Combining physiological, environmental and locational sensors for citizen-oriented health applications

Huck, Jonathan and Whyatt, James Duncan and Coulton, Paul and Davison, Brian Matthew and Gradinar, Adrian Ioan (2017) Combining physiological, environmental and locational sensors for citizen-oriented health applications. Environmental Monitoring and Assessment, 189: 114. ISSN 0167-6369

[thumbnail of Combining physiological, environmental and locational sensors for citizen-oriented health applications]
Preview
PDF (Combining physiological, environmental and locational sensors for citizen-oriented health applications)
Jonny_pollution_paper.pdf - Published Version
Available under License Creative Commons Attribution-NonCommercial.

Download (3MB)

Abstract

This work investigates the potential of combining the outputs of multiple low-cost sensor technologies for the direct measurement of spatio-temporal variations in phenomena that exist at the interface between our bodies and the environment. The example used herein is the measurement of personal exposure to traffic pollution, which may be considered as a function of the concentration of pollutants in the air and the frequency and volume of that air which enters our lungs. The sensor-based approach described in this paper removes the ‘traditional’ requirements either to model or interpolate pollution levels or to make assumptions about the physiology of an individual. Rather, a wholly empirical analysis into pollution exposure is possible, based upon high-resolution spatio-temporal data drawn from sensors for NO2, nasal airflow and location (GPS). Data are collected via a custom smartphone application and mapped to give an unprecedented insight into exposure to traffic pollution at the individual level. Whilst the quality of data from low-cost miniaturised sensors is not suitable for all applications, there certainly are many applications for which these data would be well suited, particularly those in the field of citizen science. This paper demonstrates both the potential and limitations of sensor-based approaches and discusses the wider relevance of these technologies for the advancement of citizen science.

Item Type:
Journal Article
Journal or Publication Title:
Environmental Monitoring and Assessment
Uncontrolled Keywords:
/dk/atira/pure/subjectarea/asjc/2300/2300
Subjects:
?? gissensorscitizen sciencetraffic pollution exposuregeneral environmental sciencepollutionmanagement, monitoring, policy and lawenvironmental science(all) ??
ID Code:
84819
Deposited By:
Deposited On:
22 Feb 2017 10:14
Refereed?:
Yes
Published?:
Published
Last Modified:
01 Oct 2024 00:19