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Abstract—We introduce a kernel formulation of the recently
proposed minimum density hyperplane approach to clustering.
This enables the identification of clusters that are not linearly
separable in the input space by mapping them into a feature
space. This mapping also extends the applicability of the
minimum density hyperplane to datasets whose features are
not necessarily continuous. The location of minimum den-
sity hyperplanes involves the optimisation of a non-convex
objective function. In the feature space, the dimensionality
of the optimisation problem is n, where n is the number of
observations. We further propose an approximation method
that can substantially reduce the dimensionality of the search
space, avoiding searching over dimensions which are unlikely to
contain useful information for clustering. Experimental results
suggest that the proposed approach is capable of producing
high quality partitions across a number of benchmark datasets.

1. Introduction

Given a set of observations, the clustering problem is to
partition these into a number of groups, or clusters, so that
observations assigned to the same cluster are more similar to
each other than observations assigned to different clusters.
As there is no unique definition of what constitutes a cluster
a number of different approaches have been proposed in the
literature, each relying on a different cluster definition. In the
nonparametric statistical approach to clustering, also known
as density clustering, clusters are defined as contiguous re-
gions of high-probability density [1, 2]. Rather than search-
ing for dense regions directly, an equivalent formulation is to
define cluster boundaries as passing through regions of low
probability density; known as low-density separation [3].
The minimum density hyperplane (MDH) [4] is the first
approach for the partition of unlabelled or partially labelled
data, that directly minimises the integral of the empirical
density along a hyperplane separator. This can be done with
only the one-dimensional projections onto the normal vec-
tor to the hyperplane, making this formulation particularly
relevant for high-dimensional problems.

This approach is linked to density clustering as it can
be shown that under specific conditions the integral of
the empirical density along a hyperplane imposes an up-

per bound on the maximum value of the density at any
point along this hyperplane. Therefore, by minimising the
integral of the density along the hyperplane separator, the
smallest upper bound on the value of the empirical density
on the separator is achieved. Low-density separators also
play a significant role is the analysis of clustering stability.
A close relationship between the stability of a clustering
and the data density along the cluster boundaries has been
established in [5, 6]. Roughly speaking, the lower these
densities the more stable the clustering. The detection of
MDHs is also relevant in semi-supervised classification [3],
where unlabelled data are used in conjunction with labelled
data to improve classification performance compared to just
using the (scarce) labelled data. A necessary assumption
for this to be feasible is that a better knowledge of the
probability distribution of the observed data, p(x) improves
the inference of the class-conditional densities p(x|y), where
y denotes the classification label. A standard assumption of
this type, underlying popular methods like the transductive
support vector machine [7], is that class boundaries pass
through regions of low probability density.

An important restriction of the MDH approach is that
it cannot correctly identify clusters that are not linearly
separable. In this work we propose the kernel MDH to
overcome this limitation. We first map the data nonlinearly
into a feature space and a MDH is sought in the new
feature space. The hyperplane separator in the feature space
corresponds to a nonlinear separator in the input space. The
potentially high dimensionality of the feature space means it
is not feasible to calculate the mapped observations (feature
vectors) explicitely. However, their one-dimensional projec-
tions onto any vector in the feature space may be calculated
using the matrix of pairwise inner products (kernel matrix).
This is sufficient to allow the location of the MDH in the
feature space.

The estimation of the MDH in the feature space in-
volves a non-smooth non-convex optimisation problem over
n variables, where n is the number of observations with
computational complexity O(n(n + 1)). In many appli-
cations of interest n can be very large, and this affects
both the computational time as well as the ability to locate
good quality solutions. To overcome this we propose an
approximation method that seeks hyperplanes in a subspace



of the feature space.
The remaining paper is organised as follows: Section 2

presents the formulation of the MDH in feature space and
the approximation in a subspace. Section 3 provides an em-
pirical evaluation of the binary partitions from the proposed
approach and alternative established kernel based clustering
algorithms across benchmark datasets with varying charac-
teristics. Conclusions are discussed in Section 4.

2. Minimum Density Hyperplanes

We assume a finite set of observations, S = {xi}ni=1 ⊂
X, where X denotes the input space. A hyperplane is
parameterised by its normal vector, v ∈ X and displacement
from the origin b ∈ R, H(v, b) = {x ∈ X | 〈v,x〉 = b}.
Without loss of generality [4] restrict attention to ‖v‖2 = 1.
The density on H(v, b), as defined by [8], is given by the
integral of the density function p along the hyperplane,

I(v, b) =

∫
H(v,b)

p(x)dx. (1)

In all practical applications the density function p is un-
known. In the original MDH approach [4] a continuous
density estimator with isotropic Gaussian kernels is used.
The advantage of this is that if X ⊂ Rd then the estimated
density on a hyperplane, Î(v, b) can be evaluated exactly
from one-dimensional projections,

Î(v, b) =

∫
H(v,b)

1

n(2πh2)
d
2

n∑
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exp

{
−‖x− xi‖2

2h2

}
dx,

=
1
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√

2π

n∑
i=1

exp

{
− (b− 〈v,xi〉)2

2h2

}
. (2)

In detail, Eq. (2) states that Î(v, b) can be evaluated by
projecting the data onto v; constructing a one-dimensional
kernel density estimator with the same bandwidth param-
eter h; and evaluating it at b. Since the above equation
requires only the evaluation of the inner product between
the projection vector, v, and the observations, xi, it can be
generalised to a kernel-defined feature space.

Let κ(x, z) be a kernel and φ : X → F a feature map
satisfying κ(x, z) = 〈φ(x), φ(z)〉F. Although in the general
case it might not be possible to define the projection vector
in the feature space, the representer theorem [9] allows v to
be expressed in its dual representation, v =

∑n
i=1 αiφ(xi).

With this representation and restricting attention to {v ∈
F|‖v‖F = 1}, the projection of the feature vector, φ(xj)
onto v is given by,

〈φ(xj),v〉F =

∑n
i=1 αiKi,j

(α>Kα)
1/2

, (3)

where α ∈ Rn, and K ∈ Rn×n is the kernel matrix whose
entries are Kij = κ(xi,xj). The density on a hyperplane in
the feature space is therefore,

Î(α, b) =
1

nh
√

2π

n∑
j=1

exp

{
− (b− 〈φ(xj),v〉F)

2

2h2

}
, (4)

where use use the notation Î(α, b) to stress the fact that we
rely on the dual representation of v. [10] show that learning
α is equivalent to learning v. Practically, this results in the
seach space for the MDH being n-dimensional.

We denote the kernel minimum density hyperplane
(KMDH) to be the hyperplane H(α?, b?) that min-
imises Î(α, b). with the induced partition being Π1 =
{xj |〈φ(xj),v〉F > b?}, Π2 = {xj |〈φ(xj),v〉F 6 b?}.
Arbitrarily small values of Î(α, b) can be trivially obtained
by allowing |b| → ∞. Clearly such hyperplanes are not
meaningful for clustering as they assign all points to one
partition. To avoid such situations it is necessary to constrain
the range of b. If we assume without loss of generality that
the mean of all the feature vectors is zero, then one can
constrain b to be in an interval around the standard deviation
of the projected data, b ∈ [−γσα, γσα].

Î(α, b) can be optimised using constrained optimisation
methods but this approach has been shown to be highly
susceptible to convergence to local minima. To prevent
this, [4] propose a projection pursuit formulation where the
constraints on b are imposed through a penalty function. In
this formulation the objective function, θ, is defined as,

θ(α) = min
b∈R

f(α, b), (5)

f(α, b) = Î(α, b) +
L

ηε
max{0,−γσα − b, b− γσα}1+ε

(6)

where L = (e1/2h22π)−1, ε ∈ (0, 1) and η ∈ (0, 1).
The above settings ensure that the minimiser of f(α, b) is
within η of the minimiser of Î(α, b). By optimising θ(α)
instead of Î(α, b) this approach can accomodate discontin-
uous changes in the location of the minimiser of the one-
dimensional kernel density estimator, Î(α, b) with respect
to changes in α. This comes at the cost of rendering the
objective function non-smooth for values of α for which
argminb∈Rf(α, b) is not a singleton. Although standard
gradient descent methods are not guaranteed to converge
for non-smooth functions, [11] have strongly advocated
that a simple BFGS method with inexact line searches is
very efficient in practice. We therefore use BFGS in our
experiments.

2.1. Computational Complexity

In this subsection, we discuss the computational com-
plexity of KMDH. At each iteration, the algorithm projects
the data onto v, at a cost of O(n(n + 1)). Then, to obtain
the projection index θ(α), it is necessary to minimise the
penalised objective f(α, b). This minimisation is possible
by evaluating f(α, b) on a grid of m points, involving m
evaluations of a density estimate with n components. The
cost of this may be reduced from O(mn) to O(n + m)
using the improved fast Gauss transform [12]. To compute
the minimiser(s) to within the desired accuracy, ε, bisection
may be used which requires O(− log2 ε) iterations. The
subsequent minimisation of θ(α) is done using BFGS as



advocated by [11, 4]. This can be done at a cost ofO(n2) per
iteration [13, Pg. 140] plus the cost of function evaluations
of f(α, b) as defined as above and gradient evaluations with
cost O(n(n+ 1)).

2.2. Approximation methods - Subspace

Since the normal vector to the hyperplane v is expressed
by its dual vector α ∈ Rn, the search space for the KMDH
is n-dimensional. However, when n is large, the optimisation
is computationally expensive and it is likely that a number
of these dimensions are not necessary to locate a low density
separator. Hence, we consider using only a subspace of F to
search for the minimum density hyperplane. We use kernel
principal component analysis (KPCA) [14] to reduce the
dimensionality of the search space while retaining maximal
variability. Although there is no guarantee that directions
of high variability will be meaningful for cluster detection
[15, 4] it is arguably unlikely that directions which exhibit
almost no variability are relevant for clustering. We denote
this subspace F′ ⊆ Rn′

where n′ � n.
Let U ∈ Rn×n′

= (u1, ...,un′) be the matrix of the dual
vectors of the first n′ unit principal component vectors of
F as columns. In F′, the matrix of pairwise inner products
of the feature vectors is K′ = U>KU ∈ Rn′×n′

. Then,
the projection of the feature vector φ(xj) onto the vector v
whose dual vector is β =

∑n′

i=1 α
′
iu
>
i ∈ Rn is,

〈φ(xj),v〉F ′ =

∑n′

i=1 α
′
iK
′
i,j

(α′>K′α′)1/2
. (7)

This results in a search over the n′ dimensions of the
subspace defined by U. This approach is equivalent to
calculating the projections of the feature vectors onto the
first n′ kernal principal components and then locating the
MDH as in [4].

We then seek the α′? and b? which minimise

θ(α′) = min
b∈R

f(α′, b), (8)

f(α′, b) = Î(α′, b) +
L

ηε
max{0,−γσα′ − b, b− γσα′}1+ε,

(9)

Î(α′, b) =
1
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√

2π

n∑
j=1

exp

{
− (b− 〈φ(xj),v〉F′)

2

2h2

}
(10)

where σα′ is the standard deviation of the projections
defined by Eq. 7. The subspace kernel minimum density
hyperplane (S-KMDH) is then the hyperplane H(α′?, b?)
that minimises f(α′, b). This induces the partition Π1 =
{xj |〈φ(xj),v〉F′ > b?}, Π2 = {xj |〈φ(xj),v〉F ′ 6 b?}.
The smaller dimensionality of F′ reduces the computational
cost of calculating the projections and the gradient evalua-
tions to O(n′(n′+1)) and avoids searching over dimensions
which are potentially not useful for cluster detection.

TABLE 1. SUMMARY OF UCI BENCHMARK DATASETS.

Dataset n d k
Banknote 1372 4 2
Breast Cancer 699 9 2
Dermatology 366 34 6
Forest 523 27 4
Heart Disease 294 13 5
Image Segmentation 2309 18 7
Ionosphere 351 33 2
Iris 150 4 3
Multi Features 2000 216 10
Optical Digits 5618 64 10
Pen Digits 10992 16 10
Satellite 6435 36 6
Seeds 210 7 3
Synth 600 60 6
Vote 435 16 2
Wine 178 13 3

3. Experimental Results

In this section, we conduct an empirical evaluation of
the proposed approaches, KMDH and S-KMDH. We com-
pare the quality of the binary partitions produced by these
approaches to kernel k-means [16] and spectral clustering
[17] across a variety of benchmark datasets from the UCI
repository [18]. The main characteristics of these datasets
are summarised in Table 1 where n, d and k correspond
to the number of observations, dimensions and clusters
respectively.

3.1. Measuring the Quality of Binary Partitions

Since we are looking for binary partitions of datasets which
may contain an arbitrary number of clusters, we use the two
performance measures outlined in [4]. Both take values in the range
[0, 1] with larger values indicating a higher quality partition. It is
assumed that a desirable partition into two groups, Π1 and Π2

should both avoid the division of clusters between elements of the
partition and separate at least one cluster from the remaining data.
This is captured by the modification of the true cluster labels to
reflect the partition to which the majority of the elements of each
cluster are assigned. In the case of equal numbers of observations
from a cluster being assigned to each partition, the cluster is
assigned to the smaller partition. The true cluster labels are then
merged into two aggregate clusters C1 and C2.

The success ratio (SR) of a partition requires both the error
and success of a partition, denoted E(Π1,Π2) and S(Π1,Π2)
respectively. The success (error) of a binary partition is defined
as the number of elements belonging to the same aggregate cluster
which are (are not) assigned to the same partition. The SR of Π1,
Π2 measures the extent to which the majority of at least one cluster
is distinguished from the rest of the data,

S(Π1,Π2) = min{max{|Π1 ∩ C1|, |Π1 ∩ C2|}, (11)
max{|Π2 ∩ C1|, |Π2 ∩ C2|}},

E(Π1,Π2) = min{|Π1 ∩ C1|+ |Π2 ∩ C2|, (12)
|Π1 ∩ C2|+ |Π2 ∩ C1|},

SR(Π1,Π2) =
S(Π1,Π2)

S(Π1,Π2) + E(Π1,Π2)
. (13)

The second measure is the binary V-measure (VM). This is
simply the V-measure [19] applied to the aggregate clusters C1,



(a) Initialisation (b) γ = 10−3 (c) γ = 0.5

Figure 1. Visualisation of KMDH on Synth dataset.

C2. The V-measure measures the properties of both homogeneity
and completeness. The former measures the conditional entropy
of the aggregate cluster distribution within each partition. The
latter measures the conditional entropy of the partition within each
aggregate cluster. The V-measure is calculated as the weighted
harmonic mean of homogeneity and completeness. Both SR and
VM return a value of zero if an algorithm fails to distinguish
the majority of any cluster from the rest of the data. This is not
necessarily the case for alternative metrics [4].

3.2. Details of Implementation

As for all kernel-based approaches, the choice of kernel func-
tion impacts greatly on the results produced. In the absence of
prior knowledge to guide the choice of kernel, we use the radial
basis (RBF) kernel function

Kij = κ(xi,xj) = exp

{
−||xi − xj ||2

2σ2

}
. (14)

This is the most widely used kernel in the literature.
The parameters which can strongly influence the result of our

approach are the bandwidth of the density estimate, h and the
interval width, γ. We use h = 0.9σ̂n−1/5 where σ̂ is the standard
deviation of the projections of the feature vectors as defined by
Eqs. (3) and (7) for KMDH and S-KMDH respectively. This is
the recommended bandwidth selection rule when the density is
assumed to be multimodal [20]. The interval width parameter γ
is initialised close to zero, inducing a balanced partition. This is
gradually increased to γmax = 0.9 to allow convergence to the
minimum integrated density [4].

Although generally robust to convergence to poor local min-
ima, the results produced by KMDH can depend upon initialisa-
tion. We tried initialising on the kernel principal components and
random vectors. Generally, the first kernel principal component
led to the best partitions however, we also present results based
on ten random initialisations as a comparison. In S-KMDH, we
experimented with principal component and random initialisa-
tions. As for KMDH, the best results were generally produced
by initialising on the first principal component, hence these are
presented. For the choice of dimensionality of the subspace n′, we
used the eigenvalues from KPCA to select the dimensionality that
retained 90% of the variability. Where necessary, we present the
performance of the partition based on the sutability of the resulting
projections onto the normal vector to the hyperplane for clustering.
For this we consider the structure in the estimated density of the
projections [21, 4]. In this paper we use the relative depth of the
estimated density of the one-dimensional projections,

RelativeDepth(v) =
min{p̂v(ml), p̂v(mr)} − p̂v(b?)

p̂v(b?)
(15)

where v is an arbitrary projection vector whose projected feature
vectors have estimated density p̂v and ml and mr are the locations
of the modes to the left and right of b? in p̂v respectively. This
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Figure 2. Box plot of regret with respect to SR and VM across UCI
benchmark datasets.

criterion favours projection directions with low minima between
two modes. In our experience, this criterion is better than just using
the value of the integrated density which can lead to separators
which do not actually separate the data.

For the comparison to kernel k-means and spectral clustering,
we used the implementation in the kernlab package for R [22] with
the same kernel matrix as for our algorithms.

3.3. Visualisation

An attractive property of locating partitions based on one-
dimensional projections only is the ability to plot the iterations of
the algorithm, allowing interpretable visualisations of the resulting
partitions. Figure 1 illustrates iterations of KMDH on the Synth
dataset. The estimated density of the projections, the penalised
objective f(α, b) and the current split point are indicated by
black solid, blue dashed and red dotted lines respectively. The
projected feature vectors are plotted as points whose colours and
markers correspond to the true cluster labels. These are separated
along the y-axis for illustration purposes. Figure 1(a), shows that
the estimated density of the initial projections does not have a
strong bi-modal structure. Here, the minimum of f(α, b) is quite
high and the associated separating hyperplane cannot partition the
clusters. Figure 1(b) shows that optimising α over a small range
for b locates a hyperplane with a much lower integrated density.
This induces a balanced partition between two clear modes of the
estimated density of the projections. Finally, Figure 1(c) shows
that increasing the width of the search interval for b, allows the
location of the hyperplane which minimises the integrated density
and does not intersect the true clusters.

3.4. Performance Evaluation

In this section, we present the performance of our proposed
methods across the 16 UCI benchmark datasets summarised in
Table 1. Table 2 reports the SR and VM scores for KMDH (with
KPCA and random initialisations), S-KMDH (with n′ set to retain
90% of the variability), kernel k-means and spectral clustering.
The best performing method for each dataset is indicated in bold
font. Across all datasets, KMDH and S-KMDH perform consis-
tently well and frequently perform better than kernel k-means
and spectral clustering. Generally, the performance of S-KMDH is
competitive with KMDH achieving close to the same performance
on almost all datasets. For large n, the search space for KMDH is
large so the similar or sometimes equivalent performance at a re-
duced computational cost makes S-KMDH appealing. For smaller



TABLE 2. SR AND VM SCORES OF BINARY PARTITIONS FROM KMDH, S-KMDH, KERNEL k-MEANS AND SPECTRAL CLUSTERING ON UCI
BENCHMARK DATASETS. BOLD FONT INDICATES THE BEST PERFORMANCE FOR EACH DATASET.

Dataset KMDH (PCA) KMDH (Rand) S-KMDH K-k-means Spectral
SR VM SR VM SR VM SR VM SR VM

Banknote 0.702 0.487 0.000 0.000 0.661 0.449 0.640 0.418 0.000 0.000
Breast Cancer 0.305 0.007 0.286 0.004 0.305 0.007 0.290 0.005 0.285 0.004
Dermatology 1.000 1.000 0.978 0.941 1.000 1.000 0.991 0.973 1.000 1.000
Forest 0.297 0.009 0.000 0.000 0.297 0.009 0.290 0.007 0.179 0.010
Heart Disease 0.547 0.229 0.000 0.000 0.547 0.229 0.593 0.280 0.583 0.263
Image Segmentation 0.912 0.760 0.952 0.889 0.912 0.760 0.783 0.574 0.000 0.000
Ionosphere 0.540 0.276 0.527 0.267 0.533 0.258 0.000 0.000 0.000 0.000
Iris 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Multi Features 0.871 0.657 0.868 0.651 0.866 0.662 0.838 0.575 0.852 0.615
Optical Digits 0.917 0.809 0.895 0.766 0.810 0.639 0.688 0.464 0.000 0.000
Pen Digits 0.821 0.622 0.832 0.629 0.821 0.623 0.785 0.576 0.783 0.538
Satellite 0.729 0.419 0.919 0.766 0.727 0.416 0.690 0.368 0.866 0.810
Seeds 0.917 0.800 0.917 0.800 0.917 0.800 0.861 0.703 0.795 0.644
Synth 1.000 1.000 0.873 0.718 1.000 1.000 0.863 0.704 1.000 1.000
Votes 0.798 0.522 0.798 0.522 0.767 0.418 0.787 0.493 0.780 0.478
Wine 0.983 0.951 0.983 0.951 0.931 0.857 0.674 0.353 0.727 0.588

datasets, the computational advantage of using a reduced search
space is less apparent, hence searching over all n dimensions may
be feasible to achieve better performance.

The results from the random initialisations of KMDH indicate
that the quality of the partition produced depends on the initial
projection direction. This is particularly evident for the Banknote
dataset where random initialisations completely fail to correctly
identify any clusters. Often, initialising on the first kernel principal
component produces the best partitions and avoids the computa-
tional cost of running multiple random initialisations to achieve a
competitive result.

Figure 2 provides box plots of the regret of an algorithm
across these datasets with respect to SR and VM. The regret of
an algorithm refers to the difference between its performance and
that of the best performing algorithm. Therefore, a regret close
to zero indicates consistently high quality partitions relative to
other algorithms. KMDH initialised on the first kernel principal
component minimises the regret across these datasets. KMDH
with random initialisation is also competitive with this while S-
KMDH has the third lowest regret. This suggests that the minimum
density hyperplane approach frequently locates better partitions
than spectral clustering or kernel k-means. For large datasets,
the reduced computational cost of S-KMDH while maintaining
a competitive performance makes this a desirable approximation
technique.

4. Conclusion

We introduced an approach to locate minimum density hyper-
plane separators for data which are not linearly separable in the
input space. This is done by mapping the set of observations into a
feature space by a nonlinear kernel function. Hyperplane separators
in this feature space then correspond to nonlinear separators in
the input space. The density intersected by a linear separator can
be evaluated using the estimated density of the one-dimensional
projections of the feature vectors onto the vector normal to the
hyperplane. The calculation of these projections can be done using
the kernel matrix of the pairwise inner products of the feature
vectors only. The location of the MDH in the feature space requires
the solution of an n-dimensional optimisation problem with a
computational cost O(n(n+ 1)).

In many practically interesting problems, n is large, in which
case it is not feasible or necessary to search over all n dimensions

of the search space to locate low density separators. Hence, we
propose an approximation method which uses a lower-dimensional
subspace of the feature space to search for a low density separating
hyperplane. This aims to avoid searching over dimensions which
do not contain meaningful information for clustering.

We undertook an empirical evaluation of the performance
of our approaches across a variety of UCI benchmark datasets.
This showed that optimising over the full n-dimensional search
space for the minimum density hyperplane produced the best par-
titions. However, in the majority of cases, using significantly fewer
dimensions produced similar or equivalent results at a reduced
computational cost. This is particularly useful for large datasets
where the significant reduction in computational cost may out
weigh the small reduction in the quality of the partition. Using
random initialisations indicate that the partitions produced by our
approaches can be sensitive to initialisation for some datasets
and we recommend initialising on the first principal component.
Overall, our results show that our algorithms produce consistently
high quality binary partitions, performing better or equivalent to
kernel k-means and spectral clustering in almost all cases.
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separators,” in Proceedings of the 12th International Conference on
Artificial Intelligence and Statistics (AISTATS), ser. JMLR Workshop
and Conference Proceedings, D. van Dyk and M. Welling, Eds.,
Florida, USA, 2009, pp. 25–32.

[9] B. Schölkopf, R. Herbrich, and A. J. Smola, “A generalized represen-
ter theorem,” in International Conference on Computational Learning
Theory. Springer, 2001, pp. 416–426.

[10] J. Shawe-Taylor and N. Cristianini, Kernel methods for pattern anal-
ysis. Cambridge university press, 2004.

[11] A. Lewis and M. Overton, “Nonsmooth optimization via quasi-
Newton methods,” Mathematical Programming, vol. 141, pp. 135–
163, 2013.

[12] V. I. Morariu, B. V. Srinivasan, V. C. Raykar, R. Duraiswami, and
L. S. Davis, “Automatic online tuning for fast gaussian summation,”
in Advances in Neural Information Processing Systems, 2009, pp.
1113–1120.

[13] J. Nocedal and S. Wright, Numerical Optimization. Springer Science
& Business Media, 2006.

[14] B. Schölkopf, A. Smola, and K.-R. Müller, “Kernel principal com-
ponent analysis,” in International Conference on Artificial Neural
Networks. Springer, 1997, pp. 583–588.
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