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Abstract 

The type and amount of variation that exists among images 

in facial image datasets significantly affects Face Recognition 

System Performance (FRSP). This points towards the devel-

opment of an appropriate image Variability Measure (VM), as 

applied to face-type image datasets.  Given VM, modeling of 

the relationship that exists between the image variability char-

acteristics of facial image datasets and expected FRSP values, 

can be performed.     

Thus, this paper presents a novel method to quantify the 

overall data variability that exists in a given face image dataset. 

The resulting Variability Measure (VM) is then used to model 

FR system performance versus VM (FRSP/VM).  

Note that VM takes into account both the inter- and intra-

subject class correlation characteristics of an image dataset.  

Using eleven publically available datasets of face images and 

four well-known FR systems, computer simulation based ex-

perimental results showed that FRSP/VM based prediction 

errors are confined in the region of 0 to 10%.  

 
Index Terms— Face recognition (FR), Signal Variability in 

image face datasets, Facial Variability Measure and its rela-

tionship to FR performance. 

 

1. INTRODUCTION 

 

Face Recognition (FR) has been adopted over the last 

three decades as the primary methodology of biometric 

identification and verification systems. Major characteristics 

which provide FR with an edge over other biometric tech-

niques are its relatively high accuracy and non-intrusiveness 

nature. As a result, a plethora of face recognition techniques 

have been proposed; a detailed survey of such FR schemes 

can be found in [1-8].  

 

 

 

 

Furthermore, face recognition systems usually operate in 

one of two modes: i) Verification (FV) and ii) Identification 

(FI).  Face verification is a one-to-one matching process in 

which an input (query) face image is compared against the 

stored template of only one person whose identity is being 

claimed. On the other hand, face identification involves one-

to-many comparisons between an input face image with the 

stored templates of a number of individuals. There are sev-

eral areas where FR is applied in the form of FV or FI, e.g. 

in access control, surveillance, criminal justice systems, 

smart cards etc. see [8]. However, when employed in real 

life application, FR system performance is affected signifi-

cantly by large intra-person and small inter-person amounts 

of input image variabilities which often characterize a given 

application domain. Furthermore, this apparent dependency 

of FR system performance stems from the way face images 

are captured. Now, and in order to test the performance of 

FR systems, numerous sets of face images have been created 

and are publically available, each using different image 

capture criteria and constraints [9].  Table-1 presents several 

well-known face image datasets, each created with its own 

image capture specification.   

The usual image capturing conditions that count for dif-

ferent types of image face variability are related to:     

 

 Illumination 

 Pose 

 Expression 

 Makeup 

 Facial attributes i.e. mustache, beard, glasses, 

 Age  

 

In addition to the above types, the amount of variability 

allowed per type, during image capturing, is also of im-

portance.  Consider for example the type of variability 

“pose” (see table 2) which can vary from 0 to ±90 degrees. 

Large variations in pose can create severe visual changes 

between images taken of the same person, whereas, at the  

same time, have the potential to increase similarity be-

tween the images of different subjects. Of course in both 

cases FR becomes a more challenging task with adverse 

implications in FR system performance. This general 
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dependency of FR system performance upon specific 

input image sets and their associated types and levels of 

variability is discussed in [23], see also Table 3. Here the 

authors employed a Tied Factor Analysis based FR algo-

rithm and showed i) that  a FR system trained and opti-

mized using  a specific type of image  variability performs 

differently when operating over  image datasets having 

different variability characteristics and ii) that a relation-

ship exists between the amount of image variability and 

system recognition performance. This implies that, given 

an appropriate measure of image data variability, this 

relationship could be modeled which in turn suggests that 

the performance of a given FR system could be predicted 

for any given input face dataset without the need to per-

form FR experimentation.   

Thus the ability to i) measure image face data variabil-

ity VM and ii) model VM versus FR System Performance 

(FRSP), are important research aims. Also note that such 

FRSP/VM models can be used to select face recognition 

systems that are better suited to given applications. Fur-

thermore, VM can be used to rank face image datasets in 

terms of their FR difficulty level.    

To the best of our knowledge, no work has been yet 

reported that covers and integrates the above two FR 

research aims. The conceptually nearest publication [28] 

proposes a set of different variability measures in order to 

represent object class properties in object classification. In 

[28] proposed variability measures are based on intra-

class similarities. As a consequence they can only be used 

with binary types of classification problems and definitely 

not in multiclass scenarios such as those encountered in 

FR.  

In this paper, and for a given dataset of face images, 

both inter- and intra-subject dataset measures are first 

defined. These are subsequently combined to form a sin-

gle variability measure (VM) which quantifies the overall 

level of image variability of a face dataset.  

Furthermore the relationship is modeled, using nth-

degree polynomials, between the VM values of several 

face datasets and the corresponding face recognition rates 

obtained from several FR systems. Thus FRSP/VM mod-

els are derived with respect to four different face recogni-

tion (FR) systems and eleven publically available face 

image datasets whose VM values vary considerably.  

Experimental results show that modeling FRSP in 

terms of VM allows relatively good performance predic-

tion estimates. That is to say, given an unseen input face 

dataset and its VM value as well as a FRSP/VM model, 

FR system performance can be predicted reasonably well. 

Furthermore, this prediction capability has been also 

evaluated using face image datasets that are JPEG coded 

at four different PSNR values. Results show noise free 

FRSP/VM models to operate well even under noisy (cod-

ed) input image conditions.   
The paper is organized as follows:  Section 2 explains 

in detail VM formulation whereas Section 3 describes the 

experimental set up used to produce computer simulation 

results. These results are then presented and discussed in 

the second part of Section 3. Concluding remarks are 

given in Section 4. 

 

2. VARIABILITY MEASURE (VM)  

 

The proposed overall variability measure VM of an 

image dataset is made of two components i.e. an inter- 

and an intra-Subject Class, denoted as VM-interSC and 

VM-intraSC respectively. 

 

2.1 VM-intra- and VM-inter-Subject Class Compo-

nents 
 

VM-intra- and VM-inter-Subject Class are basically 

measures of similarity among images belonging to same 

subject class and images from different classes, respec-

tively. In this paper, the Normalized Cross Correlation 

(NCC) [29] is used as a similarity measure between two 

given face images A and B. In VM-intraSC, NCC is cal-

culated among all the available images of each subject, 
whereas in VM-interSC, NCC is calculated among all 

images of one subject with respect to all images of all 

other subjects.  

 

2.1.1 VM-intraSC  
First step to calculate VM-intraSc is to create a 𝑃 × 𝑄  

dimensional matrix 𝐂 ̂of 𝑜𝑓 NCC values, see Eq. 1: 
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. (1) 

 

Here the number of columns 𝑃 is equal to the number of 

subjects 𝑀 whereas the number of rows 𝑄 is equal 

to 
𝑁(𝑁−1)

2
 ; 𝑁 is the number of images per subject in a 

particular face dataset. Each element ϑ𝑛𝑘
𝑚  of 𝐂 ̂(𝒑, 𝒒) rep-

resents the maximum value of an array {𝜸𝑛𝑘
𝑚 (𝑢, 𝑣)} that 

contains all NCC normalized cross correlation values 

𝜸𝑛𝑘
𝑚 (𝑢, 𝑣) formed between images I𝑛

𝑚 and I𝑘
𝑚 of sub-

ject 𝑚. i.e. 

    

 ϑ𝑛𝑘
𝑚 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑒𝑙𝑒𝑚𝑒𝑛𝑡{𝜸𝑛𝑘

𝑚 (𝑢, 𝑣)}, (2) 
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Furthermore  
 

𝜸𝑛𝑘
𝑚 (𝑢, 𝑣)

=
∑ [𝐈𝑛

𝑚(𝑥, 𝑦) − 𝐈𝑛
𝑚][𝐈𝑘

𝑚(𝑥 − 𝑢, 𝑦 − 𝑣) − 𝐈𝑘
𝑚]𝑥,𝑦

√∑ [𝐈𝑖
𝑚(𝑥, 𝑦) − 𝐈𝑖

𝑚]
2

𝑥,𝑦 ∑ [𝐈𝑘
𝑚(𝑥 − 𝑢, 𝑦 − 𝑣) − 𝐈𝑘

𝑚]
2

𝑥,𝑦

. (3) 

 

where x and y are pixel coordinates, and  𝑢 and 𝑣 refer to 

the shift at which a NCC value is calculated. Moreover, 

I𝑛
𝑚 and I𝑘

𝑚 are the means of the overlapped regions of the 

two images.  

Once,   �̂�  is formed for a specific dataset, VM-intraSc = 

∅̂ is calculated as 

 

  ∅̂   = �̂� × �̂�2, 
where 

�̂� =
1

(𝑃×𝑄)
∑ ∑ �̂�(𝑝, 𝑞)𝑄

𝑞=1
𝑃
𝑝=1 ,   

and 

�̂�2 =
1

(𝑃 × 𝑄) − 1
∑ ∑(�̂�(𝑝, 𝑞) − �̂�)2

𝑄

𝑞=1

𝑃

𝑝=1

. 

(4) 

In Eq. 4, higher values of mean �̂� represent larger sim-

ilarity or lesser variation among the images of each sub-

ject. Furthermore larger variance σ̂2  values correspond to 

wider ranges of variation about the mean for the images 

of each subject.  Also note that both �̂� and �̂�2 are related 

to the number of images  𝑁 used per subject. Thus when 

𝑁 is relatively large so that subject images vary smoothly, 

even when the overall variation per subject is large, then 

relatively large VM-intraSC ∅̂ values are produced. 

In order to further consider the above statements and 

the relationship between �̂�(𝒑, 𝒒) values and input image 

dataset characteristics, the following two experiments 

were performed.  Both involved Part-2 of the FEI face 

dataset [16]. FEI is a publically available face dataset that 

comes in four different parts. Each part contains 50 sub-

jects with 14 color images per subject. 10 out of these 

14 images cover smoothly a rotation profile of up to 180°, 

whereas the remaining 4  images contain illumination and 

expression variation. In the first experiment, two matrices 

�̂�𝟏 and �̂�𝟐 are formed from two different FEI Part-2 sub-

sets. The first subset contains smooth rotational variations 

and comprises of all 10 images per subject. The second 

subset contains only 3 images per subject taken with sub-

ject rotations  0°, 90°and 180°. In Fig.1, two normalized 

histograms corresponding to Ĉ1 and Ĉ2 values are shown, 

respectively. The histogram corresponding to the dataset 

having smooth pose variations from 0°to 180° (Fig.1 (a)) 

covers a larger range of NCC values and hence yields a 

larger intra-subject measure value ∅̂1 = 0.0119 ,  as com-

pared to ∅̂2 = 0.0061  of  the second dataset see Fig.1 (b). 

In the second experiment, VM-intraSC values are cal-

culated for four different datasets named as DS1, DS2, 

DS3 and DS4 to produce the curve shown in Fig.2. All 

four datasets used here are different from each other with 

respect to number of images used per subject and pose 

variation between successive images.  

In particular DS1 dataset contains three images per 

person with approximate of  0o, 90oand 180o rotations 

respectively, DS2 comprises of four images per person 

with approximate rotations at  0o, 60o, 120o and 180o, 

respectively, DS3 contains five images per subject with 

approximate rotations at 0o, 45o, 90o, 135o and 180o, 

respectively and finally DS4 contains all the ten images 

per subject. It is obvious from Fig.2 that an increase in 

number of images per subject used to cover a large range 

of image rotational type of variability i.e. 0o to 180o, 

increases the level of similarity between subject images 

and as a consequence increases VM-intraSC ∅̂.  

 

2.1.2 VM-interSC  
As discussed in the previous section, quantifying in-

tra-subject variation alone cannot adequately represent an 

overall VM, since inter-subject dataset properties are also 

equally important and should be taken into account.  

 

 

In particular and in order to successfully distinguish be-

tween images of different subjects, there must be large 

variations among these images. Thus to quantify such 

inter-subject variability, another matrix �̌�  (see Eq. 5) can 

be created that contains the Normalized Cross-Correlation 

values of all images of one subject cross-correlated and 

all the images of all other subjects.   

 

 

 

 

 

 

�̌� =

[
 
 
 
 

𝑪12 𝟎 𝟎
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(5) 

 

and 

𝑪𝑚𝑙 =

[
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,                  with 𝑚 < 𝑙. 

 

In Eq. 5 ϑnk
ml  is the maximum NCC between nth image of 

subject m i.e. In
m, and kth image of subject l i.e. Ik

l . The 
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value of ϑnk
ml  is calculated in the same way as given in Eq. 

2 and Eq. 3. The order of matrix �̌�   is G × H where the 

number of rows G is equal to (M − 1) × N2 and number 

of columns are equal to M − 1. Once the matrix �̌� is ob-

tained, it is used to form VM-interSC (∅̌ ) as given in Eq. 

4. The corresponding μ̌ and σ̌2 are calculated using only 

elements present in the lower triangle of the matrix �̌�.  

In case of inter-subject variability, a face dataset with 

large variations among the images of different subjects, 

yields smaller NCC values which in turn result in smaller 

mean and variance values and hence in a relatively 

small ∅̌  value.  

Thus a dataset of face images with large inter-class 

variations (i.e. small VM-interSC ∅ ̌value) and small 

intra-class variation (i.e. large intra-SC ∅ ̂value) should 

exhibit high classification performance.  It is therefore 

expected that a face image dataset that is characterized by 

the following condition: 

 

∅̌ ≪ ∅̂, (6) 

 

should produce relatively high classification results. Con-

sider for example, the proposed VM-interSCs for two 

subsets used in the first of the previously mentioned two 

experiments.  Their corresponding VM-interSC values are 

∅̌1 = 0.0068  and ∅̌2 = 0.0071, respectively and hence 

the first subset with ∅̌1 < ∅̂1 can yield better recognition 

performance for any FR system as compared to second 

subset where ∅̌2 > ∅̂2.  

 

2.2 Variability Measure (VM) 

  

VM-intraSC and VM-interSC, as defined in the previous 

section, are combined to form a single image dataset vari-

ability measure (VM). That is: 

 

VM = ∅ = ∅̂ × √∅̂2 − ∅̌2,         
 

 for    ∅̂ > ∅̌ 

(7) 

 

∅ ̌and ∅̂ are the previously defined inter- and intra-subject 

measures, respectively. In this product based formulation, 

∅̂ is included to scale the above square root based differ-

ence and  is in this way allow VM to distinguish between  

datasets  having same or very similar  √∅̂2 − ∅̌2 values 

but different VM-intraSC values. In this case the dataset 

with a higher VM-intraSC value will yields a larger VM 

value.  

Moreover, the above VM formulation produces only  

∅  values for datasets satisfying the ∅̂ > ∅̌ condition. 

Datasets which are characterized by the  ∅̂ ≤ ∅,̌ classifica-

tion adverse condition, are marked as inappropriate and 

their generation should be carefully reconsidered.  

    

 

3. EXPERIMENTATION & DISCUSSION  

 

In order to investigate the effectiveness and validity of the 

proposed face image variability measure VM a number of 

experiments have been performed. These are based on i) 

eleven different and publically available datasets of face 

images and ii) four different face recognition (FR) sys-

tems. Firstly in this section, the datasets and FR systems 

employed are briefly introduced, followed by the experi-

mental setup, computer simulation results and an associ-

ated discussion.   

 

3.1  Datasets of face images 

 

The following image datasets have been used in our ex-

periments: 

 

i. AT&T Face dataset [10] 

This contains a total of 400 grayscale images; that is 

ten images for each of 40 different subjects. Image 

size is restricted to 112 × 92 pixels. Furthermore the 

10 images of each subject differ from each other with 

respect to lighting conditions, facial expression and 

facial details.  

 

ii. IMM Face Dataset [11] 

IMM consists of 240 annotated images (6  images per 

person). Each image is 640 × 480 pixels in size and 

comes with 58 hand labeled shape points which out-

line face contours. The images of each subject vary in 

lighting, pose and facial expression. From the availa-

ble 40 subjects, 37 are represented by RGB images 

whereas the remaining three subjects are represented 

by grayscale images. 

 

iii. The Extended Yale Cropped Face Dataset [12] 

The original extended Yale Face Dataset B [12] con-

tains 16128  images of 28  persons, under 9 poses and 

64 illumination conditions. In this paper a cropped 

version of the dataset, as reported in [30], has been 

used. This version contains  2242  grayscale images 

of 38 subjects with images being manually aligned, 

cropped and then resized to 168 × 192 pixels.  

 

iv. Georgia Tech. Face Dataset [13] 

This contains images taken from  50 different sub-

jects. There are 15 RGB images per subject and vary 

in size, facial expression, illumination and rotation. 

The average face size is 150 × 150  pixels.  

 

v. Stirling Face Dataset [14]  

The Stirling face dataset contains the   312  images of 

 35 subjects (18 female, 17 male). These are mono-
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chrome images with  269 × 369  pixels spatial resolu-

tion and vary in pose and facial expression.  

 

vi. Indian Face Dataset [15] 

This database contains the images of  55  subjects 

(22 female, 33 male) and features eleven different 

poses per individual. In addition to pose variability, 

images with four emotions i.e. neutral, smile, laughter, 

sad/disgust, are also included for every individual. The 

size of each image is 640×480 pixels, with 256 grey 

levels per pixel.  

 

This Indian dataset has been divided further into two 

i.e.  a male and a female subset, which in turn are two 

of the 11 datasets employed during experimentation.  

 

vii. FEI Face Dataset [16] 

The FEI face dataset comes in four different subsets 

which have been used as part of the previously men-

tion experimentation involving 11 subsets. Each sub-

set contains 50 subjects with 14 RGB images per sub-

ject. Furthermore 10 out of these 14 images cover 

smoothly a rotation profile of up to 180°, whereas the 

remaining 4 contain variations in illumination and ex-

pression. FEI image size is 640×480 pixels.  

 

Finally note that all dataset images are manually 

cropped in order to remove any background information. 

Some cropped sample images are shown in Fig.3 along 

with their corresponding original images. 

  

3.2 Face Recognition (FR) Systems  

 

Four different face recognition (FR) systems have been 

employed in order to experimentally determine VM mod-

eling performance. Note that as i) the purpose of this 

work is not to provide a comparison between different 

face recognition system and ii) we are not offering any  

state-of-the-art face recognition system solutions, we have 

chosen four  appearance based face recognition system 

formulations that are relatively simple and easily  imple-

mentable. Their brief description is given below: 

 

i. Eigenfaces: 

The “Eigenfaces”, approach has been introduced by 

Turk and Pentland [31], is one of the most thoroughly 

investigated FR techniques [32-34]. 

Eigenfaces are the eigenvectors that characterize vari-

ation across different face images in a training dataset. 

Each 𝑁-dimensional face image is a linear combina-

tion of these eigenvectors and can be best approximat-

ed using only a few 𝑀 (𝑀 ≪ 𝑁) that is ‘the best’ ei-

genvectors or principal components (PCs), in terms of 

the largest corresponding eigenvalues containing 

𝑃 percent of overall training face data variation. Nor-

mally,  𝑃 is kept in the range of 90 − 95  and is set 

here as 𝑃 = 95. Furthermore face images from both 

training and testing datasets are projected into a sub-

space, the so called “facespace”, which is defined by 

the above 𝑀 Eigenfaces. Thus recognition is per-

formed in the facespace by calculating the distance be-

tween known points derived from training images and 

unknown points representing testing images. 

 

ii. Fisherfaces: 

The second face recognition technique, that has been 

used in this work, is the well-known “Fisherfaces”. 

Fisherfaces, as proposed by [35], is based on a two-

stage strategy. In the first stage, a principal component 

analysis (PCA) is performed in, the same way as in 

Eigenfaces, to reduce the face image dimension.  A 

linear discrimination analysis (LDA) follows that ex-

tracts discriminative information from the reduced 

dimensionality data.  Note that LDA is maximizing 

between-class variation and at the same time is mini-

mizing within-class variation. The original Fisherfaces 

approach has been heavily investigated and modified 

to produce several different face recognition systems 

[36-39].  

 

iii. PCA + Multi-Class SVM: 

In this case, PCA is used as a preprocessing step for 

dimensionality reduction and then the well-known 

Support Vector Machine (SVM) is used in a multi-

class mode to classify these dimensionality reduced 

vectors.  

SVM, originally introduced by Vapnik and Cortes 

[40] for binary classification, is normally extended 

and thus adapted to multi-class problems by using two 

basic strategies i.e., i) One-versus-One and ii) One-

versus-All [41]. The basic difference in these strate-

gies is the number of classifiers trained. In the One-

versus-One approach, one classifier designed for each 

pair of classes. Thus for 𝑁 classes, 
𝑁(𝑁−1)

2
  classifiers 

are needed. During classification and for every test 

sample, each classifier votes for one of the two classes 

and the class with maximum number of votes is se-

lected. In the One-versus-All case, one classifier per 

class is built and trained to classify between each class 

and rest of the classes, in this way only 𝑁 classifiers 

are designed. In this paper, the One-versus-All ap-

proach has been used as it is computationally less ex-

pensive than the alternative One-versus-One scheme. 

Furthermore SVM works on the principle of finding 

an optimal linear hyperplane that separates two classes 

from each other. Note that in most real-world applica-

tions linear separation is not feasible, and SVM is 

modified to act as a non-linear classifier using a kernel 

technique. Here kernels transform data into a higher 

dimensional space where linear classification is feasi-

ble. 
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In this work a radial basis function (RBF) kernel has 

been used. This is effectively based on a Gaussian 

kernel and is dependent on two parameters, one is the 

so called kernel parameter 𝐾𝜎 whereas the other is 

known as the penalty factor 𝐾𝐶.  Note that for each 

dataset, the values of these parameters were selected 

to maximize recognition performance.  

 

iv. Normalized Cross-Correlation:  

This final face recognition technique operates on the 

basis of maximum Normalized Cross-Correlation 

(NCC) values derived between input test face image 

and training images. Notice that prior to NCC calcula-

tion, both test and training images are normalized to 

images having zero mean and unit variance.   

 

3.3 Results and Discussion 

 

The effectiveness of using the VM value of a certain face 

image dataset to predict the performance of FR systems, 

operating on the same image dataset, is considered in this 

section. To this end the test method, whose architecture is 

shown in Fig. 4, has been deployed. Here experimentation 

includs two parts.  

The first part involves i) computation of VM for all 

available datasets and ii) actual face recognition perfor-

mance of the above four listed FR systems. Estimates 

from (i) and (ii) provide prediction error range values. 

Note that for all datasets, FR systems are separately de-

signed to deliver maximum performance.  

Furthermore the performance of each FR system is 

evaluated using the k-fold approach; k is equal to the 

number of images per subject in a particular face image 

dataset and each fold contains one image per subject. For 

a k-fold cross validation test, k experiments are performed 

and in each experimental run, (k-1)-folds are used to train 

the classifier whereas the remaining fold is used for test-

ing. At the end, an average recognition rate is calculated 

across all folds. Recognition performance versus VM 

curves for all FR systems are shown in Fig.5. Curve 

points are obtained from different face image datasets. A 

general increasing trend in all curves shows that system 

classification performance improves with increasing vari-

ability measure (VM) values. Note however that this 

relationship is not monotonic. 

 The second part of experimentation is related to pre-

dictor block shown in Fig. 4. The predictor involves a 

polynomial based model that takes VM values corre-

sponding to some face image dataset and yields predicted 

recognition performance of a given FR system. Here the 

polynomial model, that can best fit this relationship, is 

selected on the basis of two ‘goodness of fit’ parameters, 

that is R-squared (R2) and  adjusted R-squared (R2̅̅ ̅) . 

R2 which is generally known as coefficient of deter-

mination, is defined as the ratio of the sum of squares due 

to regression, with respect to the total sum of squares. 

R2̅̅ ̅ is a modified version of R2 which has been adjusted 

with respect to the number of model variables [42]. 
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Note that the value of R2  increases with an increase in 

the number of terms, even if new terms have no signifi-

cance in improving the model. On the other hand R2̅̅ ̅ , 
even being positively biased, is more consistent and only 

increases if a new term improves the model.  Thus model-

ing improves with both R2 and R2 ̅̅ ̅̅  assuming higher values 

and also with the difference between the two parameters 

being minimum [43].  

Fig.6 shows R2 and  R2̅̅ ̅̅  values against different poly-

nomial degrees for all recognition schemes. Note that as 

the polynomial degree (d) is increased more than d = 2 , 

the rate of increase of R2̅̅ ̅  values gets smaller than that of 

R2 and in some cases is negative, due to overfitting. 

Therefore d = 2 has been chosen for all the recognition 

schemes. The resulting prediction models for all FR sys-

tems are shown in Fig.7 along with their corresponding 

original data curves. Corresponding R2, R2̅̅ ̅ , percentage 

average Absolute Error (Avg. AE), and Error Range 

(%age) values are given in Table-4. 

Avg. AE between actual recognition rate RAc and pre-

dicted recognition rate RPr is calculated as: 

𝐴𝑣𝑔. 𝐴𝐸 =
1

𝑁
∑ |𝑅𝐴𝑐

𝑖 − 𝑅𝑃𝑟
𝑖 |𝑁

𝑖=1 , (9) 

where N is the total number of face image datasets.  Fig.7 

graphs and Table-4 data show that 2nd-degree polynomi-

als provides a relatively good fit to the available data and 

 

suggest that a useful relationship always exists between 

data variability VM and face recognition system perfor-

mance (FRSP). 

The mathematical equations of the models developed 

for the previously discussed four FR systems are given in 

Appendix A. 

Next and given the VM values of “different” FR im-

age face datasets, the effectiveness of this FR system 

performance prediction approach is of course of interest. 

Now and since in real life FR applications some type of 

compression coding may be used prior to FR, experiments 

were conducted with the previously employed 11 datasets 

being corrupted with coding noise introduced at different 

PSNR levels.  

Furthermore the introduction of noise in input sample 

images can answer an important question i.e. how does 

the above derived FR system performance as related to 

VM models, which have been derived using noise-free 

image data, is affected by noisy input data? Or alterna-

tively does the relationship defined between VM and 

system recognition performance also holds for noisy im-

ages?    

Thus experimentation was performed using JPEG 

coded face image datasets and according to the experi-

mental set up of Fig. 8. This type of coding introduces a 

“block” type of noise/distortion.  Note that for simplicity 

only the Fisherfaces FR approach was employed and 

JPEG coding noise was adjusted at the four average 

PSNR values of 55.57, 33.48, 26.86, 23.98 dbs.  

In Fig. 9 actual VM and recognition rate values are 

obtained using noisy input data at different PSNR values. 

Notice that a similar increasing trend in VM and recogni-

tion performance values is observed in these curves, as in 

the case of noise free image based experimentation, see 

Fig. 5.    

Moreover, curves are now shifted towards the bottom-

left corner as the noise level increases. Thus a downward 

shift indicates that coding noise is suppressing facial vari-

ation across different subjects, which in turn causes a 

decrease in recognition performance whereas a left shift 

shows that a simultaneous decrease in VM has 

 

In addition, models derived from clean/un-coded data 

were employed to predict the recognition performance of 

systems operating on JPEG coded image data. The histo-

grams of absolute prediction error (%age) for all the da-

tasets and also percentage values of Average Absolute 

Errors (Avg. AE) corresponding to each average PSNR 

level are shown in Fig. 10 and Table-5, respectively. It is 

obvious from these values that in spite of introducing 

moderate image quality coding degradation in the input 

face images, model error ranges are approximately the 

same with those derived from noise-free data. This is 

indicative of the relative robustness of the proposed 

FRSP/VM system performance relationship with respect 

to coding distortion. 

 

4. CONCLUSION 

 

This paper investigated the modeling of FR system per-

formance in terms of the signal variability measure de-

rived from input image datasets. Thus a new variability 

measure (VM) that characterizes overall image face data 

variability has been defined and used over a number of 

well-known image datasets. In addition, relationships 

between such VM values and the performance of four 

conventional FR systems have been determined and mod-

eled using second order polynomials. Note that the pro-

posed VM measure takes into account both inter and intra 

correlation image dataset characteristics.    

Thus computer simulation results involving 11 publi-

cally available face image datasets show FRSP/VM pre-

diction errors of less than 10%, for all four FR systems, 

and Avg. AE values across FR systems in the range of 

3.27%  and  5.47%. An increase in the number of availa-

ble image datasets should further improve modeling accu-

racy. Note: free availability of public face images datasets 

and complexity involved in recognition process are two 

major factors in using only 11 face images datasets in 

modeling process. 

Furthermore, the prediction accuracy of the above 

noise-free FRSP/VM models has been also assessed using 

noisy i.e. JPEG coded, image data at different PSNR 
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values. Prediction errors (i.e. Avg. AE) corresponding to 

face image data coded at different PSNR values shown 

that these noise-free FRSP/VM models kept their predic-

tion accuracy to approximately the same level with that 

produced by noise-free input data. Moreover FRSP/VM 

curves show the same increasing trend as those of noise-

free data. This suggests that any deterioration in recogni-

tion performance, due to input image noise, is counterbal-

anced by VM reductions so that the general FRSP/VM 

relationship is maintained.  
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(a) 

 
(b) 

Fig.1: Normalized Histogram; a) is based on �̂�1 NCC 

values obtained from a dataset with 10 images per subject 

which correspond to relatively small change in pose along 

the 0o from to  180o range. b) is based on set  �̂�2 NCC 

values obtained from a dataset with only three images per 

person representing pose rotations  0o, 90o and 180o. 

 

 

 

 

 
Fig.2:  Four face datasets are shown on x-axis. DS1 con-

tains 3 images per subject with a  90o   pose variation 

between successive images, whereas DS4 has 10 images 

per subject and the least pose variation across images.  i.e. 

approximately 22.5o.   

 

 

 

 

 
 

Fig.3: Examples of manually cropped images and their 

corresponding original images.  

 

 

 

 

 

 

 

 

 

 
Fig.4: Experimental framework for evaluating prediction 

error ranges.  
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Fig.5: Recognition Rate Vs VM values obtained from 11 

datasets and for four different FR systems  
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(c)                                                                                                     (d) 

Fig.6: 𝐑𝟐 and 𝐑𝟐 ̅̅ ̅̅  Vs degree of Polynomial; a) Fisherfaces, b) PCA+SVM, c) Eigenfaces, and d) NCC.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.7: Recognition Rate Vs VM values for a)  

Fisherfaces, b) PCA+SVM, c) Eigenfaces, and d) NCC. 2nd degree polynomial models shown as dotted lines.  
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Fig.8: Experimental framework for evaluating proposed VM using noisy data. 

 
Fig.9: FRSP/VM curves corresponding to Fisherfaces FR system: same overall increasing trend as seen in Fig.5 can also be 

noticed in case of noise with all PSNR values.  
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Fig.10: Histograms of Absolute Errors calculated using i) datasets corrupted by JPEG noise at four different PSNR values: a) 

55.57, b) 33.48, c) 26.86, and d) 23.98. and ii) FRSP/VM models derived from clean data.   
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Table 1: Some of the widely used Face Datasets in Face Recognition Applications 

Database RGB/Gray Image Size No: of Subjects No: of Images / Subject Variation 

AT&T Face Dataset [10] Gray 112x92 40 10 Pose, Illumination, expression 

IMM Face Dataset [11] RGB/Gray 640x480 40 6 Pose, Illumination, expression 

The Extended Yale Face 

Dataset [12] 
Gray 168x192 28 ~576 Illumination, pose 

Georgia Tech. Face Dataset 

[13] 
RGB 640x480 50 15 Pose, Illumination, expression 

Stirling Face Dataset [14] Gray 269x369 35 9 Pose, expression 

Indian Face Dataset [15] RGB 640x480 61 11 Pose, Illumination, expression 

FEI Face Dataset [16] RGB 640x480 200 14 Pose, Illumination, expression 

XM2VTSDB [17] RGB 576x720 295  Pose 

UMIST Face Dataset [18] Gray 220x220 20 19-36 Pose 

 

Table 2: Face Datasets having Pose Variation 

Database No: of Subjects Pose Variation 

AT&T Face Dataset [10] 40 10 random poses within ±20 in Yaw and Tilt 

Bern Uni Face Dataset [19] 30 5 poses: 0o, ±20 in Yaw and Tilt 

XM2VTSDB [17] 125 5 poses: 0o, ±30 in Yaw and Tilt 

WVU [20] 40 7 poses: 0o, ±20, ±40, ±60 in Yaw 

MIT Face Dataset [21] 62 10 random poses within ±40 in Yaw and Tilt 

Asian Face Dataset [22] 46 5 poses: 0o, ±20, ±25  in Yaw 
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Table 3: Recognition Rate reported for different 

Pose Variation 

Database 
No: of 

Subjects 

Pose Difference 

among Images 

Reported 

Recognition 

Rate 

FERET 

[24] 
100 22.5o / 67.5o / 90o 100 / 99 / 92 [23] 

CMU PIE 
[25] 

68 16o / 45o 99.85 / 89.7 [26] 

CMU PIE 
[25] 

34 45o / 67.5o / 90o 100 / 80 / 40 [27] 

Table 4: Parameters for 2nd-degree Polynomial 

Model  

FR Systems 𝑅2 𝑅2̅̅̅̅  
Avg. AE 

(%age) 

Error 

Range 

(%age) 

Fisherfaces 0.827 0.783 3.27 0.13-8.5 

PCA+SVM 0.837 0.796 3.63 0.41-8.7 

Eigenfaces 0.889 0.860 4.40 1.08-8.1 

NCC 0.8510 0.814 5.47 2.08-11.1 

 

Table 5: Avg. Absolute Error (Avg. AE) at different 

Avg. PSNR values.  

Avg. PSNR 
Avg. AE 

(%age) 

Error Range 

(%age) 

55.57 3.54 0.17-9.59 

33.48 3.82 0.13-9.85 

26.86 4.16 0.86-8.01 

23.98 3.95 0.001-10.9 

 

Appendix-A 

Fisherfaces:- 

𝑦 = 𝑝1𝑥
2 + 𝑝2𝑥 + 𝑝3 

𝑥 is normalized by mean 0.000878  and std 0.0003201. 

Coefficients (with 95% confidence bounds). 

𝑝1 = −5.188 (−9.211,−1.165) 

𝑝2 = 10.38 (6.5,14.25) 

𝑝3 = 89.53 (84.6,94.46) 

(A-1) 

 

PCA+SVM:- 

𝑦 = 𝑝1𝑥
2 + 𝑝2𝑥 + 𝑝3 

𝑥 is normalized by mean 0.000878  and std 0.0003201. 

Coefficients (with 95% confidence bounds). 

𝑝1 = −6.926 (−11.54,−2.31) 

𝑝2 = 12.28 (7.827,16.72) 

𝑝3 = 91.69 (86.04,97.35) 

(A-2) 

 

Eigenfaces:- 

𝑦 = 𝑝1𝑥
2 + 𝑝2𝑥 + 𝑝3 

𝑥 is normalized by mean 0.000878  and std 0.0003201. 

Coefficients (with 95% confidence bounds). 

𝑝1 = −6.919 (−11.9,−1.933) 

𝑝2 = 16.58 (11.78,21.39) 

(A-3) 

𝑝3 = 79.08 (72.97,85.18) 

 

NCC:- 

𝑦 = 𝑝1𝑥
2 + 𝑝2𝑥 + 𝑝3 

𝑥 is normalized by mean 0.000878  and std 0.0003201. 

Coefficients (with 95% confidence bounds). 

𝑝1 = −6.632 (−12.69,−0.5738) 

𝑝2 = 17.05 (11.21, 22.89) 

𝑝3 = 80.23 (72.81, 87.65) 

(A-4) 

Note:- These models have been created using MATLAB R20011b 

simulations. 

 


