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Abstract

A common approach to modelling extreme values is to consider the excesses above a high

threshold as realisations of a non-homogeneous Poisson process. While this method offers the

advantage of modelling using threshold-invariant extreme value parameters, the dependence

between these parameters makes estimation more difficult. We present a novel approach for

Bayesian estimation of the Poisson process model parameters by reparameterising in terms of

a tuning parameter m. This paper presents a method for choosing the optimal value of m that

near-orthogonalises the parameters, which is achieved by minimising the correlation between

the asymptotic posterior distribution of the parameters. This choice of m ensures more rapid

convergence and efficient sampling from the joint posterior distribution using Markov Chain

Monte Carlo methods. Samples from the parameterisation of interest are then obtained by a

simple transform. Results are presented in the cases of identically and non-identically distributed

models for extreme rainfall in Cumbria, UK.

Keywords: Poisson processes, Extreme value theory, Bayesian inference, Reparameterisation,

Covariate modelling.

1 A Poisson Process model for Extremes

The aim of extreme value analysis is to model rare occurrences of an observed process to extrapolate

to give estimates of the probabilities of unobserved levels. In this way, one can make predictions

of future extreme behaviour by estimating the behaviour of the process using an asymptotically

justified limit model. Let X1, X2, . . . , Xn be a series of independent and identically distributed (iid)

random variables with common distribution function F . Defining Mn = max{X1, X2, . . . , Xn}, if

there exists sequences of normalising constants an > 0 and bn such that:

Pr

{
Mn − bn

an
≤ x

}
→ G(x) as n→∞, (1)
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where G is non-degenerate, then G follows a generalised extreme value (GEV) distribution, with

distribution function

G(x) = exp

{
−
[
1 + ξ

(
x− µ
σ

)]−1/ξ
+

}
, (2)

where x+ = max(x, 0), σ > 0 and µ, ξ ∈ R. Here, µ, σ and ξ are location, scale and shape parame-

ters respectively.

Using a series of block maxima from X1, . . . , Xn, typically with blocks corresponding to years, the

standard inference approach to give estimates of (µ, σ, ξ) is the maximum likelihood technique,

which requires numerical optimisation methods. In these problems, particularly when covariates

are involved, such methods may converge to local optima, with the consequence that parameter

estimates are largely influenced by the choice of starting values. The standard asymptotic proper-

ties of the maximum likelihood estimators are subject to certain regularity conditions outlined in

Smith (1985), but can give a poor representation of true uncertainty. In addition, flat likelihood

surfaces can cause identifiability issues (Smith, 1987a). For these reasons, we choose to work in a

Bayesian setting. Bayesian approaches have been used to make inferences about θ = (µ, σ, ξ) using

standard Markov Chain Monte Carlo (MCMC) techniques. They have the advantage of being able

to incorporate prior information when little is known about the extremes of interest, while also

better accounting for parameter uncertainty when estimating functions of θ, such as return levels

(Coles and Tawn, 1996). For a recent review, see Stephenson (2016).

An approach to inference that is considered to be more efficient than using block maxima is to

consider a model for threshold excesses, which is superior in the sense that it reduces uncertainty

due to utilising more extreme data (Smith, 1987b). Given a high threshold u, the conditional

distribution of excesses above u can be approximated by a generalised Pareto (GP) distribution

(Pickands, 1975) such that

Pr(X − u > x|X > u) =

(
1 +

ξx

ψu

)−1/ξ
+

, x > 0,

where ψu > 0 and ξ ∈ R denote the scale and shape parameters respectively, with ψu dependent on

the threshold u, while ξ is identical to the shape parameter of the GEV distribution. This model

conditions on an exceedance, but a third parameter λu, denoting the rate of exceedance of X above

the threshold u, must also be estimated.

Both of these extreme value approaches are special cases of a unifying limiting Poisson process

characterisation of extremes (Smith, 1989; Coles, 2001). Let Pn be a sequence of point processes
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such that

Pn =

{(
i

n+ 1
,
Xi − bn
an

)
: i = 1, . . . , n

}
,

where an > 0 and bn are the normalising constants in limit (1). The limit process is non-degenerate

since the limit distribution of (Mn − bn)/an is non-degenerate. Small points are normalised to the

same value bL = limn→∞(xL− bn)/an, where xL is the lower endpoint of the distribution F . Large

points are retained in the limit process. It follows that Pn converges to a non-homogeneous Poisson

process P on regions of the form Ay = (0, 1) × [y,∞), for y > bL. The limit process P has an

intensity measure on Ay given by

Λ(Ay) =

[
1 + ξ

(
y − µ
σ

)]−1/ξ
+

. (3)

It is typical to assume that the limit process is a reasonable approximation to the behaviour of Pn,

without normalisation of the {Xi}, on Au = (0, 1)× [u,∞), where u is a sufficiently high threshold

and an, bn are absorbed into the location and scale parameters of the intensity (3). It is often

convenient to rescale the intensity by a factor m, where m > 0 is free, so that the n observations

consist of m blocks of size n/m with the maximum Mm of each block following a GEV(µm, σm, ξ)

distribution, with ξ invariant to the choice of m. The Poisson process likelihood can be expressed

as

L(θm) = exp

{
−m

[
1 + ξ

(
u− µm
σm

)]−1/ξ
+

}
r∏
j=1

1

σm

[
1 + ξ

(
xj − µm
σm

)]−1/ξ−1
+

, (4)

where θm = (µm, σm, ξ) denotes the rescaled parameters, r denotes the number of excesses above

the threshold u and xj > u, j = 1, . . . , r, denote the exceedances. It is possible to move between

parameterisations associated with different numbers of blocks. If for k blocks the block maximum

is denoted by Mk and follows a GEV distribution with the parameters θk = (µk, σk, ξ), then for all

x

Pr(Mk < x) = Pr (Mm < x)k/m.

As Mk is GEV(µk, σk, ξ) and Mm is GEV(µm, σm, ξ) it follows that

µk = µm −
σm
ξ

(
1−

(
k

m

)−ξ)

σk = σm

(
k

m

)−ξ
. (5)

In this paper, we present a method to improve inference for θk, the parameterisation of interest.

For an ‘optimal’ choice of m we first undertake inference for θm before transforming our results to

give inference for θk using the mapping in expression (5).
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In many practical problems, k is taken to be ny, the number of years of observation, so that the

annual maximum has a GEV distribution with parameters θny = (µny , σny , ξ). Although inference

is for the annual maximum distribution parameters θny , the Poisson process model makes use of

all data that are extreme, so inferences are more precise than estimates based on a direct fit of the

GEV distribution to the annual maximum data as noted above.

To help see how the choice of m affects inference, consider the case when m = r, the number of

excesses above the threshold u. If a likelihood inference was being used with theis choice of m, the

maximum likelihood estimators (µ̂r, σ̂r, ξ̂) = (u, ψ̂u, ξ̂), see Appendix A for more details. Therefore,

Bayesian inference for the parameterisation of the Poisson process model when m = r is equivalent

to Bayesian inference for the GP model.

Although inference for the Poisson process and GP models is essentially the same approach when

m = r, they differ in parameterisation, and hence inference, when m 6= r. The GP model is ad-

vantageous in that λu is globally orthogonal to ψu and ξ. Chavez-Demoulin and Davison (2005)

achieved local orthogonalisation of the GP model at the maximum likelihood estimates by repa-

rameterising the scale parameter as νu = ψu(1 + ξ). This ensures all the GP tail model parameters

are orthogonal locally at the likelihood mode. However, the scale parameter is still dependent on

the choice of threshold. Unlike the GP, the parameters of the Poisson process model are invariant

to choice of threshold, which makes it more suitable for covariate modelling and hence suggests that

it may be the better parameterisation to use. In contrast, it has been found that the parameters

are highly dependent, making estimation more difficult.

As we are working in the Bayesian framework, strongly dependent parameters lead to poor mix-

ing in our MCMC procedure (Hills and Smith, 1992). A common way of overcoming this is to

explore the parameter space using a dependent proposal random walk Metropolis-Hastings algo-

rithm, though this requires a knowledge of the parameter dependence structure a priori. Even in

this case, the dependence structure potentially varies in different regions of the parameter space,

which may require different parameterisations of the proposal to be applied. The alternative ap-

proach is to consider a reparameterisation to give orthogonal parameters. However, Cox and Reid

(1987) show that global orthogonalisation cannot be achieved in general.

This paper illustrates an approach to improving Bayesian inference and efficiency for the Poisson

process model. Our method exploits the scaling factor m as a means of creating a near-orthogonal
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representation of the parameter space. While it is not possible in our case to find a value of m that

diagonalises the Fisher information matrix, we focus on minimising the off-diagonal components

of the covariance matrix. We present a method for choosing the ‘best’ value of m such that near-

orthogonality of the model parameters is achieved, and thus improves the convergence of MCMC

and sampling from the joint posterior distribution. Our focus is on Bayesian inference but the

reparameterisations we find can be used to improve likelihood inference as well, simply by ignoring

the prior term.

The structure of the paper is as follows. Section 2 examines the idea of reparameterising in terms of

the scaling factor m and how this can be implemented in a Bayesian framework. Section 3 discusses

the choice of m to optimise the sampling from the joint posterior distribution in the case where

X1, . . . , Xn are iid. Section 4 explores this choice when allowing for non-identically distributed

variables through covariates in the model parameters. Section 5 describes an application of our

methodology to extreme rainfall in Cumbria, UK, which experienced major flooding events in

November 2009 and December 2015.

2 Bayesian Inference

Bayesian estimation of the Poisson process model parameters involves the specification of a prior

distribution π(θm). Then using Bayes Theorem, the posterior distribution of θm can be expressed

as

π(θm|x) ∝ π(θm)L(θm),

where L(θm) is the likelihood as defined in (4) and x denotes the excesses of the threshold u. We

sample from the posterior distribution using a random walk Metropolis-Hastings scheme. Proposal

values of each parameter are drawn sequentially from a univariate Normal distribution and ac-

cepted with a probability defined as the posterior ratio of the proposed state relative to the current

state of the Markov chain. In all cases throughout the paper, each individual parameter chain is

tuned to give the acceptance rate in the range of 20%− 25% to satisfy the optimality criterion of

Roberts et al. (2001). For illustration purposes, results in Sections 2 and 3 are from the analysis

of simulated iid data. A total of 300 exceedances above a threshold u = 30 are simulated from a

Poisson process model with θ1 = (80, 15, 0.05). Figure 1 shows individual parameter chains for θk

from a random walk Metropolis scheme run for 50000 iterations with a burn-in of 1000 removed,

where k = 1 and a chosen m = 1. This figure shows the clear poor mixing of each component of

θ1, indicating non-convergence and strong dependence in the posterior sampling.
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Figure 1: Random-walk Metropolis chains run for each component of θ1.

We explore how reparameterising the model in terms of m can improve sampling performance. For

a general prior on the parameterisation of interest θk, denoted by π(θk), Appendix B derives that

the prior on the transformed parameter space θm is

π(θm) =
(m
k

)−ξ
π(θk). (6)

In this example, independent Uniform priors are placed on µ1, log σ1 and ξ, which gives

π(θ1) ∝
1

σ1
; µ1 ∈ R, σ1 > 0, ξ ∈ R. (7)

This choice of prior results in a proper posterior distribution, provided there are at least 4 thresh-

old excesses (Northrop and Attalides, 2016). By finding a value of m that near-orthogonalises the

parameters of the posterior distribution π(θm|x), we can run an efficient MCMC scheme on θm

before transforming the samples to θk. It is noted in Wadsworth et al. (2010) that setting m to

be the number of exceedances above the threshold, i.e. m = r, improves the mixing properties of

the chain, as is illustrated in Figure 2. This is approximately equivalent to inference using a GP

model, as discussed in Section 1.

Given this choice of m, the MCMC scheme is run for θm before transforming to estimate the

posterior of θ1 using the mapping in (5), where k = 1 in this case. Figure 3 shows contour plots

of estimated joint posterior densities of θ1. It compares the samples from directly estimating the

posterior of θ1 with that from transforming from the MCMC samples of the posterior of θm to give
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Figure 2: Random-walk Metropolis chains run for parameters θr, where r = 300 is the number of

exceedances in the simulated data.

a posterior sample for θ1. Figure 3 indicates that θ1 are highly correlated, with the result that

we only sample from a small proportion of the parameter space when exploring using independent

random walks for each parameter. This explains the poor mixing if we were to run the MCMC

without a transformation. It is clear that, after back-transforming to θ1, the reparameterisation

enables a more thorough exploration of the parameter space. However, while this transformation is

a useful tool in enabling an efficient Bayesian inference procedure, further investigation is necessary

in the choice of m to achieve near-orthogonality of the parameter space and thus maximising the

efficiency of the MCMC procedure.

3 Choosing m optimally

As illustrated in Section 2, the choice of m in the Poisson process likelihood can improve the perfor-

mance of the MCMC required to estimate the posterior density of model parameters θk. We desire

a value of m such that near-orthogonality of θm is achieved, before using the expressions in (5) to

transform to the parameterisation of interest, e.g. θ1 or θny . As a measure of dependence, we use

the asymptotic expected correlation matrix of the posterior distribution of θm|x. In particular,

we explore how the off-diagonal components of the matrix, that is, the correlation between param-

eters, changes with m. The covariance matrix associated with θm|x can be derived analytically

by inverting the Fisher information matrix of the Poisson process log-likelihood (see Appendix C).

The correlation matrix is then obtained by normalising so that the matrix has a unit diagonal.

7



µ1

σ 1

50 60 70 80 90 100

0
5

10
15

20
25

30

µ1

ξ

50 60 70 80 90 100

−
0.

1
0.

0
0.

1
0.

2

σ1

ξ

0 5 10 15 20 25 30

−
0.

1
0.

0
0.

1
0.

2

µ1

σ 1

50 60 70 80 90 100

0
5

10
15

20
25

30

µ1

ξ

50 60 70 80 90 100

−
0.

1
0.

0
0.

1
0.

2

σ1

ξ

0 5 10 15 20 25 30

−
0.

1
0.

0
0.

1
0.

2

Figure 3: Contour plots of the estimated joint posterior of θ1 for 4000 iterations (top) and 49000

iterations (bottom) created from the transformed samples drawn from the MCMC procedure for

θm (in black) and samples of θ1 drawn directly (in red).

Other choices for the measure of the dependence of the posterior could have been used, such as the

inverse of the Hessian matrix (or the expected Hessian matrix) of the log-posterior, evaluated at

the posterior mode. For inference problems with strong information from the data relative to the

prior there will be limited differences in the approach and similar values for the optimal m will be

found. In contrast, if the prior is strongly informative and the number of threshold exceedances is

small then the choice of m from using our approach could be far from optimal. Also the use of the
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observed, rather than expected, Hessian may better represent the actual posterior distribution of

θm and deliver a choice of m that better achieves orthogonalisation, see Efron and Hinkley (1978)

and Tawn (1987) respectively.

We prefer our choice of measure of dependence as for iid problems it gives closed form results for

m which can be used without the computational work required for other approaches, and this gives

valuable insight into the choice of m. Furthermore, informative priors rarely arise in extreme value

problems, and so information in the data typically dominates information in the prior, particularly

around the posterior mode. It should be pointed out however, that the prior is used in the MCMC

so there is no loss of prior information in our approach. Also standard MCMC diagnostics should

be used even after the selection of an optimal m, so if the asymptotic posterior correlations differ

much from the posterior correlations, making our choice of m poor, this will be obvious and a more

complete but computationally burdensome analysis can be conducted using the methods described

above.

In this section, we use the data introduced in Section 2. For all integers m ∈ [1, 500], maximum

likelihood estimates θ̂m are computed and pairwise correlations calculated by substituting θ̂m into

the expressions for the Fisher information matrix, in Appendix C, and taking the inverse. Figure 4

shows how parameter correlations change with the choice of m, illustrating that the asymptotic

posterior distributions of µm and ξ are orthogonal when m = r, the number of excesses above a

threshold, which explains the findings of Wadsworth et al. (2010).

Figure 4: Left: Estimated parameter correlations changing with m: ρµm,σm (black), ρµm,ξ (red),

ρσm,ξ (blue). Right: Expanded region of the graph showing ρµm,ξ = 0 for m close to r where

r = 300 is the number of excesses above the threshold, while ρµm,σm = 0 when m ≈ 310.
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It is proposed that MCMC mixing can be further improved by minimising the overall correlation in

the asymptotic posterior distribution of θm. Therefore, we would like to find the value of m such

that ρ(θm) is minimised, where ρ(θm) is defined as

ρ(θm) = |ρµm,σm |+ |ρµm,ξ|+ |ρσm,ξ|, (8)

where ρµm,σm denotes the asymptotic posterior correlation between µm and σm for example. We also

Figure 5: How ρ(θm) changes with m (top left) and how correlations in each individual estimated

parameter, as measured by ρµm , ρσm and ρξ, change with m.

look at the sum of the asymptotic posterior correlation terms involving each individual parameter

estimate. For example, we define ρµm , the asymptotic posterior correlation associated with the

estimate of µm, to be:

ρµm = |ρµm,σm |+ |ρµm,ξ|. (9)

Figure 5 shows how the asymptotic posterior correlation associated with each parameter varies with

m. From Figure 5 we see that while ρµm is minimised at the value of m for which ρµm,σm = 0 (see

Figure 4), ρσm and ρξ have minima at the value of m for which ρσm,ξ = 0. We denote the latter
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minimum by m1 and the former by m2. In terms of the covariance function, this can be written as:

ACov(σm1 , ξ|x) = ACov(µm2 , σm2 |x) = 0, (10)

where ACov denotes the asymptotic covariance. Figure 5 shows that m2 also minimises the total

asymptotic posterior correlation in the model.

One would expect that the values of m for which ρ(θm) is minimised would correspond to the

MCMC chain of θm with good mixing properties. We examine the effective sample size (ESS) as

a way of evaluating this objectively. ESS is a measure of the equivalent number of independent

iterations that the chain represents (Robert and Casella, 2009). MCMC samples are often posi-

tively autocorrelated, and thus are less precise in representing the posterior than if the chain was

independent. The ESS of a parameter chain φ is defined as

ESSφ =
n

1 + 2
∑∞

i=1 νi
, (11)

where n is the length of the chain and νi denotes the autocorrelation in the sampled chain of φ at

lag i. In practice, the sum of the autocorrelations is truncated when νi drops beneath a certain

level. Figure 6 shows how ESS varies with m for each parameter in θm. For these data the ESS

follow a pattern we found to typically occur. We see that ESSµm is maximised at m = m2 due to

the near-orthogonality of µm2 with σm2 and ξ. We find that ESSσm is maximised for m1 < m < m2,

as σm1 remains substantially postively correlated with µm1 and σm2 is negatively correlated with

ξ. Similarly, ESSξ is maximised at a value of m close to m1, but ξ is negatively correlated with

µm1 , which explains the slight distortion. From these results, we postulate that a selection of

m in the interval (m1,m2) would ensure the most rapid convergence of the MCMC chain of θm,

thus enabling an effective sampling procedure from the joint posterior. Figure 6 shows clearly the

benefits of the proposed approach. For example, ESSµ310 = 7459.17 and ESSµ1 = 24.44, illustrating

that the former parameterisation is over 310 times more efficient than the latter. In addition, by

introducing the interval (m1,m2), this approach gives a degree of flexibility to the choice of m and

giving a balance of mixing quality across the model parameters.

The quantities m1 and m2 can be found by numerical solution of the equations ACov(σm, ξ|x) = 0

and ACov(µm, σm|x) = 0 respectively, using the asymptotic covariance matrix of the posterior

of θm, which is given by the inverse of the Fisher information (see Appendix C). Approximate

analytical expressions for m1 and m2 can be derived using Halley’s method for root-finding (Gander,
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Figure 6: How ESS varies with m for each parameter in θm . The blue dashed lines represent

m = m1 (left) and m = m2 (right) in the simulated data example, where m1 and m2 are defined

by property (10). In the calculations, the sum of the autocorrelations were truncated when the

autocorrelations in the chain drop below 0.05.

1985) applied to equations (10). This method yields the following approximations of m1 and m2:

m̂1 = r
(2ξ + 1)

(
1 + 2ξ + (ξ + 1) log

[
2ξ+3
2ξ+1

])
(2ξ + 1)

(
3 + 2ξ − (ξ + 1) log

[
2ξ+3
2ξ+1

]) (12)

m̂2 = r
2ξ2 + 13ξ + 8

2ξ2 + 9ξ + 8
. (13)

In practice, the values of m̂1 and m̂2 are estimated by using an estimate of ξ, such as the maximum

likelihood estimate. Figure 7 shows how m̂1 and m̂2 change relative to r for a range of ξ. This

illustrates that for negative estimates of the shape parameter, r is not a suitable candidate to be

the ‘optimal’ value of m as it is not in the range (m1,m2). In the simulated data used in this

section, although a selection of m = r is reasonable, Figure 6 shows that this may not be wise if

one was primarily concerned about sampling well from ξ, for example. In this case, m̂2 is relatively

close to r, but Figure 7 shows that this is not the case for models with a larger positive estimate of ξ.

A simulation study was carried out to assess the suitability of expressions m̂1 and m̂2 as approxi-

mations to m1 and m2 respectively. A total of 1000 Poisson processes were simulated with different

values of θm. The approximations were calculated and compared with the true values of m1 and

m2, which were obtained exactly by numerical methods. It was found that |m̂i − mi| < 0.1 for
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Figure 7: How m̂1 and m̂2 change as a multiple of r with respect to ξ̂: m̂1/r (black), m̂2/r (red).

i = 1, 2 always, while |m̂i − mi| < 0.01 for 78% and 88.2% of the time for i = 1, 2 respectively.

Both quantities were compared to the performance of other approximations derived using Newton’s

method, which unlike Halley’s method does not account for the curvature in a function. Simulations

show that the root mean square errors are significantly smaller for estimates of mi using Halley’s

method (0.2% and 5% smaller than Newton’s method for i = 1, 2 respectively). A summary of the

reparameterisation method is given in Algorithm 1.

Algorithm 1: Sampling from the posterior distribution of the Poisson process model param-

eters after reparameterising

Data: Threshold excesses x

Result: Samples from the posterior distribution π(θk|x)

1 Choose parameterisation of interest θk;

2 if iid then

3 Obtain estimate of shape parameter ξ using maximum likelihood, for example;

4 Compute m̂1 and m̂2 as defined in (12) and (13);

5 Choose m in range (m̂1, m̂2);

6 else

7 Choose m to be the value of m that numerically solves ρ
µ
(0)
m ,σm

= 0;

8 Obtain MCMC samples for posterior distribution π(θm|x);

9 Transform to obtain samples from π(θk|x)
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4 Choosing m in the presence of non-stationarity

In many practical applications, processes exhibit trends or seasonal effects caused by underlying

mechanisms. The standard methods for modelling extremes of non-identically distributed ran-

dom variables were introduced by Davison and Smith (1990) and Smith (1989), using a Pois-

son process and Generalised Pareto distribution respectively. Both approaches involve setting

a constant threshold and modelling the parameters as functions of covariates. In this way, we

model the non-stationarity through the conditional distribution of the process on the covariates.

We follow the Poisson process model of Smith (1989) as the parameters are invariant to the

choice of threshold if the model is appropriate. We define the covariate-dependent parameters

θm(z) = (µm(z), σm(z), ξ(z)), for covariates z. Often in practice, the shape parameter ξ is assumed

to be constant. A log-link is typically used to ensure positivity of σm(z).

The process of choosing m is complicated when modelling in the presence of covariates. This is

partially caused by a modification of the integrated intensity measure, which becomes

Λ(A) = m

∫
z

[
1 + ξ(z)

(
u− µm(z)

σm(z)

)]−1/ξ(z)
g(z)dz, (14)

where g denotes the probability density function of the covariates, which is unknown and with

covariate space z. The density term g is required as the covariates associated with exceedances of

the threshold u are random. In addition, the extra parameters introduced by modelling covariates

increases the overall correlation in the model parameters.

For simplicity, we restrict our attention to the case of modelling when the location parameter is a

linear function of a covariate, that is,

µm(z) = µ(0)m + µ(1)m z, σm(z) = σm, ξ(z) = ξ,

where we centre the covariate z, as this leads to parameters µ
(0)
m and µ

(1)
m being orthogonal. Note

that the regression parameter µ
(1)
m is invariant to the choice of m. A total of 233 excesses above a

threshold of u = 15 are simulated from a Poisson process model with µ
(0)
1 = 75, µ

(1)
1 = 30, σ1 = 15,

ξ = −0.05. We choose g to follow an Exp(2) distribution, noting that one could also choose g to

be the density of a covariate that is used in practice. We impose an improper Uniform prior on the

regression parameter µ
(1)
1 and set up the MCMC scheme in the same manner as in Section 3.

The objective remains to identify the value of m that achieves near-orthogonality of the parameters

of the posterior distribution. Like before, we run an MCMC sampler on θm(z) and transform the
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samples back to the parameterisation of interest θk(z), which can be obtained as in (5) using the

relations

µ
(0)
k = µ(0)m −

σm
ξ

(
1−

(
k

m

)−ξ)
µ
(1)
k = µ(1)m (15)

σk = σm

(
k

m

)−ξ
.

Figure 8: Contour plots of estimated posterior densities of θ1(z) having sampled from the joint pos-

terior directly (red) and having transformed using (15) after reparameterising from θ85(z) (black).

The complication of the integral term in the likelihood for non-identically distributed variables

means that it is no longer feasible to gain an analytical approximation for the optimal value of m.

A referee has suggested a possible route to obtaining such expressions for m in the non-stationary

case, is by building on results in Attalides (2015) and using a non-constant threshold as in Northrop

and Jonathan (2011), but as this moves away from our constant threshold case we do not pursue

this. We therefore choose a value of m that minimises the asymptotic posterior correlation in the

model. Analogous to Section 3, the optimal m coincides with the value of m such that ρ
µ
(0)
m ,σm

= 0.

Using numerical methods, we identify that this corresponds to a value of m = 85 for the simulated

data example. Figure 8 shows contour plots of estimated posterior densities of θ1(z), comparing

the sampling from directly estimating the posterior θ1(z) with that from transforming the samples

from the estimated posterior of θm(z) to give a sample from the posterior of θ1(z). From this

figure, we see that the reparameterisation improves the sampling from the posterior θ1(z).
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Figure 9: Effective sample size of each parameter chain of the MCMC procedure.

We again inspect the effective sample size for each parameter as a way of comparing the efficiency

of the MCMC under different parameterisations. Figure 9 shows how the effective sample size

varies with m for each parameter. This figure shows how the quality of mixing is approximately

maximised in µ
(0)
m for the value of m that minimises the asymptotic posterior correlation. Mixing

for µ
(1)
m is consistent across all values of m. Interestingly, mixing in ξ increases as the value of m

increases. Without a formal measure for the quality of mixing across the parameters, it is found

that, when averaging the effective sample size over the number of parameters, the ESS is stable

with respect to m in the interval spanning from the value of m such that ρ
µ
(0)
m ,σ

(0)
m

= 0 and the

value of m such that ρ
σ
(0)
m ,ξ

= 0, like in Section 3. For a summary of how the reparameterisation

method can be used in the presence of non-stationarity, see Algorithm 1.
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5 Case study: Cumbria rainfall

In this section, we present a study as an example of how this reparameterisation method can be

used in practice. In particular, we analyse data taken from the Met Office UKCP09 project, which

contains daily baseline averages of surface rainfall observations, measured in millimetres, in 25km

× 25km grid cells across the United Kingdom in the period 1958-2012. In this analysis, we focus

on a grid cell in Cumbria, which has been affected by numerous flood events in recent years, most

notably in 2007, 2009 and 2015. In particular, the December 2015 event resulted in an estimated

£5 billion worth of damage, with rain gauges reaching unprecedented levels. Many explanations

have been postulated for the seemingly increased rate of flooding in the North West of England,

including climate change, natural climate variability or a combination of both. The baseline av-

erage data for the flood events in December 2015 are not yet available, but this event is widely

regarded as being more extreme than the event in November 2009, the levels of which were reported

at the time to correspond to return periods of greater than 100 years. We focus our analysis on

the 2009 event, looking in particular at how a phase of climate variability, in the form of the North

Atlantic Oscillation (NAO) index, can have a significant impact on the probability of an extreme

event occurring in any given year.

Rainfall datasets on a daily scale are commonly known to exhibit a degree of serial correlation.

Analysis of autocorrelation and partial autocorrelation plots indicates that rainfall on day t is

dependent on the rainfall of the previous five days. In addition, the data may exhibit seasonal

effects. However, while serial dependence affects the effective sample size of a dataset, it does not

affect correlations between parameters, and is thus unlikely to influence the choice of m. For the

purposes of illustrating our method, we make the assumption for now that the rainfall observations

are iid and proceed with the method outlined in Section 3. We wish to obtain information about

the parameters corresponding to the distribution of annual maxima, i.e. θ55. Standard threshold

diagnostics (Coles, 2001) indicate a threshold of u = 15 is appropriate, which corresponds to the

95.6% quantile of the data. There are r = 880 excesses above u (see Figure 10). We obtain bounds

m1 and m2, then choose a value m1 < m < m2 that will achieve near-orthogonality of the Poisson

process model parameters to improve MCMC sampling from the joint posterior distribution. We

obtain ξ̂ = 0.087 using maximum likelihood when m = r, which we use to obtain approximations

for m1 and m2 as in (12) and (13). From this, we obtain m̂1 ≈ 351 and m̂2 ≈ 915. We checked

that m̂1 and m̂2 represent good approximations by solving equations (10) to obtain m1 = 350.82

and m2 = 914.96. Since r = 880 is contained in the interval (m1,m2), we choose m = r. We run

an MCMC chain for θ880 for 50000 iterations, discarding the first 1000 samples as burn-in. We
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Figure 10: (Left) Daily rainfall observations in the Cumbria grid cell in the period 1958-2012. The

red line represents the extreme value threshold of u = 15. (Right) Boxplots of rainfall against

monthly NAO index.

transform the remaining samples using the mapping in (5), where k = 55, to obtain samples from

the joint posterior of θ55. The estimated posterior density for each parameter is shown in Figure 11.

To estimate probabilities of events beyond the range of the data, we can use the estimated pa-

rameters to estimate extreme quantiles of the annual maximum distribution. The quantity yN ,

satisfying:

1/N = 1−G(yN ), (16)

is termed the N -year return level, where G is defined as in expression (2). The level yN is expected

to be exceeded on average once every N years. By inverting (16) we get:

yN =

 µ55 − σ55
ξ [1− {− log(1− 1/N)}−ξ] for ξ 6= 0

µ55 − σ55 log{− log(1− 1/N)} for ξ = 0.
(17)

The posterior density of the 100-year return level in Figure 11 is estimated by inputting the MCMC

samples of the model parameters into expression (17).

We use the same methodology to explore the effect of the monthly NAO index on the probability of

extreme rainfall levels in Cumbria. The NAO index describes the surface sea-level pressure differ-

ence between the Azores High and the Icelandic Low. The low frequency variability of the monthly

scale is chosen to represent the large scale atmospheric processes affecting the distribution of wind

and rain. In the UK, a positive NAO index is associated with cool summers and wet winters, while

a negative NAO index typically corresponds to cold winters, pushing the North Atlantic storm track
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Figure 11: Estimated posterior densities of µ55, σ55, ξ and the 100-year return level.

further south to the Mediterranean region (Hurrell et al., 2003). In this analysis, we incorporated

the effect of NAO by introducing it as a covariate in the location parameter. The threshold of

u = 15 was retained for this analysis.

To obtain the value of m that minimises the overall correlation in the model, we solve numerically

the equation ρ
µ
(0)
m ,σm

= 0. We obtain a kernel density estimate of the NAO covariate, which repre-

sents g as defined in expression (14). We use this to obtain maximum likelihood estimates θ̂r(x).

These quantities are substituted into the Fisher information matrix. The matrix is then inverted

numerically to estimate m = 920. This represents a slight deviation from m̂2 estimated during the

iid analysis. We would expect this as the covariate effect is small, as shown in Figure 12. This

example illustrates the benefit of numerically solving for m when modelling non-stationarity, as the

range (m1,m2) estimated analytically during the iid analysis no longer contain the optimal value

of m.
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We run an MCMC chain for θ920(x) for 50000 iterations before discarding the first 1000 samples

as burn-in. We transform the remaining MCMC samples to the annual maximum scale using the

mapping in (15) where k = 55. Figure 12 indicates that NAO has a significantly positive effect on

the location parameter.
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Figure 12: Estimated posterior densities of µ
(0)
55 , µ

(1)
55 , σ55 and ξ.

We wish to estimate return levels relating to the November 2009 flood event, which is represented

by a value of 51.582mm in the dataset. Return levels corresponding to the distribution of November

maxima are shown in Figure 13. We can also use the predictive distribution in order to account for

both parameter uncertainty and randomness in future observations (Coles and Tawn, 1996). On

the basis of threshold excesses x = (x1, . . . , xn), the predictive distribution of a future November

maximum M is:

Pr{M ≤ y|x} =

∫
θ55

Pr{M ≤ y|θ55}π(θ55|x)dθ55, (18)
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where

Pr{M ≤ y|θ55} =



exp

{
− 1

12

[
1 + ξ

(
y−(µ(0)55 +µ

(1)
55 z)

σ55

)]−1/ξ
+

}
where z is known

exp

− 1
12

∫
z

[
1 + ξ

(
y − (µ

(0)
55 + µ

(1)
55 z)

σ55

)]−1/ξ
+

gN (z)dz

 where z is unknown,

(19)

where gN is the density of NAO in November and the integral is evaluated numerically using

adaptive quadrature methods. The integral in (18) can be approximated using a Monte Carlo

summation over the samples from the joint posterior of θ55. From this, we estimate the predictive

probability of an event exceeding 51.582 in a typical November is 0.0112, with a 95% credible interval

of (0.0063, 0.0185), which corresponds to an 89-year event, (54, 158). For November 2009, when an

NAO index of −0.02 was measured, the probability of such an event was 0.0111, (0.0062, 0.0184),

corresponding to a 90-year event, (54, 161). For the maximum observed value of NAO in November,

with NAO = 3.04, the predictive probability of such an event is 0.0132, (0.0073, 0.0214), which

corresponds to a 75-year flood event, (47, 136). This illustrates the impact that different phases of

climate variability can have on the probabilities of extreme events.

Figure 13: Return levels corresponding to November maxima. The full line represents the posterior

mean and the two dashed lines representing 95% credible intervals.
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Appendix

A Proof: µ̂r = u when m = r

We can write the full likelihood for parameters θr given a series of excesses {xi} above a threshold

u as:

L(θr) = L1 × L2,

where L1 is the Poisson probability of r exceedances of u and L2 is the joint density of these r

exceedances, so that:

L1 =
1

r!

{
r

[
1 + ξ

(
u− µr
σr

)]−1/ξ
+

}r
exp

{
−r
[
1 + ξ

(
u− µr
σr

)]−1/ξ
+

}
,

L2 =
r∏
i−1

1

σr

[
1 + ξ

(
xi − µr
σr

)]−1/ξ−1
+

[
1 + ξ

(
u− µr
σr

)]1/ξ
+

.

By defining Λ =
[
1 + ξ

(
u−µr
σr

)]−1/ξ
+

and using identity (A), we can reparameterise the likelihood

in terms of θ∗ = (Λ, ψu, ξ) to give:

L(θ∗) ∝ Λr exp {−rΛ}
r∏
i=1

1

ψu

[
1 + ξ

(
xi − u
ψu

)]−1/ξ−1
+

Taking the log-likelihood and maximising with respect to Λ, we get:

l(θ∗) := logL(θ∗) = r log Λ̂− rΛ̂− r logψu −
(

1

ξ
− 1

) r∑
i=1

log

[
1 + ξ

(
xi − u
ψu

)]
+

∂l

∂Λ
=

r

Λ̂
− r = 0,

which gives Λ̂ = 1. Then, by the invariance property of maximum likelihood estimators, µ̂r = u.

Using the identity

ψu = σm + ξ(u− µm),

which is invariant to choice of m, we get σ̂r = ψ̂u. Because the ξ-dependent term in the log-

likelihood is identical to that in a GP log-likelihood, the maximum likelihood estimators of the two

models coincide.

B Derivation of prior for inference on θm

We define a joint prior on the parameterisation of interest θk. However, as we are making inference

for the ‘optimal’ parameterisation θm, we must derive the prior for θm. We can calculate the prior
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density of θm by using the density method for one-to-one bivariate transformations. Inverting (5)

to get expressions for µm and σm, i.e.

µm = µk −
σk
ξ

(
1−

(m
k

)−ξ)
= g1(µk, σk)

σm = σk

(m
k

)−ξ
= g2(µk, σk),

we can use this transformation to calculate the prior for θm.

π(θm) = π(µm, σm, ξ)

= π(µk, σk, ξ)| det J |µk=g−1
1 (µm,σm),σk=g

−1
2 (µm,σm),ξ=ξ,

where

det J =

∣∣∣∣∣∣∣∣
∂µm
∂µk

∂µm
∂σk

∂µm
∂ξ

∂σm
∂µk

∂σm
∂σk

∂σm
∂ξ

∂ξ
∂µk

∂ξ
∂σk

∂ξ
∂ξ

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∂µm
∂µk

∂µm
∂σk

∂µm
∂ξ

0 ∂σm
∂σk

∂σm
∂ξ

0 0 ∂ξ
∂ξ

∣∣∣∣∣∣∣∣
=
∂σm
∂σk

∂ξ

∂ξ

=
(m
k

)−ξ
.

Therefore, π(θm) =
(
m
k

)−ξ
π(θk).

C Fisher information matrix calculations for iid random variables

The log-likelihood of the Poisson process model with parameterisation θm = (µm, σm, ξ) can be

expressed as

l(θm) = −m
[
1 + ξ

(
u− µm
σm

)]−1/ξ
+

− r log σm −
(

1

ξ
+ 1

) r∑
j=1

log

[
1 + ξ

(
xj − µm
σm

)]
+

,

where r is the number of exceedances of X above the threshold u. For simplicity, we drop the [·]+
subscript in subsequent calculations. In order to produce analytic expressions for the asymptotic

covariance matrix, we must evaluate the observed information matrix Î(θm). For simplicity, we

define vm = u−µm
σm

and zj,m =
xj−µm
σm

.
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∂2l

∂µ2m
= −m(ξ + 1)

σ2m
[1 + ξvm]−1/ξ−2 +

ξ(ξ + 1)

σ2m

r∑
j=1

[1 + ξzj,m]−2 ,

∂2l

∂σ2m
=

2m

σ2m
[1 + ξvm]−1/ξ−1vm −

m(ξ + 1)

σ2m
[1 + ξvm]−1/ξ−2v2m +

r

σ2m
− 2(ξ + 1)

σ2m

r∑
j=1

[1 + ξzj,m]−1 zj,m

+
ξ(ξ + 1)

σ2m

r∑
j=1

z2j,m [1 + ξzj,m]−2 ,

∂2l

∂ξ2
= −m[1 + ξvm]−1/ξ

[
1

ξ
v2m[1 + ξvm]−2 − 2

ξ3
log [1 + ξvm]

+
2

ξ2
[1 + ξvm]−1vm +

(
1

ξ2
log [1 + ξvm]− 1

ξ
[1 + ξvm]−1vm

)2
]

− 2

ξ3

r∑
j=1

log [1 + ξzj,m] +
2

ξ2

r∑
j=1

[1 + ξzj,m]−1 zj,m +
ξ + 1

ξ

r∑
j=1

[1 + ξzj,m]−2 z2j,m,

∂2l

∂µm∂σm
=

m

σ2m
[1 + ξvm]−1/ξ−1 − m(ξ + 1)

σ2m
[1 + ξvm]−1/ξ−2vm

−ξ + 1

σ2m

r∑
j=1

[1 + ξzj,m]−1 +
ξ(ξ + 1)

σ2m

r∑
j=1

[1 + ξzj,m]−2 zj,m,

∂2l

∂µm∂ξ
= − m

σm

[
1

ξ2
[1 + ξvm]−1/ξ−1 log [1 + ξvm]− ξ + 1

ξ
[1 + ξvm]−1/ξ−2vm

]
+

1

σm

r∑
j=1

[1 + ξzj,m]−1

−ξ + 1

σm

r∑
j=1

[1 + ξzj,m]−2 zj,m,

∂2l

∂σm∂ξ
= − m

σm
vm

[
1

ξ2
[1 + ξvm]−1/ξ−1 log [1 + ξvm]− ξ + 1

ξ
[1 + ξvm]−1/ξ−2vm

]
+

1

σm

r∑
j=1

[1 + ξzj,m]−1 zj,m

−ξ + 1

σm

r∑
j=1

[1 + ξzj,m]−2 z2j,m

To obtain the Fisher information matrix, we take the expected value of each term in the observed

information with respect to the probability density of points of a Poisson process. Let Z = X−µm
σm

,

and R be a random variable denoting the number of excesses of X above u. The density of points

in the set Au can de defined by

f(x) =
λ(x)

Λ(Au)
=

[1 + ξz]−1/ξ−1

[1 + ξvm]−1/ξ
,

24



where λ is a function denoting the rate of exceedance. Then, for example,

EZ,R


R∑
j=1

[1 + ξzj,m]−2

 = EREZ|R


R∑
j=1

[1 + ξzj,m]−2


= ER

{
REZ

{
[1 + ξZ]−2

}}
= ER

{
R[1 + ξvm]1/ξ

∫ ∞
vm

[1 + ξz]−1/ξ−3 dz

}
=

m

2ξ + 1
[1 + ξvm]−1/ξ−2

Following this process, we can write the Fisher information matrix I(θm) as:

E
{
− ∂2l

∂µ2m

}
=

m(ξ + 1)

σ2m
[1 + ξvm]−1/ξ−2 − mξ(ξ + 1)

(2ξ + 1)σ2m
[1 + ξvm]−1/ξ−2,

E
{
− ∂2l

∂σ2m

}
= −2m

σ2m
[1 + ξvm]−1/ξ−1vm +

m(ξ + 1)

σ2m
[1 + ξvm]−1/ξ−2v2m −

r

σ2m
+

2m

σ2m
[1 + ξvm]−1/ξ−1 [1 + (ξ + 1)vm]−

mξ

(2ξ + 1)σ2m
[1 + ξvm]−1/ξ−2

[
(2ξ2 + 3ξ + 1)v2m + (4ξ + 2)vm + 2

]
,

E
{
− ∂

2l

∂ξ2

}
= m[1 + ξvm]−1/ξ

[
1

ξ
v2m[1 + ξvm]−2 − 2

ξ3
log [1 + ξvm]+

2

ξ2
[1 + ξvm]−1vm +

(
1

ξ2
log [1 + ξvm]− 1

ξ
[1 + ξvm]−1

)2
]

+

2

ξ3
[1 + ξvm]−1/ξ [ξ + log [1 + ξvm]]− 2m

(ξ + 1)ξ2
[1 + ξvm]−1/ξ−1 [1 + (ξ + 1)vm]−

m

ξ(2ξ + 1)
[1 + ξvm]−1/ξ−2

[
(2ξ2 + 3ξ + 1)v2m + (4ξ + 2)vm + 2

]
,

E
{
− ∂2l

∂µm∂σm

}
=

m(ξ + 1)

σ2m
[1 + ξvm]−1/ξ−2vm −

mξ

(2ξ + 1)σ2m
[1 + ξvm]−1/ξ−2 [1 + (2ξ + 1)vm] ,

E
{
− ∂2l

∂µm∂ξ

}
=

m

σm

[
1

ξ2
[1 + ξvm]−1/ξ−1 log [1 + ξvm]− ξ + 1

ξ
[1 + ξvm]−1/ξ−2vm

]
−

m

σm(ξ + 1)
[1 + ξvm]−1/ξ−1 +

m

σm(2ξ + 1)
[1 + ξvm]−1/ξ−2 [1 + (2ξ + 1)vm] ,

E
{
− ∂2l

∂σm∂ξ

}
=

m

σm
vm

[
1

ξ2
[1 + ξvm]−1/ξ−1 log [1 + ξvm] +

ξ + 1

ξ
[1 + ξvm]−1/ξ−2vm

]
−

m

σm(ξ + 1)
[1 + ξvm]−1/ξ−1 [1 + (ξ + 1)vm] +

m

σm(2ξ + 1)
[1 + ξvm]−1/ξ−2

[
(2ξ2 + 3ξ + 1)v2m + (4ξ + 2)vm + 2

]
.

By inverting the Fisher information matrix using a technical computing tool like Wolfram Math-

ematica, making the substitution r = m[1 + ξvm]−1/ξ, the expected number of exceedances, and
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using the mapping in (5), we can get expressions for asymptotic posterior covariances.

ACov(µm, ξ) =
1

ξ2r
(ξ + 1)σm

( r
m

)−ξ (
ξ(ξ + 1)

( r
m

)ξ
log
( r
m

)
− (2ξ + 1)

(( r
m

)ξ
− 1

))
ACov(µm, σm) =

1

ξ2r
σ2m

( r
m

)−ξ (( r
m

)ξ (
(ξ + 1) log

( r
m

)(
(ξ + 1)ξ log

( r
m

)
− 3ξ − 1

)
+

ξ(ξ(ξ + 2) + 3) + 1
)

+ (ξ + 1)(2ξ + 1)
(

log
( r
m

)
− 1
))

ACov(σm, ξ) =
1

r
(ξ + 1)σm

(
(ξ + 1) log

( r
m

)
− 1
)

When m = r, ACov(µm, ξ) = 0. In addition, the m for which ACov(µm, σm) = 0 coincides with

the value of m that minimises ρθm as defined in (8). This root can easily be found numerically, but

an analytical approximation can be calculated using a one-step Halley’s method. By using m = r

as the initial seed, and using the formula:

xn+1 = xn −
f(xn)

f ′(xn)− f(xn)f ′′(xn)
2f ′(xn)

we get the expression (13) for m̂2 after one step. The quantity for m̂1, given by expression (12)

requires two iterations of this method.
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