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Abstract

Understanding the impact of future heatwaves and the development of effective adaptation
strategies requires knowledge of both the changes in heatwave temperatures and their dura-
tions. We develop a framework, utilising extreme value theory, which allows for the effect of
a covariate on both the marginal quantiles and the temporal dependence structure of daily
maximum temperatures enabling the changes in heatwave temperatures (marginal effects) to be
identified separately from duration changes (dependence effects). To characterise future heat-
wave changes we use global mean temperature anomalies as a covariate to provide the metric
for climate change. Future daily maximum temperatures and global mean temperature changes
are provided by 13 general circulation models (GCMs) from the CMIP5 archive forced with
predicted future emissions of radiative forcing agents from the RCP8.5 scenario. For Orleans,
central France, we find that for all GCMs temporal dependence is unaffected by greenhouse gas
induced climate change indicating that durations of heatwaves that exceed time varying high
thresholds (i.e., the 1 year level) will not change in the future. However, all GCMs project
significant changes in the temperature margins with events similar to the 2003 European heat-
wave increasing by 1.3°C to 2.7°C and (8.0°C to 18.7°C) for a 1°C (5°C) increase in global
temperature. Collectively our results indicate there could be a significant increase in heatwave
risk as the world warms with heatwaves increasing in temperature significantly faster than the
global mean and local average temperatures.
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1 Introduction

Heatwaves are events that are characterised by periods of anomalously hot days and nights which
have wide ranging impacts on public health, with increased mortality (Donaldson et al., 2003)
and morbidity (Mastrangelo et al., 2007), and on the agricultural sector with impacts on livestock
(Dunn et al., 2014) and crop yields. For instance the 2003 heatwave in Europe was estimated
to reduce maize yields by up to 36% in Italy (Ciais et al., 2005) while the 2012 heatwave in the
USA reduced maize production by 13% in 2012 compared to 2011 (USDA, 2013). The definition of



heatwaves has often been tailored to the impact of interest which has resulted in a wide range of du-
rations and critical levels being used to define a heatwave, such as crop specific levels and durations
that vary regionally (Falloon et al. (2014), Wheeler et al. (2000) and Asseng et al. (2013)), which
has made comparison across studies difficult. In addition, different sensitivities to the duration of
heatwaves and/or their temperature complicates efforts to determine future impacts arising from
climate change as information is required for both the changes in duration and temperature.

The role of human activities has been identified in the increases of surface air temperatures that
have been observed (e.g., Stott et al. (2004), Christidis et al. (2011)) and potential future changes
have been widely reported (e.g., Kharin et al. (2013)). However, these studies have generally been
limited by the chosen heatwave metric, be it a temporal mean (such as seasonal mean, Stott et al.,
2004) that is significantly longer than typical heatwaves or significantly shorter (such as daily max-
ima, Kharin et al. (2013), Christidis et al. (2011)). Changes in the behaviour of heatwaves can
manifest themselves in either changes to temperature or duration or both and therefore require
metrics that can capture both. This paper focuses on how future changes in the behaviour of heat-
waves, which might arise from climate change, can be modelled using extreme value theory within
a framework that can separately identify changes in critical levels (such as a return level) and the
durations and magnitudes of the excursions above these changing (relative) critical levels.

Operational definitions of heatwaves are generally split into three different categories (Koppe et al.,
2004) based upon: (i) an air temperature level; (ii) an air temperature level and minimum duration;
(iii) indices based upon air temperature and relative humidity; in this paper we focus on cases (i)
and (ii). Abaurrea et al. (2007) use values that exceed the 95th percentile of June-August daily
maximum temperatures from 1971-2000. A 95th percentile is also used in Stefanon et al. (2012),
but they impose the additional specification of a minimum duration of 4 days. Fischer and Schéar
(2010) use a local 90th percentile with a minimum duration of at least 6 consecutive days. In each
approach only the exceedances of a threshold are used during the modelling process. In contrast,
Winter and Tawn (2016) model the temperature process above some lower modelling threshold and
then derive the properties of the heatwaves above a range of critical levels. Thus, if their model
is appropriate for their data, they have a more efficient inference of heatwave properties that can
also be derived beyond the range of the observed heatwaves. Relative critical levels are preferred
to absolute critical levels when defining a heatwave since temperature can vary by geographical
location and humans are able to adapt to local climate (Nitschke et al., 2011). Although heatwave
definitions vary, the importance of estimating the duration and severity of events accurately is
universally recognised.

Following Winter and Tawn (2016), we analyse the future heatwave characteristics for Orleans,
central France, as simulated by 13 state of the art general circulation models (GCMs) from phase 5
of the Coupled Model Intercomparison Project (CMIP5) database (Taylor et al., 2012). Orleans
was chosen for it’s continental location, absence of orography, long observational record and for
being located within the area most affected by the 2003 European heatwave, an event used by Win-
ter and Tawn (2016), and here, as representative of a damaging heatwave. Our ensemble includes
GCMs of similar resolution and which also produce plausible representations of climate variability.
The GCMs have been forced with predicted future emissions of radiative forcing agents from the
RCP8.5 scenario (Riahi et al., 2011) for the period 2006-2090 which together with their differing



climate sensitivities produce increases in global mean temperatures that vary between 2.0 to 4.3 °C
in the period 2006 to 2090. Such an ensemble of GCMs brings two sources of uncertainty to this
analysis. Each model will have its individual representation of physical processes, some of which
are poorly known and even if they are well known are imperfectly modelled within the GCM. In
addition, due to the non-linear nature of the climate system each realisation of the future climate
will sample the natural internal variability of the climate system, be it with the same or a different
GCM. Thus our ensemble here and the resulting range of results will be a combination of these two
sources of uncertainty.

We present future changes of heatwaves with respect to changes in global mean temperature rather
than for a specific date as this covariate is directly applicable to discussions regarding mitigation
targets and can also take advantage of efforts to formally quantify the uncertainty in future warm-
ing for specific dates (Harris et al., 2013). We calculate annual global mean temperature anomalies,
gt, with respect to 2006 for each GCM respectively

9t = Gt — 92006,

where g is the global mean temperature. Here g; and g; vary over different GCM ensemble members.

Whilst it would be possible to use a more locally defined metric of future change (such as the
change in mean European temperatures) this would unhelpfully include more unforced naturally
occurring internal variability of the climate system; here we desire to identify the changes that are
being forced by greenhouse gas emissions. Initially the nature of such changes are first identified for
one member of this ensemble, HaddGEM2.ES GCM (Martin, 2011), and then the whole ensemble is
used to test whether these changes are consistent across GCMs. Although our ensemble contains
some GCMs with large increases in global mean temperature, this does not generate bias and actu-
ally aids the efficiency of our study as it increases the signal we are seeking to infer, and through the
global temperature anomalies, results can be rescaled to whatever time period or emission scenario
as deemed appropriate by the user. We report, therefore, changes in heatwave behaviour for 1°C
and 5°C global mean temperature increases to span a wide range of possible combinations of dates,
emissions and climate sensitivities.

Let {Y;} denote the time-series of daily maximum temperatures over the June to August sum-
mer period. Our statistical modelling approach is based on, and extends, the methods developed
in Winter and Tawn (2016) who focused on analysing observed temperature extremes at one loca-
tion under an assumption of stationarity. If {Y;} was a stationary series, the intensity of a heatwave
could be modelled by fitting an extreme value model to exceedances by {Y;} of a high modelling
threshold 4. The most common method is to fit a generalized Pareto distribution (GPD)

NV
P(Yi—a>y|Yi>a) = (1+8/63) for y=>0,

where ¢y = max(c,0) and 64 > 0 and ¢ are the scale and shape parameters of the GPD respectively
(Coles, 2001).

Under climate change {Y;} is non-stationary, so approaches that model exceedances above a con-
stant threshold 4 can be problematic since the sample of exceedances will be dominated by values



from certain points in the time-series (e.g., there are likely to be more exceedances in future years
under climate change). Here we account for non-stationarity {Y;} with respect to the covariate
global mean temperature anomalies ¢g; and analyse multiple future potential series at the same lo-
cation. Our strategy for modelling the probabilistic behaviour of extreme temperatures is two-fold.
Firstly, we model the marginal structure using a threshold based approach where the threshold is
a function of the covariate. Once the marginal structure has been modelled, we transform the data
onto common margins, with the variables now identically distributed over time/covariate. We de-
note the resulting series {X;} and take this series to have a common Laplace marginal distribution
over t. We then model the extremal dependence structure of the {X;} series.

For modelling the dependence between successive extremes values of a stationary series {X;} it
is helpful to be aware that there are two different types of dependence structure. At lag 7 the type
of extremal dependence structure is determined by the value of ., where

Xr = lim P(Xyyr > 2| Xy > ). (1)
T—00

When x; = 0 and x, > 0 the variables (X;, Xy4,) are said to be asymptotically independent
and asymptotic dependent respectively. So exceedances by the process of a very high threshold
can cluster locally if the process is asymptotically dependent for at least one 7, but occur in-
creasingly independently as x — oo when the process is asymptotically independent for all 7 # 0
(Ledford and Tawn, 2003). For asymptotically dependent processes the difference between x, and
P(Xitr > x | Xy > x) for large = is a second order effect on the characteristics of clusters of
extremes events. So any clustering can be viewed to be effectively invariant to the value of x. For
statistical modelling of heatwaves this means that dependence features of heatwaves don’t change
with the critical level (here taken to be x) used to define the heatwave. In contrast for asymptoti-
cally independent processes the difference between x, and P(Xyi, > x | Xy > x) for large z is the
first order feature of dependence, as x, = 0, so dependence features of heatwaves will vary with the
critical level and weaken as the level increases until, in the limit, there is no clustering of extremes.
In practice, this means that the duration and severity of a heatwave event is permitted to change
with critical level, i.e., a heatwave exceeding the 1 year return level will have different dependence
characteristics than a heatwave exceeding the 50 year return level. So to model heatwaves it is vital
to determine the type of extremal dependence structure that the data exhibit.

The main aim of this paper is to provide a coherent extreme value framework for investigating
the effect that climate change will have on the temperature and the duration of heatwave events.
Many previous studies have focused on the occurrence of singular hot days and how this might vary
with climate change while ignoring changes in the persistence of events. There has been limited
past work on marginal and dependence structure modelling for heatwaves. Reich et al. (2014)
modelled heatwaves using a GPD to capture marginal characteristics and a max-stable process
to model dependence in a Bayesian hierarchical framework. Similarly, Shaby et al. (2016) use a
latent switching process to model clusters of large values in heatwaves. Neither of these models
are appropriate for our data as they require consecutive values that are asymptotically dependent
whereas our analysis suggests that our data exhibit asymptotic independence.

Our approach models the {X;} series as a first order Markov chain, with the tails of the joint
distribution of (X, X;4+1) modelled using the conditional extremal dependence approach of Heffer-



nan and Tawn (2004). This approach offers a more flexible way of estimating extremal dependence
properties of Markov chains than previous methods since it captures the full asymptotically justified
class of extremal dependence. In comparison, Smith (1992) applies only for a restricted special case
and our method holds over a much broader tail region than the approach of Bortot and Tawn (1998).

It is important to stress the difference between marginal non-stationarity and non-stationarity
in the extremal dependence structure. Our marginal modelling will remove non-stationarity in the
marginal distribution, however it does not account for non-stationarity between consecutive time
points. In the framework of Markov chains, incorporating covariates into the conditional distribu-
tion of Xy41 | X; will allow assessment of how the dependence between values on successive days
changes with a covariate. A previous study of the effect of covariates on dependence structure
appears in Jonathan et al. (2013) for estimating wave heights in the North Sea as a function of
the wave direction. In the heatwave problem, a change in the marginal characteristics leads to a
change in the overall strength of a heatwave whereas a change in the dependence characteristics
leads to a change in the persistence of events. Both of these factors are important when mitigating
for heatwave events.

This paper has the following structure. Section 2 describes the steps to capture non-stationarity
in the margins to obtain a marginally stationary series. The conditional extremal dependence ap-
proach is outlined and extended to include covariates in Section 3. Methods for simulating clusters
of extreme values to derive heatwave properties are briefly mentioned in Section 4. Results for the
HadGEM2.ES GCM are given in Section 5 and results over the rest of the GCM ensemble are given
in Section 6. Discussion and conclusions are provided in Section 7.

2 Marginal modelling

2.1 Modelling strategy

Daily maximum temperatures at a site are related to a covariate g;. As we are interested in the
behaviour of extreme temperatures we need to be able to model the effect of a covariate on tail
behaviour at a site. Davison and Smith (1990) and Northrop and Jonathan (2011) propose different
modelling approaches to achieve this by focusing exclusively on the effect of the covariate on the tail.
Here we adopt the pre-processing approach of Eastoe and Tawn (2009) where a pre-processing step
removes covariate effects from the body of the distribution; residual influences of the covariates on
the tails are then accounted for using the methods of Davison and Smith (1990). The pre-processing
approach has close parallels with Northrop and Jonathan (2011) since the threshold for the extreme
value modelling is derived to be covariate dependent. Without allowing for the threshold to change
with the covariate we would have major problems as the non-stationary effect over the series is
large, therefore the values that were extreme temperatures early in the series are no longer extreme
late in the series. In contrast to the approach of Northrop and Jonathan (2011), the pre-processing
approach has major benefits in efficiently estimating covariate effects if the effects of the covariate
are somewhat similar in the body and tail of the distribution. Furthermore, here we also need a
model for the covariate effect on the body of the distribution, as we are interested in non-extremes
values of the process that occur after an extreme value. Northrop and Jonathan (2011) and Davison
and Smith (1990) do not model this part of the distribution.



2.2 Pre-processing

Eastoe and Tawn (2009) give a framework for transforming marginally non-stationary data such
that constant threshold approaches can be used. Specifically, taking the original non-stationary
time-series {Y;} the transformation

Y79~ 1)/m(g) = (ge) + T(g0) Y,

yields the approximately stationary standardised sequence {Y;*}, where (¢(g;),7(g:)) are location-
scale parameters, k(g;) is the Box-Cox parameter and g, is the global mean temperature anomaly.
In this paper all covariates are included in a linear manner, i.e.,

k(gt) = Ko + K19t Y(gt) = Yo + V19 log 7%(g¢) = 70 + 719t

Higher-order covariate relationships are possible but not investigated here.

2.3 Marginal tail non-stationarity

In practice the Box-Cox location-scale model may not completely capture all of the non-stationarity
in the extremes and a GPD model is fitted to the upper tail of the margins of the standardised
series {Y;°} such that

- . (2)

1= A9 [+ E(g0) (v — us) Jou ()] 259 iy >y
Fyf(y)_{F(y) ity <us,

where ug is the modelling threshold for the upper tail of the pre-processed margins, (o,,(g:),&(9t))
are scale and shape parameters that depend on the covariate such that logo, (g:) = o0 + 019t
(where g depends on the threshold ug but the subscript is dropped for notational simplicity) and
£(g1) = & M. (g¢) = 1—F(us) and F(y) is the empirical cumulative distribution function of {Y;*}7_; .
It is assumed that non-stationarity in the body of the distribution is accounted for using the pre-
processing and so the stationary empirical distribution function is appropriate for values that fall
below or equal to the modelling threshold us. Throughout this study the modelling threshold wu; is
set at the 90th percentile. To study the extremal dependence structure it is common to transform

the marginal to a standard form. We transform Y,®, t = 1,...,n onto Laplace margins as follows
_ Jlog {2Fy; (Y1)} it Fyp(Y?) <05 3
—log{2[1 — Fys(Y{)]} if Fys(YF) > 0.5,

where Fy;s is given in equation (2). Estimates of all the parameters for our data set are given later.
We subsequently assume that {X;} is marginally stationary.

3 Modelling temporal dependence

3.1 Markov modelling

To obtain estimates for the duration and severity of heatwave events it is necessary to develop a
model for the evolution of the temperature time-series. Here, supported by data analysis, an as-
sumption that the time series follows a first order Markov process is made. By the Markov property



the distribution at each time step is only affected by the state of the system at the time-step before.
As a consequence, to model the extremes of the transformed stationary time series Xi,..., X, it
is only necessary to model the extremes of pairs (X, Xy41) fort =1,...,n— 1.

The joint tail approach developed in Smith et al. (1997) uses a bivariate extreme value distri-
bution with a parametric dependence structure to model the extremal dependence of (X, X¢41).
This distribution leads to the variables being asymptotically dependent, and so x1 > 0, where x is
defined by expression (1). Furthermore, the Markov assumption implies that x, > 0 for all 7. Thus
this model is highly restrictive in applications where the variables are asymptotically independent
at some lag. The semi-parametric conditional extremal dependence approach outlined in Heffernan
and Tawn (2004) allows for a richer class of dependence structures and most importantly allows for
both asymptotic dependence and asymptotic independence; see Winter and Tawn (2016) for details
of how these two methods differ. The additional flexibility of the conditional extremal dependence
approach is useful for our application and is used throughout the rest of this paper.

3.2 Semi-parametric stationary conditional extremal dependence approach

The conditional extremal dependence approach of Heffernan and Tawn (2004) and Heffernan and
Resnick (2007) can be used to model the extremes of pairs (X, X¢41) fort =1,...,n—1. Heffernan
and Tawn (2004) gave their representation for Gumbel margins, but Keef et al. (2013) showed
that a more comprehensive approach arises for Laplace margins (equation (3)). The desire is to
model (X, X¢4+1) using the distribution of X4 given that X is large (defined as exceeding a high
threshold). We want to model the conditional distribution P {X; 1 < x441 | Xy =z} for large z;.
It is therefore natural to consider asymptotic models for this distribution as x;y — co. Unless X311
is suitably normalised the resulting distribution will become degenerate in the limit. Heffernan
and Tawn (2004) identify an appropriate way to normalise X;1;. Under the weak simplifying
dependence assumptions of Heffernan and Tawn (2004), the specification of Laplace margins ensures
that the upper and lower tails are both modelled by a symmetric distribution with exponential tails
and permits the definition of a single unified class of normalising functions such that the conditional
distribution is

p ([Xtﬂ —aXy/XP <2 X —ux > x| Xy > uX> — G(2) exp(—z), (4)

as uy — 0o, where ux is the modelling threshold on Laplace margins, G is a non-degenerate dis-
tribution function, o € [—1,1] and 3 € (—o0,1). This form of the normalising functions does not
affect the limiting dependence model in Heffernan and Tawn (2004) and simplifies the inference for
variables which are either negatively or weakly associated. If the variables are independent then
a = f = 0 and G(z) is the Laplace distribution function whereas & = 1 and 5 = 0 corresponds
to the situation of asymptotic dependence, —1 < a < 0 to asymptotic dependence with negative
extremal dependence and 0 < a < 1 or & = 0 and 8 > 0 corresponds to asymptotic independence
with positive extremal dependence. This representation extends the asymptotic dependence class
of Smith et al. (1997) when a < 1.

Modelling using the conditional extremal dependence approach requires the assumption that the
limiting form of equation (4) holds exactly for all values of X; > ux given that uy is a sufficiently
high threshold. Given this assumption it is possible to write the form of X; 1 given that X; > ux



as
Xt+1 = O[Xt + X}/BZH_l, (5)

where Z;41 is a random variable with distribution function GG and is independent of X;. As G does
not take any simple parametric form, a temporary working assumption of Gaussianity is made, as
in Keef et al. (2013), i.e., that Z; ;1 ~ N(u,v?), so

X [ {Xy =2}~ N (om: + umﬁ,’yzx25> for x> ux.

The Gaussian assumption permits easy estimation of the set of parameters («, 3, i, ) by standard
likelihood approaches. Although it may appear that using a potential incorrect distribution for G
would bias the inference, standard regression results show this is not the case. Furthermore, Lugrin
et al. (2016) estimate G using a Bayesian non-parametric estimate, but that gives gives only small
improvements relative to our much simpler approach.

Once we have our estimates (&, B , [1,7), the Gaussian assumption is discarded and a non-parametric
estimate of the distribution for Z;; is formed based simply on model (5). Specifically, let ¢;, ..., ¢

9 ’IluX
be the indices of t = 1,...,n where z; > ux. Then let

2]' = (xtrﬂ - OA‘xtj - ﬂxtﬁ])/;yl‘tﬁ]? (6)

for j =1,...,ny,, where n,, is the number of z; exceeding the threshold ux. Using this sample
from Z;;1 a non-parametric estimate G of the distribution function G is formed using 2;, j =
1,...,ny,. Heffernan and Tawn (2004) present a simulation study that shows this inference method
works well.

3.3 Incorporating covariates

The process of incorporating covariates into the marginal parameters was highlighted in Section 2.2.
However, for a more complete analysis of the extremal behaviour it is necessary to ascertain whether
the covariate has an effect on the level of extremal dependence by testing if the covariate has
a significant effect on the dependence parameters. As in Jonathan et al. (2013) covariates are
introduced into the set of parameters («, (3, i1,7y) such that

tanh™ [a(g:)] = o + a1 tanh ™ [B(g:)] = Bo + Brge
1(gt) = to + p1g: logv(g¢) = 70 + 719:-

An inverse tanh link function is used for 5(g;) as well as «(g;) in this situation, thus constraining
each to be in the range [—1, 1]. In practice it is very unlikely that 5(g;) < —1 as this corresponds to
X1 — a(gt) X tending rapidly to zero for large Xy, i.e., X411 is essentially deterministic given X
so this restriction of the parameter space is not practically an issue. The impact of the covariate
on the dependence structure is assessed using a likelihood ratio test. A non-parametric estimate
of the distribution G is formed using equation (6) with the covariate dependent set of parameters
(a(gr), B(gt), 1(gt),v(g¢)) and the resulting {Z;} are assumed to be independent and identically
distributed.



4 Cluster behaviour estimation

With a marginally stationary time-series obtained by pre-processing techniques we wish to estimate
whether heatwave events become longer and more severe with climate change. We define a critical
level v¥ on original margins, which translates to v* on Laplace margins, as some level of interest
above which events are extreme. Such a level will often be related to the T-year return level and
denoted v%f or v:,)g depending on the margin of interest, with U}/ time dependent but v%( not. A
cluster is an extreme event that is defined as a set of points which exceed the critical level vX (vY)
which are locally grouped in time but not necessarily consecutive and are preceded and followed
by a set amount of non-exceedances (Smith and Weissman, 1994). For a cluster to occur the peak
value of the cluster, denoted M, must exceed the critical level. We define the duration D of a
Y

)

cluster as the number of exceedances of vX (v¥) in the cluster, i.e.,

D= T1(X,—v¥), =) 1(v,—2"),,

teC teC

where I(.) is the indicator function and C is a set of values comprising a cluster. One common
measure of temporal dependence linked to clusters is the threshold dependent extremal index
(Leadbetter (1983); Winter and Tawn (2016)), denoted 0x (vX) (6y (vY)) depending on the margin
of interest. The extremal index is defined as the reciprocal of the average duration of a cluster
above vX (v¥). Since we assume stationarity within years the value of 6y (vX) and 6y (v¥) will be
approximately equivalent. There are varying definitions of the severity or relative severity of any
type of extreme event (e.g., Mishra and Singh (2010)). In this paper we shall refer to the relative
severity S of an event as the sum of all excesses of a critical level within an event (cluster) on the
original temperature scale, i.e.,

S=> (Vi—v"),. (7)

teC

In this study we look to estimate P(D > d | M > n) and P(S > s | M > n); given a peak value
of a cluster is greater than some critical value 7, with n > vY, these represent the probability of
an event that has more than d exceedances of v¥ or has a relative severity greater than s respectively.

Our approach to deriving the properties of clusters of a Markov chain is repeated simulation of
the chain in periods with exceedances of a critical level, i.e., when the process exceeds vY, with
vY > uy. We adopt the tail chain approach of Winter and Tawn (2016), an extension of Smith
et al. (1997), called peak value chain estimation, by simulating the cluster maximum M > v¥ and
then simulating forwards and backwards from this peak value using the conditional model. By its
construction, the limiting conditional distribution induces a negative drift in the series so extreme
events are well defined as if we ran these tail chains forward sufficiently no future exceedances of v¥
would result. Estimation of the forward chain is implicit in the approach in Section 3.2, estimation
of the backward chain requires dependence parameters (ap, By, tp, V) for X; | Xip1 > ux to be
estimated similarly. The approach behind peak value chain estimation allows full extreme events
to be simulated permitting easy estimation of relative severity and duration characteristics as well
as any other function of the extreme event. From the peak value tail chain estimation approach,
we obtain estimates of P(D > d | M > n) and P(S > s | M > n) where 7 is some cluster maximum
of interest and d and s are critical values of duration and relative severity respectively. The joint
probability of an event exceeding a given duration and relative severity will also be evaluated.



5 HadGEM2.ES Results

The top left plot of Figure 1 shows the HadGEM2.ES GCM temperature data represented as a time
series which clearly shows marginal non-stationarity over the length of the record, but within each
summer period temperatures are approximately marginally stationary. Figure le) shows the time-
series of global mean temperature anomaly from HadGEM2.ES. We use the pre-processing method
of Section 2.2 and test whether the global mean temperature anomaly covariate has a significant
effect on the Box-Cox parameter and the location-scale parameters. The log-link function is used
to ensure the non-negativity of the scale parameter 7(g;). Incorporating the covariate into the Box-
Cox parameter is found to be significant at the 5% level using a likelihood ratio test and this is also
the case for the location-scale parameters that vary with the covariate. For this model selection we
used backward elimination. Use of AIC would probably have been optimal, but was more computa-
tionally demanding as it required all models to be fitted. The estimates of the Box-Cox parameters
are kg = 1.018 (0.06) and #; = —0.023 (0.001), where standard errors are given in parenthe-
ses. Estimates for the location-scale parameters are given as 1&0 = 28.304 (0.1) and 1&1 = 0.097
(0.05) and exp(7p)7? = 5.536 (1.008) and exp(71)"/> = 0.960 (1.003) respectively. These estimates
show that as global mean temperature anomalies increase the daily maximum temperature data
for Orleans increase in mean value, decrease in variability and are becoming more positively skewed.

A GPD(oy,(g),&) is fitted to the upper tail of the standardised data (see Section 2.3) to as-
sess whether there is still any residual marginal non-stationarity in the extremes. Throughout this
study the modelling threshold us for the GPD is set at the marginal 90th percentile. This choice
was based on a range of diagnostic methods described by Coles (2001), with the most helpful being
parameter stability plots. The covariate does not seem to have an effect on the estimate of the rate
parameter A,, = 0.10 (0.007) or the shape parameter with £ = —0.241 (0.020), the effect having
been removed by the pre-processing, but there remains an effect in the margins for the scale pa-
rameter. Estimates of the scale parameters are exp(6g) = 0.513 (1.07) and exp(d1) = 0.930 (1.03).
These estimates show that as global mean temperature anomalies increase the variability in the
upper tail is decreasing at a faster rate than for the body of the distribution of the daily maximum
temperature data for Orleans.

These estimates are used to transform the non-stationary series (Figure la) into the marginally
Laplace distributed series (Figure 1b). This figure shows that the marginal analysis seems to have
produced an approximately marginally stationary series. Furthermore the Q-Q plot, in Figure 1c),
shows that the transformed series is consistent with the required Laplace marginal distribution.
Despite there being some departures from the equality line for large quantiles almost all values lie
in the pointwise 95% tolerance intervals.

The marginally non-stationary nature of the time-series means that the value of a T-year return
level varies with the value of the covariate. The critical level associated with the 1-year return
period (denoted v} ) increases by 1.8°C (1.5, 2.0) or 11.6°C (9.6, 13.1) for an increase in global
mean temperature of 1°C or 5°C respectively, relative to global mean temperature in 2006. The
figures in parentheses are the 95% confidence intervals, which have been obtained by bootstrapping.
Here, and throughout, bootstrap samples account for uncertainty in all components of the analysis,
including pre-processing. Return levels are obtained for the 50-year return period that increase
by 1.7°C (1.2, 2.1) or 11.1°C (8.7, 13.1) under the same change in covariate. Both these results
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Figure 1: Original June, July and August daily maximum temperature data from HadGEM2.ES GCM represented
as a) time-series (°C), b) same data on Laplace margins after pre-processing, ¢) QQ plot of preprocessed data and
theoretical Laplace quantiles, with 95% tolerance intervals, d) pre-processed data as a set of consecutive pairs and
e) global mean temperature anomaly taken as covariate. Data from separate years have been concatenated for the
time-series plot to show only relevant data. This plot suggests that continuity of data from year to year is induced
but separate seasons are modelled as independent.

highlight that extreme temperatures over land change at a significantly greater rate than the global
mean.

Estimates are now provided for the extremal dependence between consecutive days using the con-
ditional extremal dependence approach. The approach is evaluated using the modelling threshold
ux, set at the 90th percentile. This choice of threshold was made using diagnostics suggested
Heffernan and Tawn (2004), with the most helpful diagnostic being a test of independence of X
and Z;41 in model (5). Though a likelihood ratio test indicates the covariate has a significant
effect on some of the key dependence parameters « and [, bootstrapping does not confirm this.
We conclude the data do not exhibit any change in the dependence structure with the covariate
and therefore the stationary dependence model from Winter and Tawn (2016) is used to analyse
extremal dependence. Estimates of the dependence parameters a and § are given as 0.13 (—0.5,
0.7) and 0.68 (0.5, 0.8) respectively, with bootstrapped 95% confidence intervals in parentheses.
Parameter values for the backward chain are given as a; = 0.68 (0.4, 0.9) and £, = 0.43 (0.1,
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0.5) and since a different pattern is detected in the parameters of the forwards and backwards
chains, this suggests non time-reversibility. A likelihood ratio test confirms that the parameter
values for both the forward and backward chains are significantly different from (o = 1,8 = 0)
an (ap = 1,0, = 0) respectively, the situation of asymptotic dependence, and so it is concluded
that the data exhibit asymptotic independence. The approaches of Reich et al. (2014) and Shaby
et al. (2016), which require asymptotic dependence, are therefore not appropriate for these data.
The major consequence of this conclusion that the data exhibit asymptotic independence is that
heatwaves above higher critical levels are of shorter duration (see the discussion in Section 1).

Since mean global temperature does not appear to have a significant effect on the extremal de-
pendence of consecutive days we estimate the probability of observing an event with a specific
duration using the stationary dependence parameters. As in Winter and Tawn (2016) we estimate
three quantities. Firstly, the extremal index to give an estimate of the average length of a cluster.
Secondly, the probability of an event whose 3 day average exceeds the time varying 1-year return
level of the original temperature scale (vf) This is suggested to be an important quantity in terms
of mortality (Pascal et al., 2013), corresponding to a potential excess mortality of up to 50% and
triggering heat health warnings. Finally the probability of observing an event equal to or longer
than the 2003 heatwave event, i.e., where there is an event of 11 days above the l-year return
level. These three measures provide information about the average heatwave event expected as
well as giving probabilities for very severe and potentially devastating events. To estimate all three
quantities we use the methods from Section 4 using our fitted Markov model. The extremal index
Ox (’Uf( ) is given as 0.59 (0.5, 0.7) and suggests an average of just under 2 exceedances in a cluster.
The probability of a 3 day event exceeding the 1-year return level in a single year is estimated to be
0.207 (0.1, 0.3), equivalent to an event that happens on average once every 4.8 years. Finally, the
probability of a 2003 duration or longer heatwave event is estimated as 0.0005 (1 x 1072, 0.004),
an event that happens on average once every 2000 years. These compare quite favourably with the
values found by Winter and Tawn (2016), using observed temperatures, of 0.49, 0.20 and 0.0006
respectively providing a degree of validation of heatwave characteristics for this GCM though there
is some indication that the GCM has a tendency for fewer exceedances per cluster.

One extension of Winter and Tawn (2016) is to consider the relative severity of a heatwave, see
equation (7), alongside the duration since the non-linear nature of the marginal transformation
means that the relative severity of an event could increase despite there being no difference in the
duration of an event. We estimate quantiles of the distribution S | M > v} to see if there is any
change in the relative severity with an increase in the global mean temperature. An increase of
1°C in the covariate g; leads to a change in the median relative severity of —0.04°C (—0.6, 0.6) and
a 5°C increase leads to a change in the median relative severity of —0.17°C (—0.6, 0.6). The re-
spective values for the change in the 90th quantile of severity are —0.18°C (—4.4, 4.4) and —0.78°C
(—4.4, 4.4). The results show that S, the measure of the relative severity of a heatwave, may
depend on the quantile that is assessed, however the confidence intervals suggest that the effect is
not certain as zero is contained within all intervals. It should be noted that since we are using a
stationary extremal dependence model all these changes are coming from the effect of the covariate
on marginal parameters as previously we observed that v}/ increases by 1.8°C for a 1°C increase
in the global mean temperature. Thus future changes in heatwave characteristics, as simulated by
HadGEM2.ES, are almost entirely driven by changes in the margins and not through changes in
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the duration nor increases in the severity once the marginal changes have been taken into account.

6 GCM ensemble results

6.1 Marginal results

We now analyse time-series for the remaining 12 GCMs alongside HadGEM2.ES. Global mean tem-
peratures are available for each of the GCMs and respective anomalies will be used as the covariate
g¢ and are shown in Figure 2. Daily temperatures from the gridbox containing Orleans are pre-
sented in Figure 3. The change in global mean temperature for the period 2006-2090 ranges from
2.0 to 4.3°C across the ensemble as well as exhibiting a spread of inter-annual and longer variability.
Likewise there is a considerable range of forced change and variability in the local Orleans temper-
ature (Figure 3). Data from each GCM are taken through the pre-processing and marginal analysis
outlined in Sections 2.2 and 2.3. For each GCM the most general form of covariate dependence is
assumed for each of the parameters, except for the shape parameter £ which is assumed to remain
constant over covariates but differs between GCMs. This ensures consistency across the models
and any changes in marginal parameters are directly comparable. As before we present results for
a 1°C and 5°C increase in global mean temperatures. Although these GCMs do not exhibit a 5°C
increase in their global mean temperature under this forcing scenario (RCP8.5), this is not an issue
as here we are determining the dependence on global temperature not the heatwave characteristics
for a specific time within a specific emission scenario, and 4.8°C is the current estimated upper
bound of projections for the end of this century (IPCC, 2013).

Table 1 shows estimates for the pre-processing and marginal parameters. The Box-Cox parameter k
shows the clearest trend of all the parameters with the covariate being significant (at the 5% level)
and negative for all GCMs, a pattern that was expected due to the upward trend in temperature
values. The impact of the covariate becomes more difficult to interpret physically for the remaining
parameters as each can be compensating or enhancing the covariate dependence of other parame-
ters. For all GCMs the location parameters 11 are found to be positive whereas exp(71)"? < 1 for
all enseble members introducing a reduction in variance with increased global temperatures. The
GPD covariate dependent scale parameter exp(oy) has values both greater and less than one. The
shape parameter is negative as expected when looking at the upper tail of temperature values.

The separate parameter values do not give a complete picture of the impact of the covariate, as
this neglects the interaction between parameters. To address this, Table 2 reports the response
of 1-year and 50-year maximum daily temperature return levels for 1°C and 5°C increases in the
global mean temperature relative to such temperatures in 2006. Increases are found for all ensemble
members for increases in global mean temperature. It is interesting to note that increased radiative
forcing can lead to varied responses at different return levels. For some members the temperature
response for rarer events is larger, for some smaller, than the more frequent events confirming
that an analysis of the extremes is essential alongside any analysis of the average behaviour. The
amplification of the global temperature increase is confirmed across the ensemble, ranging between
factors of 1.4 to 4. For the larger increase in global temperature this amplification at the extremes
can be substantially larger than the amplification in the body of the distribution as measured by
the changes in the median of the local summer temperatures (Table 2).
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Figure 2: Annual global mean temperature anomalies (°C) for indicated GCMs forced by the RCP 8.5 emission
scenario, taken as covariate.

Finally, before analysing the temporal dependence structure for each ensemble member, we need
to check that the transformed series after pre-processing are stationary and with Laplace margins.
Plots of data (not shown) seem to support stationarity, while the Q-Q plots for each ensemble mem-
ber, shown in Figure 4, provide good support that the transformed data are well approximated by
a Laplace distribution.

6.2 Dependence results

Having noted the significant increase in the magnitude of daily maximum return levels, we explore
whether there is any difference in the duration and relative severity characteristics of heatwave
events. In Section 5 likelihood ratio and bootstrapping tests suggested that the covariate g; had
no effect on the dependence parameters for the HadGEM2.ES series and this pattern is observed
across all GCMs within our ensemble. Although the likelihood ratio tests indicated g; dependence
for a few of the GCMs further bootstrapping tests show such dependence is not robust. We repeat
the analysis of the dependence between temperatures on consecutive days from Section 5 for the 13
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Figure 3: Original June, July and August daily maximum temperature data (°C) for indicated GCMs forced by
the RCP 8.5 emission scenario represented as a time-series. Temperatures are taken from the grid box containing
Orleans, France.

GCMs after standardising each series to an approximately marginally stationary time-series. The
extremal dependence parameters for the ensemble span the range a (0.13, 0.78) and 5 (0.42, 0.74).
The respective values for the backward chain dependence parameters are given as a3 (0.47, 0.73)
and S, (0.13, 0.60). The physical interpretation of « and f is difficult and greater insight is gained
through investigating their impact on duration and relative severity as in the following section.

6.3 Duration and relative severity results

We estimate the three measures of the duration outlined in Section 5 for each of the GCMs from
our ensemble, the extremal index, the probability of an event whose 3 day average exceeds the one
year return level and the probability of an event lasting for 11 days or more above the one year
level (Table 3). There is a wide range of extremal indices across the ensemble which is somewhat
larger than the range obtained from bootstrapping HadGEM2.ES indicating differences in GCM
formulation are having an impact on daily temperature clustering characteristics and the spread
is not just due to sampling and natural variability. With regard to validating the GCMs, some
models have a high or low extremal index in comparison to the observed value of 0.49. In contrast,
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GCM Ko K1 Yo Y1 | exp(79)? | exp(71)? | exp(op) | exp(oy) 13
HadGEM2.ES 1.018 | —0.023 | 28.304 | 0.097 5.536 0.960 0.513 0.930 | —0.241
HadGEM2.CC || 0.621 | —0.022 | 10.584 | 0.019 1.414 0.949 0.627 0.871 | —0.287

ACCESS10 0.559 | —0.023 | 9.258 | 0.005 1.066 0.989 0.652 0.815 | —0.254
MIROC5H 1.008 | —0.020 | 27.465 | 0.074 4.551 0.944 0.481 0.999 | —-0.217
MPLESM.MR 0.479 | —0.023 | 6.860 | 0.014 0.830 0.948 0.501 0.888 | —0.221
CESM1.BGC 0.232 | —0.014 | 4.728 | 0.000 0.325 0.999 0.541 1.021 | —0.231
CNRM.CMS 0.430 | —0.013 | 6.574 | 0.007 0.776 0.979 0.591 0.958 | —0.307
CSIRO.MK3 0.674 | —0.029 | 10.483 | 0.040 2.039 0.959 0.490 0.898 | —0.356
CCSM4 0.204 | —0.013 | 4.477 | 0.002 0.301 0.974 0.520 1.119 | -0.214
ACCESS13 0.633 | —0.020 | 10.873 | 0.014 1.403 0.957 0.660 0.891 | —0.322
inmem4 0.954 | —0.023 | 24.990 | 0.159 5.963 0.951 0.401 0.901 | —0.374
MPLESM.LR 0.405 | —0.021 | 6.014 | 0.006 0.654 0.973 0.462 0.954 | —0.239
CESM1.CAMS5 || —0.063 | —0.012 | 2.853 | 0.000 0.113 0.977 0.658 0.944 | —0.268

Table 1: Pre-processing and marginal parameter estimates for all 13 GCMs.

GOM summer median | 1 year level 50 year level
+1°C | +5°C | +1°C | +5°C | +1°C | +5°C
HadGEM2.ES 2.0 9.9 1.8 11.6 1.7 11.1
HadGEM2.CC 2.3 11.5 1.7 12.5 1.3 10.9
ACCESS10 2.4 12.0 2.1 15.9 1.6 14.0
MIROC5H 1.6 7.8 1.5 9.1 1.6 9.4
MPIL.LESM.MR 1.9 9.5 1.8 12.9 1.5 12.0
CESM1.BGC 1.7 8.5 2.6 17.5 3.2 22.0
CNRM.CMS 1.1 5.7 1.4 8.2 1.4 8.4
CSIRO.MK3 2.4 12.1 2.5 18.6 2.5 18.5
CCSM4 1.6 7.8 2.6 18.1 3.6 26.7
ACCESS13 1.9 9.4 1.6 10.8 1.3 9.8
inmem4 2.0 10.0 1.9 12.8 1.8 12.1
MPIL.ESM.LR 1.8 9.0 2.2 14.7 2.3 15.7
CESM1.CAM5 1.9 9.5 2.2 14.7 2.3 15.8

are performing well against these metrics.
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Table 2: Change in the median local summer temperature, 1-year and 50-year return levels for daily maximum
temperature after 1°C and 5°C increase in global mean temperature from 2006 for all GCMs.

validating against the observed 3 day and 11 day event probabilities of 0.20 and 0.0006 we find for
both metrics the GCM values lie within the bootstrapped values for HadGEM2.ES of (0.1,0.3) 3
day, and (1x 1075, 0.004) 11 day. If the bootstrapped HadGEM2.ES range is taken as an acceptable
proxy for the uncertainty in the observations and all GCMs this comparison suggests the GCMs

As in Section 5 we also estimate whether heatwave events will become more severe with increases
in global mean temperature. We generate the distribution of the relative severities, S | M > vy,
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Figure 4: Q-Q plots for transformed GCM temperatures with theoretical Laplace margins. Here 95% tolerance
intervals are shown.

for 1°C and 5°C increases in the global mean temperature and estimate 90" quantiles. Severity
changes by factors that range by (0.9, 1.2) and (0.6, 2.6) for 1°C and 5°C increases in g; respectively.
All GCMs exhibit severity changes that are, to first order, proportional to g; changes, however,
there is no consensus within this ensemble of the sign of change. This may appear uninformative in
providing guidance on future heatwave risk, however, it should be noted that the severity metric is
relative to the one year return level. Thus future severity changes are a combination of the changes
to the one year level and to changes to temperatures above it. Thus some GCMs may have larger
increases in the one year return level which can result in severity reductions and vice versa. Whilst
this may be informative for some applications, Table 3 also includes absolute changes (threshold
and exceedances changes combined) in the average temperature of 2003 type event, i.e., longer than
or equal to 11 days, with average temperatures increasing by (1.3°C, 2.7°C) and (8.0°C, 18.7°C)
for 1°C and 5°C increases in g; respectively. As seen before there is a significant local amplification
of the global mean changes that is consistent across the GCM ensemble. Whether this is larger
or smaller than increases in the non-extreme temperatures (Table 2) is found to be GCM dependent.
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. P(duration) | Severity 90" percentile | Avg temp 11 day event
GCM Extremal index =0 0 9006 [ +1°C | +5°C | 2006 | +1°C | +5°C

HadGEM2.ES 0.60 0.21 | 0.00054 | 6.2 | —0.2 —0.8 37.2 1.9
HadGEM2.CC 0.51 0.20 | 0.00060 | 6.6 | —0.6 —2.2 35.3 1.9
ACCESS10 0.40 0.20 | 0.00046 | 6.9 | —0.7 —-2.5 34.8 2.3
MIROC5 0.59 0.14 | 0.00006 | 4.3 0.1 0.3 35.8 1.4
MPIL.ESM.MR 0.84 0.19 | 0.00090 | 54 | —0.3 -1.1 28.9 1.9
CESM1.BGC 0.42 0.18 | 0.00033 | 5.3 0.7 5.0 31.7 2.3
CNRM.CMS 0.31 0.26 | 0.00224 | 6.8 0.0 0.3 314 1.3
CSIRO.MK3 0.63 0.17 | 0.00006 | 44 | —0.1 —0.1 31.7 2.7
CCSM4 0.41 0.21 | 0.00060 | 6.0 1.2 9.4 31.5 2.2
ACCESS13 0.47 0.19 | 0.00042 | 5.6 | —0.4 —-1.5 34.5 1.8
inmem4 0.33 0.14 | 0.00013 | 3.5 —0.2 —-1.0 40.1 2.1
MPI.ESM.LR 0.62 0.21 | 0.00104 | 5.0 0.2 1.4 28.7 2.1
CESM1.CAM5 0.60 0.12 | 0.00002 | 4.4 0.1 1.2 29.9 1.8

Table 3: Estimates of the extremal index, the probability of an event whose 3 day average exceeds the 2006 one
year return level, the probability of an event of > 11 days above the 2006 one year level, the 90" quantiles of severity
and average temperature of heatwave events with 11 day duration for all GCMs. Severity and average temperature
are given at their 2006 values together with changes due to global mean temperature increases of 1°C and 5°C .

7 Discussion and Conclusion

We analyse the heatwave characteristics of 13 Global Circulation Models from CMIP5, forced with
the RCP 8.5 future emission scenario, and find that increases in global mean temperature is likely
to change the behaviour of heatwaves. This change arises primarily through a significant increase
in marginal quantities, such as the daily return level, as opposed to increases in the duration or
severity (the sum of exceedances above the 1-year return level) that are driven by the dependence
structure, that is the day to day dependence of extreme temperatures. Estimated 1-year return
levels for daily maximum temperature increase by between (1.4°C, 2.6°C) and (8.2°C, 18.6°C) for
global temperature increases of 1°C and 5°C respectively. The dependence of extreme tempera-
tures above this 1-year return level is not found to change with global temperatures indicating that,
relative to this (increasing) 1-year return level, heatwave events are not projected to get longer.
Though the duration does not change, the average temperature of long duration events, similar
to the 2003 European heatwave, are found to increase, amplifying the global temperature changes
by a factor of 1.3 to 3.7, more than the corresponding change in median of local summer daily
temperatures. Such results confirm that future heatwaves pose a significant challenge to societies
wishing to adapt to future climate.

Future changes presented here for heatwaves characteristics confirm previously published results.
Kharin et al. (2013) find end of century changes for the 20 year return value of the annual maxi-
mum daily maximum temperature, using a larger enemble of CMIP5 GCMs forced with the REP8.5
scenario, of 6°C to 8°C over western Europe. Our comparable metric of daily maximum return
levels (Table 2) need to be recalculated to end of century temperatures for each GCM which gives
an ensemble mean of 7.0 & 2.6°C and 7.3 £ 2.8°C for 1 year and 50 year return levels respectively.
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Similarly, Sillmann et al. (2013) using a smaller set of CMIP5 models forced with RCP8.5 but with
the same index at the 1 year return level find changes of 6.5°C and 7.0°C for Northern Europe and
Mediterranean regions respectively, though they see a substantial spread across the ensemble (e.g.,
+3°C for Northern Europe). No studies of changes in the temperature of long duration heatwaves
are known to the authors with which to compare results presented here. The meteorological condi-
tions required for heatwaves to occur, termed blocking events, are projected to modestly decrease in
frequency for the European region (Masato et al., 2013). However, blocking duration is found not
to change with future warming (Barnes et al., 2012 and Dunn-Sigouin and Son, 2013) consistent
with temperature dependence between consecutive days remaining constant as found here. The
generally large spatial nature of blocking phenomena also suggests the results found here will be
indictive of changes more widely for this region.

Underlying our approach are a range of assumptions. Although these assumptions have been
tested at each stage of the analysis it is worth a further discussion of the two most important. We
have assumed that the temperature time-series follows a first-order Markov process to permit the
modelling process outlined in the paper. The use of higher order Markov processes has been shown
to capture more aspects of the observed extreme temperatures although with higher computational
cost and resulting in negligible differences, from a practical perspective, in the subsequent infer-
ences for extreme events Winter and Tawn (2017). Furthermore, we have selected thresholds for
extremal marginal and dependence modelling, corresponding to the 90% marginal levels. Although
we used diagnostic methods for each choice, it is clear that results will be somewhat sensitive to
these choices. With the methods for threshold selection we have used, we would expect higher
threshold choices to give similar point estimates to ours but with wider confidence intervals. In
contrast, lower threshold choices will give different point estimates and narrower confidence inter-
vals, reflecting bias from taking the threshold to be too low.

In this paper the global mean temperature anomaly has been used as a covariate to provide a
metric of climate change; a choice that is often used (e.g. IPCC 2013). Victor and Kennel (2014)
suggest that the global mean temperature alone might not be the best way of measuring the level of
climate change and put forward a set of measures that include greenhouse gas concentrations and
ocean heat content. We note here that the framework developed in the paper could be extended
to incorporate any such covariates of interest. However, the use of global temperature allows the
advances made to quantify future global temperature changes (Harris et al. 2013) to be utilised and
provide a more comprehensive estimate of changes in future extremes as in Brown et al. (2014).
This would require a wider assessment of the uncertainty of heatwave changes arising from the
formulation of GCMs and their dependence on global temperature. It would also be interesting to
investigate data on larger spatial scales to see if there is evidence for changes in the dependence
structure over time within GCMs. A similar type of analysis is undertaken by Winter et al. (2016)
looking for changes in spatial patterns of heatwaves with ENSO.
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