Dynamical decoupling and homogenization of continuous variable systems

Arenz, Christian and Burgarth, Daniel and Hillier, Robin Oliver (2017) Dynamical decoupling and homogenization of continuous variable systems. Journal of Physics A: Mathematical and Theoretical, 50 (13): 135303. ISSN 1751-8113

[thumbnail of Arenz+et+al_2017_J._Phys._A%3A_Math._Theor._10.1088_1751-8121_aa6017]
PDF (Arenz+et+al_2017_J._Phys._A%3A_Math._Theor._10.1088_1751-8121_aa6017)
Available under License Creative Commons Attribution-NonCommercial-NoDerivs.

Download (369kB)


For finite-dimensional quantum systems, such as qubits, a well established strategy to protect such systems from decoherence is dynamical decoupling. However many promising quantum devices, such as oscillators, are infinite dimensional, for which the question if dynamical decoupling could be applied remained open. Here we first show that not every infinite-dimensional system can be protected from decoherence through dynamical decoupling. Then we develop dynamical decoupling for continuous variable systems which are described by quadratic Hamiltonians. We identify a condition and a set of operations that allow us to map a set of interacting harmonic oscillators onto a set of non-interacting oscillators rotating with an averaged frequency, a procedure we call homogenization. Furthermore we show that every quadratic system-environment interaction can be suppressed with two simple operations acting only on the system. Using a random dynamical decoupling or homogenization scheme, we develop bounds that characterize how fast we have to work in order to achieve the desired uncoupled dynamics. This allows us to identify how well homogenization can be achieved and decoherence can be suppressed in continuous variable systems.

Item Type:
Journal Article
Journal or Publication Title:
Journal of Physics A: Mathematical and Theoretical
Additional Information:
As the Version of Record of this article is going to be/has been published on a subscription basis, this Accepted Manuscript will be available for reuse under a CC BY-NC-ND 3.0 licence after a 12 month embargo period. This is an author-created, un-copyedited version of an article accepted for publication/published in Journal of Physics A. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at doi:10.1088/1751-8121/aa6017
Uncontrolled Keywords:
?? physics and astronomy(all)modelling and simulationmathematical physicsstatistical and nonlinear physicsstatistics and probability ??
ID Code:
Deposited By:
Deposited On:
23 Feb 2017 10:25
Last Modified:
11 Jul 2024 00:11