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Abstract 16 

 17 

As the world’s population increases, demands on staple crops like rice (Oryza sativa L.) will also 18 

increase, requiring additional fresh water supplies for irrigation of rice fields. Safe alternate wetting 19 

and drying (AWD) is a water management technique that is being adopted across a number of 20 

countries to reduce the water input for rice cultivation. The impact of AWD on plant growth, yield 21 

and grain quality is not well understood. A field trial of AWD was conducted at Mymensingh, 22 

Bangladesh over two boro (dry) seasons using eight field plots, four under AWD and four 23 

continuously flooded (CF). This manuscript describes the results of check cultivar BRRI dhan28 which 24 

was replicated in 35-40 rows per plot giving a total of 140-160 replicates per treatment. A study on 25 

the soil solution concentration of many elements indicated that manganese, iron, zinc, and arsenic 26 

were different under AWD conditions compared to CF on a number of sampling time points, but did 27 

not show a pattern related to the AWD treatment. A survey of soil strength using a penetrometer 28 

detected a small, but significant, hardening of the surface soil of the AWD plots. At harvest the shoot 29 

and grain mass was significantly greater for the plants grown under AWD (9.0-9.4% and 12.0-15.4%, 30 

respectively) with the plants grown under AWD having a greater number of productive tillers.  31 

Physiological examination in the first year showed that although AWD decreased (~21%) leaf 32 

elongation rate (LER) of recently transplanted seedlings during the first drying cycle, subsequent 33 

drying cycles did not affect LER, while tillering was slightly increased by AWD and there was evidence 34 

of higher leaf abscisic acid (ABA) in AWD plants. In the second year analysis of six phytohormones 35 

revealed that AWD increased plant foliar iso-pentenyladenine (iP) concentrations by 37% while leaf 36 

trans-zeatin concentrations decreased (36%) compared to CF plants. The elemental composition of 37 

the shoots and grains was also examined. In both years AWD decreased grain concentration of 38 

sulphur (by 4% and 15%), calcium (by 6% and 9%), iron (by 11% and 16%), and arsenic (by 14% and 39 

26%), while it increased the grain concentration of manganese (by 19% and 28%), copper (by 81% 40 

and 37%), and cadmium (by 28% and 67%). These results indicate that plants grown under safe AWD 41 

conditions at this site have an increased grain mass compared to plants grown under CF, and this 42 

may be partly due to a high number of productive tillers. AWD decreases the concentration of 43 

arsenic in the grains in this site, but it elevates the concentration of cadmium. 44 

 45 
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1 Introduction 47 

Rice is one of the most important food crops in the world. For 3 billion people, rice contributes 48 

between 35-60% of their dietary calorie intake (Fageria, 2007). Irrigated lowland rice systems 49 

produce ~75% of global rice (Fageria, 2007). Producing high yield under irrigated systems requires 50 

large quantities of water (Bouman, 2009). It is estimated that to produce 1 kg of rice grain, 2500 L of 51 

water is needed (Bouman, 2009). Globally this equates to one third of the world’s available fresh 52 

water being used for rice irrigation (Bouman, 2009). Within Asia, the proportion of fresh water being 53 

used for rice irrigation is greater, with approximately 50% of fresh water being used for rice 54 

irrigation (Kukal et al., 2004). With global rice production needing to increase by 70% by 2030 to 55 

feed an ever growing world population (Maclean et al., 2002), demands on fresh water for irrigation 56 

of rice will only increase unless water management techniques that reduce water use are developed 57 

and implemented. These water management techniques, while decreasing total water loss, should 58 

maintain or increase yield. 59 

One technique that has been developed to reduce total water for irrigation in rice is alternate 60 

wetting and drying (AWD). In AWD the field is not continuously flooded (CF), instead the soil is 61 

allowed to dry out for one or more days after the disappearance of ponded water, and after this 62 

drying phase the field is re-flooded (Lampayan et al., 2015). While techniques that use this 63 

intermittently flooded system have been around for a number of decades, formalised guidelines on 64 

the implementation of AWD were outlined in 2002 by the International Rice Research Institute (IRRI) 65 

(Lampayan et al., 2015). Initially it is recommend that farmers use what is termed “safe AWD” to 66 

start with, where the water in the fields is left to drain to a depth of 15 cm during each cycle, but 67 

importantly, when the crop starts to flower, flooding is restored. Once farmers are confident in using 68 

safe AWD they can progress on to allowing the water to drain to depths of 20-30 cm (or deeper) and 69 

to allow the cycles to continue into flowering when the plants are more sensitive to water stress.  70 

A growing body of evidence is being collected on the impacts of AWD on both water use and rice 71 

yield, compared to either CF conditions or standard farmer practises (FP). For example, in a meta-72 

analysis across a number of different field trials, when AWD was compared to FP, Lampayan et al. 73 

(2015) indicated that there was no overall significant decrease in yield, and in 16 out of 24 farmer 74 

participatory demonstration sites (across multiple countries) there was a significant increase in yield. 75 

This increase in yield ranged from 0.2-1.0 t ha-1. In the same analysis in the trials where water input 76 

was measured, all the AWD irrigated trials had lower water input compared to the FP trials. The 77 

percentage difference between the water management practices ranged from 17-38% less water 78 

used in the AWD trials (Lampayan et al., 2015). A number of other studies have also shown that 79 

AWD increases grain yield when compared to either CF or FP (Yang et al., 2009; Zhang, 2009; Wang 80 



et al., 2014). However, in some studies, AWD either does not alter (Yao et al., 2012; Linquist et al., 81 

2015; Shaibu et al., 2015; Howell et al., 2015) or slightly lowers yield (Sudhir-Yadav et al., 2012; 82 

Linquist et al., 2015; Shaibu et al., 2015). AWD has now been implemented and is recommended 83 

practise in a number of countries including Bangladesh, the Philippines, Myanmar, and Vietnam 84 

(Lampayan et al., 2015).  85 

It has been shown that AWD can affect the concentration of arsenic in rice grains. Arsenic in rice 86 

grains is a major concern in some parts of the world, especially South Asia and South-East Asia, 87 

where large quantities of rice are consumed (Zhao et al., 2010). Inorganic arsenic is a class I human 88 

carcinogen (NRC, 2001). Under anaerobic conditions inorganic arsenic is present as arsenite (Xu et 89 

al., 2008). Arsenite is more mobile in the soil than arsenate, the species of arsenic predominantly 90 

present under aerobic conditions (Xu et al., 2008). In a study exploring grain arsenic accumulation 91 

under AWD, CF, and aerobic conditions it was found that the concentrations of arsenic in the grains 92 

of plants grown under AWD were comparable to those grown under aerobic irrigation and 93 

significantly less than those grown under CF conditions (Chou et al., 2016). Linquist et al. (2015) 94 

observed that under AWD conditions where the plants were re-flooded at the reproductive stage 95 

(like safe AWD) the concentration of arsenic in the grain was either not significantly different or 96 

increased in comparison to the plants grown under CF. However, under an AWD treatment where 97 

the AWD is continued during the reproductive stage, grain arsenic was reduced by up to 64% 98 

compared to the plants grown under CF. Similar results have been seen under intermittently flooded 99 

conditions, where a 41% decrease in grain arsenic was observed in comparison to CF (Somenahally 100 

et al., 2011). Elements other than arsenic have been shown to be affected by AWD. For example, in a 101 

pot experiment the concentration of zinc was significantly greater in brown rice when the plants 102 

were grown under AWD compared to CF (Wang et al., 2014). The accumulation of elements by 103 

plants is affected by the availability of these elements within the soil. Changing from anaerobic to 104 

aerobic conditions and vice versa, will alter the redox within the soil and therefore the 105 

phytoavailability of elements. For example, dissolved arsenic, iron, and manganese concentrations 106 

increase under reducing conditions when compared to oxidising conditions, whereas the release of 107 

cadmium, copper, and strontium to soil solution increases under oxidising conditions when 108 

compared to reducing conditions (Rinklebe et al., 2016). 109 

One of the impacts of soil drying is to make soils harder (Bengough et al., 2011). Hard soils impact on 110 

root growth (Bengough et al. 2011), and it has been established that soil hardening due to soil drying 111 

is likely to limit new root growth in droughted rice plants as much as reduced water availability 112 

(Cairns et al. 2004). It is important, therefore, to establish if AWD is likely to alter soil strength in a 113 

way that might impact new root growth. Drier, harder soil is also likely to alter vegetative growth 114 



such as leaf elongation rate and tillering. Despite expectations that soil drying (Bouman & Tuong, 115 

2001) would decrease tiller initiation and cause more frequent tiller death under AWD (Yang & 116 

Zhang, 2010), tiller number was significantly higher under AWD than CF throughout development 117 

(Howell et al., 2015), and AWD plants had a greater number of productive tillers independent of 118 

whether tiller number during development was higher or lower (Chu et al., 2015). Increased tillering 119 

likely accelerated canopy development of AWD plants, unlike leaf elongation rate on the main tiller, 120 

which did not differ between AWD and CF plants (Howell et al., 2015). Vegetative growth processes 121 

such as leaf elongation and tillering have been correlated with differences in phytohormone 122 

concentrations (Liu et al. 2011; Yeh et al. 2015). 123 

To date, while a large number of studies have explored the impact of AWD on yield, the reason why 124 

studies have shown a diversity of effects that AWD has on yield compared to other practices is 125 

unknown. Additionally the reason as to why AWD has been shown to increase yield is yet unknown. 126 

It could be down to a wide range of factors, a number of which are explored in this manuscript.  127 

Furthermore, for a few grain elements the impact AWD has been assessed, however this is for a 128 

limited number of elements and the known impacts that AWD has on soil chemistry is limited. 129 

The aim of this study was to evaluate the impact of safe AWD practise on grain production and grain 130 

quality and to explore of this is related to plant physiological responses or changes in soil (pore 131 

water) chemistry and hardness. To explore this, a field experiment was conducted at the Bangladesh 132 

Agricultural University, Mymensingh, Bangladesh over two years (2013 and 2014), during the dry 133 

season, under AWD and CF. This paper reports the findings of the improved cultivar, BRRI dhan28, 134 

under AWD conditions. The effect AWD had on elemental concentrations in the soil pore water and 135 

the physical effects that AWD had on the soil properties compared to CF was determined, as well as 136 

the impact on vegetative growth, leaf phytohormone concentrations, grain production, and grain 137 

elemental composition.  138 

  139 



2 Methods 140 

 141 

A field trial was conducted at the Bangladesh Agricultural University, Mymensingh over two years 142 

(2013 and 2014). Two different irrigation treatment were tested; for each treatment four replicate 143 

plots were used with cultivar randomly distributed in each plot. The water irrigation treatment used 144 

were continuously flooded (CF) and alternate wetting and drying (AWD), as described below. The 145 

AWD and CF areas containing the AWD and CF plots were next to each other within a field that for 146 

the last 40 years has been treated as one area. Importantly, this field has not been used for 147 

experiments for the last 15 years, during which time it has been used for general cultivation. 148 

Furthermore, when deciding on the chosen area importance was placed on the observation that no 149 

differences in plant performance had been perceived in that area. The selected field had a natural 150 

gentle slope going East to West of < 0.03%. The AWD and CF plots were 14 m apart with the AWD 151 

plots placed on the Eastern side of the field while the CF plots were on the Western side, therefore if 152 

the CF plots leaked the water would naturally move down the field away from the AWD plots. To 153 

minimise seepage from the CF area in to the AWD area an additional precaution was taken.  154 

Drainage ditches were put around the AWD area. These drainage ditches were approximately 1 m 155 

away from the outer bund of the AWD area. Soil was collected from each of the plots prior to the 156 

start of the field experiment in 2013 and analysed for elemental composition. 157 

 158 

2.1 Field experiment 2013 159 

 160 

Rice seeds were sown in a nursery bed on 31st December 2012. The field site was ploughed on 8th 161 

February 2013, and then levelled. The day before transplanting (12th of February) the seedlings into 162 

the AWD and CF plots, the plots were fertilised with 40 kg ha-1 nitrogen, 20 kg ha-1 phosphorus, 70 kg 163 

ha-1 potassium, 15 kg ha-1 sulphur, and 3 kg ha-1 zinc. A further 40 kg ha-1 nitrogen was supplied 164 

during the tillering stage (26th March, 41 days after transplanting (DAT)), and another 40 kg ha-1 165 

nitrogen at the flowering stage (6th April, 52 DAT). The seedlings were transplanted into the eight 166 

plots on the 13th of February 2013. Each plot was 10 m x 24 m, and subdivided into 5 columns each 167 

2 m x 24 m. Plants were planted as two plants per hill in 2 m long rows with a distance of 20 cm 168 

between each plant in a row and a 20 cm distance between rows. Almost 300 rice accessions were 169 

planted in single rows within each plot, with the check cultivar BRRI dhan28 transplanted into every 170 

second row (a BRRI dhan28 row separated each of the 300 accessions). These 300 accessions make 171 

up a genome wide association mapping panel and will be described elsewhere. After the plants were 172 

transplanted the plots were flooded. For the four CF plots the surface water was kept at a depth of 173 



between 2 cm and 5 cm above the soil surface from the time of transplanting to shortly before 174 

physiological maturity (13th April 2013, 59 DAT). For the four AWD plots plastic perforated tubes 175 

(pani pipe) were placed across the blocks to monitor the water depth. The aim was to allow the 176 

perched water table to drop to 15 cm below the soil surface. At that point the plots were irrigated to 177 

bring the water depth to between 2 cm and 5 cm above the soil surface. The AWD plots went 178 

through 4 cycles of soil drying (Figure 1A). Both the AWD and CF plots were kept under the same 179 

flooded conditions up until 18 DAT (3rd March) when water was withheld from the AWD plots (start 180 

of the first AWD cycle). The water depth in the AWD plots was allowed to drop to ~15 cm below the 181 

soil surface; for the first cycle the plots were re-flooded 29 DAT (14th of March). This cycling was 182 

conducted 3 more times with the AWD plots reflooded 40 DAT (25th March), 50 DAT (4th April), and 183 

57 DAT (11th April). At this point the rice plants had started flowering and the AWD plots were kept 184 

flooded and maintained the same as the CF plots until harvest. 185 

Throughout these drying and re-wetting cycles, volumetric soil water content was continuously 186 

measured at four soil depths using a single profile probe (Model PR2/4, Delta-T Devices, Burwell, UK) 187 

in each replicate plot (8 in total), which was connected to a data-logger. The soil depths in the first 188 

cycle were 2.5, 12.5, 22.5, and 32.5 cm below the soil surface but during the subsequent cycles the 189 

probes were altered to measure at depths of 5, 15, 25 and 35 cm below the soil surface. Daily 190 

manual measurements of the growing leaf of the main tiller of sample plants were carried out on the 191 

first hill of nine randomly selected rows in one plot of each treatment (AWD and CF). The first plant 192 

was chosen for practical reasons, to avoid substantial trampling of the soil between rows that would 193 

occur if central plants were measured frequently. The end plants can be expected to experience a 194 

slightly different environment to the central plants, yet non-the-less they experienced an AWD or CF 195 

treatment and it would have been very similar to the central plants. For each leaf, its elongation rate 196 

was calculated as the difference in its length on subsequent days. Leaf elongation was determined to 197 

have finished when its daily elongation rate fell below 10% of its maximum, whereupon a new leaf 198 

was selected. At periodic intervals, the youngest fully expanded leaves were also collected for 199 

abscisic acid (ABA) analysis. On each day, samples were taken every two hours, starting at 10:30 and 200 

ending at 16:30, from a single hill from six plants randomly selected in one plot of each of AWD and 201 

CF treatments. Samples were immediately frozen in liquid nitrogen, freeze-dried, then ground to a 202 

fine powder before adding deionised water (1:50 ratio) and shaken overnight at 4oC. ABA 203 

concentration of the supernatant was determined with a radioimmunoassay as previously described 204 

(Quarrie et al., 1988). 205 

Once the cultivars had flowered and the grain matured (as determined by 80% of the grains on the 206 

panicles developing a golden brown colouration), the grain and shoots from every 10th row of BRRI 207 



dhan28 was hand harvested from the six central hills of each row. The grain was then hand threshed 208 

and weighed to determine the grain mass. Grain mass is determined as the combined grain mass of 209 

the 6 hills. The shoots were harvested approximately 5 cm above the soil, dried, and then weighed 210 

to determine the shoot weight. Shoot biomass is determined as the combined shoot biomass of the 211 

6 hills. Once dried the shoots were then cut into small pieces ~1-2 cm long. A sub sample of the 212 

grains and shoots was then sent to the University of Aberdeen, UK for chemical analysis. 213 

Pore water samples were collected from each of the eight plots using 10 cm Rhizon samplers. One 214 

sampler was randomly placed in each of the plots. Pore water was collected on 11 separate 215 

occasions during the four AWD cycles both from the AWD and CF plots. Once pore water was 216 

collected it was acidified with nitric acid to a final concentration of 1%. 217 

Soil hardness was recorded at 15 mm depth intervals from the soil surface to a depth of 600 mm 218 

with a CP20 cone penetrometer (AgridryRimik PTY Ltd, Australia), with a 30o angle, 12 mm diameter 219 

cone, and a penetration rate of approximately 8 cm s−1. Two transects were conducted across the 220 

plots measuring at 5 m intervals, providing 7-8 measurements per plot, and 30 measurements per 221 

treatment area. These were conducted on 9 DAT (22nd February, when all plots were flooded and 222 

before the first AWD cycle) and 28 DAT (13th March, at the end of the first AWD cycle, before the 223 

AWD plots were re-flooded). 224 

 225 

2.2 Field experiment 2014 226 

 227 

Rice seeds were sown in a nursery bed on 17th December 2013. The same field site was used in 2014 228 

as in 2013 with slight modifications to the size of the plots. The field site was prepared as described 229 

for 2013, with the rice plants transplanted on 6th February into the eight plots (each plot was 22.7 m 230 

x 11.8 m). The fertiliser regime was as for 2013, with the split application of nitrogen fertiliser 231 

applied 21 DAT (27th February) and 49 DAT (27th March). The AWD cycles for the four AWD plots 232 

started on 5 DAT (11th of February), with the first cycle finishing 22 DAT (28th February), the second 233 

cycle finishing 39 DAT (17th March), and the third cycle finishing 54 DAT (1st April) (Figure 1B). The 234 

fourth cycle ended prematurely 63 DAT (10th April), due to heavy rainfall flooding the field. Once the 235 

fourth cycle had finished, the AWD and CF plots were maintained under flooded conditions during 236 

the flowering stage, shortly before physiological maturity the plots were no longer kept flooded. 237 

BRRI dhan28 plants were harvested as described above. 238 

At periodic intervals, the youngest fully expanded leaves were collected for multi-analyte 239 

phytohormone analysis (Albacete et al., 2008). At midday, samples were taken from a single hill from 240 

six randomly selected hills in one plot each of AWD and CF. Samples were immediately frozen in 241 



liquid nitrogen, freeze-dried, then ground to a fine powder before measurement. Cytokinins (trans-242 

zeatin, tZ; zeatin riboside, ZR; and isopentenyl adenine, iP), indole-3-acetic acid (IAA), ABA, and the 243 

ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) were analysed according to 244 

Albacete et al. (2008) with some modifications. Briefly, 20 mg of homogenized dry plant material 245 

was dropped in 1 mL of cold (-20oC) extraction mixture of methanol / water (80/20, v/v). Solids were 246 

separated by centrifugation (20,000 xg, 15 min) and re-extracted for 30 min at 4oC in additional 0.5 247 

mL of the same extraction solution. Pooled supernatants were passed through Sep-Pak Plus †C18 248 

cartridges (SepPak Plus, Waters, USA) to remove interfering lipids and plant pigments, and 249 

evaporated at 40oC under vacuum either to near dryness or until organic solvent was removed. The 250 

residue was dissolved in 1 mL methanol / water (20/80, v/v) solution using an ultrasonic bath. The 251 

dissolved samples were filtered through 13 mm diameter Millex filters with 0.22 µm pore size nylon 252 

membrane (Millipore, Bedford, MA, USA).  253 

Ten µl of filtrated extract were injected in a U-HPLC-MS system consisting of an Accela Series U-HPLC 254 

(ThermoFisher Scientific, Waltham, MA, USA) coupled to an Exactive mass spectrometer 255 

(ThermoFisher Scientific, Waltham, MA, USA) using a heated electrospray ionization (HESI) interface. 256 

Mass spectra were obtained using the Xcalibur software version 2.2 (ThermoFisher Scientific, 257 

Waltham, MA, USA). For quantification of the plant hormones, calibration curves were constructed 258 

for each analysed component (1, 10, 50, and 100 µg L-1) and corrected for 10 µg L-1 deuterated 259 

internal standards. Recovery percentages ranged between 92 and 95%.  260 

Pore water samples were collected from each of the eight plots using 10 cm Rhizon samplers. Two 261 

samplers were randomly placed in each of the plots. Pore water was collected on seven separate 262 

occasions during the four AWD cycles from both the AWD and CF plots. After pore water samples 263 

were collected they were acidified with nitric acid to a final concentration of 1%. 264 

Soil hardness was determined using a penetrometer as described above, except that only five 265 

measurements were taken per plot, providing 20 measurements per treatment area. The survey was 266 

conducted 74 DAT (21st April, 11 days after the AWD cycles had finished, when both AWD and CF 267 

plots were flooded). 268 

 269 

2.2 Pore water analysis 270 

 271 

Prior to elemental analysis of the pore water, the field-collected pore water was diluted 1:50 (in 1% 272 

nitric acid) for iron and manganese analysis, and 1:5 for all other elements. Elemental analysis was 273 

performed by inductively coupled plasma-mass spectrometry (ICP-MS, Agilent Technologies 7500) 274 

using hydrogen as the reaction gas at a rate of 1.4 mL min-1. Standards with the appropriate ranges 275 



were made from 1000 mg L-1 ICP-MS grade multi-element stock solution. For quality control, blank 276 

samples were included, as well as water certified reference material (CRM, BCR 610). An external 277 

line of 10 µg L-1 rhodium was used as an internal control. 278 

 279 

2.3 Soil chemical analysis 280 

 281 

A transect was conducted across each of the eight plots (4 AWD and 4 CF), and five soil samples (~50 282 

g, from the top 15 cm) were collected along each transect prior to the start of the experiment in 283 

2013. The soil from each transect was then bulked to give a total of eight soil samples, one for each 284 

plot. The samples were air dried and sieved (2 mm); once sieved they were then oven dried at 105oC 285 

until they were at a consistent weight. A total of 0.1 g of soil was then used for digestion following 286 

the block digestion methodology of Adomako et al. (2009), using NCS ZC73007 as a quality control 287 

reference material. Once digested the samples were analysed for a range of elements using ICP-MS 288 

as described above. Soil pH was determined by shaking 1 g of dried soil with 10 mL of Milli-Q water 289 

and allowing the samples to stand for 30 minutes, then the pH measurement was made. 290 

 291 

2.4 Soil texture analysis 292 

 293 

Transects were conducted across both the AWD and CF area after the 2014 field experiment. For 294 

each transect a total of nine soil samples were taken (~100 g from the top 15 cm). Each sample was 295 

then air-dried and particle size analysis conducted (Gee and Bauder, 1986). 296 

 297 

2.5 Rice shoot and grain analysis 298 

 299 

Rice grains were dehusked and oven dried (80oC). For digestion, 0.2 g of dehusked grains were 300 

accurately weighed out into 50 mL polyethylene centrifuge tubes. Shoot samples were oven dried 301 

(80oC) and then powderised using a ball mill. Shoot samples were accurately weighed (0.2 g) into 50 302 

mL polyethylene centrifuge tubes. Grain samples were digested with concentrated nitric acid and 303 

hydrogen peroxide as described in Norton et al., (2012). Shoot samples were digested by the 304 

following method: rice shoot samples (powdered) were transferred into Pyrex test tubes (16 x 100 305 

mm) and weighed (0.01g). Next, trace metal grade nitric acid spiked with indium internal standard 306 

was added to the tubes (1.16 mL per tube), and 1.2 mL hydrogen peroxide added. The samples were 307 

left overnight to pre-digest. They were then digested in dry block heaters at 115oC for 4 hours. The 308 

digested samples were diluted to 11.5 mL with 18.2 MΩcm Milli-Q Direct water. Total elemental 309 



analysis (sodium, magnesium, phosphorus, potassium, calcium, manganese, iron, copper, zinc, 310 

arsenic, molybdenum, and cadmium) was performed by ICP-MS. Trace element grade reagents were 311 

used for all digests, and for quality control replicates of certified reference material (CRM) (Oriental 312 

basma tobacco leaves [INCT-OBTL-5], and rice flour [NIST 1568b]) were used; blanks were also 313 

included. All samples and standards contained 10 µg L-1 indium as the internal standard.  314 

 315 

2.6 Statistical analysis 316 

 317 

To compare treatments, analysis of variance (ANOVA) has been considered justified as site history, 318 

close proximity of the treatment areas, and relevant measures of soil properties (see results) 319 

indicates equivalence between the two areas. A similar approach has been used by Devkota et al. 320 

(2013). For data analysis, ANOVA were performed using Minitab 17 Statistical Software. For the soil 321 

chemical analysis one-way ANOVA was conducted with the locations of the plots (AWD and CF) as 322 

the explanatory variable. For the soil particle size analysis one-way ANOVA was conducted with the 323 

locations of the plots (AWD and CF) as the explanatory variable for each of the three particle size 324 

categories. For the plant mass traits and the plant elemental concentration traits one-way ANOVA 325 

was conducted with AWD and CF as the explanatory variable. For the hormone analysis and pore 326 

water analysis two-way ANOVA were used with AWD and CF, and sampling point (occasion / date) as 327 

the explanatory variables. For the two-way ANOVA the presence of an interaction between the two 328 

explanatory variables was also determined. 329 

 330 

  331 



3 Results 332 

 333 

3.1 Soil analysis 334 

 335 

There were no significant differences between the soil elemental concentrations in the AWD and CF 336 

plots, therefore the data are presented as the average across both treatments (Table 1). The pH of 337 

the soil was determined to be pH 6.6. There was no significant difference in the percentage of 338 

different size particles in the soils collected from the transects across the AWD plot and the transect 339 

across the CF plots. The particle size composition (±SD) of the soil was 10.4% (±1.5) sand, 29.2% 340 

(±2.1) silt, and 60.4% (±2.2) clay. The soil is classified as a clay soil. Further soil properties can be 341 

found in Hossain et al. (2009). 342 

 343 

3.2 AWD cycling 344 

 345 

In 2013 the AWD plots underwent 4 AWD cycles. The first cycle lasted 16 days, while the second, 346 

third, and fourth cycles lasted 11, 10, and 7 days each respectively. In 2014 the AWD plots again 347 

underwent 4 AWD cycles; the first and second cycles lasted 17 days, while the third and fourth cycles 348 

lasted 15 days and 8 days respectively. The final cycle was cut short due to heavy rain fall that 349 

flooded the plots. As can be seen from the length of the cycles in 2013 and 2014, the number of days 350 

that the plots were under each cycle decreased in length in subsequent cycles (Figures 1A and 1B). 351 

This was likely due to crop water requirements increasing with plant size, and the temperature (and 352 

evaporative demand) increase from February to April.  353 

At 22.5/25 and 32.5/35 cm depth in the AWD plots, soil moisture content (v) was stable throughout 354 

the experiment (Figure 2). At 12.5/15 cm depth (the maximum depth at which the water table was 355 

allowed to drop in the pani-pipes), soil v decreased to 0.43, 0.40, and 0.38 m3 m-3 at the end of the 356 

sequential drying cycles. At the beginning of each drying cycle (following re-flooding), v was similar 357 

at 12.5/15 and 22.5/25 cm, but these values diverged progressively earlier in each sequential drying 358 

cycle as the plants grew. The v at 2.5/5 cm depth decreased considerably, sometimes from the 359 

beginning of the drying cycle and to the point of complete moisture depletion (Figure 2B).  360 

 361 

3.3 Penetrometer results 362 

 363 

In the field trial in 2013 the penetration resistance of the AWD and CF plots was measured on two 364 

occasions. The first was 9 DAT (22nd of February); at this point both the AWD and CF plots were 365 



under flooded conditions and before any AWD cycling had been conducted. At this time there was 366 

no significant difference between the CF and AWD plots (Figure 3A). The penetration resistance was 367 

between 40-100 kPa for the first 135 mm; this penetration resistance increased sharply to 368 

approximately 1500 kPa by a depth of 225 mm. When the plots were tested for penetration 369 

resistance at the end of the first AWD cycle, 28 DAT (13th March), there was a significant difference 370 

in the penetration resistance between the AWD and CF plots between 15-120 mm, with the AWD 371 

plots having increased penetration resistance (Figure 3B). The largest difference between the two 372 

different treatments was at a depth of 60 mm, where the soil under AWD had an average 373 

penetration resistance of 94 kPa compared to the CF soil which had an average of 61 kPa. After a 374 

depth of 135 mm there was no difference between the two treatments.  375 

In year 2 a single measurement of penetration resistance was made after all the AWD cycles had 376 

taken place, and was at a point where both the AWD and CF plots had been under flooded 377 

conditions for 11 days, 74 DAT. There was a significant difference between the penetration 378 

resistances for the soils that had undergone AWD treatment compared to the soils that were under 379 

CF. The penetration resistance was different between 15-105 mm, with the greatest difference being 380 

at 45 mm, with the soil that had undergone AWD having a penetration resistance of 126 kPa while 381 

the soil that had been under CF had a penetration resistance of 69 kPa (Figure 3C). 382 

 383 

3.4 Pore water 384 

 385 

In 2013 the pore water concentrations of manganese, iron, zinc, and arsenic were determined. The 386 

concentrations of these four elements were not significantly different between the treatments prior 387 

to the first AWD cycle (12 DAT; Figure 4), however for a number of sampling time points the 388 

concentration of the elements did vary between the AWD and the CF plots (Figure 4A-D). The 389 

manganese concentration in the pore water collected from the CF plots was significantly higher at 30 390 

and 45 DAT compared to the AWD plots (Figure 4A). For pore water iron there was a significant 391 

difference between the AWD and the CF samples at 30 and 55 DAT, with the concentration being 392 

greater in the CF plots (Figure 4B). The zinc concentration in the pore water collected from the AWD 393 

plots was significantly higher at 22 DAT compared to the CF plots (Figure 4C). The concentration of 394 

arsenic was significantly higher in the pore water collected from the CF plots at 45 and 55 DAT 395 

compared to the AWD plots (Figure 4D).  396 

In 2014 the concentrations of the same elements (manganese, iron, zinc, and arsenic) were 397 

determined in the pore water (Figure 5A-D). The sampling was performed from the second AWD 398 

cycle onwards. There was no significant difference between the AWD and CF plots for pore water 399 



manganese and iron concentrations across all the time points (Figure 5A and 4B). There was a 400 

significant difference in the concentration of zinc in the pore water at 35, 40, 55, and 75 DAT, with 401 

the plots under AWD having a higher concentration of zinc (Figure 5C). There was a significant 402 

difference in the concentration of arsenic in the pore water at 37 and 75 DAT, with the plots under 403 

CF having a higher concentration of arsenic (Figure 5D). For both years the concentrations of 404 

cadmium were below the analytical limit of detection in the pore water samples (0.28 µg L-1 for year 405 

1 and 0.38 µg L-1 for year 2), therefore these data are not presented. However, a new in situ 406 

sampling technique, DGT (diffusive gradients in thin-films), was used to measure the flux of cadmium 407 

from the soil solid phase to solution. The fluxes (not shown here) obtained in the plots of AWD were 408 

consistently higher than the results from CF plots and will be reported elsewhere. 409 

 410 

3.5 Physiological and phytohormonal measurements during vegetative growth 411 

 412 

 Throughout the first drying cycle in 2013, daily leaf elongation rate (LER) of plants exposed to AWD 413 

was significantly less (by up to 33%) than that of plants exposed to CF, an effect that persisted on the 414 

first day after re-flooding the plot. Thereafter, LER did not differ between treatments, until the last 415 

day of measurements, when the LER of AWD plants was significantly greater (by 46%) than CF plants 416 

(Figure 2). At the end of the AWD cycles, AWD plants had two more tillers than CF plants, even if 417 

their height was 10% lower than CF plants (Table 2).  418 

Throughout the first two drying cycles in 2013, there was no substantial variation in leaf ABA 419 

concentrations of AWD plants. However, during the third drying cycle, leaf ABA concentrations of CF 420 

plants declined from 250 ng g-1 dry weight (DW) to 150 ng g-1 DW, such that ABA concentrations of 421 

AWD plants were higher by 19% and 56% respectively on 45 and 47 DAT (which was 27 and 29 days 422 

after imposing AWD). On the last occasion that measurements were made (during the fourth drying 423 

cycle immediately after re-flooding the plants), there was no significant difference in leaf ABA 424 

concentrations between treatments.  425 

Since there were minimal differences in leaf ABA concentrations in 2013, in the following year a 426 

larger range of phytohormones were measured. Again, measurements were taken at the end of a 427 

drying cycle (Measurement Occasions 2 and 4), and immediately after re-flooding the AWD plots 428 

(Measurement Occasions 3 and 5). Of the phytohormones measured, irrigation treatment had 429 

significant effect only on the cytokinins iso-pentenyladenine (iP) and trans-zeatin (tZ), with AWD 430 

increasing iP concentrations by 37% (averaged across Measurement Occasions 2-5) and decreasing 431 

tZ concentrations by 36% (averaged across Measurement Occasions 2-5). There was no consistent 432 

effect of re-flooding the soil on the concentrations of these, or other, phytohormones. Nevertheless, 433 



the measurement occasion was highly significant (P < 0.001) for the concentrations of all 434 

phytohormones measured, with significant increases in tZ, zeatin riboside (ZR), and ABA as the 435 

experiment progressed, and significant decreases in iP as the experiment progressed (Figure 6; Table 436 

3).  437 

 438 

3.6 Rice mass 439 

 440 

In both years, the shoot mass and the grain mass were significantly greater in the rice plants grown 441 

in the AWD plots compared to the CF plots. There was a 15.4% and 12.0% increase in shoot mass 442 

and a 9.8% and 9.0% increase in grain mass in 2013 and 2014 respectively (Table 4). Despite early 443 

differences in tillering, there was no significant difference in the total number of tillers for plants 444 

grown in the AWD plots compared to the CF plots at harvest in both years. However, there was a 445 

small, but significant increase in the number of productive tillers, with the plants grown under AWD 446 

having 6% more productive tillers than the plants grown under CF (only measured in 2014). 447 

 448 

3.7 Rice plant elemental concentration 449 

 450 

The AWD treatment had a significant effect on the concentration of a number of elements in the rice 451 

shoots compared to the CF treatment (Table 5). The AWD treatment caused a significant decrease in 452 

the concentration of shoot sodium, magnesium, calcium, iron, arsenic, and molybdenum. The largest 453 

decrease in shoot concentration between AWD and CF was observed for shoot molybdenum, which 454 

decreased by 28.4%. The AWD treatment significantly increased shoot concentrations of manganese, 455 

copper, and zinc. The highest increase between the two treatments was in shoot copper, which 456 

increased by 38% in the AWD treatment. 457 

The AWD treatment also had a significant effect on the accumulation of grain elements compared to 458 

the CF treatment (Table 6). Concentrations of sulphur, calcium, iron, and arsenic were all 459 

significantly lower in the grains of rice plants grown in the AWD plots compared to the CF plots in 460 

both years. In contrast, the concentrations of manganese, copper, and cadmium were significantly 461 

higher in the grains of plants grown in the AWD plots compared to the CF plots in both years. A 462 

number of elements (sodium, magnesium, potassium, and molybdenum) were either only 463 

significantly different between treatments in a single year or were significantly different in both 464 

years but the effect of the treatment was in opposite directions (molybdenum). Only phosphorus 465 

and zinc were not significantly different between the two treatments in either year (Table 6).  466 



4 Discussion 467 

The reported effects that AWD has on rice grain yield varies between different studies. In this study, 468 

grain mass significantly increased in both years of this study (9.8% & 9.0%) for plants grown under 469 

AWD compared to CF. In this study the grain production was determined as the mass of grain 470 

produced by the 6 central plants of each row. Using this information an approximation of grain yield 471 

can be made, by scaling up the value based on the planting density, which must be used cautiously. 472 

This would result in a yield of 7.7 t ha-1 for the plants grown under AWD and 7.0 t ha-1 for plants 473 

grown under CF in 2013, and 9.1 t ha-1 for the plants grown under AWD and 8.3 t ha-1 for plants 474 

grown under CF in 2014. One of the factors that has been proposed to be responsible for an increase 475 

in grain yield is an increase in the proportion of productive tillers (Yang and Zhang, 2010). In this 476 

study, while an overall increase in plant biomass was observed in the plants grown under AWD, 477 

there was no significant difference in the total number of tillers between the plants grown under 478 

AWD and CF. This is in contrast to previous experiments where total tiller number decreased under 479 

AWD (Yang and Zhang, 2010; Chu et al., 2015). Although Howell et al. (2015) observed an increase 480 

(14%) in the number of productive tillers in one of the two rice varieties they tested under AWD 481 

compared to CF, there was also a decrease (11%) in the number of filled grains per panicle for that 482 

same variety. In the second year of the field trial, both the number of productive tillers (those that 483 

produced grain) and total tiller number were measured, and plants that were grown under AWD had 484 

significantly more productive tillers compared to the CF plants (Table 4). Again this is in contrast to 485 

the study by Yang and Zhang (2010), where they observed under moderate AWD there was no 486 

significant difference in the number of productive tillers when compared to CF. This increase in 487 

productive tiller number could be the main driver for the increase in the observed grain mass in the 488 

present study. 489 

Considering the possible importance of tillering in regulating grain mass under different 490 

environmental stresses (including AWD), relatively few studies have attempted to understand its 491 

regulation. Phytohormones seem important since tillering mutants show altered hormone signalling 492 

(Lu et al., 2015), and applying chemical inhibitors of hormone action affects tillering (Seneweera et 493 

al., 2001). Although measuring phytohormone concentrations in tiller buds is technically difficult, 494 

previous studies show similar phytohormonal responses in rice roots, xylem sap, and leaves (Zhang 495 

et al., 2011). AWD decreased foliar cytokinin (both Z + ZR and iP + iPR) levels at the end of the drying 496 

cycle, but re-wetting increased cytokinin levels as long as soil drying was not too severe (Zhang et al., 497 

2011). Severe soil drying also decreased foliar IAA levels and these changes were not responsive to 498 

drying and re-wetting cycles (Zhang et al., 2010). In our studies, tZ and iP showed opposite responses 499 

to AWD (Figure 6), which again were insensitive to drying and re-wetting cycles, as were the “stress 500 



hormones” ABA and ACC. The relatively small impact of drying and re-wetting cycles on 501 

phytohormone concentrations is likely because only a small fraction of the root system (the upper 5-502 

10 cm) is exposed to an appreciable soil drying given that at a depth of 15 cm the water context of 503 

the soil was never far below the water content of the deeper, still flooded soil (Figure 2). Indeed, 504 

split-root experiments with barley where half of the root zone was dried demonstrated that foliar 505 

ABA concentration significantly increased only if more than 30% of the root biomass was exposed to 506 

drying soil (Martin-Vertedor and Dodd, 2011). Thus, rice varieties which show a greater proportion 507 

of their root mass deeper in the soil profile might be expected to show more stable phytohormonal 508 

(and physiological) responses to AWD. BRRI dhan28 is not one of these varieties as it has been 509 

developed for flooded conditions. 510 

The main factor that appears to impact on grain yield production under AWD (in comparison to CF) 511 

is the severity of the soil drying phase of the AWD cycle. Studies which have imposed varying 512 

degrees of soil drying indicate that when more severe soil drying conditions are imposed during 513 

AWD, there is a reduction in grain yield (Yang et al., 2009; Sudhir-Yadav et al. 2011 Linquist et al., 514 

2015). Although the severity of soil drying did not alter grain-filling rate and duration of grain filling 515 

of superior spikelets, both were decreased in inferior spikelets (Zhang et al., 2010). The severity of 516 

soil drying will also affect leaf growth and photosynthesis, but transient limitation of LER by AWD 517 

observed in this study (Figure 2) did not compromise final grain yield, suggesting a more important 518 

role of physiological processes occurring during grain filling. To date, the precise mechanism(s) by 519 

which AWD increases yield under moderate soil drying is unknown, but future studies should try to 520 

distinguish the relative importance of AWD effects on vegetative development and grain-filling, 521 

especially when AWD is only applied until anthesis, as occurred here. 522 

A penetration resistance of 1.5 MPa can slow root elongation by 20% to 75% (depending on the crop 523 

and soil type) (Bengough, 1997). Since the penetration resistances observed in the top 12 cm of soil 524 

under AWD were well under this (maximum penetration resistance: 172 kPa), soil strength is unlikely 525 

to have inhibited root elongation, however it does indicate that AWD alters the physical properties 526 

of the first 12 cm of soil. Interestingly, a penetration resistance that would inhibit root elongation is 527 

only observed at depths between 25 cm and 30 cm where there is no significant difference between 528 

treatments, presumably because the soil water content below 15 cm does not differ between 529 

treatments.  530 

The AWD treatment affected soil solution concentration of a number of elements, as well as the 531 

concentration of elements within the shoots and grain of the rice plants. Of particular note is the 532 

effect that AWD had on two toxic elements, arsenic and cadmium. Both these elements have been 533 

identified as accumulating in rice, making rice an important pathway of human ingestion (Zhao et al., 534 



2010; Meharg et al., 2013). In addition to the alterations in toxic elements, nutritionally important 535 

elements (such as iron) were affected by AWD.  536 

The concentration of arsenic in the pore water was significantly higher when sampled from the CF 537 

plots compared to the AWD plots on a number of occasions across both years (Figure 4D and 5D). It 538 

has been demonstrated that iron (hydr)oxide hosts arsenic in soil, and if arsenic is entering the 539 

paddy field by applying arsenic-rich irrigation water, it is rapidly incorporated in iron (hydr)oxide 540 

during non-flooded periods (Takahashi et al., 2004). When the soil becomes flooded, arsenic is 541 

quickly released from the soil to the water due to the reductive dissolution of the iron (hydr)oxide 542 

and the reduction of arsenate to arsenite (Takahashi et al., 2004). While inorganic arsenic speciation 543 

was not determined in the collected porewater samples, it can be predicted that under CF 544 

conditions the dominant arsenic species would be arsenite, while under the dry phases of AWD the 545 

dominant inorganic arsenic species would be arsenate (Takahashi et al., 2004; Xu et al., 2008).  546 

When the plants were grown under AWD, there was a significant decrease in both shoot arsenic and 547 

grain arsenic in the rice plants compared to the plants grown under CF, although it was more marked 548 

in shoots in year 1 where both shoot and grain were measured. Rice plants have different uptake 549 

mechanisms for arsenite and arsenate. Ma et al. (2008) showed that arsenite is taken up through the 550 

Lsi1 silicon transporter while arsenate is accumulated via phosphate transporters (Meharg and 551 

Hartley-Whitaker, 2002). This is important in rice as it can accumulate up to 10% of its dry mass as 552 

silicon, reflecting the fact that the silicon uptake mechanism is very efficient (Ma et al., 2006). 553 

Growing rice plants in flooded conditions compared to non-flooded conditions results in a 10-fold 554 

greater arsenic accumulation in rice grains (Xu et al., 2008; Norton et al., 2012; Norton et al., 2013). 555 

When grown under AWD it was observed that the reduction in grain arsenic was only 9% and 25%. 556 

These reductions in grain arsenic are less than previously observed for AWD when compared to CF in 557 

a number of studies (Linquist et al., 2015; Somenahally et al., 2011; Chou et al., 2016), but a greater 558 

reduction in grain arsenic than the mildest of the three AWD treatment imposed by Linquist et al. 559 

(2015). The final concentration of inorganic arsenic in the grain is likely due to direct uptake from the 560 

soil rather than remobilisation of inorganic species from the rest of the plant, as inorganic arsenic in 561 

rice leaves is poorly remobilized (Carey et al., 2011). Therefore, key to reducing grain arsenic will be 562 

the degree of flooding at grain filling. If the soil is aerobic at grain filling, inorganic arsenic will be 563 

predominantly present as arsenate, which has a reduced mobility and uptake by rice plants, while if 564 

the soil is flooded arsenite will be dominant, which is more mobile and rapidly accumulated by rice 565 

plants. The method of AWD used in this study is referred to as safe AWD (Lampayan et al., 2015), 566 

where the AWD plots were re-flooded at the start of the reproductive stage (however, AWD was not 567 

implemented during grain filling which is an option for safe AWD). The study by Linquist et al., (2015) 568 



directly addressed the issue of the effect of flooding during the reproductive stage by either 569 

extending the AWD cycling into the reproductive stage or by flooding at that stage. They observed 570 

that the AWD treatment with flooding at the reproductive phase had no effect on grain arsenic (or 571 

increased grain arsenic) in comparison to the CF treatment. However, when AWD was extended 572 

through the reproductive phase, a 64% reduction in grain arsenic compared to the plants grown 573 

under CF was observed (Linquist et al., 2015), but this more severe AWD treatment decreased grain 574 

yield by 12.6% (Linquist et al., 2015), clearly demonstrating a potential trade-off between large 575 

reductions in grain arsenic and yield. 576 

The concentration of cadmium in the rice plants under AWD was not significantly different in the 577 

shoots compared to CF, however under AWD the concentration of cadmium was greater (up to 578 

67.3%) in the grain of the rice plants compared to CF. In contrast, Yang et al. (2009) observed a 579 

decrease in grain cadmium under a mild AWD treatment but increased grain cadmium under a 580 

severe AWD treatment. Cadmium can be present in soil naturally (0.1-1 mg kg-1) or soil can be 581 

contaminated with cadmium from anthropogenic sources (Smolders and Mertens, 2013). One 582 

source of anthropogenic cadmium to agricultural soils is P-fertilisers (Smolders and Mertens, 2013). 583 

Cadmium in the soil solution increased with increasing soil redox under oxidising conditions 584 

(Rinklebe et al., 2016). As soils become waterlogged, the increase in soil pH may contribute towards 585 

the immobilisation of cadmium in anaerobic soils (Smolders and Mertens, 2013). Under anaerobic 586 

conditions cadmium ions (Cd2+) may precipitate as cadmium sulphate, reducing the soil solution 587 

concentration of cadmium (Barrett and McBride, 2007). On the other hand, during AWD Fe2+ is 588 

oxidised to Fe3+. Protons are released in the Fe2+ oxidation process (eq 1), locally lowering the pH.  589 

4Fe2+ + O2 + 6H2O = 4FeOOH + 8H+ (eq 1) 590 

Cadmium is pH-sensitive and easily desorbed with decreasing pH. Therefore, it would be expected as 591 

the soil becomes more oxic during the AWD cycle, that the cadmium concentration increases in the 592 

soil solution (too low concentration to measure directly, but confirmed by DGT measurements) and 593 

this would lead to more cadmium being available to the plant to accumulate. However, it is 594 

interesting to note that the cadmium concentration in the shoots of the rice plants grown under 595 

AWD and CF are not different and it is only the grain cadmium concentration that is elevated. The 596 

concentrations of grain cadmium in this field experiment are low compared to other studies (Meharg 597 

et al., 2013). The highest average concentration of cadmium (year 2, plants grown under AWD) of 598 

0.019 mg kg-1, is below that of a survey of Bangladeshi rice grains where the average cadmium 599 

concentration was 0.099 mg kg-1. With a rice grain cadmium concentration of 0.099 mg kg-1 it has 600 

been estimated that the weekly intake of cadmium from rice would lead to intakes deemed unsafe 601 

by international and national regulators (Meharg et al., 2013). Therefore, if AWD increased grain 602 



cadmium further, this could have impacts on human health, suggesting either AWD might be best 603 

avoided in areas with high grain cadmium, and/or breeding for low cadmium should be pursued for 604 

AWD.  605 

Both iron and zinc are important nutritional mineral elements, and are key targets to increase the 606 

nutritional quality of edible crops (White and Broadley, 2009). In this study, zinc concentration in the 607 

grains was not affected by AWD, in contrast to a previous study which showed that grain zinc 608 

concentrations increased by approximately 4% under AWD treatment (Wang et al., 2014). However, 609 

AWD does decrease grain iron concentration in this study. On a small number of sampling points the 610 

soil solution concentration of iron was greater in the CF plots than in the AWD plots, and the 611 

concentration of iron in the shoots was greater in the CF-grown plants as was the grain 612 

concentration of iron. This is explained by the impact that altering the water conditions has on soil 613 

iron availability. Under anaerobic (reduced) conditions iron is largely present as Fe2+, however under 614 

oxidised conditions it is present as Fe3+, with Fe2+ being more soluble than Fe3+. When Fe2+ 615 

encounters dissolved oxygen it is oxidised to Fe3+, which primarily precipitates as amorphous ferric 616 

hydroxide.  617 

 618 

Conclusions 619 

 620 

This study confirms previous findings that AWD water management can increase grain production 621 

when compared to CF. We present evidence that AWD has quite subtle effects on plant physiology, 622 

specifically leaf elongation, the concentration of ABA and two cytokinins, and increases the number 623 

of productive tillers. The combination of all these subtle effects could be the reason that there are 624 

detectable differences in grain production between plants grown in AWD and CF. Impacts of AWD 625 

on many elements in the grain were detected: crucially, arsenic decreased in AWD-grown grain, 626 

which is positive for human health, but cadmium increased and iron decreased, which are not 627 

desired outcomes. These impacts on grain quality needs to be carefully considered when AWD is 628 

implemented.  629 
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Table 1. Soil elemental composition at the field site. Each value is the mean (± SD) across the 4 AWD 806 
and 4 CF plots. 807 
 808 
 809 

 P Cr Mn Co Ni Cu Zn As Mo Cd 

mg kg-1 574 
(±60) 

76.4 
(±12.6) 

665 
(±28) 

17.5 
(±0.6) 

51.2 
(±1.6) 

40.7 
(±1.9) 

99.7 
(±2.7) 

4.63 
(±0.30

) 

0.57 
(±0.19) 

0.19 
(±0.15) 

 810 
 811 
Table 2. Tiller number and plant height (measured at the end of the 4th drying cycle) exposed to 812 
alternate wetting and drying (AWD) and continuous flooding (CF) in 2013. Data are means ± SD of 9 813 
plants, with P Values presented.  814 

 815 

 Mean AWD (± SD) Mean CF (± SD) Significance test 

Plant Height (cm) 76.0 (6.0) 84.0 (6.0) * 

Tiller Number  21.7 (3.9) 19.8 (3.9) NS 

*P<0.05; **P<0.01; ***P<0.001; NS = not significant 816 
 817 

Table 3. Two way ANOVA (F Values presented) to determine the effects of treatment (T), 818 
measurement occasion (O) and their interactions on leaf hormone concentrations in 2014. Hormone 819 
measured were cytokinins (trans-zeatin, tZ, zeatin riboside, ZR and isopentenyl adenine, iP), indole-820 
3-acetic acid (IAA), abscisic acid (ABA) and the ethylene precursor 1-aminocyclopropane-1-carboxylic 821 
acid (ACC). 822 

 823 

 F-values from 2-way ANOVA  Effect of treatment 
relative to CF Hormone Treatment (T) Occasion (O) T x O  

tZ 5.36* 5.60*** NS  AWD decreased by 36% 
iP 9.00** 5.68*** NS  AWD increased by 37% 
ZR NS 17.53*** NS  ND 
ABA NS 14.92*** NS  ND 
ACC NS 6.21*** NS  ND 
IAA NS 4.85*** NS  ND 

*P<0.05; **P<0.01; ***P<0.001; NS = not significant; ND = no difference 824 
 825 

  826 



Table 4.Mean total tiller number and shoot and grain mass for BRRI dhan28 grown in the field  827 
 828 
 Trait Mean AWD (± SD) Mean CF (± SD) F value 

from 
ANOVA 

Increase (+) or 
decrease (-) between 

AWD relative to CF 

Year 
1

a 

Total tiller no. 13.6 (4.0) 12.8 (4.4) NS ND 

Shoot mass (g)
#
 119 (21.) 103 (15) 50.6*** + 15.4% 

Grain mass (g)
 #

 92.8 (20.2) 84.5 (15.3) 14.9*** + 9.8% 

Year 
2

b
 

Total tiller no. 17.3 (4.6) 16.6 (3.1) NS ND 
Productive tiller no. 15.1 (4.2) 14.2 (2.8) 6.3* + 6.3% 
Shoot mass (g)

 #
 133 (24) 119 (22) 28.8*** + 12.0% 

Grain mass (g)
 #

 108 (24) 99(19) 12.9*** + 9.0% 
#
 shoot mass and grain mass for 6 hills 829 

a(n=140 for AWD and CF); b(n=160 for AWD and CF). 830 
*P<0.05; **P<0.01; ***P<0.001; NS = not significant; ND = no difference 831 
 832 
 833 

Table 5. Total shoot elemental concentrations for BRRI dhan28 grown in 2013. 834 

Trait Mean AWD (± SD) Mean CF (± SD) F value from 
ANOVA 

Increase (+) or decrease (-) 
between AWD relative to 

CF 

Na (mg kg-1) 1110 (560) 1360 (800) 9.04** - 18.6% 
Mg (mg kg-1) 2220 (320) 2660 (440) 87.6*** - 16.6% 
P (mg kg-1) 934 (337) 880 (293) NS ND 
K (mg kg-1) 21100 (3700) 20400 (2800) NS ND 
Ca (mg kg-1) 3250 (650) 3510 (730) 9.79** - 7.5% 
Mn (mg kg-1) 511 (113) 384 (79) 114*** + 33.1% 
Fe (mg kg-1) 378 (188) 444 (301) 4.65* - 14.9% 
Cu (mg kg-1) 3.63 (1.14) 2.63 (1.00) 58.8*** + 38.0% 
Zn (mg kg-1) 34.9 (10.7) 28.1 (7.0) 38.9*** + 24.4% 
As (mg kg-1) 1.38 (0.28) 1.81 (0.44) 94.2*** - 24.1% 
Mo (mg kg-1) 0.77 (0.34) 1.08 (0.59) 25.0*** -28.4% 
Cd (mg kg-1) 2.65 (0.59) 2.73 (0.64) NS ND 

 835 

*P<0.05; **P<0.01; ***P<0.001; NS = not significant; ND = no difference 836 

  837 



Table 6. Total grain elemental concentrations for BRRI dhan28 grown in 2013 and 2014. 

 Year 1  Year 2 

Trait 
Mean AWD 

(± SD) 
Mean CF  

(± SD) 

F value 
from 

ANOVA 

Increase (+) or 
decrease (-) between 

AWD and CF 

 
Mean AWD 

(± SD) 
Mean CF (± 

SD) 
F value from 

ANOVA 

Increase (+) or 
decrease (-) between 

AWD and CF 

Na (mg kg-1
) 9.13 (3.99) 8.76 (4.59) NS ND  6.19 (3.04) 14.05 (4.59) 172*** - 56.0% 

Mg (mg kg-1
) 1650 (150) 1660 (150) NS ND  1430 (120) 1500 (150) 23.0*** - 4.8% 

P (mg kg-1
) 4200 (460) 4210 (420) NS ND  4500 (49) 455 (580) NS ND 

S (mg kg-1
) 1240 (180) 1460 (150) 123*** - 15.4%  1330 (110) 1390 (120) 20.6*** - 4.2% 

K (mg kg-1
) 2740 (320) 2830 (33) 5.02* - 3.2%  3020 (250) 2960 (300) NS ND 

Ca (mg kg-1
) 168 (17) 179 (24) 19.6*** - 6.3%  139 (9) 153 (12) 119*** - 8.7% 

Mn (mg kg-1
) 35.3 (4.5) 29.8 (3.7) 119*** + 18.5%  31.5 (3.1) 24.7 (2.6) 446*** + 27.5% 

Fe (mg kg-1
) 11.6 (1.9) 13.7 (2.0) 80.6*** - 15.5%  10.2 (1.5) 11.5 (1.4) 57.5*** - 10.7% 

Cu (mg kg-1
) 4.11 (0.95) 2.27 (0.80) 293*** + 80.8%  3.97 (1.04) 2.90 (1.03) 85.0*** + 36.7% 

Zn (mg kg-1
) 26.1 (2.5) 25.7 (2.4) NS ND  24.6 (1.7) 24.9 (1.8) NS ND 

As (mg kg-1
) 0.245 (0.026) 0.284 (0.028) 147*** - 13.7%  0.226 (0.026) 0.304 (0.035) 512*** - 25.7% 

Mo (mg kg-1
) 0.59 (0.13) 0.74 (0.11) 93.0*** - 19.5%  2.01 (0.29) 1.94 (0.25) 5.42* + 3.7% 

Cd (mg kg-1
) 0.017 (0.003) 0.013 (0.003) 88.1*** + 27.8%  0.019 (0.008) 0.011 (0.006) 99.0*** + 67.3% 

*P<0.05; **P<0.01; ***P<0.001; NS = not significant; ND = no difference



 

Figure 1. Water depth in the AWD blockss during the rice growing season in 2013 (A) ad 2014 (B). 
Each point is the mean of the water depth at the four field tubes in each year. The length (time) of 
each of the AWD cycles is indicate by a grey bar. The water depth in the CF plots was maintained at 
2-5 cm above the soil surface.  Error bars are SE.  
 
Figure 2. Height of the water table (a) and volumetric soil moisture content at 4 depths below the 
soil surface (b) in the alternate wetting and drying (AWD) treatment and mean leaf elongation rate 
(c) and ABA concentration (d) of plants exposed to AWD (filled symbols) and continuous flooding 
(hollow symbols) in 2013. Data are means ± SE of 5 water tubes (a), 4 measurements at each soil 
depth recorded hourly with error bars omitted for clarity (b), 9 plants (c) and 6 samples per 
treatment taken at two hourly intervals between 1030 and 1630h on each day (there was no 
significant diurnal variation in ABA concentration in either treatment) comprising 24 ABA 
determinations in total. Vertical dotted lines indicate when the AWD treatment was re-flooded. 
Asterisks in c and d denote statistical significance at p<0.05 (*), <0.01 (**) and 0.001 (***).   
 
Figure 3. Penetration resistance of the soils at depth across the AWD (filled symbols) and CF (open 
symbols) across each of the plots. Penetration resistance was measured prior to the first AWD cycle 
in year 1 (A), after the first AWD cycle in year 1 (B), and after the final AWD cycle, when both 
treatments had been under flooded conditions for 11 days, in year 2 (C). The individual data points 
are the mean penetration resistance for each depth across the four replicated blocks for each 
treatment. Error bars are SE. Asterisks denote statistical significance at p<0.05 (*). 
 
Figure 4. Pore water concentrations of manganese (A), iron (B), zinc (C) and arsenic (D) in the pore 
water sampled from the AWD (filled symbols) and the CF (open symbols) across the AWD cycling 
period in 2013. The grey shading marks the AWD cycle treatments. Error bars are SE.  
 

Figure 5. Pore water concentrations of manganese (A), iron (B), zinc (C) and arsenic (D) in the pore 

water sampled from the AWD (filled symbols) and the CF (open symbols) across the AWD cycling 

period in 2014. The grey shading marks the AWD cycle treatments. Error bars are SE. 

Figure 6. Leaf trans-zeatin (tZ) (a), isopentenyadenine (iP) (b), zeatin riboside (ZR) (c), abscisic acid 

(ABA) (d), 1-aminocyclopropanecarboxylic acid (ACC) (e) and indole-acetic acid (IAA) (f) 

concentrations in plants exposed to AWD (filled symbols) and continuous flooding (open symbols) on  

5 measurement occasions comprising prior to imposing AWD (1), halfway through (2) and at the end 

(3) of the 1st drying cycle and halfway through (4) and at the end (5) of the 2nd drying cycle in 2014. 

Data are means ± SE of 6 samples per treatment. Statistical analysis (two way ANOVA with 

treatment and measurement occasion as main factors) is presented in Table 2.  

 

 

 


