+; – detects unicode entries.

• (...) – grouping to separate unicode entries.

• + – one or more characters.

Through the use of a regular expression similar to the one above, a text can

be searched and all detected words returned. These detected words can then

be looked up in the dictionary trie and any words not found in the dictionary

marked as potential spelling variants. The next stage is to find candidate modern

equivalents for each of these spelling variants, to which our attention now turns.

4.2 Spelling Variant Normalisation

Section 2.2.3 described the main methods used in modern spelling correction, here

we shall discuss using these methods to normalise EModE spelling variants. The

first stage is to produce a list of candidate normalisations, Section 4.2.1 shall

detail this procedure. Section 4.2.2 will introduce several steps which can be used

to attach confidence scores, these can then be used to rank the list of candidates.

Finally, Section 4.2.3 will show how previous manual normalisations can be used

as training data to improve the scoring and ranking of candidates further. The

full normalisation procedure shall be summarised in Section 4.2.4.
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4.2.1 Producing a List of Candidates

The first stage of finding the correct normalisation for a variant is to create a list

of candidates from which the appropriate normalisation can be chosen. As the aim

of the normalisation procedure is for all words to be in a single modern form, in

order to assist subsequent corpus linguistic techniques (see Section 3.2), candidates

should be modern words; hence, the list of candidates can be a subset of the

dictionary as defined for detecting variants (Section 4.1). Section 2.2.3 introduced

the main methods used in modern spelling correction, here we shall discuss using

these methods to select this dictionary subset. The methods chosen and how they

are implemented has been influenced by the analysis of EModE spelling variants

presented in Section 3.3. As well as a method utilising a list of spelling variants

mapped to their modern equivalents, a phonetic matching technique and a rule

based approach shall also be described. A further technique, string similarity

measures, was described in the background literature, this shall not be used to

directly find candidates for two reasons. Firstly, Section 3.3.2: Table 3.8 showed

that around 40% of EModE spelling variants were more than one edit away from

their appropriate modern equivalent. This makes the technique of finding all

modern words which are just one edit away from the variant much less effective

than when it is used for finding modern spelling error correction candidates, where

the likelihood of the correction being just one edit away is much higher. Secondly,

calculating edit distance is generally computationally expensive; hence, comparing

a variant to every word in the modern word list to find those which are 1, 2, 3

or 4 edits away (Section 3.3.2: Table 3.8 shows that the edit distance between

variants and their normalisations is less than 5 in the vast majority of cases)

would substantially increase processing time. However, as low edit distance has

been shown to be a useful indication of a normalisation being correct it should

still be considered; to this end, a methodology for calculating an edit distance

which can influence the ranking of candidates is given in Section 4.2.2. The three

methods which are used for collating a list of normalisation candidates for a variant

shall now be described in detail.
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Known Variants List

The first method for finding candidates is based on the list used for finding

and replacing variants in the original VARD tool (Rayson et al., 2005) (see also

Section 2.3.1). The original list contained 45,805 variant to modern equivalent

mappings, although numerous subsequent corrections and edits of the list has

reduced the number of entries to 44,423. To use the list to find candidate

normalisations for a given variant involves searching the entries for the given

variant and returning the modern equivalent to which the variant is mapped.

Examples of entries include: compriz’d mapped to comprised, preuente mapped

to prevent and vanish’t mapped to vanished. In a small number of cases two

(or more) modern equivalents are mapped from the same variant, for example

vvold is mapped to wold and would, in these cases all words can be returned as

potential candidates. Searching the list of variants is very much like searching

for a word in a dictionary, hence, we can use the same method as described in

Section 4.1.2. A trie can be built in exactly the same way as for dictionary words,

but instead containing spelling variants. For each variant entry added to the trie,

a list (usually containing only one entry) of modern equivalents can be stored

alongside and returned when a variant is looked up.

Providing the variants list is largely accurate, one would expect usage of the list

to achieve high precision, as it is, in most cases, going to offer only one candidate

normalisation (or none at all if the variant is not in the list), thus reducing the

number of false positives. However, due to the diversity of possible variants in

EModE texts (as discussed in Section 2.1.2), it is likely that many normalisations

will be missing from the list, hence one would expect recall to be modest at best.

Phonetic Matching

Numerous phonetic matching algorithms exist and they have been used extensively

in modern spellchecking and other applications (see Section 2.2.3), the vast

majority are based on the original Soundex algorithm developed by Russell (1918;

1922). Phonetic algorithms, particularly Soundex based algorithms, are renowned

for having low precision due to many words having the same phonetic code, hence

producing a high number of false positives. However, high recall is also generally

observed in evaluations due to many spellings of the same word having the same
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phonetic make-up. This property makes phonetic matching a desirable method to

utilise due to its contrast to other methods, particularly the known variants list,

which is likely to produce high precision, but lower recall.

The basic Soundex algorithm will be utilised, the steps for which are given

on page 27, with the addition of a small number of simple pre-processing

transformation rules. These take into account silent letters and typical letter

sequences that can have their basic sound simplified. The transformation rules

chosen are those most commonly used in extensions of Soundex, such as those

developed by Gadd (1990) and Hodge & Austin (2001b). Whilst a larger list

could be used, the list was kept to a minimum to avoid extensive processing

times.

• Replace all DG with G (e.g. ridge → rige)

• Replace all GH with H (e.g. dough → douh)

• Replace all GN with N (e.g. reign → rein)

• Replace all KN with N (e.g. knife → nife)

• Replace all PH with F (e.g. phone → fone)

• Replace all MB with M (e.g. dumb → dum)

• Replace all TCH with CH (e.g. clutch → cluch)

• Replace initial PS with S (e.g. psalm → salm)

• Remove initial H (e.g. hour → our)

• Replace initial E,I,O,U with A (e.g. increase → ancrease)

• Remove any characters which are not in the range A–Z (e.g. ‘tis → tis)

The standard Soundex algorithm can then be applied to produce a code of a

single letter (generally the first, unless edited by the transformation rules) and the

three digits representing the letter groups. We are able to reasonably rely on the

first letter being correct, as the original Soundex algorithm did, due to analysis

presented in Section 3.3.2: Table 3.16, which showed that normalisation was only

97



4.2 Spelling Variant Normalisation

required at the start of words in less than 7% of cases. This percentage is lower

than those observed for other forms of spelling problems.

The algorithm can be used to produce a phonetic code for a given variant.

However, this is of little use without having something to compare the code to.

The next step is to produce a list of modern words which have the same phonetic

code produced for the variant. To achieve this, the same lookup procedure used

to search for dictionary words can be employed, namely a trie (see Section 4.1.2).

For every word in the modern word list (see Section 4.1.1), a phonetic code can

be pre-calculated, these codes can then be inserted into the trie along with a

mapping to the original dictionary word. Inevitably, numerous words will have

the same phonetic code, hence, for a leaf-node, a list of words matching the trie

path’s phonetic code can be stored and returned when that code is searched for.

An extra step can also be added utilising the known variants list (see above). A

phonetic code is also pre-calculated for each variant in the list and inserted into

a separate trie along with a reference to the modern equivalent the variant is

mapped to. Again, multiple occurrences of the same phonetic code will result in

a leaf-node containing a list of modern equivalents, which is returned when that

code is searched for.

The full process for producing a list of phonetic matching normalisation

candidates for a variant involves the following steps:

1. Calculate the phonetic code for the variant.

2. Search for this code in the dictionary phonetic code trie and store the set of

words found (if any).

3. Search for the code in the known variants phonetic code trie and store the

set of modern equivalents found (if any).

4. Combine the two sets and return this as the list of candidates.

An example application of this process on the spelling variant nummed (modern

equivalent: numbed) would produce the following results:
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1. Phonetic code calculated as N530.

2. The following subset of dictionary words which also have this phonetic code

are returned: named, nannied, neonate, ninety, ninth, nomad, nonwhite,

noonday, nooned, numbed.

3. The following modern equivalents mapped from the variants with this

phonetic code are returned2: ’noint → anoint, nam’d → named, namde

→ named, nameth → names, nineth → ninth, ninetie → ninety, ninthe →
ninth, numb’d → numbed, numbd → numbed, nummed → numbed.

4. These are then combined into the final list of candidates to return: anoint,

named, names, nannied, neonate, ninety, ninth, nomad, nonwhite, noonday,

nooned, numbed.

The final list returned contains twelve candidates, including the appropriate

normalisation.

Character Edit Rules

As discussed in Section 2.2.3, rule based approaches are often used to deal with

spelling related problems – common character edit rules exist for correcting OCR,

typing and human spelling errors. In Section 3.3.2, analysis indicated that

character edit rules exist which could be applied to EModE spelling normalisation.

Here, we describe the methodology for applying these rules to spelling variants

in order to produce normalisation candidates. The algorithms described will be

flexible to allow for the use of any set of character edit rules which can have

different levels of specificity when applied to variants.

A character edit rule can be defined by three basic properties. Firstly, a search

string must be included, which is the set of characters in the variant form which are

to be replaced in order for the correct normalisation to be made. The string may

be empty, which implies an insertion rule (e.g. add an e to the end of a variant).

Secondly, a replacement string must also be present, this is the set of characters

with which the search string will be replaced to make the normalisation. Like

the search string, the replacement string may also be empty, implying a deletion

2The variant form is also included here for illustration, but is not strictly necessary.
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rule (e.g. remove e from the end of a variant). If neither the search string or

the replacement string are empty, then a substitution rule is implied (e.g. replace

v with u). Finally, a position for where in a variant the rule should be applied

should also be given. This can be very specific: start, second, penultimate or

end, or less so with: middle (i.e. between second and penultimate (exclusive)3) or

anywhere. With just these three properties, an extremely large range of character

edit rules can be constructed; for example, extra context can be added to a rule

by including an additional character in both the search and replacement strings

– a specific example would be to restrict the context of the rule substitute U for

W to be only applicable when the U follows an O, this would be achieved by

adjusting the rule to substitute OU for OW.

One important factor to consider when applying a rule based approach is

whether more than one character edit rule can be used on the same variant. Many

applications using rule based approaches only allow for one rule to be activated

on a string at one time; so, for example, a rule could not be used to edit the start

of a string and then another rule (or indeed the same rule) used to edit the end

of the string. Processing in this manner is much simpler than the alternative of

having multiple rules applied on the same string as there is no need to consider

rules overlapping in their use or how to find all permutations of applying rules in

different combinations. Modern spellcheckers can afford to overlook multiple rule

applications, to an extent, due to the relatively high percentage of errors which

are only one edit away from the correct spelling. However, the findings presented

in Section 3.3.2: Edit Distance revealed that around 40% of EModE spelling

variants were more than one edit away from their modern equivalent; therefore,

the need for the application of multiple rules on a single spelling variant becomes

apparent4.

The pseudocode for a number of linked algorithms which can be used to find

candidate replacements through the application of character edit rules is shown

3A variant’s middle position may also be considered to be inclusive of second and penultimate

in the specific case of the search string’s length being exactly 2 characters shorter than the variant

string. For example, the rule substitute EE with E in the variant beeg [beg].
4Some rules will produce an edit of more than one, e.g. substitute ie for y, thus the actual

number of normalisations requiring more than one rule application is likely to be lower than

40%. However, informal observations revealed that the majority of cases where the edit distance

was more than one also contained more than one rule application.
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in Algorithms 4.2.1–4.2.9. As shall be seen, the majority of these methods are

required to allow the application of more than one rule on the same variant.

The central method, shown in Algorithm 4.2.1, given a variant string and a set

of character edit rules, attempts to apply each rule, in turn, on the variant string.

If a rule is successfully applied, the resulting candidate string is looked up in the

modern word dictionary using the same method as described in Section 4.1. If

found to be a dictionary word, it is added to the list of candidate normalisations

to return. As an extra step, the candidate is also looked up in the known variants

list, if found then the modern equivalent the variant is mapped to is added to

the candidate list. Recursion is then used to attempt to apply the rules to the

candidate normalisation again (regardless of it being found in the dictionary),

with the candidate string replacing the variant string in re-calling the method.

Recursion will continue until each candidate produced has had a further attempted

application of each rule on it.

Algorithm 4.2.1: FindRuleCandidates(string, rules)

candidates← ∅
for each rule ∈ rules

do



candidate← ApplyRule(string, rule.original, rule.replacement,
rule.position)

if candidate 6= ∅

then



candidates← candidates
+FindRuleCandidates(candidate, rules)

if TrieLookup(candidate)
then candidates← candidates+ candidate

else


variantmapping ← VariantTrieLookup(candidate)
if variantmapping 6= ∅

then candidates← candidates
+variantmapping.modern

return (candidates)
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It is important to avoid the danger of applying a rule to an area of a candidate

string which has already been edited from the variant string, as this would mean

that a rule is applied (from the original characters to the second replacement

characters) that may not exist in the list of defined rules, but more importantly,

from a processing point of view, this could also lead to an infinite loop in which

a string is replaced and then re-replaced with the original characters and hence

replaced again, and so on indefinitely. For example, two rules may exist: substitute

E with EE and substitute EE with E, obviously if these two rules were repeated

until they no longer could be applied, then an infinite loop would occur. This

problem is averted by keeping track of where rules have been applied in candidates

and marking these characters as used, this is managed by the methods described

by Algorithm 4.2.2 and Algorithm 4.2.3.

Algorithm 4.2.2: IsUsed(string, start, end)

comment: string is checked inclusive of start but exclusive of end

if start = end

then


if start = string.length

then return (string.used[start− 1])
else return (string.used[start])

else


for i← start to (end− 1)

do

{
if string.used[i]

then return ( true )
return ( false )

Algorithm 4.2.3: MarkUsed(string, start, end)

comment: string is marked inclusive of start but exclusive of end

if start = end

then


if start = string.length

then

{
string.used[start− 1]← true
comment: e.g. deletion at end of word

else string.used[start]← true

else

{
for i← start to (end− 1)

do string.used[i]← true

102



4.2 Spelling Variant Normalisation

Whether a rule can be applied to a variant (i.e. whether the search

string appears in the designated position) is delegated to Algorithm 4.2.4 and

Algorithm 4.2.5. If the rule’s position is set as start, second, penultimate or end,

there is, by definition, only one place that the rule can be applied. Algorithm 4.2.4

deals with these cases, first using the IndexOf method (Algorithm 4.2.65) to

determine whether the search term appears in the variant/candidate string in the

designated position, and that the location has not already been replaced (using

Algorithm 4.2.2). If the rule can be applied, the variant string has the search term

removed from it and the replacement term added in its place; this is performed

by the ReplaceString method, described in Algorithm 4.2.7, which also marks

the new candidate string as used in the location that has been replaced (using

Algorithm 4.2.3). Rules set to be applied in the middle of variants or anywhere

are dealt with by Algorithm 4.2.5. Because the location where these rules can

be applied is less restrained, care needs to be taken to ensure that all possible

locations for the rule application are considered. To this end, Algorithm 4.2.8 is

used to make the replacement (using Algorithm 4.2.7) and then recursively re-

applies the rule to the candidate; because the replacement is marked as used, if

the rule can be applied later in the variant, the rule will be applied there also.

Additionally, because the use of the rule on a later position should be considered

separately, the MarkUsed method (Algorithm 4.2.3) is applied to the variant string

without the replacement made, marking the search term’s occurrence as used.

This string is then passed (recursively) to Algorithm 4.2.5 to find other possible

applications of the rule. A full list of candidates created by this process is returned

for consideration as potential normalisation candidates.

5The IndexOf method uses the SearchString method, which is not described in detail as it

is similar to a common method supplied in most programming languages. It takes a string to

search in, a search term and an index to start searching from and returns the first index in the

string, after the supplied start index, where the search term occurs. If the search term does not

occur in the string, then −1 is returned.

103



4.2 Spelling Variant Normalisation

Algorithm 4.2.4: ApplyRule(string, search, replace, position)

if string.length < 2
then return (∅)

if position = “start′′

then


if IndexOf(string, search, 0) = 0

then

{
candidate← ReplaceString(string, search, replace, 0)
return (candidate)

else if position = “end′′

then


if IndexOf(string, search, (string.length− search.length)) =

(string.length− search.length)

then


candidate← ReplaceString(string, search, replace,

(string.length− search.length))
return (candidate)

else if position = “second′′

then


if IndexOf(string, search, 1) = 1

then

{
candidate← ReplaceString(string, search, replace, 1)
return (candidate)

else if position = “penultimate′′

then


if IndexOf(string, search, (string.length− search.length− 1)) =

(string.length− search.length− 1)

then


candidate← ReplaceString(string, search, replace,

(string.length− search.length− 1))
return (candidate)

else return (ApplyRuleMultiple(string, search, replace, position))
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Algorithm 4.2.5: ApplyRuleMultiple(string, search, replace, position)

if position = “middle′′

then



if search.length = (string.length− 2)

then


if search = SubString(string, 1, (string.length− 1))

then


candidate← ApplyRule(string, search,
replace, “second′′)

return (candidate)

else


index← IndexOf(string, search, 2)
if index < (string.length− 2)

then


candidates← FindMultiCandidates(string,
search, replace, “middle′′, index)

return (candidates)

else if position = “anywhere′′

then


index← IndexOf(string, search, 0)
if index > −1

then


candidates← FindMultiCandidates(string,
search, replace, “anywhere′′, index)

return (candidates)

else return (∅)

Algorithm 4.2.6: IndexOf(string, search, from)

start← from
end← start+ search.length
while (end ≤ string.length)

do



index← SearchString(string, search, start)
if index = −1

then return (−1)

else



start← index
end← start+ search.length
if IsUsed(string, start, end)

then

{
start← start+ 1
end← end+ 1

else return (start)
return (−1)
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Algorithm 4.2.7: ReplaceString(string, search, replace, index)

before← SubString(string, 0, index)
after ← SubString(string, (index+ search.length), string.length)
replaced← before+ replace+ after
MarkUsed(replaced, index, (index+ replace.length))
return (replaced)

Algorithm 4.2.8: FindMultiCandidates(string, search, replace, position, index)

candidates← ∅
candidate← ReplaceString(string, search, replace, index)
candidates← candidates+ candidate
candidateagain← ApplyRuleMultiple(candidate, search, replace, position)
candidates← candidates+ candidateagain
markedstring ←MarkUsed(string, index, (index+ search.length))
stringagain← ApplyRuleMultiple(markedstring, search, replace, position)
candidates← canididates+ stringagain
return (candidates)

Algorithm 4.2.9: SubString(string, start, end)

comment: string returned is inclusive of start but exclusive of end

substring ← ∅
substring.used← ∅
for i← start to end

do

{
substring ← substring + string[i]
substring.used← substring.used+ string.used[i]

return (substring)

The methodology described will ensure that each character edit rule is applied

to each variant where it is possible for it to do so, and also that if more than

one rule is applicable to a variant, all possible combinations of applying these

rules are considered. The candidates list is filtered by whether they appear in

a modern dictionary, or if a candidate appears in the known variants list, the

modern equivalent the variant maps to is added. The performance of this rule

based approach, in terms of precision and recall, will be determined by the rule
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list used. If many rules are present which are likely to be applicable on many

variants, then precision will be lower as an increased number of false positives will

be produced. However, conversely, if the rules produce the correct normalisation

candidate regularly, then recall will be high. Vice versa, if a small set of specific

rules are used, then precision is likely to be improved as the number of candidates

suggested, and hence also false positives, will be reduced; but, recall will be lower

as the specific rules are likely to be less widely usable in finding the correct

replacement.

Pilz et al. (2008) mention a list of “manually crafted letter replacement

heuristics” for EModE spelling normalisation. This list was created by Dawn

Archer at the University of Central Lancashire for use in improving the initial

version of VARD (Rayson et al., 2005) and has been made available for use here

as the default list. 52 ‘letter replacement heuristics’ existed in the original list,

which can all be transformed into character edit rules for use with the methodology

described here. Examples of entries in the list are shown in Table 4.1, along with

how they are converted into rules to be used with Algorithms 4.2.1–4.2.9 and an

example of a variant–normalisation pair to which the rule could be applied. Six

further rules have been added to the default list to reflect casual observations

made on normalisations the rule list was missing. These are given in Table 4.2.

Heuristic Rule Type Search

String

Replac-

ement

String

Position Example

replace initial

‘ with e

Substitution ‘ E Start ‘scaped →
escaped

add final e Insertion E End ther →
there

replace final t

with ed

Substitution T ED End curst →
cursed

remove final

e

Deletion E End loude →
loud

replace a with

e

Substitution A E Anywhere clark →
clerk

Table 4.1: Example rules from default list.
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Heuristic Rule Type Search

String

Replac-

ement

String

Position Example

replace final

ck with c

Substitution C CK End publick →
public

replace final

k with c

Substitution K C End Arabik →
Arabic

replace final

ey with y

Substitution EY Y End spicey →
spicy

replace final

es with s

Substitution ES S End beates →
beats

replace final

th with s

Substitution TH S End orderth →
orders

remove -

from middle

Deletion - Middle to-day →
today

Table 4.2: Rules added to default list.

To demonstrate the use of the character edit rules method, an example result

is shown below for the variant manie, for which the appropriate normalisation

should be many. The rules applied to the variant are given, as well as details of

the extra step from the variants list (noted as KVL), where used.

• Substitute A → O (Anywhere): monie, KVL: money

• Substitute E → A (Anywhere): mania

• Substitute IE → Y (End): many

• Substitute A → I (Anywhere): minie, Delete E (End): mini

• Substitute I → E (Anywhere): manee, Delete E (End): mane

In this example, five candidates are returned by the method, including the

appropriate normalisation.

The candidates returned from the three methods described in this section will

be combined into one list of candidates and offered as potential normalisations.
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The aim of using the three methods in combination is that they will complement

each other and produce a list of likely candidate normalisations whatever the

properties of, and reasons behind, the variant are; the phonetic matching

technique should find the correct candidate if the spelling of the variant is

phonetical, the rule based approach should find the correct candidate if a common

letter change is made due to printing decisions or other reasons and, for some

sources, potentially allow for OCR errors, and the known variants list will account

for unique cases which occur because of other reasons. Of course, there will also

be overlap between the methods; some rules are likely to account for phonetic

similarity (e.g. the interchanging of vowels) and the known variants list will

contain entries that can be found with phonetic matching or the rule based

approach. A final example is given in Table 4.3 of a full candidate list returned

for the variant clapd, which should be normalised to clapped. For each candidate

listed, the methods which returned it are marked with a tick (X).

In this example, the phonetic matching algorithm returns many more results

(and hence, false positives) than the other methods. All methods return the

correct normalisation. Our attention now turns to ranking the combined candidate

list in order to ensure that the candidate deemed most likely to be correct is

suggested first. Which methods and how many methods found a candidate shall

strongly influence its ranking.

4.2.2 Ranking Candidates

For automatic normalisation to take place, a long list of candidate normalisations

is of little use without being ranked in some way, as the most likely candidate

needs to be chosen. Even for manual normalisation, it would be useful for the

candidates to be ranked so that the correct normalisation is more likely to be

at the top of the offered list. Here, several steps are discussed with the aim of

attaching a useful confidence score to each candidate, which will, in turn, allow the

list to be ranked. The overall aim of the ranking procedure is to have the correct

candidate ranked first with a high confidence score and incorrect candidates given

considerably lower confidence scores.
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Candidate

Known

Variants

List

Phonetic

Matching

Character

Edit Rules
No.

caliphate X 1

calved X 1

celibate X 1

childbed X 1

clapped X X X 3

cleaved X 1

cleaves X 1

cleft X 1

clepes X 1

clip X 1

clipped X X 2

clopped X 1

clubbed X 1

clubfeet X 1

clubfoot X 1

slapped X 1

Total: 1 15 3

Table 4.3: Candidate list for clapd returned from full set of methods.

Edit Distance

One method introduced in Section 2.2.3, string similarity measures, were not

used to find candidates, but can be used to provide an additional method for

distinguishing between candidates and aid in ranking. Minimum edit distance is

the most commonly used method for calculating string similarity, whereby the

minimum number of operations (insertions, deletions and substitutions) required

to transform one spelling to another is calculated. Unfortunately, the processing

time required to compare a variant spelling to every word in a dictionary makes

using an edit distance method to find candidate normalisations unworkable.

However, calculating the minimum edit distance between a variant and a small

subset of the dictionary is achievable. Such a subset is returned in the form of
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a candidate list from the methods described in Section 4.2.1. A minimum edit

distance shall be calculated for each candidate in this list, which will be the first

stage in calculating confidence scores.

Levenshtein Distance (Levenshtein, 1966) is the most popular method of

calculating the minimum edit distance between two words. Pseudocode for

calculating the distance is given in Algorithm 4.2.10. The algorithm works by

creating a matrix, an example of which is given in Table 4.4 from using Levenshtein

Distance to compare clapd and clipped. In every cell of the matrix the minimum

edit distance between the prefixes of the two words up to that point is present.

The minimum edit distance between the two full words is therefore present in

the bottom-right corner of the matrix; therefore, in the example in Table 4.4, the

minimum edit distance is 3.

Algorithm 4.2.10: LevenshteinDistance(s1, s2)

for i← 0 to s1.length
do matrix[i][0]← i

for i← 1 to s2.length
do matrix[0][i]← i

for i← 1 to s1.length

do



for j ← 1 to s2.length

do



if s1[i− 1] = s2[j − 1]
then cost← 0
else cost← 1

a← matrix[i− 1][j] + 1 comment: Deletion

b← matrix[i][j − 1] + 1 comment: Insertion

c← matrix[i− 1][j − 1] + cost comment: Substitution

matrix[i][j]←Minimum(a, b, c)
return (matrix[s1.length][s2.length])
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C L I P P E D

0 1 2 3 4 5 6 7

C 1 0 1 2 3 4 5 6

L 2 1 0 1 2 3 4 5

A 3 2 1 1 2 3 4 5

P 4 3 2 2 1 2 3 4

D 5 4 3 3 2 2 3 3

Table 4.4: Matrix created when using Levenshtein Distance to compare clapd and

clipped.

One problem with the Levenshtein Distance is that the length of the strings

being compared is not taken into account; common sense dictates that an edit

distance cost of 2 between two strings of length 4 has more impact than a cost

of 2 on two strings of length 10. To solve this problem, the distance can be

simply normalised by the length of the two strings being compared. The formula

used, shown in Equation 4.1, was considered by (Sampson & Babarczy, 2003) in

their study of parsing accuracy. S is the similarity between the two strings being

compared: x and y.

S = 1− distance(x, y)

length(x) + length(y)
(4.1)

This returns a similarity score between 0 and 1; 0 meaning the two strings bear no

similarity and 1 meaning the strings are exactly the same. For the example given

in Table 4.4, the similarity score (S) between clapd (x) and clipped (y) would be

1− 3
5+7

= 0.75.

Table 4.5 shows the candidate list from Table 4.3 ranked by the similarity score

calculated against clapd, the raw Levenshtein Distance (LD) is also given. The

correct normalisation is ranked first, so, at least in this example, the similarity

score is useful towards reaching a confidence measure to rank on. However, several

candidates are still equally ranked and some clearly unlikely candidates have fairly

high scores; further evidence is required to contribute to a useful confidence score

for ranking.
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# Candidate LD S

1 clapped 2 0.833

2 clip 2 0.778

3 cleaved 3 0.750

3= clipped 3 0.750

3= clopped 3 0.750

3= slapped 3 0.750

4 calved 3 0.727

4= clepes 3 0.727

5 cleft 3 0.700

6 cleaves 4 0.667

6= clubbed 4 0.667

7 celibate 5 0.615

7= childbed 5 0.615

8 caliphate 6 0.571

9 clubfeet 6 0.538

9= clubfoot 6 0.538

Table 4.5: Standardisation candidates for clapd ranked by similarity score (S).

Method Penalties

In Section 4.2.1 it was shown that both the phonetic matching and character

edit rule methods use the known variants lists as an extra step for finding some

candidate replacements. However, in the final list of candidates produced, whether

this extra step was taken is not considered and all candidates are treated equally.

Here, we rectify this by imposing a penalty on any candidate found by a two-

stage process. This is implemented by attaching a score linking a candidate

normalisation to each of the methods used to find candidates. If a method does

not find a given candidate, the score is 0; if a method does find the candidate

using only one step, the score is 1; and if a method finds the candidate but needs

to use two-steps (e.g. phonetic matching via the known variants list), the score is

0.86.

60.2 is chosen as the default penalty to impose, although any other figure (between 0 and 1)

could be used in a final implementation.
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In the specific case of the character edit rules method, another penalty can

also be applied. As described, candidates can be found by applying multiple

character edit rules to a given variant. However, all candidates returned are

treated equally and how many rules were needed to find the candidate is not

taken into consideration. This is rectified by imposing a 0.17 penalty for every

rule required after the first rule application.

The known variants list method only ever requires one step, so here a score of

1 will be given if the correct variant–normalisation pair is present, or 0 otherwise.

For each candidate, three scores will now be available, these can be used

along with the similarity score (edit distance) described above and combined into

one score using an average8 (mean9), which could be considered a confidence

measure. Table 4.6 shows this process for the list of candidates given for the

variant clapd in Table 4.3, the entries are ranked by the average score. For this

example, the correct candidate is ranked highest and has a score substantially

higher than the second placed candidate, there are also fewer equally ranked

candidates (compared to Table 4.5). The methods are given as KVL: Known

Variants List, PM: Phonetic Matching, CER: Character Edit Rules and ED: Edit

Distance (similarity measure). These are the four base methods used throughout

the remainder of the research presented in this thesis to find and score a list of

candidates10.

7Again, a default penalty to impose is chosen, but any other figure (between 0 and 1) could

be used in a final implementation.
8An average is used here because no knowledge is available (at this point) to judge if certain

methods are likely to be more reliable, and hence given more weight. It shall be shown later

that knowledge of a method’s performance in previous normalisations can be used to alter the

balance between the four scores.
9For the four scores (S): mean =

∑4
i Si

4 .
10Whilst edit distance is not used directly to find candidates, it can be considered equivalent

to the other three methods because a score is given to each candidate which could be

deemed equivalent to the edit distance method’s confidence that the candidate is the correct

normalisation.
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# Candidate KVL PM CER ED Avg.

1 clapped 1.0 1.0 0.8 0.833 0.908

2 clipped 0.0 1.0 0.7 0.750 0.613

3 cleaved 0.0 1.0 0.0 0.750 0.438

3= clopped 0.0 1.0 0.0 0.750 0.438

4 calved 0.0 1.0 0.0 0.727 0.432

5 cleft 0.0 1.0 0.0 0.700 0.425

6 clubbed 0.0 1.0 0.0 0.667 0.417

7 celibate 0.0 1.0 0.0 0.615 0.404

8 clip 0.0 0.8 0.0 0.778 0.395

9 caliphate 0.0 1.0 0.0 0.571 0.393

10 clubfeet 0.0 1.0 0.0 0.538 0.384

10= clubfoot 0.0 1.0 0.0 0.538 0.384

11 clepes 0.0 0.8 0.0 0.727 0.382

12 cleaves 0.0 0.8 0.0 0.667 0.367

13 slapped 0.0 0.0 0.7 0.750 0.363

14 childbed 0.0 0.8 0.0 0.615 0.354

Table 4.6: Standardisation candidates for clapd ranked by average of method

scores.

Considering Precision and Recall

Up until this point, calculating a confidence score has been solely based upon

the individual candidate’s score for each method. These scores can be defined

as the method’s predicted recall for the candidate being offered, in that they

are estimated probabilities that the candidate is correct for the variant being

normalised. The definition can be justified as follows. In classification problems,

recall is calculated as tp
tp+fn

, where tp is true positives (how many of the items of

a particular class have been classified as belonging to that class) and fn is false

negatives (how many of the items of a particular class have not been classified as

belonging to that class). For a single variant normalisation, tp + fn will always

equate to 1 because there is only ever one correct normalisation available for a
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given variant.11 Hence, recall is equivalent to tp alone ( tp
1

= tp). For a predicted

recall, whether the candidate is a true positive can not be known until the correct

normalisation is chosen. However, for each candidate offered, four scores between

0 and 1 link a candidate to each method, these scores could be considered the

method’s predicted probability that this candidate is correct, or a predicted true

positive (tp). As recall here is equal to tp, then for each method the predicted

recall for a candidate is its score.

As well as recall, precision is also important in terms of automatic normalisa-

tion, in fact in many cases more so. High precision is key in order to ensure that

any normalisations made are, in the vast majority of cases, correct. Otherwise,

additional noise would be added to the text, making the problems that spelling

variation causes worse. It was shown in Section 4.2.1 that the different methods

offer varying numbers of candidates; from the known variants list method which

generally returns only one candidate if the variant is present, to the phonetic

matching algorithm which often returns high numbers of dictionary words with

the same phonetic code as the variant. As only one candidate can be correct,

any other candidates can be considered false positives12 (fp). This should be

taken into account because if a method is offering just one or two candidates to

which it attaches high confidence scores, then this is more useful than a method

which offers many candidates with high scores with a preferred candidate hard to

distinguish. Precision is calculated as tp
tp+fp

in classification problems, this can be

used to calculate a predicted precision for a method’s candidate suggestion. As

with recall, the tp can be predicted using the candidate method score. A predicted

fp is also needed because whether a candidate is a false positive is not known until

one of the candidates is chosen as correct. If a tp is predicted by the candidate’s

method score, it follows that the fp can be predicted by summing the method

score for every other candidate offered; as these are the predicted tps for each

candidate. tp+ fp is the full set of candidate scores offered by the method, hence

the predicted precision (P ) for each candidate (i) can now be calculated as shown

11It could be argued that in some cases the appropriate normalisation is ambiguous or would

cause disagreement. However, any automatic normalisation procedure can only aim to achieve,

as an upper limit, the performance of manual normalisation.
12In classification problems the false positives rate is how many of the items classified as

belonging to a particular class do not belong to that class.
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in Equation 4.2, where S is the method score and n is the number of candidates

suggested.

Pi =
Si
n∑
j=1

Sj

(4.2)

The predicted precisions can be calculated for each of the candidates found

for the clapd example. These are shown in Table 4.7 along with the scores from

Table 4.6 which are now predicted recalls.

# Candidate
KVL PM CER ED

R P R P R P R P

1 clapped 1.0 1.0 1.0 0.070 0.8 0.364 0.833 0.076

2 clipped 0.0 0.0 1.0 0.070 0.7 0.318 0.750 0.068

3 cleaved 0.0 0.0 1.0 0.070 0.0 0.000 0.750 0.068

3= clopped 0.0 0.0 1.0 0.070 0.0 0.000 0.750 0.068

4 calved 0.0 0.0 1.0 0.070 0.0 0.000 0.727 0.066

5 cleft 0.0 0.0 1.0 0.070 0.0 0.000 0.700 0.064

6 clubbed 0.0 0.0 1.0 0.070 0.0 0.000 0.667 0.061

7 celibate 0.0 0.0 1.0 0.070 0.0 0.000 0.615 0.056

8 clip 0.0 0.0 0.8 0.056 0.0 0.000 0.778 0.071

9 caliphate 0.0 0.0 1.0 0.070 0.0 0.000 0.571 0.052

10 clubfeet 0.0 0.0 1.0 0.070 0.0 0.000 0.538 0.049

10= clubfoot 0.0 0.0 1.0 0.070 0.0 0.000 0.538 0.049

11 clepes 0.0 0.0 0.8 0.056 0.0 0.000 0.727 0.066

12 cleaves 0.0 0.0 0.8 0.056 0.0 0.000 0.667 0.061

13 slapped 0.0 0.0 0.0 0.000 0.7 0.318 0.750 0.068

14 childbed 0.0 0.0 0.8 0.056 0.0 0.000 0.615 0.056

Table 4.7: Standardisation candidates for clapd with predicted recall (R) and

predicted precision (P) for each method.

The next stage is to combine the precision and recall scores to produce one

confidence score for each candidate. In Table 4.6, it was shown how a simple

average (mean) of the method scores can be used for ranking the candidates.

Using the definitions above, this can now be used as an average predicted recall.
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However, it would not be sensible to use the same method to combine methods’

predicted precisions. Doing so would mean that one method’s high precision

would be negated by another method’s low precision. Logically, a candidate’s

predicted precision should be based on the most specific method which found it.

We therefore take the maximum precision score from the four methods as our

overall predicted precision for the candidate. We now have an overall predicted

precision and predicted recall for each candidate. If all methods find a given

candidate, then high recall will be predicted. If only one method finds the

candidate then the predicted recall will be low. For predicted precision, this

will be high if a method returns the candidate with few other suggestions. If all

methods returning the candidate also suggest many other candidates, predicted

precision will be low.

In order to rank the candidates, a single combined score is required. An F-

Score is commonly used to combine precision and recall scores, it can be calculated

as shown in Equation 4.3, with β being a non-negative value which dictates the

balance between precision (P ) and recall (R).

Fβ = (1 + β2) · P ·R
(β2 · P ) +R

(4.3)

For example, β could be set to 2 and recall would be weighted twice as much as

precision, or if β = 1
2
, then precision would be weighted twice as much as recall.

Setting β to 1 balances recall and precision equally. The simplified equation for

F1 is shown in Equation 4.4, this is equivalent to the harmonic mean of recall and

precision.

F = 2 · P ·R
P +R

(4.4)

In Table 4.8, we demonstrate the use of the F1 measure, although different

values for β could be used in an end system depending on the user’s desire to

prioritise either precision or recall. For the example shown, the results are a

further improvement on those just using the method scores (Table 4.6). The

top, and correct, candidate now has a score more than double that of the second

placed candidate, other candidates further down the rankings have been given
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considerably lower scores13. One main difference is the promotion of slapped to

third ranked due to the character edit rules method having a higher predicted

precision than the phonetic matching method.

# Candidate Avg. Recall Max. Precision F-Score

1 clapped 0.908 1.000 0.952

2 clipped 0.613 0.318 0.419

3 slapped 0.363 0.318 0.339

4 cleaved 0.438 0.070 0.121

4= clopped 0.438 0.070 0.121

5 calved 0.432 0.070 0.121

6 cleft 0.425 0.070 0.121

7 clubbed 0.417 0.070 0.120

8 clip 0.395 0.071 0.120

9 celibate 0.404 0.070 0.120

10 caliphate 0.393 0.070 0.119

11 clubfeet 0.384 0.070 0.119

11= clubfoot 0.384 0.070 0.119

12 clepes 0.382 0.066 0.113

13 cleaves 0.367 0.061 0.104

14 childbed 0.354 0.056 0.097

Table 4.8: Standardisation candidates for clapd ranked by F1-Score.

Through the addition of the edit distance similarity measure, penalising

methods’ scores if they employ extra steps to find a candidate and by predicting

and combining recall and precision scores, it has been shown how candidates

found through the methods described in Section 4.2.1 can be ranked to allow for

the most likely candidate to be offered first and with a high confidence score. This

is based on just the method scores for the candidate and the scores for alternative

candidates also returned. No prior knowledge, in terms of how successful methods

have been for normalisation previously, is taken into account. Another problem

13Although for some candidates the scores are equal at the degree of precision used here,

there are differences at a higher degree. The candidates which have exactly the same score are

marked (=).

119



4.2 Spelling Variant Normalisation

is that the rankings rely heavily on how specific a method is in determining its

candidates. If a method returns just 1 or 2 candidates with high scores, it is likely

that these candidates will be ranked highest. What is not taken into account is how

successful a method is likely to be at predicting the correct candidates. It may be

the case that a method is particularly bad at predicting the correct candidate (low

recall), if the method also only produced a small number of candidates (and with

high confidence scores) it is likely that these candidates will be ranked highly. We

now move on to adding knowledge of previous normalisations to improve results

through training.

4.2.3 Improvement Through Training

The need for a non-static normalisation tool has been highlighted previously

through the analysis of EModE spelling variation characteristics in Section 3.3.

It was shown that whilst EModE corpora contain many similarities in terms of

the spelling variants present, subtle differences between individual corpora were

found. A generic EModE spelling normalisation tool would not be able to take

these nuances into account. In order to produce a more dynamic normalisation

procedure which can be trained to deal with the specific spelling variation trends

in a particular corpus, the success of each method in previous normalisations needs

to be taken into account when ranking candidates.

Improving the Known Variants List Method

The first training technique described is aimed at specifically improving the

performance of the known variants list method. Despite the list used having

several iterations of corrections, there will inevitably still be mistakes in the list.

These could be problematic if the variants list as a whole becomes a key indicator

of the correct normalisation due to it performing well in general. Additionally, the

list will be by no means complete; as discussed previously (Section 2.1.2), creating

a full list of variants and their modern equivalents would be nearly impossible due

to the wide variety of spellings present in EModE corpora. Therefore, being able

to add to the variants list through training would be desirable. To account for

these problems, the variants list procedure can be extended to include data from

previous normalisation made. This can be achieved in a similar manner to that
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used to keep track of how successful each full method has been, but instead keep

track of each individual entry in the variants list. New variant–normalisation pairs

can also be added to the list when encountered.

As discussed in Section 4.2.1 (Known Variant List), the list of variants are

stored in a trie (see Section 4.1.2). For each variant in the trie, a list of candidate

normalisations is present. For each variant–candidate pair, the candidate can

have a usage number incremented (the usage number begins at 1 as the variants

list is counted as 1 instance of training). If the normalisation has not been used

before for the current variant, a new candidate can be added to the variant’s

list, with a usage number of 1. If the variant itself is not present in the list, the

variant can be added to the trie, with the normalisation as its only candidate

(again with usage 1). From a variant’s list of candidates and their usage, a total

usage for that variant can be gained by summing the list’s usage numbers. The

candidate’s score for the KVL method can now be calculated by simply dividing

the candidate usage by the variant usage. As the vast majority of variants in

the list only have one candidate present, this score will normally be 1. However,

for where there is ambiguity through multiple candidates, the candidate which

has been used on more occasions previously will take preference through a higher

score. If the candidates have a similar usage number, then their score will be

reduced in terms of precision (as before). This will result in erroneous entries in

the variants list having less of an impact on normalisation accuracy as the more

appropriate normalisation will gain a higher score through training.

As an example, a variant, clapd, in the list contains two candidates, clapped

and clappd, with clappd being an erroneous entry, which is indicated through

clapped being present as a normalisation 8 times during training, with clappd

never seen. Previously, each candidate would receive a precision score of 0.5 for

the KVL method, despite the training. The KVL method as a whole may perform

well for other variant normalisations, hence the KVL method as a whole could

receive a high precision score. With the extension described here, after training

the clapped candidate would have a usage number of 9, with clappd remaining at

1. Thus, the KVL candidate score for clapped would be 0.9 (9/(9 + 1)), and for

clappd it would be 0.1 (1/(9 + 1)). Clearly, this is preferable as the appropriate

normalisation, clapped, would be ranked much higher than clappd.
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As the phonetic matching and character edit rules methods also use the

variants list to find candidates, the scores produced by the KVL training procedure

also need to be taken into account when candidates are found using a combination

of methods. This is achieved by simply multiplying the KVL candidate score by

the previously used score (e.g. 0.8 for PM, or 0.7 for CER – see Table 4.6). This

will ensure that an erroneous entry (as in the example above) will not be offered

via two methods with a high score (after training). At the same time, the scores of

appropriate normalisations will receive the same scores as before, or very slightly

reduced if affected by other entries (as with clapped in the example above).

Using Training to Improve Ranking

To determine how successful a method is likely to be at predicting the correct

candidate for future normalisations in a particular corpus, the previous normali-

sations made in that corpus need to be taken into account. During training, each

normalisation made can be analysed and the performance of each method assessed

in terms of: whether the correct candidate was suggested by the method, and if

so, at what confidence score was it suggested; and how many other candidates

were also suggested by the method, and at what confidence scores. By keeping

track of these figures, a cumulative recall and cumulative precision of each method

can be calculated.

The procedure for calculating the cumulative recall and precision for methods

is as follows. For each method (KVL, PM, CER and ED), the previously used true

positives, false positives and false negatives are incremented for each normalisation

in the training data to create cumulative scores. The Cumulative True Positives

rate (CTP ) equates to how often the correct candidate is suggested by a method.

Instead of adding 1 to the figure (as is normally the case in similar methodology in

classification problems), we use the confidence score at which the correct candidate

was offered by the method. Thus, if a method is consistently predicting the correct

candidate with high confidence, CTP will increase quickly, if a method is offering

the correct candidate but only with low confidence, CTP will still increase but

at a slower rate, if a method never offers the correct candidate, CTP will not

increase at all. CTP can be calculated as shown in Equation 4.5, where n is the

122



4.2 Spelling Variant Normalisation

number of previous normalisations and Sc is the correct candidate’s method score

for each normalisation.

CTP =
n∑
i=1

Sc (4.5)

The Cumulative False Positives rate (CFP ) measures the number of extra

candidates offered by a method; for every alternative candidate offered, CFP will

be incremented. As with CTP , the confidence score given to each alternative

candidate can be added to CFP rather than adding 1 for each. Thus, if a method

offers many alternatives with high confidence scores, CFP will increase quickly,

if just a few candidates are offered at high scores or many candidates are offered,

but at low scores, then CFP will rise less quickly, and if a method offers no

alternatives, CFP will not increase at all. A method’s FP value for each previous

candidate (i) can be calculated as shown in Equation 4.6, where m is the number

of candidates offered by the method, Sj is each candidate’s confidence score and

Sc is the correct candidate’s score. CFP can then be calculated as shown in

Equation 4.7.

FPi =

(
m∑
j=1

Sj

)
− Sc (4.6)

CFP =
n∑
i=1

FPi (4.7)

The Cumulative False Negatives rate (CFN) is essentially the opposite of

CTP , i.e. how often the correct candidate is not offered by the method. As there

is only one correct candidate available for each normalisation, TPi and FNi will

sum to 1 for each normalisation (this is discussed on page 116), hence 1 − TPi

can be added to represent FNi for each candidate. Thus, CFN is calculated as

shown in Equation 4.8.

CFN =
n∑
i=1

(1− Sc) (4.8)

From these three figures, the cumulative recall (CR) and cumulative precision
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(CP ) of each method can be calculated as shown in Equation 4.9 and Equa-

tion 4.10 respectively.

CR =
CTP

CTP + CFN
(4.9)

CP =
CTP

CTP + CFP
(4.10)

To exemplify the use of cumulative recall and precision, a manually normalised

sample of Shakespeare text, as introduced in Section 3.2.1, was parsed for

normalisations, with 959 variant–normalisation pairs found. Training was

performed by using each variant from these pairs and searching for candidates

as described in Section 4.2.1, the edit distance method was also used to attach

a similarity score to each candidate found. Using the correct normalisation from

each of the 959 pairs, CTP , CFP and CFN were calculated as described, which

enabled the calculation of each method’s CR and CP . The results of this training

procedure are shown in Table 4.9.14

Method CTP CFP CFN CR CP

KV 816.003 22.997 143.997 0.850 0.973

PM 840.967 46329.646 119.033 0.876 0.018

LR 691.167 1148.783 268.833 0.720 0.376

ED 784.342 30152.169 175.658 0.817 0.025

Table 4.9: Cumulative recall and precision of methods after training with 959

manual normalisations of Shakespeare text.

The results show that for the Shakespeare text normalisation, the phonetic

matching (PM) method was most useful in terms of recall and the known variants

list method was the most useful in terms of precision. All methods had reasonably

high recall, but phonetic matching and edit distance (ED) had particularly bad

scores for precision15.

14Each of CTP , CFP and CFN begin at 0.5 in order to give CR and CP figures of 0.5.

Hence, CTP + CFN = 959 + 0.5 + 0.5 = 960.
15This is to be expected for phonetic matching with it being notoriously low precision (see

Section 2.2.3). This will have a knock on effect with edit distance as all candidates found with

phonetic matching will have an edit distance score calculated.
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These cumulative recall and precision figures are good indications of how

successful the methods will be in finding candidates for other variants in the

Shakespeare texts. Hence, the results need to influence the ranking of future

suggested candidates. To achieve this, the cumulative recall and cumulative

precision scores are combined with the predicted recall and predicted precision

scores (as calculated in Section 4.2.2) when calculating the F-Score used to rank

candidates. The combined recall (RΨ) is calculated as shown in Equation 4.11,

with the cumulative recall (CR) and predicted recall (PR) for each method (m).

Calculating the combined recall in this manner allows the cumulative recall scores

to act as weights; i.e. if a method has a higher cumulative recall, whether a

candidate is found by that method and with what score has a larger impact on

the candidate’s combined recall.

RΨ =

4∑
m

(CRm · PRm)

4∑
m

CRm

(4.11)

With the predicted precision, the maximum method precision was taken (see

page 118). Here, we use the product of the predicted precision (PP ) and

cumulative precision (CP ) to get a combined precision for each method. We

then, as before, take the maximum combined method precision as our overall

combined precision (PΨ), as shown in Equation 4.12.

PΨ = max
m

(CPm · PPm) (4.12)

As before, the combined recall and combined precision can be merged into

one score with an F-Score (Equation 4.3), which can be used to rank candidates.

Table 4.10 shows the normalisation candidates from the variant clapd (the same

example used in the previous section) ranked by the F1-Score, which is the

harmonic mean between the combined recall and combined precision. As can

be seen, the top, and correct, candidate is now even further away from the other

candidates in terms of its confidence score. The majority of the lower-ranked

entries now have negligible scores.

With the training technique shown here, the likely precision and recall for

the four methods can be set for a particular dataset through training with
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# Candidate Combined Recall Combined Precision F-Score

1 clapped 0.914 0.973 0.942

2 clipped 0.611 0.120 0.120

3 slapped 0.342 0.120 0.177

4 clip 0.410 0.002 0.004

5 clopped 0.456 0.002 0.003

5= cleaved 0.456 0.002 0.003

6 calved 0.451 0.002 0.003

7 clepes 0.397 0.002 0.003

8 cleft 0.444 0.002 0.003

9 clubbed 0.435 0.002 0.003

10 cleaves 0.382 0.002 0.003

11 celibate 0.423 0.001 0.003

12 childbed 0.369 0.001 0.003

13 caliphate 0.412 0.001 0.003

14 clubfeet 0.403 0.001 0.003

14= clubfoot 0.403 0.001 0.003

Table 4.10: Standardisation candidates for clapd ranked by combined F1-Score

after training with manual Shakespeare normalisations.

manually normalised variants. The individual methods are likely to have varying

performance levels depending on, for example, text type, genre or date of

publication. This training ability allows for the normalisation procedure to be

tuned for a particular corpus, increasing the likelihood of the correct candidate

being ranked highest and also having a high confidence score, this will in turn

lead to more accurate normalisation. How well the training procedures described

perform will be evaluated in Section 5.2.1.

4.2.4 Summary of Normalisation Procedure

This section has introduced methods for finding and ranking candidate normali-

sations for a spelling variant, ranking is based on the current candidate list and

how each candidate was found, but also previous normalisations are taken into

account to improve the likelihood that previously successful candidates are scored

126



4.2 Spelling Variant Normalisation

and ranked higher. The following steps represent a summary of those taken in the

methodology described to produce a list of candidate normalisations for a given

spelling variant, ranked by a confidence score:

1. Create a list of candidate normalisations from three methods:

• Known variants list

• Phonetic matching

• Character edit rules

2. The predicted recall of the three methods for each candidate is calculated

as follows :

(a) For the known variants list: divide the number of times the candidate

has been previously chosen as the appropriate candidate by the number

of times any candidate has been offered for the current variant by the

known variants list method.

(b) For other methods: give a score of 1 if the method returns the

candidate, 0 otherwise.

(c) Penalise the character edit rules method score by 0.1 for each rule used

after an initial rule edit.

(d) If the known variants list is used as an additional step: penalise the

method score by 0.2 and multiply the resulting score by the candidate’s

known variants list method score.

3. Produce an edit distance similarity score for each candidate and use this as

the predicted recall for the edit distance method.

4. Calculate method’s predicted precision (including edit distance’s) for each

of their candidates by dividing the candidate’s method score by the sum of

all of the method’s suggested candidates’ method scores.

5. Calculate the cumulative recall for each method (and edit distance similar-

ity) by dividing the sum of all previous correct candidate method scores (or

similarity scores) by the number of previous normalisations made.

127



4.3 VARD 2

6. Calculate the cumulative precision for each method (and edit distance

similarity) by dividing the sum of all previous correct candidate method

scores (or similarity scores) by the sum of all previously suggested candidate

method scores (or similarity scores).

7. Combine the predicted recall scores for each method with an average

weighted by the cumulative method recall scores.

8. For each method, calculate the product of the cumulative and predicted

precisions and take the maximum product found as the combined precision

for the candidate.

9. Merge the combined recall and precision scores into an F-Score for each

candidate and use this as a confidence score to rank the candidates list.

With the ranked list produced, normalisation could be performed either

automatically or manually. For automatic normalisation, the candidate with the

highest confidence score could be chosen as the normalisation. This procedure

can be enhanced by using a threshold which the top candidate’s confidence score

must reach for the normalisation to take place. This should improve precision

as normalisations will only be made when there is high enough confidence of

the candidate being appropriate – this shall be evaluated in Section 5.2.2. For

manual normalisation, the ranked list of candidates could be presented to the

user for consideration, the user could then choose the appropriate candidate from

the list (if the appropriate normalisation is not present, the user should have the

option to provide their own word). In the next section, a piece of software will be

introduced which implements the methodology described here (and in previous

sections) for detecting and both automatically and manually normalising spelling

variation in single texts and entire corpora.

4.3 VARD 2

In this section a spelling normalisation tool will be described which implements

the methods described in Sections 4.1 and 4.2 to provide the ability to detect

and normalise spelling variants in EModE texts. The tool, named VARD 2

(VARiant Detector), builds upon the first iteration of VARD (Rayson et al., 2005)

128



4.3 VARD 2

(see Section 2.3.1), adding much increased functionality and performance. The

VARD 2 software was developed in Java and several iterations have been made

available for use in academic research16, with a user guide also available17.

There are three main components of VARD 2: the interactive mode, which

allows a user to manually normalise spelling variants, choosing from the list of

candidates produced for each variant; an automatic (batch) mode, which allows

multiple texts to be normalised automatically using the highest ranked candidates

found; and finally, VARD 2 can be trained and customised in various ways to

allow a user to tune the tool to their corpus. Here, these three components will

be described, showing how the methods detailed in the previous sections can be

used in a practical sense.

4.3.1 Interactive Processing

The interactive mode, a screenshot of which is given in Figure 4.2, allows a

user to manually normalise a single text. The text is tokenised as described in

Section 4.1.3, although the regular expression defining how words are detected can

be customised by the user (see Section 4.3.3). Each word found is then looked up in

the dictionary using the trie lookup method described in Section 4.1.2, with words

found in the modern word list marked as “Not variants” and all others marked as

“Variants”. The list of variants can be displayed to the user and highlighted in the

text. For each variant, a ranked list of candidates can be displayed, this is created

using the methodology described in Section 4.2. A user can choose from this list

of candidates and normalise the variant instance, or all instances of that variant

in the text, to the candidate chosen. The user also has the option to provide their

own word to normalise the variant to, if the required candidate is not present.

For each candidate, information for how the candidate was found and ranked is

also given. This includes its overall confidence score (F-Score as calculated in

Section 4.2.3) and the predicted F-Score, precision and recall for each candidate

finding method (see Section 4.2.2). The current cumulative F-Score, precision and

recall (see Table 4.9) are also shown for each method at the bottom of the screen18.

16http://www.comp.lancs.ac.uk/~barona/vard2/availability.php
17http://www.comp.lancs.ac.uk/~barona/vard2/userguide.php
18All figures given are displayed as a percentage rather than a decimal between 0 and 1 (as

used in the previous sections). This simplifies the display for the user.
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Once a candidate is chosen to normalise a variant, the normalisation is used as

training data to adjust the future ranking of candidates (see Section 4.2.3). The

normalisation is also added to the “Normalised” list which can be reviewed by

the user, and normalisations reversed if necessary. Variants can also be marked as

not needing normalisation by the user and subsequently added to the dictionary

so future instances are not marked as variants. Furthermore, the “Not variants”

list can be viewed and the user can mark words as being variants where necessary

(this may include real-word variants – see Section 3.3.1). These words can then

be removed from the dictionary so that future texts will have instances of the

word marked as variants for normalisation. Other options available to the user

include: joining two or more words separated by white space into a single word

for processing (e.g. to morow); adjusting the F-Score recall and precision balance

(β – see Equation 4.3), which will in turn affect the ranking of candidates based

on whether recall or precision is the priority; and automatically normalising the

entire text using the same procedure described in Section 4.3.2.

Figure 4.2: Screenshot of interactive processing mode of VARD 2.
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The options provided by the interactive mode allow a user to manually fully

process a single EModE text, a small corpus or training samples from a larger

corpus. The text can then be outputted in the form of a normalised text with

changes made marked with the following XML tags:

• <normalised orig="[variant form]" auto="[true/false]">

[normalised form]</normalised>

Any normalisation made by the user or automatically.

• <variant>[word]</variant>

Any word originally found in the dictionary but marked as variant by user.

• <notvariant>[word]</notvariant>

Any word originally marked as a variant, but marked as being not a variant

by the user.

• <join orig="[old string]">[new string]</join>

Two or more words joined into a single word.

With the text in this form, the vast majority of corpus linguistics tools will

treat the XML tags as meta-data, or can be customised to do so, and so the

normalised text will be processed instead of the original text containing spelling

variation. If the XML output is opened in VARD 2 again, the XML tags will

be recognised and words placed in categories accordingly. VARD 2 can also be

re-trained with this XML output, as described in Section 4.3.3. Also, DICER

can examine the XML output to find character edit rules, this process will be

described in Section 4.4.

4.3.2 Automatic Processing

Manually normalising each text in a large corpus is likely to be too time-

consuming in most cases, particularly if the very large EModE datasets such

as the 25,000 EEBO transcriptions (see Section 2.1.3) are considered. Therefore,

an automatic normalisation mode of VARD 2 has also been developed. This mode

allows a user to batch process any collection of text files, with an automatically

normalised version of each file outputted (with XML tags marking normalisations

as described above). Variants are detected in the same manner as in the interactive
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mode and each variant word (type) found is looked at in turn. The same

candidate normalisation lists are produced, but only the highest rank candidate

is considered, with all other candidates discarded. The confidence score attached

to the top candidate is compared to a user-defined threshold, if higher than the

threshold then the variant is normalised with the candidate, otherwise the variant

is left in its original state. This ensures that, with a high enough threshold set,

normalisations are only made when the system is ‘confident’ of the candidate

being appropriate. Setting a higher threshold will thus increase the precision of

automatic normalisation, conversely setting a lower threshold will increase recall.

The effect of the normalisation threshold shall be evaluated in Section 5.2.2. As

in the interactive mode, the user also has the option to control the ranking of

candidates by adjusting the F-Score precision and recall balance. The batch

processing can be completed using the interface shown in Figure 4.3 or with a

command-line version.

Figure 4.3: Screenshot of batch processing mode of VARD 2.
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4.3.3 Training and Customisation

In order to make VARD 2 usable for the wide range of EModE corpora available

(see Section 2.1.3) and to allow it to be able to handle the subtle differences

in spelling variation characteristics between different sources (see Section 3.3),

it is important that the tool is both customisable and trainable. Training can

be achieved by examining normalisations made in the interactive mode, using

the methodology described in Section 4.2.3 to influence the ranking of future

normalisation candidates. A further method for training is available in VARD 2’s

training mode, a screenshot for which is shown in Figure 4.4. This allows a

set of normalised text files containing VARD 2 XML tags to be used as training

data. Every <normalised> tag is examined with the variant and normalised forms

extracted and used to train VARD 2 as if selected in the interactive mode19. This

is useful to train an instance of VARD 2 on some previously normalised training

data and can also be used with texts normalised by other means, such as the

Innsbruck Letters corpus utilised in Chapter 3, providing the normalisations are

first converted into VARD 2 XML tags.

Figure 4.4: Screenshot of training mode of VARD 2.

There are various ways in which VARD 2 can be customised to deal with

a particular corpus. For reading text files, a user can set the text encoding to

be used (e.g. US-ASCII, UTF-8, etc) and indicate how meta-data is marked by

19Only normalisations marked as not being made automatically (through the auto attribute)

are considered.

133



4.4 DICER

stating what structures VARD 2 should ‘ignore’, e.g. between XML tags (<...>).

How words are detected can be set through a regular expression indicating which

characters should be considered letters (see Section 4.1.3). The user can also

manually change the known variants list, modern word list or rules list should

external data be available; for example, rules can be taken from the DICER tool

described in Section 4.4, or a user may wish to include different word groups from

SCOWL (see Section 4.1.1).

With the VARD 2 tool, academic researchers are able to normalise their

EModE corpora both manually and automatically to alleviate the issues spelling

variation causes to corpus linguistic research; as described in Section 3.2. How well

the methodology employed in VARD 2 performs will be evaluated in Chapter 5,

with a case study detailing the use of the tool in the release of an EModE corpus

given in Section 5.3. Our attention now turns to a supplementary development

for finding and analysing character edit rules, which can be used in VARD 2.

4.4 DICER

This section shall describe DICER (Discovery and Investigation of Character

Edit Rules), which was briefly introduced in Section 3.3.2 due to its use in

analysing spelling variant characteristics. DICER was first developed to find

spelling variation character edit rules, with the aim of improving EModE spelling

normalisation. However, the tool created was also found to be valuable in the

investigation of spelling characteristics, as exemplified with the analysis described

in Section 3.3.2.

DICER finds character edit rules by examining variant and normalisation pairs.

Such pairs can be sourced from the XML output of VARD (see Section 4.3.1),

although any similar source can also be used. Given a variant and normalisation

pair, DICER will produce a list of rules which can convert the variant form

to the normalisation. This is achieved by utilising the matrix produced by

the Levenshtein Algorithm (4.2.10), an example of which is given in Table 4.4.

Algorithm 4.4.1 shows the pseudo-code for this process, which works by tracing

back through the matrix to find the specific deletion, insertion and substitution

edits that contribute to the minimum edit distance. This technique is similar

to that presented by Kruskal (1983: 224-225). For each edit found, a new rule is
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created using Algorithm 4.4.2. The actual occurrence details of each character edit

rule are also examined and recorded. The rule’s position (start, second, middle,

penultimate or end) (determined by Algorithm 4.4.5), its index within the variant

string, and the characters before and after the rule occurrence are determined by

Algorithm 4.4.3. If two rules occur side-by-side then Algorithm 4.4.4 is used to

merge these into a single rule. For example, if a variant anie has a normalisation

any, then two rules would be created, Substitute E→ Y and Delete I. The merging

procedure would reduce these rules to to Substitute IE → Y, which is much more

specific and potentially more useful. Once all rule occurrences in a variant–

normalisation pair are found, an additional step is taken to find any doubling

or singling of letters. For example, if a rule Delete T occurs immediately after

another T in the variant string, then the rule is changed to Substitute TT → T.

If a rule has been previously merged with another rule and part of it forms a

singling or doubling rule, then the singling and doubling rule will be extracted

and another rule created with the remainder of the edit. It was deemed important

to distinguish doubling and singling rules because such rules are more specific

and hence potentially more useful when deciding upon character edit rules for

normalisation. Furthermore, the manually created rule list provided by Dawn

Archer (see p. 107) contains several singling and doubling rules, indicating a

likely strong presence in EModE spelling variation20. The rules produced for

the clapd → clipped example shown in Table 4.4 are given in Table 4.11.

Rule Position Index Before After

Insert E Penultimate 4 P D

Sub. P → PP Penultimate 3 A D

Sub. A → I Middle 2 L P

Table 4.11: Rule occurrences outputted from DICER when comparing clapd and

clipped.

20Tables 3.11, 3.12 and 3.13 all contain singling and doubling rules, adding further evidence

to their usefulness.
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Algorithm 4.4.1: FindRules(s1, s2,matrix)

lastruleocc← ∅
i← s1.length
j ← s2.length
ed← matrix[s1.length][s2.length]
while ed > 0

do



temprule← ∅
if i 6= 0 and j 6= 0 and matrix[i− 1][j − 1] = ed− 1

then


ed← ed− 1
i← i− 1
j ← j − 1
temprule← CreateRule(s1[i], s2[j])

else if j 6= 0 and matrix[i][j − 1] = ed− 1

then


ed← ed− 1
j ← j − 1
temprule← CreateRule(∅, s2[j])

else if i 6= 0 and matrix[i− 1][j] = ed− 1

then


ed← ed− 1
i← i− 1
temprule← CreateRule(s1[i], ∅)

else if i 6= 0 and j 6= 0 and matrix[i− 1][j − 1] = ed

then

{
i← i− 1
j ← j − 1

else if i 6= 0 and matrix[i− 1][j] = ed
then i← i− 1
else if j 6= 0 and matrix[i][j − 1] = ed
then j ← j − 1

if temprule 6= ∅

then


ruleocc← CreateRuleOcc(temprule, s1, s2, i)
if lastruleocc 6= ∅

then ruleocc←MergeRuleOccs(ruleocc, lastruleocc)
lastruleocc← ruleocc

else

{
ruleoccslist← ruleoccslist+ lastruleocc
lastruleocc← ∅

ruleoccslist← ruleoccslist+ lastruleocc
return (ruleoccslist)
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Algorithm 4.4.2: CreateRule(search, replacement)

rule.search← search
rule.replacement← replacement
if search = ∅

then rule.type← “insertion′′

else if merged.rule.replacement = ∅
then rule.type← “deletion′′

else rule.type← “substitution′′

return (rule)

Algorithm 4.4.3: CreateRuleOcc(rule, s1, s2, index)

ruleocc.cbindex← index− 1
ruleocc.caindex← index+ 1
if index > 0

then ruleocc.charbefore← s1[ruleocc.cbindex]
if index < s1.length− 1

then ruleocc.charafter ← s1[ruleocc.caindex]
if rule.type = “insertion′′ and index < s1.length

then

{
ruleocc.caindex← index
ruleocc.charafter ← s1[index]

ruleocc.pos← GetPosition(ruleocc.cbindex, ruleocc.caindex, s1.length)
ruleocc.variant← s1
ruleocc.normalisation← s2
ruleocc.rule← rule
ruleocc.index← index
return (ruleocc)
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Algorithm 4.4.4: MergeRuleOccs(current, last)

if current.pos = “end′′

or current.index = last.index
or current.index = lastocc.index− 1

then



merged← current
merged.charafter ← last.charafter
merged.caindex← last.caindex
merged.pos← GetPosition(merged.cbindex,merged.caindex,
merged.variant.length)

search← current.rule.search+ last.rule.search
replacement← current.rule.replacement+ last.rule.replacement
merged.rule← CreateRule(search, replacement)
return (merged)

else return (current)

Algorithm 4.4.5: GetPosition(cbindex, caindex, length)

if cbindex < 0
then return (“start′′)

else if caindex ≥ length
then return (“end′′)

else if cbindex = 0 and caindex = length− 1
then return (“middle′′)

else if cbindex = 0
then return (“second′′)

else if caindex = length− 1
then return (“penultimate′′)

else return (“middle′′)

Using the methodology described, a series of variant and normalisation pairs

can be analysed in turn to produce a list of rules and rule occurrences. The

lists created are inserted into a MySQL database, which can be accessed and
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analysed through a series of PHP webpages21. DICER’s main summary tables

for the Innsbruck Letters corpus analysis (as used in Section 3.3.2) are shown in

Figure 4.5. The analysis can be used to examine the most common rules present,

where rules occur and other trends such as edit distance and rule types. A user can

also select a specific character edit rule and look at which characters occur before

and after the rule. This is shown in Figure 4.6 for the rule Substitute W → U

(in the Innsbruck analysis). Any frequency given in the DICER tables can be

selected to view a list of variant–normalisation pairs producing that frequency.

For example, a list of all variant normalisations using the rule Substitute T → TT

at the end of the variant could be produced.

Using the analysis produced by DICER, a user can devise a list of character

edit rules which represent the spelling variation found in the corpus analysed. This

list can then be used to improve the performance of VARD 2 in normalisation.

The user can choose how many of the most common rules to use and may also

wish to make rules more specific by examining where in a variant rule occurrences

most commonly occur (e.g. Delete E only at end of word). Further context for

a rule can also be taken from surrounding characters if a rule is commonly found

before or after a certain character (e.g. Substitute OW → OU ).

Figure 4.5: Screenshot of DICER summary of the Innsbruck analysis.

21http://corpora.lancs.ac.uk/dicer/
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4.5 Chapter Summary

Figure 4.6: Screenshot of DICER analysis for a specific rule in the Innsbruck

analysis.

4.5 Chapter Summary

Building on the analysis of EModE spelling characteristics presented in Chapter 3,

this chapter has described specific methodologies which can be used in the

normalisation of EModE spelling variation. How variants should be detected has

been considered, with an efficient technique detailed for the key task of dictionary

lookup. Several steps have been discussed which result in a ranked list of candidate

normalisations being produced for a given variant. Previous normalisations can

also be taken into account in the ranking of candidates – this is achieved through a

training technique which is informed by the standard precision and recall metrics.

The methodologies described have been developed into a normalisation tool,

VARD 2, which can be used to manually and automatically normalise spelling

variation in EModE texts. The tool is highly customisable and trainable, resulting

in the ability to tune the normalisation process for a specific corpus and the

individual properties of its spelling variation. Another tool, DICER, can assist

in this process by suggesting character edit rules based on previous variant and

normalisation pairs.

The normalisation procedures resulting from the development presented in

this chapter allow for delicate control of recall and precision when choosing variant

normalisations. For example, a user may set a high normalisation threshold during

automatic processing to ensure that normalisations are only made when the system
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is highly confident of its top ranked candidate normalisation – this should result

in high precision. In the next chapter, the normalisation procedures presented

here are evaluated in these same terms: precision and recall.
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Chapter 5

Evaluation of Spelling Variant

Normalisation

The final research question established in Section 1.2, RQ 3, will be addressed

in this chapter through the evaluation of the normalisation solution detailed in

Chapter 4. Whilst the manual (interactive) normalisation procedure detailed in

Section 4.3.1 is of use for single texts and small corpora, the primary concern is how

well normalisation can be performed automatically. A well-performing automatic

normalisation tool would allow for the large Early Modern English corpora now

available (see Section 2.1.3) to have a significant amount of the spelling variation

present within them normalised. This, in turn, would lead to more accurate

corpus linguistic analysis; for example, Table 3.3 in Section 3.2.1 shows that even

with partial normalisation, part-of-speech tagging accuracy is increased. Hence,

the automatic normalisation procedure developed (see Section 4.3.2) shall be the

main focus of the evaluation given here.

To measure performance, one can establish how close automatic normalisation

is to manual normalisation of the same texts. A handful of manually normalised

texts have already been utilised for the analysis presented in Chapter 3 and shall

be re-used for the evaluations presented in this chapter. Both recall and precision

shall be used to measure this closeness throughout. High recall is important as it

measures the proportion of spelling variation that can be dealt with by automatic

means. However, as mentioned previously in this thesis, high precision is likely

to be more important when normalising EModE spelling variation. If it is found

that only low precision is achieved, numerous real-word errors would be introduced
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to the texts being normalised. This could result in the normalisation procedure

actually having a detrimental effect on the accuracy of corpus linguistic methods.

By measuring both recall and precision, it will be possible to observe how the two

factors are balanced and also how different setups can be used to prioritise one

over the other.

As discussed throughout this thesis, the first stage of any normalisation

(or spellchecking) procedure is to first find in a text the words that require

normalisation, i.e. spelling variants. We begin in Section 5.1 by evaluating the

dictionary lookup method used in the developed normalisation tool, quantifying

its limitations in terms of spelling variant detection. In Section 5.2 the central

evaluation of the final automatic normalisation procedure will be presented. This

will include examining the effectiveness of the training procedure and investigating

how recall and precision can be controlled with the normalisation threshold. The

use of the VARD 2 software (which utilises the normalisation methods developed

– see Section 4.3) with a newly released Early Modern English corpus will be

detailed in a case study in Section 5.3. The chapter’s findings are then summarised

in Section 5.4.

5.1 Spelling Variant Detection

The performance of one aspect of spelling variant detection has already been

partially evaluated in Section 3.3.1’s analysis of real-word spelling variants in three

EModE corpora; the same dictionary for variant detection was used in this analysis

as is used in VARD 2 (as described in Section 4.1.1). Another issue in variant

detection, as indicated in Section 3.1, is words which do not require normalisation

being marked erroneously as variants due to not being present in the system’s

dictionary. In this section, the effect of both real-word spelling variants and

erroneously marked variants on the recall and precision of the developed solution’s

spelling variant detection process will be assessed. The effect of dictionary size

will also be examined, looking at how both increasing and decreasing the number

of words present impacts on variant detection.

As with the real-word spelling variant analysis in Section 3.3.1, manually

normalised EModE texts can be used to establish how well the dictionary lookup

spelling variant detection method is performing. The same three sources can
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be utilised: the full Innsbruck Letters corpus, the Shakespeare sample and the

Lampeter corpus sample. The Shakespeare and Lampeter samples are relatively

small, but to an extent represent the corpora they are from. The Shakespeare

samples are from five comedies evenly spread through Shakespeare’s writing

career, whilst the Lampeter samples are from three different domains in the corpus.

Each sample contains 1,000 words of running text beginning at a randomly selected

index. The normalisations present in the three sources can be examined and the

list of variants normalised considered as the total number of variants detectable.

By comparing the variants detected by the dictionary lookup method to the list

of variants that should be detected, the three rates needed to calculate recall and

precision can be retrieved: True Positives (TP ), False Positives (FP ) and False

Negatives (FN). TP is the total number of detectable variants detected by our

solution, FN is the number of detectable variants not detected (i.e. real-word

variants), and FP is how many extra words have been detected as variants (i.e.

erroneously marked variants). The TP , FN and FP rates for both variant types

and tokens for the three datasets are shown in Table 5.1.

Tokens Types

TP FN FP TP FN FP

Shakespeare 860 99 85 525 48 53

Lampeter 237 25 106 154 7 93

Innsbruck 38,674 5,066 3,208 12,715 805 1,984

Table 5.1: Token and type true positive, false negative and false positive rates for

spelling variant detection.

Recall and precision scores can be calculated from the figures given in Table 5.1

using the same equations used previously in this thesis1. The recall and precision

scores for each dataset are given in Table 5.2, again for both types and tokens. The

results, on the whole, are good with the vast majority of variants detected and,

except for the Lampeter dataset, only a small number of extra variants detected

erroneously. The difference in precision scores for the Lampeter dataset can be

explained by examining the normalised samples and observing that several Latin

passages are present. The majority of the Latin words will be detected as variants

1For clarity: recall = TP
TP+FN and precision = TP

TP+FP .
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as they will not be present in the modern English word list. This high number of

false positives, together with the low number of variants present, accounts for the

lower precision scores reported.

Tokens Types

Recall Precision Recall Precision

Shakespeare 0.897 0.910 0.916 0.908

Lampeter 0.905 0.691 0.957 0.623

Innsbruck 0.884 0.923 0.940 0.865

Table 5.2: Token and type recall and precision for spelling variant detection.

One factor which is likely to have an impact on spelling variant detection is

the size of the dictionary used for looking up words. We can investigate this

effect by repeating the recall and precision calculations (shown in Table 5.2)

with different sized dictionaries. The dictionary collated for the developed

normalisation solution contains 82,573 words. As discussed in Section 4.1.1, the

majority of these words come from the SCOWL groups of words (the remainder

are from the most frequent and distributed words in the BNC). The size of the

dictionary can be reduced by omitting some of these word groups, and its size can

be increased by adding more word groups available from SCOWL. Ten different

dictionaries were created for the evaluation. These ranged from a dictionary

containing no SCOWL groups at all (i.e. just containing the BNC word list) at

just over 25,000 words, to a dictionary at just over half a millions words containing

groups of the 95% most frequent English words. The full list of dictionaries used

for the evaluation is given in Table 5.3. It should be highlighted that not only do

the larger dictionaries contain many more words, they also contain increasingly

infrequently used words. As discussed in Section 4.1.1, the frequency of words is

important to consider as high frequency words are likely to appear in texts being

normalised, whereas low frequency words are less likely to appear but may happen

to have the same spelling as a variant of another word, hence causing a real-word

spelling variant.
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SCOWL groups included Words

Just BNC None 26,097

-20 As -35, with the removal of british-words.20 and

english-words.20.

27,224

-35 As -40, with the removal of british-words.35,

english-contractions.35, english-upper.35, english-

words.35 and special-roman-numerals.35.

29,901

-40 As -50, with the removal of british-words.40,

english-contractions.40, english-upper.40 and

english-words.40.

53,605

-50 As Standard, with the removal of british-words.50,

british-words.55 and english-words.50.

59,440

Standard As described in Section 4.1.1. 82,573

+60 As Standard, with the addition of british-

words.60, english-contractions.60, english-upper.60

and english-words.60.

96,257

+70 As +60, with the addition of british-words.70,

english-contractions.70, english-upper.70 and

english-words.70.

136,581

+80 As +70, with the addition of british-words.80,

english-contractions.80, english-upper.80 and

english-words.80.

282,054

+95 As +80, with the addition of british-words.95,

english-contractions.95, english-upper.95 and

english-words.95.

502,606

Table 5.3: Test dictionaries used for evaluating the effect of dictionary size on

spelling variant detection.

Using each dictionary, the recall and precision scores for spelling variant

detection in the Innsbruck Letters corpus were calculated just as before. The

results are shown in Figure 5.1. As can be seen, increasing the size of the dictionary

increases the precision of detection; i.e. less extraneous variants are detected. At

the same time recall falls, with a larger number of real-word spelling variants.

Decreasing the dictionary size has the opposite effect with precision falling and
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recall rising. The dictionary used in the developed solution (as described in

Section 4.1.1), shown in Figure 5.1 as Standard, looks to have achieved a good

balance between precision and recall. Using a larger dictionary would give only

a small precision improvement (+0.009 for tokens and +0.022 for types by +95 ),

but a relatively large decrease in recall would also occur (−0.145 for tokens and

−0.081 for types by +95 ). Conversely, a smaller dictionary would give small recall

gains (+0.013 for tokens and +0.012 for types by Just BNC ), but a larger drop

in precision (−0.034 for tokens and −0.040 for types by Just BNC ). This view is

backed up by calculating an F-Score for each dictionary evaluation. For tokens,

the F1-Score for Standard is highest at 0.904 (next best 0.900 for -40 ). For types,

the F1-Score for Standard is second highest at 0.9018 (just behind +60 at 0.9020).
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Figure 5.1: The effect of dictionary selection on spelling variant detection recall

and precision in the Innsbruck Letters corpus.

The recall scores, rather than the precision scores, will perhaps have more of

an impact on the performance of automatic normalisation as a whole; the recall

rates given represent the upper boundary to automatic normalisation coverage

– a normalisation cannot be made if the variant is not first detected. The

precision scores will only have an impact when the extraneous variants detected

are subsequently normalised. If, in the majority of cases, suitable candidate

normalisations cannot be found for these variants, then little impact will be made
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on the precision of automatic normalisation – the extra variants will be left in the

original form. The impact of variant detection on automatic normalisation will

be examined in more detail in the following section.

5.2 Automatic Normalisation

Evaluating the performance of automatic normalisation is key to establishing

how useful the developed normalisation tool would be for processing large

Early Modern English corpora, where manual normalisation would be too time-

consuming. This section will quantify how similar automatically normalised texts

are to the same texts manually normalised. Particular attention will be given

to how much of an improvement on performance can be achieved with different

amounts of training (Section 5.2.1) and what effect the normalisation threshold

has on the balance between recall and precision (Section 5.2.2).

The previously used Innsbruck Letters corpus (see Section 3.3.1) was utilised as

test data for all of the experiments presented in this section. The corpus has been

automatically normalised and then manually checked2. Evaluation will be based

on the assumption that the normalisations present in the texts are accurate. It is

likely that human error will have led to mistakes occurring, with missed variants

and inappropriate normalisations made3. However, performance comparable to

manual normalisation is an acceptable goal for automatic normalisation.

Testing was carried out with the corpus by first reseting it to its original

form with no normalisations made (i.e. the manual normalisations were replaced

with the original variant forms). Automatic normalisation was then performed,

as described in Section 4.3.2 – the exact setup for automatic normalisation

shall be described for each experiment. The automatically normalised texts

can then be compared to the manually normalised texts and any differences

noted. We evaluate the automatic normalisation performance in terms of

recall and precision percentages, with the following definitions. Recall can be

defined as the proportion of required (manual) normalisations that are made

2This is essentially equivalent to manual normalisation, to which it shall be referred to

henceforth.
3Although, every effort was made to check as much of the normalisations as possible, with

extensive time spent ‘cleaning up’ the texts during the combination of the parallel original and

normalised lines.
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correctly by automatic normalisation. As discussed in Section 5.1, the required

normalisations will include normalisations of variants which are not detected by

our system as being variants, i.e. real-word variants. These will count against

the correct automatic normalisations as they cannot be normalised without first

being detected; therefore, the number of real-word variants will impact on recall.

Precision can be defined as the proportion of automatic normalisations made

which match exactly to the corresponding required (manual) normalisation, i.e.

are correct. Also discussed in Section 5.1 is the problem of extra variants

being detected erroneously, i.e. words not in the dictionary that are valid

(this may include, for example, proper names or foreign language words). If

subsequently these extraneous variants are automatically normalised, these are

obviously incorrect normalisations and this will impact on precision.

5.2.1 Training

It has been shown previously, particularly in Section 3.3.2, that different EModE

corpora will contain different spelling variant properties. It has also been

hypothesised that these differences will be even more apparent when there are

differences between the genre, text type or time period of corpora. It is, therefore,

unlikely that a generic EModE spelling variant normalisation tool could be built.

Instead, any solution should be adaptable to the corpus which is having its spelling

normalised. A key component in the adaptability of the normalisation solution

described in Chapter 4 is how well the training procedure improves performance.

This shall be evaluated here to establish if the normalisation procedure can be

tuned to the Innsbruck Letters corpus’s spelling variation.

To observe the effect of training on the performance of automatic normali-

sation, evaluation needs to be completed after the system has been trained on

different amounts of data. To this end, the Innsbruck Letters corpus was split

into samples of 1,000 words. The samples were created by first splitting the entire

corpus into small segments (maximum 50 words). Each sample was then built by

appending randomly selected segments until the length of the sample reached the

target of 1,000 words. Samples were created until the segments remaining were

insufficient to build another sample. This resulted in 179 samples being created,

each containing 1,000 tokens of running text, including any normalisations made
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marked up with XML tags4 (as previously described). The samples were then

split into two halves, one for training and one for testing5. Evaluation can then

be completed by observing how well automatic normalisation performs on the test

set after training the system on an increasing number of 1,000 word samples. The

properties of the test set are given in Table 5.4, with the amounts of real-word

spelling variants (FN) and erroneously detected variants (FP ) also given. These

are calculated in the same manner as described for Table 5.1.

Tokens Types

Freq. % of total Freq. % of total

Words 87,996 12,794

Normalised variants 20,943 23.80% 7,796 60.93%

Real-word spelling

variants

2,420 2.75% 520 4.06%

Erroneously

detected variants

1,503 1.71% 1,062 8.30%

Table 5.4: Properties of the Innsbruck Letters corpus test set used for

normalisation evaluation.

A normalisation threshold was arbitrarily set at 50%6, and the test set

automatically normalised with no training at all (i.e. the normalisation tool was

in its default state). Recall and precision were recorded as detailed above (p. 148)

for both types and tokens. The first sample was then used as training data as

described in Section 4.3.3. Then, the automatic normalisation test was performed

again and recall and precision recorded as before. This procedure was repeated

until no training data remained. The observed precision and recall scores after

subsequent amounts of training are shown for tokens in Figure 5.2 and for types

in Figure 5.3. For the first 11,000 training tokens, the samples were further split

into 200 word segments to show increased detail in the early stages of training.

4XML tags were not included in the 1,000 word count.
5The actual split was 91 training samples and 88 test samples due to the samples originally

being split into 16 groups (and then 8 groups used for each) to allow for evaluation with smaller

amounts of training and test data. The effect on the final results compared to using a 89/90

split should be negligible.
6The effect of using different normalisation thresholds will be evaluated in Section 5.2.2
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Figure 5.2: Precision and recall of automatic normalisation on the Innsbruck

Letters corpus with increasing training levels (tokens).
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Figure 5.3: Precision and recall of automatic normalisation on the Innsbruck

Letters corpus with increasing training levels (types).
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With no training at all, recall begins at 53.34% for tokens (44.05% for types)

and precision at 86.75% (79.84% for types). Then, with just one 200 word training

sample, recall falls to 46.33% for tokens (31.32% for types) but precision increases

to 90.26% (83.14% for types). This can be explained by the ‘näıve’ cumulative

precision and recall initially attached to each method (0.5 for each). Even in

the small amount of training data seen in the first sample, more appropriate

cumulative recall and precision scores will be attached to each method. Thus,

many normalisation candidates from low precision methods which previously

scored above the normalisation threshold (50%) will now score lower. This will

mean less normalisations are made (reducing recall) but those made are more

likely to be correct (increasing precision). After the initial sample, recall steadily

rises for both tokens and types, whilst precision increases very slightly. After all

91,000 tokens of training, recall increases to 67.54% for tokens (48.74% for types)

and precision increases to 93.27% (84.74% for types). Half of the improvement

in performance (in terms of tokens recall) is achieved by 13,000 words of training

(56.94% recall, 91.73% precision). Three-quarters of the improvement is achieved

by 34,000 words of training (62.39% recall, 92.58% precision). This shows that a

relatively small amount of effort can be completed to gain the bulk of the benefit

from training. After this, decreasing performance gains are observed. Overall, the

results are fairly promising – particularly in the case of tokens. With quite a small

amount of training, over 60% of required normalisations can be made correctly,

whilst the number of incorrect normalisations made remains below 10%7. For

types, results are still fairly respectable with nearly 50% of required normalisations

made correctly after full training, and precision remaining over 80%. However,

the types results serve to highlight the difficulty of the normalisation task in hand

with many variants being unique (or very rare) in the corpus and thus being

difficult to normalise and train for.

As discussed in Section 5.1, the detection of variants will impact on normal-

isation performance due to variants not being detected being impossible to nor-

malise automatically (restricting recall) and variants being detected erroneously

potentially being subsequently normalised (harming precision). We can observe

how much of an effect detection performance has on the performance of automatic

7A higher normalisation threshold should increase precision, this will be evaluated in

Section 5.2.2
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normalisation by re-producing the analysis above but assuming a perfect detection

method whereby all variants present are detected and no extra variants are

erroneously detected. The results for this analysis are shown in Figure 5.4 for

tokens and Figure 5.5 for types.

With this hypothetical variant detection method, results are somewhat

improved. After full training, recall now stands at 76.94% for tokens (51.54%

for types) and precision is 94.36% (88.39% for types). Interestingly, the levels of

the increases in recall indicate that if real-word variant errors could be found, then

the normalisation procedure could successfully normalise them. Furthermore, the

small increases in precision indicate that some erroneously detected variants could

be being automatically normalised – this shall be explored in more detail in the

next section.

The results presented in this section show the value of the training procedure

for automatic normalisation. Increases in performance of recall are observed whilst

at the same time a relatively high precision is maintained (and even increased).

We take the results of this training into the next section and investigate how recall

and precision can be balanced by altering the normalisation threshold.
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Figure 5.4: Precision and recall of automatic normalisation with a hypothetical

perfect variant detection method on the Innsbruck Letters corpus with increasing

training levels (tokens).
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Figure 5.5: Precision and recall of automatic normalisation with a hypothetical

perfect variant detection method on the Innsbruck Letters corpus with increasing

training levels (types).

5.2.2 Normalisation Threshold

One of the key features of the developed normalisation procedure is the confidence

scores attached to each candidate normalisation. This is used to rank the list of

suggested candidates so that the most likely candidate is offered for automatic

normalisation. Additionally, a threshold can be set for automatic normalisation

whereby a normalisation is only made when the top ranked candidate has a

confidence score over the provided threshold. In this section we shall evaluate the

effect of this threshold in terms of automatic normalisation recall and precision.

We use the same test set as used in the previous section (see Table 5.4) to calculate

the recall and precision of automatic normalisation (as described on p. 148) at

different normalisation thresholds. The automatic normalisation evaluation is

performed after being trained on the full set of Innsbruck training samples used

in the previous section. The results of this analysis are shown for tokens in

Figure 5.6 and for types in Figure 5.7.
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Figure 5.6: Precision and recall of automatic normalisation on the Innsbruck

Letters corpus with different normalisation thresholds (tokens).
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Figure 5.7: Precision and recall of automatic normalisation on the Innsbruck

Letters corpus with different normalisation thresholds (types).
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The results show the control one can have over the balance between precision

and recall by altering the normalisation threshold. The maximum precision

available, with a 95% threshold, is 97.39% for tokens (95.77% for types), but is of

little use due to recall falling dramatically to only 1.78% (2.50% for types). Using

a threshold of 75% yields a recall score of 62.02% for tokens (46.73% for types) and

95.02% (87.35% types) for precision. These figures could certainly be considered

respectable performance for the difficult task of automatic normalisation. If for

some reason recall was the priority, setting the threshold to 0% (effectively always

allowing normalisation if at least one candidate is found), gives a recall score of

75.05% for tokens (69.43% for types) with precision inevitably falling, but still at

81.62% for tokens (64.62% types).

As with the training procedure evaluation, we can investigate the effect of the

inaccuracy of spelling variant detection by producing the same results as above but

with a hypothetical perfect spelling variant detection method. This will highlight

the performance of just automatic normalisation. The results for this analysis are

given in Figure 5.8 for tokens and Figure 5.9 for types.
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Figure 5.8: Precision and recall of automatic normalisation with a hypothetical

perfect variant detection method on the Innsbruck Letters corpus with different

normalisation thresholds (tokens).
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Figure 5.9: Precision and recall of automatic normalisation with a hypothetical

perfect variant detection method on the Innsbruck Letters corpus with different

normalisation thresholds (types).

The results here, albeit hypothetical, show considerable increases in recall (as

in the corresponding training procedure experiment) with the recall at a 75%

threshold rising to 72.47% for tokens (48.88% for types). Precision increases

marginally also to 96.01% for tokens (90.68% for types). Furthermore, if recall

is the priority, a 0% threshold now yields a recall score of 86.80% for tokens

(73.26% for types) and a precision score of 87.22% (74.16% types). These results

again suggest that if real-word spelling variants could be detected, the automatic

normalisation procedure would normally be successful.

A potentially more serious issue is indicated by the marginal increases in

precision if detection errors are ignored. As discussed in Section 5.1, erroneously

detected variants are only problematic if they are subsequently normalised as

any normalisation made will clearly be an error. The increases in precision

shown in Figures 5.8 and 5.9 may indicate that many of the erroneously

detected variants are being normalised, and thus essentially introducing real-

word errors into the text. The scale of the problem is assessed in Figure 5.10

(tokens) and Figure 5.11 (types). Here the proportion of erroneously detected

variants which are subsequently normalised is calculated at different normalisation

157



5.2 Automatic Normalisation

thresholds. Unsurprisingly, a lower threshold results in more of these extra

variants being normalised (incorrectly), however for higher thresholds, relatively

few are normalised. For the 75% threshold highlighted above, only 13.98% of

the extra variant tokens detected are normalised (13.04% for types). It is also

important to put these percentages into context. From Table 5.4, the actual

number of erroneously detected variants is only 1,503 tokens (1.71% of all tokens)

and 1,062 types (8.30% of all types). At a 75% threshold, the proportion of these

variants normalised means that 210 real-word error tokens will be introduced,

0.24% of all tokens. The corresponding type figures are 138 real-word error

types introduced, 1.08% of all types. Whilst the seriousness of introducing

real-word errors during normalisation should not be underestimated, the low

levels observed here should not pose considerable problems for subsequent corpus

linguistic analysis8.
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Figure 5.10: Proportion of erroneously detected variants (tokens) in the

Innsbruck Letters corpus which are subsequently automatically normalised at

different normalisation thresholds.

8It is also worth noting that observation of the actual normalisations made revealed that a

large number could be considered to be appropriate, that is they may have been missed as being

variants in the original manually checked normalisation.
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Figure 5.11: Proportion of erroneously detected variants (types) in the Innsbruck

Letters corpus which are subsequently automatically normalised at different

normalisation thresholds.

The results presented in this section have shown that the automatic normali-

sation procedure developed has the potential to be useful in dealing with a large

proportion of the spelling variation found in EModE texts. At the same time, high

precision of normalisation is maintained, and if precision is prioritised through a

high normalisation threshold, then very few errors should be introduced during

normalisation. Certainly, the normalised texts will be far closer to a modern

equivalent version which, following the evaluation presented in Section 3.2, will

improve the accuracy of subsequent corpus linguistic methodology. It is also worth

noting that the automatic normalisation performed may be a first step in fully

normalising the texts. Corrections and further normalisation could be performed

manually using the interactive normalisation tool described in Section 4.3.1. In

the next section, a case study is presented detailing the use of the full set of

normalisation procedures detailed in Chapter 4, including the training procedure

and automatic normalisation threshold already evaluated.
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5.3 Normalising the Early Modern English

Medical Text Corpus

In 2010 the Early Modern English Medical Texts (EMEMT) corpus was released

(Taavitsainen & Pahta, 2010) as the second instalment of the Corpus of Early

English Medical Writing (CEEM) (Taavitsainen & Pahta, 1997). The corpus

contains two million words of text dated 1500–1700 from the specific domain

of science and medicine. Two versions of the texts were included in the

released corpus, one containing the original transcribed texts, the other containing

the same texts but with spelling variation (partially) normalised. These were

produced using the normalisation tool, VARD 2, described in Section 4.3. A full

discussion of the process undertaken to normalise the texts is given by Lehto et al.

(2010), a summary of the steps taken is provided here along with details of some

of the issues encountered9.

Before any normalisation was performed, 18.22% of tokens and 37.86% of types

in the corpus were detected as variants (results are shown in Table 5.5). The aim

of normalisation was to reduce this number as much as possible in order to have

a version of the corpus containing much less spelling variation. This could in turn

be used to produce more accurate searches as well as improving the performance

of key word and collocational analysis (see Sections 2.1.3 and 3.2).

Tokens Types

Freq. % of total Freq. % of total

Words 2,017,534 442,941

Detected variants 367,597 18.22% 167,685 37.86%

Table 5.5: Detected variants in the EMEMT corpus.

At two million words, manually normalising each text in EMEMT was deemed

too time-consuming. Therefore, texts were automatically normalised after training

was performed by manually normalising a representative sample of the corpus.

The process undertaken to perform this training will be described in Section 5.3.1.

With the training complete, an initial automatic normalisation was performed,

9This section will have some overlap with Lehto et al. (2010), which was co-authored by

Anu Lehto, myself, Maura Ratia and Paul Rayson.
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the results of this were analysed and changes made to the normalisation tool to

improve performance, this process will be described in Section 5.3.2. In order

to balance the precision and recall of the final automatic normalisation, it was

important to set a suitable normalisation threshold, the process of choosing

this threshold will be described in Section 5.3.3. The final results of the full

normalisation procedure are given in Section 5.3.4.

5.3.1 Training Through Manual Normalisation

Training was completed in two stages by Anu Lehto10. Initially, 24,000 words

of training material were chosen by Anu from each category and fifty-year time

period of the corpus. These were then manually normalised using the interactive

mode of VARD 2 (see Section 4.3.1). Additionally, 24 samples of 500 words

(12,000 words in total) were generated by randomly selecting small portions of

text from the corpus (minus the texts which already had samples normalised),

this was achieved by utilising the same method used to select training samples

from the Innsbruck Letters corpus (see Section 5.2.1). These additional samples

were also manually normalised by Anu using VARD 2.

During training, decisions were made to influence the final automatic normal-

isation and thus establish conventions for the normalisation procedure. These

included:

• Not to normalise (archaic) personal pronouns such as thou, ye and thee as

normalisation would affect their meaning. Although variants of the standard

spellings can be normalised, e.g. thyne was normalised to thine.

• Archaic word endings of verbs such as -th/-eth were normalised to modern

equivalents. For example, sayth was normalised to says.

• However, the high frequency doth and hath were not normalised because

they refer to the singular and plural forms in the corpus and normalisation

would mean this distinction was lost.

10From the Scientific Thought-styles team at the Research Unit for Variation, Contacts and

Change in English at the University of Helsinki. It was more appropriate for Anu to perform

the manual normalisation due to her familiarity with the texts being normalised.
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• Abbreviations were left as found, e.g. & (representing and and et) and

Arist. (Aristotle).

36,000 tokens of manually normalised text were now available for training the

normalisation tool (see Section 4.3.3). With the initial set of training samples

being equally spread across categories and time, and the second set of samples

being made up of segments randomly distributed throughout the corpus, the set

of training samples can be said to be representative of the corpus as a whole.

The amount of training data was deemed sufficient following the evaluation of the

training procedure on the Innsbruck corpus (see Section 5.2.1) showing that 75%

of the performance improvement through training was achieved after just 34,000

tokens.

5.3.2 Initial Results and Analysis

With the training in place, an initial automatic normalisation of the entire

EMEMT corpus was performed with an intermediate version of VARD 2, as

described in Baron & Rayson (2009). The normalisation procedure in this version

is very similar to that summarised in Section 4.2.4, with a notable exception being

the procedure for improvement through training of the known variants list method,

as described in Section 4.2.3. In the version used here, training normalisations are

simply added to the known variants list if not already present, with no record kept

of which specific normalisations have been successful. A normalisation threshold

of 80% was chosen with the aim of keeping precision of normalisation as high

as possible, whilst not reducing recall too much. The number of normalisations

made and how many detected variants remain are shown in Table 5.6. 60.62%

of the detected variant tokens (49.71% of detected variant types) in the corpus

have been normalised, leaving 6.85% of the corpus’s tokens still being detected as

variants. What is not known is how often the normalisations made are correct,

although the high threshold used, together with the evaluation of precision in the

Innsbruck Corpus (see Section 5.2.2), indicate that the number of mistakes should

be fairly low.
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Tokens Types

Freq. % of total Freq. % of total

Words 2,017,534 442,941

Remaining

(detected) variants

138,110 6.85% 83,151 18.77%

Normalised variants 222,842 11.05% 83,351 18.82%

Table 5.6: Remaining and Normalised variants in EMEMT corpus after initial

automatic normalisation.

In order to assess the performance of the automatic normalisation and to

attempt to find ways of improving performance, a qualitative analysis of the

most frequently occurring spelling variants still remaining was undertaken by Anu

Lehto. All variant word types with a raw frequency above 65 were scrutinised, and

words relating to medical terminology were examined if their frequency was greater

than 40. This resulted in 4,698 types being checked. Any missed normalisations

or incorrectly made normalisations were noted and a list of issues created. In

total, 126 missed normalisations and 20 erroneous normalisation were listed,

the appropriate normalisation was also provided in each case. Context of each

occurrence was examined to check for ambiguity between possible normalisations

or between leaving the variant in its original form and normalising to another

form.

For each issue found, an investigation was undertaken to establish why

the normalisation was not made correctly and changes were made to ensure

that normalisation could be completed correctly with a repeated automatic

normalisation of the corpus. At this point, the completed training and automatic

normalisation procedure (as detailed in Chapter 4) could be tested on the listed

issues. The same set of training was used and automatic normalisation of each

case attempted with a 75% normalisation threshold (the selection of this threshold

will be explained in Section 5.3.3). Of the 126 missed normalisations, it was found

that 61 were now successfully normalised by the fully developed procedure (e.g.

dramme → dram). However, a single previously missed normalisation (soden →
sodden) was now incorrectly normalised (to seethed). Of the remaining 64 missing

normalisation cases, the following reasons were found for the correct normalisation

not being made:
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• In 11 cases, the top ranked candidate was correct, but the confidence score

was slightly below the 75% normalisation threshold (all >65%). Example:

syckenes → sickness.

• 22 cases did not have the correct normalisation as a candidate, or did but

only at a low confidence score. Example: sirrup → syrup.

• There were 7 cases where the normalisation was not present in the modern

word list, hence could not be found as a candidate. Example: vnguentum

→ unguentum.

• The remaining 24 cases were not normalised because the variant was not

initially detected, i.e. they were real-word variants. Example bin → been.

In order for these relatively high frequency variants to be automatically

normalised, manual changes were made to the known variants list and modern

word list as follows:

• In 9 cases the normalisation was not made due to (probably erroneous)

entries in the known variants list reducing the confidence score of the correct

normalisation. These were removed from the known variants list. 7 of the

removed entries were from the original default list (e.g. mannes → man,

should be man’s) and 2 were added to the list during training (e.g. sheweth

→ shews, should be shows).

• For the 7 cases where the normalisation could not be found as a candidate

due to it not being available in the modern word list, each was added to the

dictionary.

• The 24 real-word spelling variants were dealt with by simply removing the

variants from the modern word list. This was safe to do as the context of

each occurrence was checked during the qualitative analysis. For example,

wilt was removed because all occurrences of the word were found to be

variants of will.

• For the remainder of cases, and also as an additional step in some of the

above cases, one instance of the normalisation was added to the known
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variants list to allow it to be found as a candidate. Example: vnces →
ounces.

For the 21 cases of erroneous normalisations being made (20 from the original

list plus the single case added from the missed normalisations), all but one were

correctly detected variants which required normalisation. However, another case

(sonne → son) was ambiguous in what normalisation should be made (son or sun

could be the appropriate modern equivalent). In this case the decision was made

to leave occurrences in the variant form as automatic normalisation would not

be able to distinguish which modern equivalent was more appropriate (context

would need to be taken into account). The normalisation sonne → son was

therefore removed from the known variants list11, this resulted in no candidate

normalisation for sonne achieving a high enough confidence score (above 75%)

for automatic normalisation. For the one case where the variant was detected

erroneously (cresses → crosses), the original form was added to the modern word

list to stop the word being detected as a variant and subsequently normalised. One

of the remaining cases was now normalised correctly due to a previous correction:

vvee had been normalised to wee, when we is the correct modern equivalent, but

wee was removed from the modern word list earlier as a real-word spelling variant.

The remaining 18 cases were all variants normalised to an incorrect modern form

due to (probably erroneous) entries in the known variants list, these entries were

removed from the known variants list to allow for the correct normalisation to be

made. 14 of the entries removed are included in the original default list (e.g. howse

→ hows – should be house) and 4 were added during training (e.g. phisitio∼s →
physitions – should be physicians).

Anu’s analysis also included a list of several words which were not normalised,

but due to ambiguity in whether normalisation should occur or in the number of

possible normalisations that are appropriate, normalisation cannot be completed

automatically. Some examples include:

• bee should nearly always be normalised to be, but a few instances of bee refer

to the insect.
11sonne → sun was not present in the known variants list so must not have been encountered

during training, if equal (or similar) numbers of each normalisation were made during training

then it is very likely that the automatic normalisation would not be made due to the ambiguity

reducing the confidence score for both candidates.
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• Similarly, in the majority of cases dye should be normalised to die, but a

small number of occurrences exist where the modern dye is the intended

word.

• flegme nearly always should be normalised to phlegm, but a single case was

found where fleam was the appropriate modern equivalent.

• the surname Boyle is also often a variant of boil.

• mete could already be in its modern form, but is also often a variant for

both meat and meet.

• heed is commonly already in its modern form, but it also frequently occurs

as a variant of head.

If the most common decision was taken as the correct procedure (e.g. always

assume that dye should be normalised to die) then in the majority of cases

the normalisation would be correct, and thus increase the proportion of variants

normalised. However, in the few cases where that decision is incorrect an error

will be introduced into the text – clearly undesirable. Unfortunately, automatic

normalisation of variants of this type are impossible without considering the

context in which they occur. One exception was made in the case of bee. 1,738

instances of bee were found in the corpus, of which only 5 were found to refer to

the insect. Due to the high frequency of bee as a variant of be, it was decided to

normalise all instances of bee to be and then manually post-edit the 5 cases where

bee should remain. To achieve the automatic normalisation of bee, the word was

simply removed from the modern word list so it would be detected as a variant.

5.3.3 Selecting a Normalisation Threshold

With a fully developed normalisation procedure trained with the manual nor-

malisations described in Section 5.3.1 and the changes made indicated in the

previous section, automatic normalisation of the entire EMEMT corpus could

now be repeated. However, a normalisation threshold needed to be chosen to

balance the precision and recall of automatic normalisations made (as evaluated

in Section 5.2.2). In order to establish what threshold should be used, a randomly

selected quarter of the training samples (9,000 words) was used as test data to
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calculate the precision and recall of automatic normalisation. This was performed

in the same manner as presented in Section 5.2.2. Training was first performed

with the remaining three quarters of training samples (27,000 words) and none of

the changes described in the previous section applied (thus avoiding any overlap

of training and testing data). The results are given in Figure 5.12 for tokens and

Figure 5.13 for types.
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Figure 5.12: Precision and recall of automatic normalisation on a 9,000 word

sample of the EMEMT corpus at different normalisation thresholds (tokens).

Whilst the precision and recall percentages look extremely promising, it should

be noted that whilst the sample tested is a random sample of the entire corpus,

thus arguably representative, its small size (9,000 tokens) equates to only 0.45% of

the 2 million tokens in EMEMT. The results can, however, be used as an indicator

of how the normalisation threshold will affect recall and precision and be used as a

guide to select an appropriate threshold to use when automatically normalising the

whole corpus. The compilers of EMEMT chose to use an automatic normalisation

threshold of 75%, which, for the small test sample, yielded a recall score of 75.84%

for tokens (72.95% for types) and a precision score of 98.83% for tokens (98.36%

for types). High precision was prioritised in order to avoid words being normalised

incorrectly.
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Figure 5.13: Precision and recall of automatic normalisation on a 9,000 word

sample of the EMEMT corpus at different normalisation thresholds (types).

5.3.4 Summary and Results of Final Automatic Normali-

sation

For the production of the final released normalised version of the corpus, the

VARD 2 tool (introduced in Section 4.3) was used to process the entire corpus. It

was first trained with the manually standardised samples described in Section 5.3.1

and manual changes were made to the known variants list and modern word list

as described in Section 5.3.2. VARD 2’s batch processing mode (see Section 4.3.2)

was then used with a normalisation threshold of 75% set (see Section 5.3.3) to

automatically normalise each text in the corpus. XML tags were introduced to

the texts for every normalisation made in order to keep a reference to the original

form (see Section 4.3.1).

The final automatic normalisation results in 72.89% of detected variant tokens

(61.04% of detected variant types) being normalised. The remaining detected

variants after normalisation are shown in Table 5.7. As can be seen, less than 5%

of the tokens in the normalised corpus are now detected as variants, a reduction

of 13.28% from the original text.
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Tokens Types

Freq. % of total Freq. % of total

Words 2,017,534 442,941

Remaining

(detected) variants

99,649 4.94% 65,317 14.75%

Normalised variants 267,948 13.28% 102,368 23.11%

Table 5.7: Remaining and Normalised variants in EMEMT corpus after final

automatic normalisation.

Of course, the percentage of tokens which are still variants is only an estimate.

As highlighted in Section 5.1, the detection procedure has some failings with

regards to real-word spelling variants not being detected and extra variants being

erroneously detected. Although these two problems should, to an extent, offset

each other. EMEMT will obviously contain a large amount of specialised medical

terminology. It is likely that the more general modern word list used in the

detection procedure will not contain many of these terms and will hence mark the

words as variants. Furthermore, EMEMT is known to contain large amounts of

Latin vocabulary, the majority of this will also not be covered by the modern word

list used. This is exemplified with the proportion of variants normalised differing

between texts. The text Uery brefe treatise (by Christopher Langton, 1547) has

89.15% of its variant tokens normalised (78.88% of variant types), whereas the text

Names of herbes (by William Turner, 1548) only has 57.64% of its variant tokens

normalised (31.94% of variant types). Turner’s text is known to list alphabetically

plants with their descriptions and specific names in several languages. The special

terminology and foreign language text will result in many words not being present

in the detection method’s modern word list and thus marked as variants (42.99% of

the original tokens are detected as variants, 80.15% of types). The normalisation

method will not have seen the vast majority of these words as variants during

training, so should (correctly) not normalise them, hence the low proportion of

variants normalised. Langton’s text is more general in its scope and vocabulary

and contains only a few Latin terms. Therefore, the number of words likely to be

erroneously marked as variants will be much lower (31.02% of the text’s tokens are

originally marked as variants, 65.08% of types). As more of the variants detected
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are likely to actually be variants, more should be (correctly) normalised; which

the higher percentage normalised demonstrates.

Regardless of the precise amount of spelling variation remaining, it is clear

that a large amount of the spelling variation has been normalised successfully.

The precision of the normalisation should be high due to the high normalisation

threshold chosen. Evaluation of the normalisation threshold, albeit on a small

sample, showed that very high precision was achieved. This also corroborates with

the high precision scores found with the Innsbruck evaluation (see Section 5.2.2).

Furthermore, only a very small number of erroneous normalisations were found

in the qualitative analysis of the most frequent spelling variants. Whilst a

fully normalised and manually checked corpus would be ideal for the release

of the EMEMT corpus, the automatically normalised texts produced here are

a reasonable substitute. It has been shown previously (Section 3.2) that even

dealing partially with spelling variation will increase the accuracy of subsequently

used corpus linguistic tools.

5.4 Chapter Summary

The aim of this chapter was to evaluate the developed EModE spelling normali-

sation methodology described in Chapter 4. Of particular interest was how well

automatic normalisation could be performed, as accurate automatic normalisation

would enable the processing of the large EModE corpora available. To this end,

evaluations of three key aspects of the automatic normalisation procedure have

been performed.

How accurately variants are detected was established with three different

sources of spelling variants. As well as the real-word error rates already evaluated

in Section 3.3.1, it was confirmed that extra words were also erroneously detected

as spelling variants. As already discussed in Section 3.1, these are likely to

include proper nouns, words from other languages (such as Latin and French), and

archaic and obsolete words such as betwixt. However, despite these problems, the

dictionary lookup method was shown to achieve fairly high recall and precision

scores of around 90%. Using larger or smaller dictionaries was shown to only

improve recall or precision metrics slightly, and always at the expense of the other
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metric. For any further improvement to be made on these figures, contextual

information would need to be incorporated (as described in Section 2.2.4).

The next key aspect of the normalisation procedure evaluated was the effect

of training. Being able to train the normalisation procedure to be able to deal

with a particular corpus and improve the performance of normalisation is a key

concern due to the variety of EModE texts and corpora available. It has been

highlighted throughout this thesis that building a static and generic EModE

spelling normalisation tool would be ill-advised due to each corpus having its own

characteristics. The training procedure was evaluated with the Innsbruck Letters

corpus, which provides a valuable source of manually checked normalisations to

compare automatic normalisations against. It has been shown that, as increasing

amounts of training data are seen by the system, the proportion of spelling

variants which can be successfully normalised increases. Importantly however,

high precision is maintained throughout the training process, in fact the training

improves this also, although to a lesser degree. It was also shown that the

improvement in performance made by training decelerates as more training data

is seen, with the bulk of the performance increase made before 40% of the training

samples were processed.

The final aspect of the normalisation procedure evaluated was the control of

automatic normalisation precision and recall through the normalisation threshold.

Analysis showed that higher precision could be achieved at the expense of recall,

and vice versa. It was found that with training and a normalisation threshold of

75%, automatic normalisation of the Innsbruck test set achieves 62% recall and

95% precision. Using different thresholds yields a whole range of results, with

recall ranging from less than 2% (95% threshold) to above 75% (0% threshold)

and precision ranging from 81.62% (0% threshold) to 97.39% (95% threshold).

How spelling variant detection errors impact on the full automatic normalisation

procedure was also evaluated in this section. It was found that if real-word

spelling variants were somehow detected successfully, then the majority would be

successfully normalised. It was also found that extra erroneously detected variants

were not normalised in the majority of cases; only 14% of the extra variants were

normalised with a normalisation threshold of 75%, this equates to just 0.24% of

all tokens in the corpus.
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Also presented in this chapter was a case-study of the use of the developed

spelling normalisation procedures in the release of the EMEMT corpus. The

developed software, VARD 2 (Section 4.3), was used to manually normalise

representative training samples, which were then used to inform the automatic

normalisation of the entire corpus – also performed by VARD 2. The final

normalisation procedure reduced the proportion of detected spelling variant tokens

from over 18% to below 5%, with just under 73% of spelling variants dealt with.

The resulting normalised texts have been released, alongside the original texts, as

an alternative version of the corpus which can be used to achieve more accurate

results for searches and advanced corpus linguistic techniques such as key word

and collocation analysis.

The results presented in this chapter address RQ 3 (Section 1.2), with it being

shown that a large amount of spelling variation can be dealt with by the developed

normalisation tool, and with high precision. This was particularly apparent in the

release of the normalised EMEMT corpus, which had a large amount of its spelling

variation automatically normalised by the tool developed. Throughout the

evaluation, it has been shown that high precision of normalisations is maintained,

even when normalisation performance is increased in terms of recall through

the training procedure. Furthermore, the confidence scores and normalisation

threshold allow for the control of the balance between precision and recall,

depending on the user’s needs. Very high precision scores can be achieved with a

high normalisation threshold set, although this will inevitably reduce the number

of normalisations made.
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Chapter 6

Conclusions

The final chapter shall conclude the thesis with a summary of the research

undertaken and its findings. This will include reviewing the research questions

posed at the beginning of the thesis and assessing how well they have been

addressed. The various contributions made by the research shall then be reviewed

to assess the impact of the work undertaken. Finally, the thesis will be completed

with a look to future avenues of research which could be explored to extend upon

this thesis and address its limitations.

6.1 Summary of Work

The focus of the first strand of research was to establish a better understanding of

both the characteristics of EModE spelling variation and the problems it creates

for corpus linguistic analysis. This began in the background research (Chapter 2)

with an overview of the EModE period, with particular attention given to its

inherent spelling variation and the reasons behind it. An overview was also given

of the EModE corpora available and the potential issues caused by historical

spelling variation on the performance of standard corpus linguistic methodology.

Many of the observations presented in previous research were based on

assumptions and qualitative analysis. The aim of Chapter 3 was to provide

quantitative analyses to verify and extend these observations. Several analyses

were performed, beginning with an examination of the levels of spelling variation

present in several EModE corpora. For the first time (on such a large scale), it

was shown that the corpora examined contained a significant number of spelling

variants and that the number of spelling variants reduced over the EModE period.
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The amount of spelling variation present, particularly in earlier texts, served to

highlight how difficult the task of spelling normalisation is – for several samples,

over half of the tokens present were detected as spelling variants. Next, the

effect of these high levels of spelling variation on the performance of corpus

linguistic methodology was examined, with the evaluation of two automated

corpus linguistic techniques. Part-of-speech (POS) tagging was investigated first

and it was found that tagging accuracy reduced substantially when applied to

EModE texts. It was also found that normalising spelling variation both manually

and automatically substantially increased tagging accuracy, proving that the

spelling variation was having a detrimental effect on performance. Key word

analysis was also investigated by comparing key word lists produced before and

after spelling variation was normalised. It was found that the ranking of key words

was considerably affected by spelling variation, and that as spelling variation

reduces, the ranking correlation between the two key word lists improves. These

two evaluations confirmed that that spelling variation has a negative impact on

the accuracy of corpus linguistic methodology. Combined with the finding of

high levels of spelling variation in several EModE corpora, a strong case has been

made for the necessity of spelling normalisation to reduce the number of spelling

variants in EModE texts. Performing the POS tagging or key word analysis over

normalised versions of the texts would improve the accuracy of results.

The second strand of research centred on the development of a spelling

normalisation tool which could alleviate the highlighted problems caused by

spelling variation. In Section 2.2, previous research dealing with modern spelling

problems was discussed, with focus on the issues surrounding the detection of

spelling errors and finding suitable corrections. Several previous studies which

utilised these modern spellchecking techniques and other methods to deal with

historical spelling variation (in English and other languages) for various purposes

were introduced in Section 2.3. None were found to deal with the precise task of

automatically normalising spelling in EModE texts sufficiently. Although, there

were several cases of modern spellchecking techniques being adapted to historical

spelling variation, with some success.

Through the background research, several specific issues and assumptions

related to modern spellchecking were highlighted. In Section 3.3, how these

issues and assumptions applied to EModE spelling variation was investigated. One
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prominent area of research in modern spellchecking is the problem of detecting

and correcting real-word spelling errors (see Section 2.2.4). An analysis was

performed to assess the comparable problem of real-word spelling variants in

EModE texts. Three sources of EModE spelling variants were examined and

the number of variants which matched modern words was counted in each. It

was found that the proportion of real-word spelling variants counted in the three

sources was between 9.5% and 11.6%; much less than the proportion of spelling

errors which equated to real-word errors found in modern texts. This was an

important result as it substantially reduced the need for the developed EModE

spelling normalisation tool to require contextual information when detecting

spelling variants to normalise.

Further investigations of EModE spelling variants were conducted using the

DICER analysis tool, the development of which is described in Section 4.4. An

analysis was carried out to establish whether two ‘rules-of-thumb’ commonly

used in modern spellchecking could be applied to EModE spelling normalisation.

One assumption used in many applications is that the large majority of spelling

errors will be a single edit away from the intended word, making correction

of errors much simpler. It was found that the proportion of EModE spelling

variant normalisations requiring more than one edit was around 40%. Clearly,

just searching for modern equivalents that are one edit away from the spelling

variant would severely restrict normalisation performance. Another assumption

commonly used, particularly in phonetic matching techniques, is that the majority

of spelling errors will be correct in the first letter. It was found that this

assumption holds for EModE spelling variation, with less than 7% of spelling

variants having variation in the first character (slightly less than the percentages

found for modern spelling errors). This finding allows for methods utilising this

assumption to be applied to EModE spelling variation more effectively.

Rule-based approaches are commonly used for spelling related issues such as

OCR and typing errors. DICER was used to investigate character edit rules

to establish whether such approaches would be applicable to EModE spelling

normalisation. Several specific character edit rules were found which corroborated

previous observations of common patterns in EModE spelling variation; such as

the interchangeability of i / y and u / v, as well as the inconsistency in the

presence of a final e. Several other rules were also found for the three spelling
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variant datasets analysed, these differed from the rules found in DICER analyses

of modern spelling errors. The findings suggest that a rule-based approach could

be used to find variant normalisations. However, it was also found through the

DICER analyses, and elsewhere, that different sources of EModE spelling variation

have their own characteristics and there are many subtle differences in the typical

properties of spelling variants present in different EModE corpora. This diversity

between EModE texts highlights the need for any spelling normalisation solution

to be adaptable, so that a wide range of EModE texts can be dealt with effectively.

In Chapter 4, the actual development of the spelling normalisation procedures

was described. Decisions made during this development have been based on the

characteristics of EModE spelling variation previously established. For example,

the spelling variant detection method involves the looking up of each word from

a text in a modern word list. Each word is dealt with in isolation and no context

is taken into account. The decision not to include contextual information was

based on the evaluation highlighted above, which indicated that the problem

of real-word spelling variants in EModE is much less severe than the problem

of real-word spelling errors in modern spellchecking. After finding spelling

variants, the normalisation procedure consists of several steps. Firstly, a list

of candidate normalisations is created using three methods: a known variants list

containing previously seen normalisations and a manually created set of variant–

normalisation pairs (adapted from Rayson et al., 2005), a phonetic matching

technique based on the Soundex algorithm, and a character edit rules based

approach. The list of candidates is then ranked based on a confidence score which

is calculated using an edit distance similarity measure, the predicted recall and

precision of each candidate and a cumulative recall and precision based on previous

normalisations seen through training. The ranked list of candidate normalisations

can then be suggested for the variant in an interactive setting. Alternatively, for

automatic normalisation, the highest ranked candidate for each variant can be

used.

The developed methods have been incorporated into a spelling normalisation

tool, VARD 2, which can be used to both manually and automatically normalise

spelling variation in single texts or entire corpora. The manual processing mode,

along with an additional training mode and several customisation options, allows

VARD 2 to be adapted and trained for a particular corpus. This adaptability is a
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key factor due to the wide range of EModE corpora available and the previously

discussed differences between the spelling variation they contain. The batch

processing mode offered by the tool allows for multiple texts to be automatically

normalised with a normalisation threshold set which dictates what a candidate’s

confidence score must reach before normalisation occurs. Texts outputted from

VARD 2 contain normalisations marked-up with XML tags, thus retaining the

original spelling. This is essential to maintain linguistic authenticity of the text;

normalisation is for the purpose of improving the performance of automated

corpus linguistic tools, which will process the modern equivalents instead of the

variant spellings. The XML markup also allows for the exploration of spelling

patterns, such as those found in the various analyses presented in Chapter 3.

Chapter 5 presented the evaluation of the spelling normalisation procedures

developed. The spelling variant detection method was evaluated with precision

and recall scores of around 90% found. The recall scores relate directly to the

levels of real-word spelling variants found to exist in EModE corpora, whereas

the precision scores relate to a different problem of extra spelling variants being

erroneously detected – these are likely to include proper nouns, words from other

languages (e.g. Latin and French) and archaic and obsolete words such betwixt

and howbeit. The recall score of 90% represents an upper bound to automatic

normalisation coverage, as a normalisation cannot be made if the variant is not

first detected. The extra variants erroneously detected will only pose a problem if

they are subsequently normalised – clearly any normalisation would be an error.

The effect of dictionary size was also evaluated for the variant detection method.

It was found that the dictionary used by default in VARD 2 was suitable in

terms of its precision and recall balance. Larger dictionaries were found to only

offer small improvements in precision but with substantial drops in recall, whilst

smaller dictionaries only contained marginal increases in recall at the expense of

larger decreases in precision.

The automatic normalisation procedure was evaluated next, with focus on

the effect of training the tool with manual normalisations and adjusting the

normalisation threshold to balance precision and recall. The Innsbruck Letters

corpus, which has been automatically normalised and then manually checked

(Markus, 2000; 2002), was used for the evaluations. The normalisations found in

the corpus can be compared to the automatic normalisations made by VARD 2,
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with recall and precision scores calculated. The training procedure was evaluated

by training VARD 2 on 1,000 word random samples from half of the Innsbruck

corpus and after each sample measuring the recall and precision on automatic

normalisation of the other half of the Innsbruck corpus. It was found that

with each training sample, automatic normalisation performance improved. A

performance increase in terms of recall was most notable, with precision gaining

only slight increases – albeit from a considerably higher starting score (compared

to recall). Recall increased from 46.3% to 67.5% and precision from 90.3% to

93.3%. It was also found that the bulk of performance improvement was gained

in earlier training, with 75% of the performance increase observed before 40% of

the training samples were processed. The normalisation threshold was evaluated

with the Innsbruck data also. After the tool had been trained on the same half

of the corpus, the other half was used as test data to determine the precision

and recall of automatic normalisation with different normalisation thresholds set.

Results showed recall ranging from less than 2% (95% recall) to above 75% (0%

threshold) and precision ranging from under 82% (0% threshold) to over 97%

(95% threshold). With a threshold of 75% set, 62% recall is achieved with 95%

precision – encouraging scores for the difficult task in hand. Precision is likely

to be of greater importance when automatically normalising texts, so the high

precision scores achievable are particularly promising. The extra erroneously

detected spelling variants will affect the precision scores presented if the words

are subsequently normalised, with real-word errors being introduced into the text.

However, an additional evaluation found that relatively few (less than 15% even

at a mid-ranged normalisation threshold) are automatically normalised. This

equates to 0.24% of all tokens in the Innsbruck corpus.

The final evaluation presented centred on the Early Modern English Medical

Texts (EMEMT) corpus, which was recently released with a normalised version

alongside the original transcribed texts. The normalisation procedure was

completed using VARD 2. Its interactive mode was used to manually normalise

a representative training sample, which was then used to inform the automatic

normalisation of the whole corpus with the tool’s batch processing mode. The

final normalised texts have had 73% of the spelling variants detected within them

normalised, reducing the number of detected variants from over 18% to below

5%. The use of the normalisation procedures developed on an actual released
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EModE corpus demonstrates the value of the research undertaken. Furthermore,

a qualitative review of the normalisations made by VARD 2 was performed by

a member of the EMEMT compilation team (see Section 5.3.2). Whilst only

the most frequently occurring variants were assessed, very few errors in the

normalisations made were found to exist. This indicates again the high precision

achieved during automatic normalisation.

6.2 Research Questions Revisited

We now turn to how the work undertaken has addressed the research questions

established in Section 1.2, repeated here for convenience.

RQ 1 How extensive is Early Modern English spelling variation in terms

of the levels of variation appearing in Early Modern English corpora

and how large an impact does this spelling variation have on corpus

linguistic methodology?

This research question has been addressed in Chapter 2 and Chapter 3. The

high levels of spelling variation had already been commented upon by various

researchers (e.g. Görlach, 1991; Vallins & Scragg, 1965) but only quantified on a

small scale by Schneider (2001) with the ZEN corpus (1670–1799). Section 3.1

describes the undertaking of a large-scale quantitative analysis of the spelling

variant levels in several EModE corpora dating between 1410 and 1800. It was

shown that the predicted high-levels of spelling variants did exist in all corpora,

particularly in earlier periods. It was also shown that spelling variant levels decline

significantly throughout the EModE period, slowing as English spelling becomes

standardised by the end of the 18th century. The potential impact of this spelling

variation on corpus linguistic methodology was first discussed in Section 2.1.3,

and then evaluated in Section 3.2 for part-of-speech (POS) tagging and key word

analysis. It was found that the accuracy of POS tagging was reduced to below

82% on a 5,000 word sample of Shakespeare text. However, dealing with spelling

variation increased accuracy to nearly 89%. For key word analysis, two key word

lists were produced for an EModE corpus before and after spelling normalisation

took place. A distinct impact on the ranking of words in the key word lists was

observed, which could only be attributable to the spelling variation contained in
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the original texts. It was also found that as the levels of spelling variation reduces,

less impact on the key word list rankings is observed.

RQ 2 What are the characteristics of Early Modern English spelling varia-

tion and how will these affect the application of modern spellchecking

techniques to historical spelling normalisation?

Through the background research (presented in Section 2.2), several key areas

of modern spellchecking were established where the properties of EModE spelling

variation needed to be known to judge how modern spellchecking techniques could

be applied to EModE spelling normalisation. In Section 3.3, these properties were

investigated using various sources of spelling variant normalisations – some from

the use of the developed normalisation tool and others from external sources. Also

utilised was the same variant detection method used in the final normalisation tool,

and the DICER analysis tool (see Section 4.4). Decisions in the development of the

spelling normalisation methods (described in Chapter 4) based on these findings

included:

• Not to prioritise the inclusion of contextual information during spelling

variant detection due to the finding that far fewer real-word spelling variants

exist in EModE texts than real-word spelling errors exist in modern texts.

• To use edit distance as an indicator of a correct spelling variant normalisa-

tion candidate, but to not limit normalisation suggestions to modern words

which are only one edit away from the variant form – this was due to the

finding that around 40% of EModE spelling variant normalisations were

more than one edit away.

• To utilise the assumption in phonetic matching that, in the vast majority

of cases, the first letter is ‘correct’, this following the finding that less than

7% of spelling variants required action on the first letter.

• To use a rule-based method with specific character edit rules relating to

EModE spelling variation – DICER analysis showed that such character

edit rules exist.
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• To produce a normalisation tool that could be trained and customised to

adapt it to different texts and corpora, this was following various analyses

indicating subtle diversity between different EModE spelling variation

sources.

RQ 3 What levels of performance can the developed normalisation tool

achieve with different levels of training, particularly in terms of pre-

cision and recall, when automatically normalising spelling variation

in Early Modern English corpora?

This research question was addressed in Chapter 5, with various evaluations

of the VARD 2 spelling normalisation tool. It was shown that not only is

normalisation recall vastly improved through training, the already high precision

of normalisations made also increases slightly. Balance between precision and

recall can also be achieved through the setting of a normalisation threshold.

With this threshold set at 75% and training performed on half of the Innsbruck

Letters corpus (which contains manually checked normalisations), automatic

normalisation of the remaining half of the corpus achieves a recall score of

62%, with precision of normalisation made at 95%. These encouraging levels of

performance were repeated in the automatic normalisation of the EMEMT corpus

which was released with the VARD 2 normalised texts alongside the original

transcriptions. In the final normalisation of the corpus, 73% of the detected

spelling variants were normalised. Furthermore, qualitative analysis (performed

by Anu Lehto) of the normalisations made revealed very few errors.

6.3 Contributions

The following contributions can be attributed to the research presented in this

thesis.

Spelling variation normalisation method and tool

The research presented in this thesis has led to the development of a spelling

normalisation tool which has been shown to be useful when dealing with EModE

spelling variation. Use of the normalisation tool on EModE corpora will lead to

the improved accuracy of corpus linguistic methodology, but at the same time
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maintain linguistic authenticity through the retention of the original spelling

forms. The tool can be customised and trained to be used with different

EModE corpora and an interactive mode allows for assisted manual normalisation.

Automatic normalisation can be performed on any size of corpus, with precision

and recall balance controllable through a normalisation confidence threshold.

Use of spelling normalisation in research projects

The usefulness of the tool for the task of spelling normalisation has been

highlighted with its performance in automatically normalising the spelling

variation present in the EMEMT corpus.

The normalisation tool has been made available for academic research, with

significant interest expressed through over 80 requests to download the software.

An early version of VARD 2 was used in Jane Demmen (2009)’s “corpus-based

investigation of ‘key’ word clusters [...] in the dialogue of male and female

characters in Shakespeare’s plays”, to avoid the issue of spelling variation affecting

word frequencies, which would have a cumulative effect on key word clusters.

Highlighting the issues presented by historical spelling variation

It has been proven that spelling variation has a considerable impact on advanced

corpus linguistic techniques. This has been shown specifically to be the case

for part-of-speech annotation and key word analysis. Historical corpus linguistic

researchers should be aware of these issues when performing their analyses and

consider normalising the spelling variation in their data. Even dealing in part

with variation will improve results, which has been shown to be possible without

considerable effort.

Understanding and quantifying the properties of EModE spelling
variation

Through the various analyses presented in Chapter 3, greater knowledge and

appreciation of the spelling variation that exists in EModE texts can be gained.

The findings can inform the development of techniques for spelling normalisation,

both in the research presented in this thesis and future studies looking to deal with

spelling variation. Not only this, the results offer intriguing linguistic insights into

the orthography of EModE texts, providing quantitative results that corroborate
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previous qualitative observations and compare historical spelling variation to

modern spelling errors.

Standardising other forms of spelling variation

The VARD 2 tool is highly adaptable for use with the wide range of EModE

corpora, this adaptability also allows for the tool’s use to normalise spelling

variation found in any language variety through customisation and training.

DICER can also be used to assist in this process by finding entries for the rule-

based method. For example, experiments have been undertaken with the tool(s)

to normalise spelling in child language data (Baron & Rayson, 2009), second

language learner data (Rayson & Baron, 2011) and SMS spelling variation (Tagg

et al., 2010).

Exploration of spelling patterns

The two tools developed from the research presented in this thesis, VARD 2 and

DICER, enabled the analysis of EModE spelling variation described in Chapter 3.

They can also be used in similar ways to perform a wide range of analyses to

explore historical spelling patterns, as well as spelling patterns in other language

varieties. For example, both tools have already been used for the creation of an

SMS spelling taxonomy (Tagg et al., 2010) and to explore the spelling trends in

second language learner data (Rayson & Baron, 2011).

6.4 Future Work

The following would be interesting research avenues to explore to extend and

improve upon the research presented in this thesis, and to address its limitations.

DICER and VARD combination

One potentially fruitful line of research would be to investigate incorporating the

DICER analysis directly into VARD 2’s training procedure. Currently, DICER

can be used with VARD 2, but only in a manual process. This includes creating a

DICER analysis from VARD 2’s output, examining the extensive results DICER

produces and deciding on a list of suitable rules. These rules can then be added

to VARD 2 for use when finding normalisation candidates. Ideally, this process
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would be performed automatically with new rules created as normalisations are

made. The specific context of the rules would need to be taken into account,

i.e. the position of rule application and the surrounding characters. Additional

information would also need to be stored for each rule to keep track of how

successful it has been in previous normalisations – this could potentially be

achieved with a similar method to that which is currently used to keep track of the

four normalisation methods’ cumulative precision and recall (see Section 4.2.3).

Including contextual information

Whilst it was found that real-word spelling variants were relatively uncommon

in EModE texts (compared to real-word spelling errors in modern texts), it was

also found that if the spelling variants could be detected, a normalisation can

often be made. Therefore, introducing contextual information in the spelling

variant detection procedure could potentially increase the recall of spelling variant

normalisation. Adding contextual information could also improve performance

in other areas of spelling normalisation, such as the ranking of normalisation

candidates. For example, words which if used as the normalisation would appear

out of place in the surrounding context could be ranked lower than words which

would fit. The application of contextual rules would not be a simple task; current

research is far from a full solution to modern context-sensitive spelling detection

and correction, and very little research has applied techniques to historical spelling

variation.

Other modern spellchecking methods

There are numerous additional methods from modern spellchecking research, some

of which have been described in Section 2.2, which could be useful for historical

spelling normalisation. Whilst some methods would be less effective with EModE

spelling variation due to its properties, as investigated in Section 3.3, some may

be useful for improved variant detection and for the suggestion and ranking of

normalisation candidates. Further analysis and evaluation will be required to

assess different methods’ applicability.

184



6.4 Future Work

Machine learning

Whilst the training procedure used in VARD 2 produces encouraging results (see

Section 5.2.1), there are several well researched machine learning methods which

could be applied to ranking normalisation candidates. It would be important

that any method employed did not sacrifice precision for the sake of recall, and

control of the balance between precision and recall during automatic normalisation

would need to be maintained through confidence scores, or similar, still being

attached to candidates. Any machine learning technique would also need to be

trainable as individual normalisations are made for the purposes of assisted manual

normalisation.
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in Natural Language Processing , vol. 3230 of Lecture Notes in Computer

Science, 372–383, Springer, Berlin and Heidelberg.

Mays, E., Damerau, F.J. & Mercer, R.L. (1991). Context based spelling

correction. Information Processing and Management: an International Journal ,

27(5): 517–522.

McEnery, A.M. & Wilson, A. (2001). Corpus Linguistics . Edinburgh

University Press, Edinburgh, 2nd edn.

McEnery, T. (2006). Swearing in English: Bad Language, Purity and Power

from 1586 to the Present . Routledge, London.

Mihov, S. & Schulz, K.U. (2004). Fast approximate search in large

dictionaries. Computational Linguistics , 30(4): 451–477.

196



REFERENCES

Mihov, S., Mitankin, P., Gotscharek, A., Reffle, U., Schulz,

K.U. & Ringlstetter, C. (2007). Tuning the selection of correction

candidates for garbled tokens using error dictionaries. In Finite State Techniques

and Approximate Search, Proceedings of the First Workshop on Finite-State

Techniques and Approximate Search, 25–30, Borovets, Bulgaria.

Mitton, R. (1987). Spelling checkers, spelling correctors and the misspellings of

poor spellers. Information Processing and Management , 23(5): 495–505.

Mitton, R. (1996). English Spelling and the Computer . Studies in Language and

Linguistics, Longman, London and New York.

Mitton, R. (2008). Ordering the suggestions of a spellchecker without using

context. Natural Language Engineering , 15(2): 173–192.

Mitton, R. (2010). Fifty years of spellchecking. Writing Systems Research, 2(1):

1–7.

Moore, G.E. (1965). Cramming more components onto integrated circuits.

Electron, 38(8).

Needleman, S.B. & Wunsch, C.D. (1970). A general method applicable to

the search for similarities in the amino acid sequence of two proteins. Journal

of Molecular Biology , 48(3): 443–453.

Nevalainen, T. (1997). Ongoing work on the Corpus of Early English

Correspondence. Language and Computers , 18: 81–90.

Nevalainen, T. (2006). An Introduction to Early Modern English. Edinburgh

Textbooks on the English Language, Edinburgh University Press, Edinburgh.

O’Rourke, A.J., Robertson, A.M., Willett, P., Eley, P. & Simons, P.

(1997). Word variant identification in Old French. Information Research, 2(4).

Osselton, N.E. (1998). Spelling-book rules and the capitalization of nouns in

the seventeenth and eighteenth centuries. In M. Rydén, I.T.B. van Ostade &

M. Kytö, eds., A Reader in Early Modern English, Peter Lang, Frankfurt am

Main.

197



REFERENCES

Pagel, M., Atkinson, Q.D. & Meade, A. (2007). Frequency of word-use

predicts rates of lexical evolution throughout Indo-European history. Nature,

449(7163): 717–720.

Pearson, K. (1904). On the theory of contingency and its relation to association

and normal correlation. Drapers’ Company Research Memoirs (Biometric

Series), 1.

Pedler, J. & Mitton, R. (2010). A large list of confusion sets for spellchecking

assessed against a corpus of real-word errors. In N. Calzolari, K. Choukri,

B. Maegaard, J. Mariani, J. Odijk, S. Piperidis, M. Rosner & D. Tapias, eds.,

Proceedings of the Seventh conference on International Language Resources and

Evaluation (LREC’10), European Language Resources Association (ELRA),

Valletta, Malta.

Perera, K. (1986). Language acquisition and writing. In P. Fletcher &

M. Garman, eds., Language Acquisition: Studies in first language development ,

chap. 23, 494–518, Cambridge University Press, 2nd edn.

Peterson, J.L. (1980). Computer programs for detecting and correcting spelling

errors. Communications of the ACM , 23(12): 676–687.

Peterson, J.L. (1986). A note on undetected typing errors. Communications of

the ACM , 29(7): 633–637.

Pfeifer, U., Poersch, T. & Fuhr, N. (1996). Retreival effectiveness of proper

name search methods. Information Processing and Management , 32(6): 667–

679.

Pilz, T. & Luther, W. (2009). Automated support for evidence retrieval in

documents with nonstandard orthography. In S. Featherston & S. Winkler,

eds., The Fruits of Empirical Linguistics , vol. Volume 1 of Process , Mouton de

Gruyter, Berlin and New York.

Pilz, T., Luther, W., Fuhr, N. & Ammon, U. (2006). Rule-based search

in text databases with nonstandard orthography. Literary and Linguistic

Computing , 21(2): 179–186.

198



REFERENCES

Pilz, T., Ernst-Gerlach, A., Kempken, S., Rayson, P. & Archer, D.

(2008). The identification of spelling variants in English and German historical

texts: Manual or automatic? Literary and Linguistic Computing , 23(1): 65–72.

Pilz, T., Buck, C. & Luther, W. (2009). Working with nonstandard

documents: A server-based trainable fuzzy search-plugin for Mozilla Firefox.
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