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Abstract  

Molecular level characterisation of apolipoprotein A-I aggregation leading 

to fibrils comprising of both α-helical and β-sheet structures. 

Submitted by David Townsend for the degree of Doctor of Philosophy.  

November 2016. 

 

Amyloidosis is defined as the misfolding of native proteins into insoluble fibrils 

that are deposited within tissues and extracellular organs. 30+ structurally and 

sequentially unrelated proteins have the ability to form amyloid aggregates, all of 

which contain characteristic features. ApoA-I, the main component in high-

density lipoprotein, aggregates and becomes deposited as amyloid, either full-

length apoA-I fibrils within atherosclerotic plaques, or N-terminal fragments of 

mutant apoA-I within organs. The work here aims to further the understanding 

of conditions that promote the aggregation of apoA-I in vitro, allowing the 

structural study of aggregated apoA-I at a molecular level.  

ApoA-I remains soluble at neutral pH, maintaining a predominantly α-

helical conformation. Upon acidification to pH 4, apoA-I readily assembles into 

aggregates that, despite being responsive to the amyloid characteristic ThT dye, 

do not have the typical amyloid morphology and do not produce XRD diffraction 

patterns suggestive of β-sheets. The inclusion of heparin, and chemical oxidation 

of apoA-I methionine residues, in order to mimic physiological conditions, results 

in an increased ThT response and aggregated material more characteristic of 

amyloid. 

Solid-state NMR spectroscopy reveals for the first time that all three 

aggregation inducing conditions produce aggregates that give rise to cross-peaks 



 III 

corresponding to both α-helical and novel β-sheet structures. This leads to a 

refinement in the current theory describing apoA-I aggregation. In native apoA-I, 

the N-terminal 4-helical bundle protects the 3 hot spot regions from self-

association into β-sheets. Acidification of apoA-I leads to the destabilisation of 

this N-terminus, and a conversion of residues 1-90 into β-sheet structures, whilst 

the C-terminus retains its α-helical structure.  

EGCG, an inhibitor of Aβ, α-synuclein and huntingtin amyloidosis, is 

shown here to bind to apoA-I with micro-molar affinity. However, rather than 

inhibit amyloidosis, EGCG causes a structural rearrangement of the aggregated 

material, resulting in a reduced α-helical content. 
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1. Introduction to amyloid 

1.1. Amyloid Background 

The term amyloid was first coined by the German physician Rudolph Virchow in 

1854, to describe protein abnormalities taken from cerebral corpora amylacea, 

which stained positively with iodine reactions (Howie and Brewer, 2009; Sipe 

and Cohen, 2000; Sipe et al., 2012). Virchow initially presumed these “plaques” 

consisted mainly of starch, until in 1959 when Freidreich and Kekule discovered 

not only the absence of carbohydrates but the presence of protein, detected by 

the high nitrogen content of the plaques (Sipe and Cohen, 2000). Initially 

Virchow used the iodine-sulphuric acid reaction, common practice in 1814, in 

order to detect starch. However, the positive results from this test were 

attributed to the accessory components and associated glycosaminoglycans, 

rather than the core material, which was later shown to be aggregated protein 

(Aterman, 1976). Due to the development of more advanced techniques, such as 

polarising light microscopy, it was possible to detect an apple green 

birefringence when amyloid deposits were stained with Congo-red (Gillam and 

MacPhee, 2013; Serpell, Blake, et al., 2000; Sipe and Cohen, 2000). This mode of 

measurement, now a classifying criterion for all 20 plus amyloid species, was 

first used on amyloid by Missmahl and Hartwig in 1953 (Howie and Brewer, 

2009). The exact mechanism by which Congo red binds to amyloid is still 

unknown, nevertheless, the resultant birefringence when Congo red stained 

amyloid is visualised under polarised light is similar to the results observed with 

cellulose fibrils. This also explains why Virchow came to his inaccurate 

conclusion that the deposited plaques were composed of starch. 
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Bottiger first developed Congo red dye in 1884 as a dye for starch rich cottons. 

The dye works by aligning itself against the cellulose structures, stabilised by the 

hydrogen bonds between the dye and cellulose. These interactions are expected 

to be similar to the interaction between the dye and the amyloid fibril. This is due 

to the linear orientation of both amyloid and cellulose fibrils, as opposed to a 

branched or helical orientation seen in most other tissues (Howie and Brewer, 

2009; Puchtler et al., 1962). 

 

1.1.1. ISA defined amyloid  

The International Society for Amyloidosis (ISA) defines amyloid as a protein 

deposited as insoluble fibrils in tissues and extracellular spaces of organs, after a 

sequence of changes referred to as amyloidosis. Amyloidosis produces non-

branching fibrils, approximately 10nm in diameter, which have the ability to bind 

Congo red dye and exhibit an apple green birefringence when viewed with a 

polarised lens. Amyloid species must also be identified by their amino acid 

sequence, meaning it is insufficient for a mutation of an amyloidogenic protein to 

be automatically classed as amyloid itself (Sipe et al., 2012). ISA recognises 30 

human and 9 animal species of amyloid, many of which have a pathological link 

to a variety of disease states (Sipe et al., 2014).   

 

1.1.2. Amyloid associated diseases 

The misfolding of proteins into amyloid species has been shown to be associated 

with a wide range of human diseases (Table 1.). Proteins involved in amyloid 

disease can be either: biological peptides (amylin and insulin), full-length 

proteins (α-synuclein and transthyretin (TTR)), fragments of larger peptides (Aβ 
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and apoA-I), or caused through general protein decay (Stefani, 2007). In order to 

classify the different types of amyloid, the 30 species are subdivided into several 

classes, including whether the amyloid deposits are localised or systemic. 

Localised species affect only singular tissue types, such as β-amyloid, which 

deposits solely in the basal forebrain, leading to Alzheimer's disease (Chiti and 

Dobson, 2006; Whitehouse et al., 1982). However, systemic species are able to 

affect multiple tissue types and organ systems, such as apolipoprotein AI (apoA-

I), the protein of interest in this study. ISA recognises apoA-I derived amyloid 

deposits in the heart, liver, kidney, peripheral nervous system, testes, larynx and 

skin, the latter two being C-terminal variants (Sipe et al., 2012).  

Amyloidosis is split into 2 groups: either acquired through random 

mutation of the native protein, such as with serum amyloid A, or hereditary, such 

as Aβ. ApoA-I is linked to both acquired and hereditary forms of amyloidosis. 

Random mutations in the apoA-I sequence lead to the aggregation of full-length 

apoA-I (Das et al., 2016; Mucchiano, et al., 2001; Ramella et al., 2011; Ramella et 

al., 2012; Wong et al., 2010; Chan et al., 2015), whilst hereditary mutations 

induce the release of an extremely amyloidogenic N-terminal fragment, referred 

to as familial apoA-I amyloidosis  (Raimondi et al., 2011; Das et al., 2016; 

Andreola et al., 2003; Adachi et al., 2012). ApoA-I amyloidosis will be discussed in 

more detail in Chapter 2.  
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Table 1.1 ISA recognised amyloid associated human diseases, caused by the 

deposition of amyloid fibrils. Table taken from Chiti and Dobson (2006). 

Disease Protein/Peptide Native Structure Residues 

 

Neurodegerative 

 

Alzheimer’s 

Spongiform Encephalopathy 

Parkinson’s 

Dementia  

Frontotemporal Dementia Parkinson’s 

Amylotrophic Lateral Sclerosis 

Huntington’s 

Familial British/Danish Dementia 

Spinocerebella Ataxia 

 

Spinal and Bulbal Muscular Atrophy 

Dentatorubal-Pallidoluysian Atrophy 

 

 

 

Amyloid β Peptide 

Prion 

α-Synuclein 

α-Synuclein 

Tau 

Superdioxide dismutase I 

Huntingtin 

ABri/ADan 

Ataxins 

TATA box binding Protein 

Androgen Receptor 

Atrophin I 

 

 

 

Unfolded 

Unfolded/Helical 

Unfolded 

Unfolded 

Unfolded 

All β, Ig like 

Mostly Unfolded 

Unfolded 

All β 

α and β, TBP like 

All α, nuclear receptor 

Unknown 

 

 

 

40/42 

253 

140 

140 

352-441 

153 

3144 

23 

816 

339 

919 

1185 

 

 

Non Neuropathic Systemic 

 

AL Amyloidosis 

AA Amyloidosis 

Senile Systemic Amyloidosis 

Familial Polyneiropathy 

ApoA-I Amyloidosis 

ApoA-II Amyloidosis 

ApoA-IV Amyloidosis 

Finnish Hereditary Amyloidosis 

Lysosome Amyloidosis 

Fibronogen Amyloidosis 

Icelandic Hereditary Cerebral amyloid 

angiopathy 

 

 

 

Ig Light Chain 

Serum Amyloid A Protein 

Wild-typeTransthyretin 

Mutant Transthyretin 

(N-terminal) Apo AI 

(N-terminal) Apo AII 

(N-terminal) Apo AIV 

Gelsolin Mutants 

Lysozyme Mutants 

Fibrogen α-Chain 

Cystatin C Mutant 

 

 

 

All β, Ig like 

All α 

All α and β 

All β 

Mostly α 

Unknown 

Unknown 

Unknown 

α and β Lysozyme  

Unknown 

α and β Cystatin  

 

 

 

90 

76-104 

127 

127 

(80-93) 

98 

70 

71 

130 

27-81 

120 

 

Non Neuropathic Localised 

 

Type II Diabetes 

Thyroid Medullary Carcinoma 

Arterial Amyloidosis 

Cerebral Haemorrhage 

Pituitary Prolactinoma 

Injection Localised Amyloidosis 

Aortic Medial Amyloidosis 

Hereditary Lattice Corneal Dystrophy 

Corneal Amyloidosis (Trichiasis) 

Cataract 

Pulmonary Alveolar Proteinosis 

Inclusion Body Myositis 

Cutaneous Lichen Amyloidosis  

Calcifying Epithelial Odontogenic 

Tumour 

 

 

 

Amylin (IAPP) 

Calcitonin 

Atrial Natriuretic Factor  

Mutant Amyloid β 

Prolactin 

Insulin 

Medin 

Kerato-epithelin 

Lactoferrin 

γ-Crystallins 

Unknown 

Lung Surfactant Protein C 

Amyloid β Peptide 

Keratins 

 

 

 

Unfolded 

Unfolded 

Unfolded 

Unfolded 

All α, 4 helical  

All α, insulin like 

Unknown 

Unknown 

α and β 

All β, crystallin like 

Unknown 

Unfolded 

Unknown 

Unknown 

 

 

 

37 

32 

28 

40/42 

199 

21+30 

50 

50-200 

692 

Variable 

35 

40/42 

Variable 

46 
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1.1.3. Amyloid disease pathology 

Despite the research into the various amyloid associated diseases, detailed in 

Table 1, a definitive pathology of the aetiology of amyloid associated diseases 

remains unknown. Many amyloid species are formed through the conversion of 

monomeric proteins, via soluble oligomeric intermediates, into the insoluble 

amyloid fibril structures. It is still debated whether the fibrillar deposits are the 

cause of the disease phenotype, or whether they are an end product of the 

disease progression. This pathology could be initiated by the oligomeric species 

which, across the different diseases, have a common structure and are often toxic 

(Gillam and MacPhee, 2013; Janson et al., 1999; Kayed, 2003; Stefani, 2007). It 

would appear that the causal species varies with each disease. 

 

1.1.4. Oligomer induced pathology 

Oligomeric species of amyloidogenic proteins have been shown to be the cause of 

many disease phenotypes. For example, in non-insulin dependent diabetes 

mellitus (NIDDM), by selecting for the formation of oligomeric species in the 

amyloidosis process, rather than the fibril end product, the oligomers have been 

shown to be toxic and thus the cause of the disease state (Janson et al., 1999; 

Kayed, 2003). Rifampicin is a drug commonly used to treat bacterial infections by 

inhibiting the bacterial RNA polymerase. However, Rifampicin has also been 

shown to have inhibitory effects on the formation of islet amyloid polypeptide 

(IAPP) fibrils, but not the oligomeric species, as described in Figure 1.1. 

Inhibition of fibril formation still resulted in β-cell apoptosis, confirming that it is 

the oligomeric species that causes the NIDDM phenotype (Meier et al., 2006). 
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Figure 1.1 Schematic of the amyloidosis of human islet amyloid polypeptide, 

detailing the conversion from monomeric peptide through oligomeric species 

into the amyloid fibril. Rifampicin inhibits the formation of fibrils leading to an 

increased oligomer concentration and subsequent toxic species. Image replicated 

from Meier et al. (2006).  

 

Other examples of oligomer-induced disease pathology include Alzheimer's 

(Ahmed et al., 2010; Huang et al., 2000; Näslund et al., 2000), Parkinson’s, 

Huntington’s, and Familial British dementia (Haass and Selkoe, 2007; Walsh et 

al., 2002). In Alzheimer's disease, the extent of disease progression is directly 

correlated to the accumulation of the soluble oligomeric form of the amyloid β 

protein in the brain, rather than the extent of fibril plaque deposition. This is 

despite the presence of plaques correlating with the severity of the disease 

(Berthelot et al., 2013; Kayed, 2003; Näslund et al., 2000). This implies that the 

amyloid deposits are merely an end product of the disease pathology. This is 

further confirmed by the presence of plaques many years prior to the disease 

onset (Perrin et al., 2009).  
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The structure of the oligomers in amyloidosis varies depending on the 

particular protein. In Alzheimer's disease, for example, the Aβ (1-42) peptide has 

the ability to form stable trimeric, tetrameric and pentameric oligomer 

complexes, in stark contrast to the Aβ (1-40) which does not (Ahmed et al., 

2010). This is despite both peptides being able to form full-length amyloid 

species in the correct conditions. 

The proposed mechanism of how oligomeric intermediates manifest into 

the disease phenotype involves their interaction and disruption of lipid 

membranes, leading to a loss of selectivity in ion permeability cumulating in cell 

apoptosis. The oligomeric interactions damage a cell’s permeability through a 

range of methods, described in Figure 1.2, including: detergent effects, raft 

formations, carpeting effects and pore formation. The carpeting and raft-like 

formations involve the assembly of amyloid fibrils on, or within, the membranes, 

inhibiting the membrane’s normal function (Berthelot et al., 2013), leading to 

apoptosis. In addition to apoptosis, increased cellular Ca2+ levels lead to an 

increase in reactive oxygen species (ROS), potentially through activation of the 

citric acid cycle in order to produce excessive ATP, required for the removal of 

the excess calcium (Stefani, 2007). The exact method of how the oligomers open 

up the calcium pores is disputed, with two main theories varying in the origin of 

the oligomers, either outside the cell or after internalisation, prior to interacting 

with the calcium pores (Demuro et al., 2011). Soluble oligomeric species have 

also been shown to bind metals, and induce the production of reactive oxygen 

species (Maynard et al., 2005) 

Inhibition of protein aggregation which would retain a protein in its non-

toxic monomeric form (Walsh et al., 1997), or its toxic oligomeric form, whilst 
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enhancement of amyloidosis into full-length fibrils, thus avoiding the toxic 

oligomeric stage (Madine and Middleton, 2010), are both potential therapeutic 

techniques. However, not all oligomers in amyloidosis are harmful (Berthelot et 

al., 2013; Stefani, 2007) and in some cases can be used as potential fibril 

inhibitors (Uversky, 2010).  

 

Figure 1.2 Models depicting the interactions between lipid membranes and 

amyloid that leads to membrane destabilisation and subsequent cell death, via 

apoptosis. Image taken from Bertheloti (2013).  

 

1.1.5. Amyloid associated components 

Amyloid deposits involved in Parkinson’s, Alzheimer’s and prion associated 

diseases have all been associated with assemblies that contain non-fibrillar 

components (Madine et al., 2013) including: other proteins, polysaccharides, 

proteoglycans and serum amyloid P component (Desai et al., 2010; Chan et al., 

2015). There is also evidence for a high concentration of metal ions such as 

copper, zinc and iron included within the amyloid deposits. These ions have the 
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ability to induce aggregation via an overall reduction in protein charge or by 

bridging two peptides. Alternatively, metal ions are also able to inhibit 

aggregation of amyloidogenic proteins by increasing the net charge of the protein 

or by interfering with β-sheet stabilising bonds (Alies et al., 2013). The effects of 

ions are dependent on the specific amino acid sequence. 

Proteoglycans, including the long, unbranched glycosaminoglycans 

(GAG’s): heparin, dermatan, keratin and chondroitin sulphates have all been 

found in amyloid deposits. These GAGs have been shown to initiate the formation 

of fibrils, in addition to providing stability and resistance to proteolysis 

(Cohlberg et al., 2002; Madine et al., 2013; Papy-Garcia et al., 2011).  

 

1.1.5.1. Heparin 

Heparin, a highly sulphated GAG, is comprised of disaccharide repeats containing 

an uronic acid, either glucuroinic or iduronic acid, followed by an amino sugar 

(Casu et al., 2015; Khan et al., 2010). The most common pairing of these involves 

L-idopyranosyluronic acid 2-sulfate (IdoA2) and 2-deoxy-2-sulfamino-D-

glucopyranose-6–phosphate (GlcNS,6S) (Figure 1.3A), which accounts for 75–85 

% of heparin species within amyloid plaques (Gatti et al., 1979; Casu et al., 2015).  

The three sulphate groups on this disaccharide repeat highlights the strong 

charge carried on all heparin molecules, making it one of the most negatively 

charged molecule in nature. Figure 1.3B shows a molecule of heparin consisting 

of 12 disaccharide repeats of IdoA2-GlcNS,6S (Khan et al., 2010).  
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Figure 1.3 (A) Disaccharide of IdoA2-GlnNS,6S and (B) a molecule of heparin 

consisting of 12 of IdoA2-GlnNS,6S repeats (PDB 3IRJ). 

 

Heparin promotes aggregation of the amyloidogenic protein α-synuclein 

(Cohlberg et al., 2002; Madine et al., 2013), measured both by an increase in fibril 

yield and rate of aggregation. The ratio of heparin to α-synuclein, and the 

inclusion of fluorescently labelled heparin within fibrils structures, indicates that 

the heparin does not merely act as a catalyst for aggregation, but is incorporated 

into the fibril during its formation (Cohlberg et al., 2002). Heparin is believed to 

act as a scaffold protein, aligning the α-synuclein monomers in an orientation 

that favours the formation of β-sheet structures, and promotes stabilising bonds 

between protein molecules (Madine et al., 2013). Heparin has promoted the 

formation of ThT responsive fibrillar species in proteins that have no natural 

propensity to aggregate, such as residues 1-23 of phospholamban (PLB). The 

peptide PLB (1-23) is predicted to have a low natural propensity to form 

amyloid. However, in the presence of heparin, a dramatic increase in ThT 

fluorescence was observed, suggesting amyloid formation (Madine et al., 2013).  
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1.2. Protein folding and misfolding 

Proteins are synthesised as long polypeptide chains with no secondary structure. 

Consequently, the protein has to determine its own final structure through a 

specific folding pathway, via intermediates. This leads to the most stable 3D 

structure (Radford, 2000), with the exception of several unfolded functioning 

proteins, such as α-synuclein and tau, both of which have increased propensity to 

aggregate, due to their unfolded nature (Fowler et al., 2007). The 3D structure of 

each protein is essential to its individual function, in conjunction with the specific 

amino acid sequence of the protein, and the environment in which the protein is 

located. All three variables work in co-operation to place the relevant amino 

acids in the required position, in relation to all other residues, in order for the 

protein to carry out its biological function.   

If the folding pathway becomes disrupted, leading to a novel fold, the 

protein will usually lose its native function and, in some cases, gain a novel 

function, according to the new fold. This can lead to a malfunction in a biological 

process, causing disease pathology (Teoh et al., 2011).  

Folding proteins are said to follow an energy landscape mechanism 

(Figure 1.4), whereby the unfolded protein at the top of the funnel samples 

many different folding conformations, selecting the one with the lowest free 

energy. This process of trial-by-error continues, forming more stable 

intermediates, as Van der Waals and hydrogen bonds stabilise the overall 

structure. Each stabilisation reduces the energy requirements, until the protein 

finds its native fold, the most stable conformation with the lowest free energy 

(Radford, 2000). 
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Figure 1.4 Energy landscape schematic indicating the newly synthesised, 

unfolded proteins entering the top of the funnel (red), the different folding routes 

a protein can take via intermediate folds (green), resulting in the final natively 

folded protein (blue). If a particular fold results in a conformation that does not 

allow further folding into the native structure, and cannot be recovered, the 

protein has misfolded (orange). Image taken from Radford (2000). 

 

In some circumstances, the intermediate conformation trialled is either 

less stable or an off-pathway intermediate, leading to the formation of a 

misfolded protein. This misfolded intermediate can usually be corrected with the 

help of chaperone proteins. Chaperone proteins allow the reversal of the free-

energy driven protein folding, allowing the previous intermediate to select 

another, more suitable conformation. In some cases, the misfolded intermediate 
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is too far off the native folding pathway and cannot be recovered, sometimes 

leading to their aggregation, which can act as precursors for amyloid formation 

(Dobson, 2003) as shown in Figure 1.5. 

 

 

Figure 1.5 Schematic of the protein-folding pathway. The newly synthesised 

polypeptide chains fold, via intermediates, into the native protein structure, 

which may be incorporated into larger protein complexes, highlighted by the 

green arrow pathway. Alternatively, both the unfolded protein and the 

intermediate folds may form disordered aggregates or prefibrillar species that 

can promote amyloid formation through seeding. 
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1.3. Amyloid aggregation  

1.3.1. Destabilisation 

Amyloid fibres form via the misfolding of proteins into highly ordered β-sheet 

structures that do not match their native, most stable form, as shown in Figure 

1.5 (Dobson, 2003; Gillam and MacPhee, 2013; Serpell, Sunde, et al., 2000; Teoh 

et al., 2011). These misfolded proteins then have a higher propensity to 

aggregate, due to the exposure of aggregation prone regions, which self-assemble 

into amyloid structures. The aggregation into amyloid is not exclusive to the 

proteins listed above in Table 1, and it is theorised that, under the correct 

conditions, all proteins have the ability to misfold into an amyloid conformation 

(Madine et al., 2013; Guijarro et al., 1998). 

 

1.3.2. Nucleation dependent polymerisation 

Nucleation dependent aggregation is the leading theory detailing amyloid 

formation (Chiti and Dobson, 2006; Gillam and MacPhee, 2013). This mechanism 

is made up of four key stages: a lag phase, a nucleation point, rapid exponential 

growth, and finally, the accumulation of fully formed fibrils. Although the lag 

phase appears to have no aggregation kinetics, during this phase the individual 

protein monomers accumulate into a critical sized homogenous nucleus with a 

high β-sheet content. This process of aggregation is kinetically unfavourable and 

is dependent on various conditions, including protein concentration, pH and salt 

concentration. Once the nucleus has reached a critical state, it passes through the 

nucleation point and undergoes a thermodynamically favourable elongation 

process. During this period, protein monomers and oligomers are recruited to 

the elongating fibre, until the level of monomeric protein in solution is depleted 
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(Alies et al., 2013; Larsson et al., 2011; Naiki et al., 1997; Serio et al., 2000; 

Souillac et al., 2002). The most accurate way to measure amyloid formation is 

through the use of the benzothiazole salt dye, Thioflavin T (ThT). Upon binding 

to the grooves in the β-sheet structures of amyloid, the ThT molecule experiences 

a red shift in its fluorescence spectra, resulting in increased emission at 482 nm 

(LeVine, 1999; Wolfe et al., 2010). By following the increase in fluorescence, the 

aggregation of proteins into amyloid can be followed in real time, as well as 

allowing the calculation of the aggregation kinetics, as shown in Figure 1.6. 

 

Figure 1.6 Sigmoidal growth curve of amyloid fibrils, via a nucleation dependent 

polymerisation mechanism. The ThT fluorescence at 482nm depicts a lag phase, 

a nucleation point, an exponential growth then a plateau phase. From these 

values, a lag time (τlag) and a rate of aggregation (rmax) can be calculated from the 

gradient of the slope when it is at its steepest. Image taken from Gillam & 

MacPhee (2013).  
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1.3.3. Seeding 

The length of the lag phase in amyloid aggregation is highly variable between 

different amyloid species and conditions. The lag phase length can be reduced 

through seeding; a process that introduces pre-formed, homogenous aggregated 

protein fragments to the un-aggregated protein solution. These fragments act as 

the critical sized nucleus and promote the exponential growth of the fibril, hence 

reducing the lag phase, as shown in Figure 1.7 (Larsson et al., 2011; Paravastu et 

al., 2009).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7 Model sigmoidal curve of amyloid formation, via nucleation 

dependent polymerisation. The blue solid line indicates the natural formation of 

amyloid, with the length of the lag phase shown above. The blue dotted line 

indicates the formation of amyloid after seeding (point shown), again with the 

lag time shown above.  
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1.3.4. Lipid induced amyloidosis 

Many of the proteins that misfold into amyloid species demonstrate increased 

aggregation upon interaction with lipids, micelles and membranes. For example, 

the anionic surface induced oligomerisation of α-synuclein in Parkinson’s disease 

(Necula et al., 2003), and islet amyloid polypeptide (IAPP) in diabetes mellitus. In 

the case of IAPP, the protein interacts with phospholipid membranes, which acts 

as a catalyst, resulting in the assembly of pre-amyloid structures. These 

structures can then induce nucleation dependent polymerisation, in a similar 

manner to seeding aggregation, reducing the lag time and increasing amyloidosis 

by up to 10 fold (Knight and Miranker, 2004).  

In Alzheimer's disease, Aβ peptides interact strongly with GM1-

ganglioside containing membranes, leading to the deformation of the C-terminus 

of Aβ and exposure of hydrophobic regions. These regions then lead to the 

oligomerisation of 2 Aβ peptides into a β-sheet structure, followed by growth of 

the fibril (Hoshino et al., 2013). The catalytic effect of membranes on the 

aggregation of amyloid prone proteins not only exacerbates the disease 

pathology through fibril formation but, during the interaction, the membranes 

normal function is often compromised, leading to additional cytotoxicity.  

 

1.3.5. Functional amyloid 

Not all amyloid species are inactive aggregates of previously native, functioning 

proteins. There are many cases where amyloid fibrils have essential functions in 

humans, bacteria, fungi, and invertebrates, highlighted in Table 1.2 (Fowler et 

al., 2007).  
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Bacteria utilise the high strength of amyloid fibrils, which in some cases 

have a strength yield similar to steel (Smith et al., 2006), and their immunity to 

protease degradation is an advantage to their function in mechanical processes 

within the cells. Escherichia Coli for example, contain machinery that actively 

promotes the formation of the curli amyloid fibril (Cherny et al., 2005), a 

structural protein used in surface adhesion, colony formation and the promotion 

of host inflammatory responses (Barnhart and Chapman, 2006; Chapman et al., 

2002). In insects and fish, the amyloid species of the chorion proteins are present 

in the shell of the eggs, protecting it from physical damage, protease degradation 

and microorganisms (Fowler et al., 2007; Podrabsky et al., 2001).  

In humans, a cleaved fragment of the Pmel 17 protein, referred to as Mα, 

forms amyloid fibrils that act as a template in the synthesis of melanin, 

accelerating the polymerisation of melanogenic precursors into melanin. Studies 

have shown that replacing the Mα amyloid with another species of amyloid fibril 

produces an equal increase in the production of melanin, suggesting that the 

amyloid structure, rather than the specific protein, is responsible for the 

enhanced melanin synthesis. Due to the risk of cytotoxic oligomer production as 

a by-product of these pathways, the formation of amyloid for functional reasons 

must be highly regulated (Fowler et al., 2007).   
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Table 1.2 Species of functional amyloid across bacterial, fungal and animal cell 

lines. The table was produced with data from Fowler et al. (2007) and Chiti & 

Dobson (2006). 

Species Protein Function 

Bacteria:  
E. Coli, Salmonella 

Streptomyces Coelicolor 

 

Curli 

Chaplins 

 

Biofilm and Host Invasion 

Water Surface Tension Modulation 

 

 

Fungi 

Podospora Anserine 

Sacchromyces Cerevisiae 

 

 

Most Fungi 

 

 

 

HET-s 

URE2p 

Sup35p 

Rnq1p 

Hydrophobins 

 

 

 

Heterokaryon formation 

Nitrogen Catabolism 

Non Stop Codon Read Through 

Poorly Understood 

Adhesion and Surface Tension 

 

 

Animalia 

Insects and Fish 

Nephila Clavipes 

Aplisia Californica (Marine 

snail) 

Homo Sapiens 

 

 

 

Chorion 

Proteins 

Spidroins 

Neuron CPEB 

Pmel17 

 

 

 

Eggshell protective and support 

Structural, present in Spider silk 

Maintenance of synaptic changes in 

memory 

Scaffold and melanin intermediate 
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1.4. Amyloid characteristics 

1.4.1 Amyloid morphology 

Amyloid fibrils produce a very characteristic morphology, consisting of long, un-

branched fibrils, with a diameter of between 5 and 10 nm and a length of up to 

1600 nm when viewed via transmission electron or atomic force microscopy 

(Figure 1.8).  

 

Figure 1.8 Morphology of amyloid fibrils determined by TEM for (A) IAPP 

(Makin and Serpell, 2005) and (B) PLB (1-23) in the presence of heparin (Madine 

et al., 2013) and via AFM for (C) Aβ40 (Harper, Lieber, et al., 1997) and (D) apoA-

I (Ramella et al., 2011). 
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1.4.2. Amyloid structure 

With the development in molecular level biophysical analysis, common themes 

are being elucidated about amyloid fibrils, regardless of the protein sequence.  

There are three levels of structure in amyloid, as shown in Figure 1.9. The 

end product of fully formed fibrils can be visualised as networks of long, un-

branched fibres via electron and atomic force microscopy imaging. They have a 

diameter of approximately 60-120 Å and a length from 1000 to 16,000 Å.  

 These fibrils can be broken down into 5-8 proto-filaments (not to be 

confused with proto-fibrils, which represent partially fibrillar aggregates along 

the aggregation pathway), which arrange parallel to each other, extending in the 

direction of the fibre, with a diameter of roughly 25-35 Å. Each proto-filament 

contains an arrangement of β-sheet structural motifs, arranged perpendicular to 

the fibril axis in a cross-β conformation, typical of all amyloid species (Serpell, 

Blake, et al., 2000; Serpell, Sunde, et al., 2000; Serpell et al., 1997). 

Figure 1.9 Schematic diagram of the 3 levels of amyloid structure, from β-sheets 

in a cross-β structure, via proto-filaments, into full-length fibrils. 
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1.4.3. Cross-β structure 

Amyloid is highly distinguishable from other forms of insoluble protein 

aggregates, due to the high proportion of β-sheet secondary structures (Gillam 

and MacPhee, 2013), which run parallel to the fibril axis (Figure 1.10B). X-ray 

diffraction studies identify a core repeated region with a cross β conformation, 

containing sharp meridian reflections at 4.7-4.8 Å and less intense equatorial 

reflections at approximately 10 Å (Figure 1.10A). These reflections indicate the 

distance between the individual β-strands, running perpendicular to the fibril 

axis, and the multiple β-sheet layers, respectively (Figure 1.10 C) (Serpell et al., 

2000; Serpell et al., 1997; Jahn et al., 2010; Biancalana and Koide, 2010).  
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Figure 1.10 (A) X-ray fibre diffraction pattern for un-orientated transthyretin 

(105-115), highlighting reflections at 4.7 Å and roughly 10 Å, consistent with β-

sheet spacings. Image taken from Gillam and MacPhee (2013). (B) Model of the β 

strand composition along the fibril axis forming a β-sheet structure in semi-

crystalline amyloid species, with the gap between each β strand labelled as 4.7 Å. 

(C) Model of two β-sheets aligning with a 10 Å gap in between.  
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1.4.4. Tertiary structure  

The individual β-sheets that form the cross β structure in Figure 1.10B are in an 

anti-parallel conformation. Nevertheless, they can also be orientated in a parallel 

form, as shown in Figure 1.11A. These β-strands are formed through backbone 

amide group interactions that are stabilised through hydrogen bonding. In the 

majority of amyloid structures, the β-sheet lie in-register, with the same side 

chains stacking on top of each other, a formation described as a steric zipper 

(Figure 1.11B). Other models including a β-helix conformation were originally 

proposed as the structure of amyloid, due to the high β-strand content measured 

by circular dichroism (CD) and morphology deduced by TEM. However, these 

were disproved when X-ray diffraction (XRD) patterns of amyloid lacked the 

required internal and external radii of 6 and 16 Å, respectively.  

Figure 1.11 (A) Models of β-sheets formed through the parallel and anti-parallel 

orientation of individual β-strands. (B) Steric zipper conformation in amyloid, 

where equivalent side chains stack vertically along the fibril axis. Image taken 

from (Nelson et al., 2005).  
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1.4.5. Quaternary structure of amyloid 

Despite the common structures mentioned above, which make up the amyloid 

fibre and are uniform across all thirty plus species of amyloidogenic proteins, 

variation in the protein sequence can lead to changes in the overall quaternary 

structure of the amyloid. Specific amino acid side chains extending out from the 

β-sheets can promote intra-molecular interactions, which lead to variation in the 

overall conformation of the many β-sheets in the amyloid (Petkova et al., 2002; 

Tycko, 2011).   

In some species of amyloid, different quaternary structures can be 

produced in vitro by the same protein precursor, depending on the conditions 

under which the proteins are studied. For example, the Aβ (1-40) peptide 

associated with Alzheimer’s disease has two well-defined quaternary structures 

for amyloid fibrils: 2A (striated ribbon) and 3Q (twisted pair) (Tycko, 2011). 

Despite their differences, both models share similar traits, including their overall 

U shape, caused by two parallel β-strands formed from residues 10-22 and 30-

40. Agitation promotes the formation of striated ribbon (2A) fibrils with a 

straight rod appearance and a diameter of 6nm, formed via lateral association.  

The proto-filaments of 2A fibrils contain two cross-β structures, in a twofold 

rotational symmetry along the fibril axis (Figure 1.12A), stabilised by a salt 

bridge between residues D23 and K28 (Petkova et al., 2006). However, when 

Aβ(1-40) is incubated in quiescent conditions, fibrils with a modulation in their 

diameter and an apparent lack of lateral association are formed. The proto-

filaments of 3Q fibrils contain three cross-β structures in a threefold rotational 

symmetry (Figure 1.12B) with no salt bridge formation (Tycko, 2011).    
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Figure 1.12 Aβ structures viewed along the fibrils axis formed under (A) 

agitated (2A)  (PDB 2LMN) and (B) quiescent (3Q) conditions (PDB 2LMP) 

(Paravastu et al., 2008).  
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1.5. Amyloid Therapies 

Despite the large amount of literature on amyloid associated diseases, there is 

currently no single cure. Available therapies are often invasive and focus around 

three main areas: targeting the source of the amyloid, inhibiting the toxic 

oligomeric phase and removing amyloid plaques (Figure 1.13 and 1.14).  

 

Figure 1.13 Therapeutic strategies to inhibit production, formation and stability 

of amyloid.  

 

1.5.1. Targeting the source 

Current therapies against systemic amyloidosis focus mainly on reducing the 

supply of precursor protein, in particular at the level of expression, so as to 

include both wild type and any cleaved amyloidogenic peptides. In AA 
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amyloidosis, patients are treated with anti-inflammatory drugs to reduce the 

production of the serum amyloid A (SAP) protein, the expression of which is 

increased during inflammation. In AL amyloidosis, targeting B-cell dyscrasia with 

chemotherapy regulates production of the monoclonal immunoglobulin light 

chain (Gillmore and Hawkins, 2006). In transthyretin (TTR) and Aα-chain 

amyloidosis, liver transplantation removes the abnormal genetic variant of the 

protein (Desai et al., 2010). In Alzheimer's disease, drugs targeting the β and γ-

secretase enzymes, which cause cleavage of the amyloidogenic Aβ (1-40/42) 

peptide from the amyloid precursor protein, are currently under investigation 

(Gillmore and Hawkins, 2006; Kumar et al., 2016). Furthermore, in Alzheimer's 

disease, hyper-phosphorylation of the tau protein can lead to its aggregation into 

amyloid-like structures (Sipe et al., 2014) and the production of neurofibrillary 

tangles (Kumar et al., 2016). Down regulation of glycogen synthase kinase (GSK-

3), the main protein involved in the phosphorylation of tau, has been considered 

as a potential therapy. Chemotherapy can also be used in the case of AL 

amyloidosis to eliminate the plasma cell clones responsible for the mutant AL 

secretion. This process involves removal of the patient’s own stem cells, followed 

by autologous stem cell transplantation (ASCT). This procedure can also be 

combined with heart transplantation (Dubrey et al., 2011).  

 

1.5.2. Stabilising the native fold 

Another method to inhibit amyloid formation is through stabilisation of the 

proteins native fold, since amyloidosis begins with destabilisation of the native 

fold. In TTR, it has been shown that small molecules can bind to the amyloid fibril 

precursors, stabilising their fold and reducing the propensity for them to 
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aggregate (Gillmore and Hawkins, 2006). One such drug in development, 

Tafamidis™, stabilises the protein in a dimer form, reducing the free monomeric 

protein, a requirement for amyloidosis (Bulawa et al., 2012). Similarly, the ZAβ3 

compound forms a dimer around the Aβ hairpin, inhibiting its self-assembly into 

amyloid (Hoyer et al., 2008).  

 

1.5.3. Inhibiting amyloidosis 

Targeting the amyloidosis step itself is another treatment method for amyloid 

associated diseases. This can be accomplished via small molecule interactions, or 

protein based β-sheet breakers.  

The development of small molecule inhibitors is most commonly derived 

from screening of large compound libraries for effects on amyloid formation. 

Comparing successful compounds can begin to highlight key structures or 

chemical groups required for effective amyloid inhibition (Pickhardt et al., 2005).  

The formation of amyloid is often linked to the inclusion of glycosaminoglycans, 

in particular heparin molecules (section 1.1.5), which promote or stabilise the 

change in structure from the proteins native fold to amyloid. N-

acetylglucosamine analogues, such as Fibrillex™, inhibit the binding of GAGs to 

the amyloid precursor protein and orally administered sulphated compounds 

have been shown to substantially reduce amyloid deposition of murine AA 

amyloid (Gillmore and Hawkins, 2006).  

Small peptides, or β-sheet breakers, have also been used as aggregation 

inhibitors. These can be designed according to the sequence of the target amyloid 

protein to increase specificity. These peptides arrange themselves against the 

aggregation “hot spots” of the amyloid precursor protein and inhibit self-
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association, which is required for the protein to undergo aggregation (Figure 

1.13). The selectivity of this treatment means peptides can be used to target a 

single disease (Gillmore and Hawkins, 2006; Soto et al., 1998). In the case of 

Alzheimer's disease, a 5-residue peptide iAβ5 (LPFFD) has been shown to not 

only inhibit amyloidosis, but also disassemble preformed fibrils in vitro (Hard 

and Lendel, 2012).  

Interfering with hydrogen bonds that stabilise the β-sheet structures is 

another way of inhibiting the formation of amyloid species. The self-recognition 

elements (SRE) in amyloidogenic proteins can be synthetically produced to 

include nitrogen methylation on one side. This allows binding of the synthetic 

SRE sequences to the target on one side, but the methylation on the alternative 

face inhibits further hydrogen bond interactions and elongation of the β-sheet 

(Figure 1.14). The 25-35 peptide of Aβ, incorporating residues GSNKGAIIGLM, 

readily forms aggregates typical of amyloid. Incubation of this peptide with N-

methylated derivatives leads to a reduction in aggregation and toxicity, since the 

methylated peptide binds to Aβ(25-35), but inhibits the interaction of additional 

monomers, thus reducing elongation (Hughes et al., 2000). This technique has 

also been used to inhibit the amyloidosis of Aβ(1-42) (Amijee et al., 2012). 

Finally, LMTX, a methylthinium chloride compound recently in phase 3 clinical 

trials, has been shown to inhibit the aggregation of tau proteins into amyloid-like 

structures involved with Alzheimer's disease (Kumar et al., 2016). 

 

1.5.4. Amyloid removal 

Given the delay in diagnosing amyloid associated diseases, large fibrillar deposits 

often accumulate within the organs or affected areas before treatment can begin. 
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As such, the final treatment area involves targeting amyloid’s removal. Due to the 

highly conserved structural characteristics of amyloid, anti-amyloid antibodies 

have been designed to enhance the removal of amyloid deposits. Antibodies 

raised against generic fibril epitopes promoted clearance of amyloid in mice with 

AA amyloidosis (Gillmore and Hawkins, 2006). Antibodies raised against serum 

amyloid P component, a glycoprotein associated with amyloid deposits, trigger a 

macrophage driven clearance of amyloid deposits, without adverse effects. 

Removal of a patients SAP, prior to treatment, allows specific targeting of the 

amyloid deposits (Bodin et al., 2010).  

 

Figure 1.14 Schematic of the various techniques that can be used to inhibit β-

sheet elongation or prevention of cytotoxic intermediates.  
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1.6 Conclusion 

This completes an extensive review of the background surrounding 

amyloidogenic proteins. A detailed list of the proteins known to misfold into 

amyloid species, along with the associated diseases, is given in Table 1.1, and 

includes the native structure of the amyloidogenic protein. How these aggregates 

induce a pathological disease state is described, with particular focus on the 

cytotoxic, intermediate, oligomeric species. Compounds known to localise with 

amyloid deposits, which can be involved in inducing aggregation, are also 

detailed.  

In order for a protein to aggregate into amyloid species, the native protein 

must first unfold, and thus, a brief overview of protein folding and unfolding is 

provided. Following unfolding, amyloid formation commonly follows a 

nucleation-dependent mechanism, which is outlined here, and this process can 

be monitored by the amyloid-specific dye ThT.  Also provided is a detailed 

characterisation of amyloid, including the secondary, tertiary and quaternary 

structures found across all amyloid species.  

Finally this introduction describes some of the current techniques utilised 

to inhibit the development of amyloid associated disease pathology. Chapter 6 of 

this thesis will go into more detail regarding the theory behind many of these 

techniques.  

Following on from this introduction, Chapter 2 will describe the structure 

and function of apoA-I, and how aggregation of apoA-I into amyloid-like material 

can be detrimental to cardiovascular health.   

 



 33 

2. Cholesterol transport, atherosclerosis and apoA-I 

amyloidosis 

This introductory chapter will describe the human cholesterol transport 

mechanism, the involvement of apolipoprotein A-I (ApoA-I), and how 

deregulation of the cholesterol transport mechanism, including the inactivation 

of apoA-I through amyloidosis, results in atherosclerosis.  

 

2.1. Cholesterol  

Cells require cholesterol, and other sterol compounds, for strengthening cell 

membranes and as a precursor for the biosynthesis of hormones, bile and 

oxysterols. Since cholesterol is not uniformly distributed among cells and organs, 

it requires highly regulated transport (Prinz, 2007).  

The body acquires cholesterol via two methods, it is either synthesised in 

the intestine, via the mevalonate pathway, and regulated by the HMG CoA 

reductase enzyme, or acquired in the gut through dietary intake. These 2 systems 

are controlled by a feedback mechanism that self-regulates the production of 

endogenous cholesterol. In a high cholesterol state, such as after consuming a 

lipid rich meal, low-density lipoprotein (LDL), carrying exogenous cholesterol, 

binds to the LDL receptor (LDL-R) located on cell membranes. The whole 

LDL/LDL-R complex is then internalised into the cell, releasing the cholesterol 

into the cytoplasm (Olson, 1998). When inside the peripheral tissues, cholesterol 

has 4 main functions: (i) shut off the endogenous production of cholesterol, 

through inhibition of HMG CoA reductase; (ii) inhibit LDL-R synthesis, through 

down-regulating the sterol response element binding protein 1 (SREBP1); (iii) 
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promote acyl-CoA cholesterol acyltransferase (ACAT), and (iv) incorporation into 

lipid membranes (Wang et al., 1994; Ioannou, 2001).  

 

2.1.1. Mechanism of cholesterol transport 

The mechanism of cholesterol transport, via lipoprotein particles is described in 

Figure 2.1. Dietary fats from the gut become incorporated into chylomicron 

particles, containing 1% protein and 99% lipid content. These enter the 

bloodstream and lose 75% of their triglyceride content, following interaction 

with lipoprotein lipase, converting the chylomicrons into chylomicron remnants. 

The released triglycerides are taken up by adipose tissues for storage or used as 

a fuel source by cells, whilst the chylomicron remnants are taken up into 

hepatocytes via B100E receptors. Once inside the liver, the chylomicron 

remnants are broken down and the cholesterol content is either directly 

excreted, converted into bile salts or incorporated into very low-density 

lipoprotein (VLDL), consisting of 92 % lipid and only 8% protein. VLDL is 

secreted back into the bloodstream, where it is reduced by lipoprotein lipase into 

intermediate-density lipoprotein (IDL) releasing its triglyceride content. The IDL 

particle is either taken up by hepatocytes via B100E receptors, or further 

reduced by hepatic lipase into low-density lipoprotein (LDL). The LDL particle 

contains 21% protein and 79% lipid, of which only 11% is triglycerides. The LDL 

particle is transported in the bloodstream to the liver for cholesterol processing, 

or into peripheral tissues via interaction with the LDL-R. Any residual LDL that is 

not removed from the bloodstream, due to saturation of the LDL-R, continues 

circulating and increases the risk of atherosclerosis, following oxidation of the 

particle (Olson, 1998). LDL can remain in the bloodstream for up to 3 days.  
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Figure 2.1 Schematic of receptor mediated cholesterol transport mechanism via 

lipoprotein particles. The black arrows indicate exogenous cholesterol 

processing, the orange arrows depict the use/storage of triglycerides, and the red 

arrows show the reverse cholesterol transport mechanism.  

 

2.1.2. Reverse cholesterol transport 

In order to maintain a balance of arterial cholesterol, and to remove excess from 

peripheral tissues, a reverse cholesterol transport (RCT) mechanism is used to 

counteract the normal cholesterol movement. High-density lipoprotein (HDL), 

the main facilitator of RCT, consists of apolipoproteins AI (apoA-I), AII (apoA-II) 

and AIII (apoA-III), phospholipids and cholesterol. The lipoprotein particle is 

synthesised in the liver or intestine and released into the blood stream. HDL is 

often referred to as “good cholesterol”, due to its induction of monocyte adhesion 
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molecules, prevention of LDL modification, but primarily because of its role in 

the removal of excess cholesterol from the circulatory system, thus protecting 

against atherosclerosis (Stein and Stein, 1999; Fisher et al., 2012; Lewis, 2005).  

HDL, via the apoA-I protein, accepts cholesterol from cholesterol-laden cells, 

including macrophages and endothelial cells lining the arterial wall. This occurs 

in 4 ways: (i) apoA-I interacts with ATP-binding cassette transporter protein AI 

(ABCA1), which transfers cholesterol from the cell to the nascent HDL particle 

(Oram and Vaughan, 2006; Nagao et al., 2014; von Eckardstein et al., 2001), (ii) 

spontaneous desorption of cholesterol content from the lipid membranes to 

nascent HDL, (iii) ABCG1 mediates the flux of cholesterol from intracellular 

organelle to the plasma membrane, prior to desorption to nascent HDL, or, (iv) 

scavenger receptor BI (SR-B1) promotes a net movement of cholesterol, similar 

to aqueous diffusion, onto the HDL particle, requiring direct interaction (Annema 

and von Eckardstein, 2013).  

Upon binding to cholesterol, the apoA-I protein co-activates lecithin 

cholesterol acyltransferase (LCAT). This enzyme transfers fatty acids from 

lecithin to the cholesterol, forcing its internalisation into the hydrophobic core of 

the HDL particle. This allows the HDL particle to transfer its cholesterol content 

through the bloodstream. Upon reaching the liver, the cholesterol content is 

transferred from the HDL particle into the liver via an interaction between apoA-

I and the SR-B1 transporter protein, or endocytosis of the entire HDL-cholesterol 

particle into the liver, followed by activation of F0F1 ATPase. Alternatively, 

cholesterylester transfer protein (CETP) can promote the exchange of cholesterol 

for triglycerides with lipoproteins containing apo-B. Apo-B then removes the 

cholesterol, via LDL receptors on hepatic cells.  
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Cholesterol in the liver is then excreted as either free cholesterol, following its 

conversion into bile salts, or eliminated as faeces (Annema and von Eckardstein, 

2013). Poor regulation of the cholesterol transport, or the RCT pathway, can lead 

to an imbalance in the level of LDL within the circulatory system, with a potential 

to manifest itself into atherosclerotic plaques and pose a serious health risk. 

 

2.2. Atherosclerosis  

Atherosclerosis is the leading cause of heart attacks and is responsible for up to 

50% of deaths in the USA and Europe. It is caused by an excessive inflammatory 

response against accumulated fibrous and fibro-fatty plaques within the 

endothelium of arteries (Ross, 1993). There are many sources of injury to the 

endothelium that give rise to atherosclerosis. The most common is the 

endothelium interacting with excess LDL that has become oxidised, due to 

interaction with nitrous oxide, a product of endothelial cells normally used in the 

regulation of vascular tone (Matthys and Bult, 1997). Oxidised LDL leads to an 

inflammatory response, resulting in the recruitment of T-lymphocytes and 

macrophages. These white blood cells absorb the oxidised LDL, via scavenger 

receptors, converting the cells to lipid-rich foam cells. The lipid-rich 

macrophages and T-lymphocytes migrate to the intima, the inner layer of the 

arterial wall, and become deposited as “fatty streaks”. Over time, the fatty 

deposits develop into fibrous plaques, forming a core containing lipids and 

immune cell debris following necrosis, overlain with a fibrous cap of smooth 

muscle, collagen and connective tissue. These lesions increase in size, though cell 

proliferation and recruitment of macrophages and immune response cells, 

resulting in obstruction of blood flow in the lumen.  The fibrous caps can rupture, 
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causing a haemorrhage into the plaque area, or the formation of thrombi. 

Thrombi travel freely in the circulatory system, which can result in the blocking 

of arteries. This has the potential to lead to ischemia of the major organs 

including the heart and brain, manifesting itself as infarction (Ross, 1999a; Ross, 

1993; Ross, 1999b). The entire process is summarised in Figure 2.2. 

 

 

Figure 2.2 Progression of atherosclerosis in an arterial blood vessel. (A) 

Macrophages and leukocytes, having digested oxidised LDL, migrate to the sub 

endothelial space. (B) Formation of fatty steaks after the deposition of foam cells, 

activation of T-cells and invasion of smooth muscle cells. (C) Continued 

recruitment of macrophages. (D) Cracking of the fibrous cap leads to a plaque 

rupture and the formation of a thrombus. Alternatively, disruption of the plaque 

may lead to haemorrhaging from the artery. Modified image from Ross (1999a). 
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2.3. High-density lipoprotein (HDL) 

High-density lipoprotein (HDL) was the first of the cholesterol transport plasma 

proteins to be discovered, followed by low-density lipoprotein (LDL) and 

subsequently, the LDL receptor on peripheral tissues. This lead to the proposal of 

the receptor mediated lipid transport mechanism, via lipoprotein particles 

(Figure 2.1). Michael Macheboeuf isolated HDL particles in 1929 which were 

found to contain 59% protein and 41% lipid, of which 18% was cholesterol and 

23% was phospholipids (Olson, 1998). HDL is made up of several forms of 

apolipoproteins, including A-I, A-II, A-III and A-IV. However, with the exception 

of apoA-I, not all of these apolipoproteins are present on every HDL molecule. 

The specific combination of apolipoproteins on each HDL molecule gives them 

their individual subclass, each of which differs by size, shape, density and charge. 

HDL particles can include upwards of 80 proteins, 200 species of lipids and low 

copies of various micro-RNA molecules (Annema and von Eckardstein, 2013). 

The requirement for apoA-I on every HDL molecule further highlights its 

necessity in the RCT mechanism. 

 

2.3.1. HDL biogenesis 

Formation of the HDL molecule begins with the synthesis of apoA-I in the liver 

and intestine.  ApoA-I acquires cholesterol and phospholipids, the rate limiting 

step in HDL production, from either hepatic or peripheral cells, including 

macrophages. For this to occur, the lipid donor cells need to express the ATP-

binding cassette protein AI (ABCA1), an integral membrane transporter protein. 

This protein actively effluxes free cholesterol and phospholipids from cells, 

creating lipid-rich domains on the plasma membrane that apoA-I can interact 
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with (Oram and Vaughan, 2006). In this form, nascent HDL particles are disc 

shaped, due to the un-esterified cholesterol content. Once in circulation, the 

nascent HDL particle interacts with lecithin cholesterol acyltransferase (LCAT). 

LCAT esterifies the free cholesterol, producing cholesterol-esters, which migrate 

into the centre of the particle. This internalisation of the cholesterol produces the 

overall spherical shape of mature HDL (Fisher et al., 2012; Aguilar-Espinosa et 

al., 2013; Oram and Vaughan, 2006).  

 

2.3.2. Role of HDL as “good cholesterol” 

HDL is commonly referred to as “good cholesterol”, given its main role in the 

reverse cholesterol transport mechanism, described above in section 2.1.2. In 

addition to this function, HDL also has anti-oxidant and anti-inflammatory 

properties (Fisher et al., 2012), as well as acting as an inhibitor of monocyte 

adhesion molecules and LDL modifications (Stein and Stein, 1999). Although the 

role of HDL in the reverse cholesterol transport mechanism is only a small 

percentage of the overall cholesterol transport, efflux from the engulfed 

macrophages back to the liver for processing is most crucial, with regard to 

atherosclerosis (Lewis, 2005). Any reduction in the anti-atherosclerotic 

properties of HDL, whether it is a reduction in HDL production, its maturation, or 

its effectiveness in the cholesterol transport mechanism, would lead to an 

increase in atherosclerosis and enhanced health risk, hence the interest within 

the medical field.   
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2.4. Apolipoprotein AI 

Apo-AI, as mentioned previously, is the main constituent of HDL, making up 70-

75 % of the total protein content, and gives the lipoprotein its main cholesterol 

binding function (Oram and Vaughan, 2006). ApoA-I has a concentration in the 

plasma of approximately 0.2 mg/ml (Tate et al., 2006). 

 

2.4.1. ApoA-I sequence 

Prepro-apoA-I is a 267-residue peptide containing the 243-residue apoA-I, an 18-

residue signal sequence and a 6-residue linker region (Sharpe et al., 1984). 

Removal of the signal sequence releases pro-apoA-I and allows secretion into the 

plasma. The 6-residue linker sequence is cleaved by an unknown protease, 

forming apoA-I (McGuire et al., 1996). The native prepro-apoA-I sequence is 

shown in Figure 2.3, with a predicted mass of 28078 Da (Pankhurst et al., 2003).  

- 2 4     - 6  

MKAAVLTLAVLFLTGSQARHFWQQ  0  

DEPPQSPWDRVKDLATVYVDVLKDS  2 5  

GRDYVSQFEGSALGKQLNLKLLDNW   5 0  

DSVTSTFSKLREQLGPVTQEFWDNL  7 5  

EKETEGLRQEMSKDLEEVKAKVQPY   1 0 0  

LDDFQKKWQEEMELYRQKVEPLRAE   1 2 5  

LQEGARQKLHELQEKLSPLGEEMRD   1 5 0  

RARAHVDALRTHLAPYSDELRQRLA   1 7 5  

ARLEALKENGGARLAEYHAKATEHL   2 0 0  

STLSEKAKPALEDLRQGLLPVLESF   2 2 5  

KVSFLSALEEYTKKLNTQ    2 4 3  

 

Figure 2.3 Prepro apoA-I sequence containing the 18-residue signal peptide 

(green) a 6-residue linker (red) and the 243-residue apoA-I peptide (black). Hot 

spot regions 14-22, 53-58, 69-72 and 227-232 are underlined. 
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A modified plasmid vector allowing optimisation for bacterial expression has 

been produced by Oda (2001) and detailed in Ryan (2003). This plasmid will be 

utilised in Chapter 3 for the expression of recombinant apoA-I.  

 

2.4.2. Delipidation of apoA-I 

Dissociation of lipids from apoA-I, resulting in the lipid-free structure of apoA-I, 

is required for recycling of the HDL particle and subsequent interaction with ABC 

AI transporter proteins (Davidson and Thompson, 2007). Delipidation is also a 

key stage in the transition between the soluble native protein and its amyloid 

species (Obici et al., 2006). It has previously been shown that increased apoA-I 

expression coincides with increased levels of amyloidogenic apoA-I species 

deposited within atherosclerotic plaques. Despite apoA-I’s native role in 

reversing atherosclerosis, this suggests that when the lipid-free apoA-I 

concentration exceeds the level required for effective removal of cholesterol, it 

leads to a misassembled amyloid species (Mucchiano, et al., 2001). 

 

2.4.3. Structural studies of apoA-I  

ApoA-I exists in multiple native structures, due to its conversion between lipid-

free, partially lipidated and fully lipid associated forms (Ajees et al., 2006; Mei 

and Atkinson, 2011). The research collaboratory for structural bioinformatics 

protein data bank (RCSB PDB) website currently has 4 structural models, 

covering the majority of the apoA-I peptide sequence (Figure 2.4), and 5 

structural models for shorter segments of the peptide. 

A model produced by Ajees et al. (2006)(PDB 2A01) represents the crystal 

structure of full-length, lipid-free apoA-I at a resolution of 2.4 Å (Figure 2.4A). 
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However, this model has since been discredited by various authors, who present 

more accurate model structures (Tate et al., 2006). This model appears to show a 

high degree of similarity to the model for mouse apoA-I (PDB 2LEM). 

A crystal structure for the N-terminally truncated apoA-I (Δ 1-43), 

thought to be in its lipidated state, was proposed by Borhani et al (1997), 

consisting of a mainly α-helical structure in a looped belt conformation that 

facilitated lipid binding (Figure 2.4B).  

The most complete model for lipid-free apoA-I, described in detail below, 

comes from Mei and Atkinson (2011), deposited as PDB 3R2P. This structure of a 

C-terminally truncated apoA-I (Δ185-243) dimer was deduced via x-ray 

crystallography at a resolution of 2.2 Å (Figure 2.4C). The ability of this peptide 

to form functional HDL complexes, along with having strong similarities to the N-

terminally truncated, lipid-bound apoA-I (Δ1-43) described above, indicates that 

this model is a good representation of full-length apoA-I. It also contains many of 

the functional aspects in relation to lipid binding and the role of apoA-I in HDL.  

A model based on small angle neutron scattering for the full-length, lipid-

bound apoA-I in a reconstituted HDL nanoparticle, incorporating lipids and 

cholesterol, was presented by Wu et al., (2009). However, this had a much lower 

resolution compared to the other structures, due to the methods used (Figure 

2.4D). This is the structure that will be used throughout this thesis when 

referring to lipid-bound apoA-I.  
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Figure 2.4 Structural models of apoA-I deposited within the protein databank. 

(A) Lipid-free apoA-I (PDB 2A01) proposed by Ajees et al. (2006), (B) N-

terminally truncated apoA-I (Δ1-43) deduced by Borhani et al. (1997), (C) lipid-

free apoA-I (Δ185-243) proposed by Mei and Atkinson (2011),  (D) lipid-bound 

apoA-I in a HDL nanoparticle presented by Wu et al. (2009).  
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2.4.4. Lipid-free apoA-I  

ApoA-I is synthesised in its lipid-free form, and binds cholesterol and other lipids 

as part of its inclusion into a HDL particle. In vivo, given the strong affinity of 

apoA-I for lipids, the concentration of lipid-free apoA-I remains very low. In fact, 

less than 5 % of circulating apoA-I is lipid-free (Das et al., 2016). Lipid-free apoA-

I can be split into 3 regions: the N-terminus stabilises the protein structure, the 

central region offers flexibility, facilitating the conversion from monomer to 

dimers, whilst the C-terminus gives apoA-I its lipid binding ability. 

 

2.4.4.1. Lipid-free apoA-I structure  

The most complete, widely accepted structural model for lipid-free apoA-I comes 

from Mei and Atkinson (2011) and represents the C-terminally truncated (Δ185-

243) apoA-I peptide, with the structural model consisting of residues 3-182 

(Figure 2.5). This removes much of the lipid binding C-terminus, due to 

problems of self-association within this region, but retains the N-terminus. This 

region is of particular relevance in this study, due to its increased propensity to 

form amyloid-like structures.  

The (Δ185-243) apoA-I peptide contains 9 helical regions in total: two 

well defined helices and seven semi-continuous helices formed with conserved 

AB sequence repeats. The two well defined helices are located in the N-terminus: 

the major helix (residues 7-34) containing a valine kink at residue 21, and a 

minor helix (37-41) running parallel to the major helix. This minor helix forms a 

connecting turn into the first of the 11-residue repeated regions associated with 

H1. H1 consists of two 11-residue B repeats (residues 44-54 and 55-65) before 

termination by a proline kink at residue 66.  The A repeat of H2 produces a turn, 
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which extends into a second A repeat in H2 and, due to the lack of a proline, this 

helix continues into a B repeat of H3. The A/B repeat in H2/H3 is followed by 4 

consecutive A/B repeats (H4-H7), which form an almost continuous helix, with 

proline residues forming a kink at the start of each A segment of the next helix.  

 

2.4.4.1.1. Lipid-free apoA-I dimer 

Lipid-free apoA-I was shown to form a symmetrical homo-dimer in an 

approximate semi-circle, measuring roughly 17 Å in height and 110 Å in 

diameter, coinciding with the width of HDL particles (Mei and Atkinson, 2011).  

The backbone of the dimer contains 2 long antiparallel helices, one from each 

monomer, with an exact AB repeat pairing of the H5 region. At each end of the 

backbone, a 4 helical bundle is formed with 3 helices from the N-terminus of 1 

monomer and a single helix in the C-terminus from the second monomer, 

internalising the hydrophobic residues and stabilising the bundle (Figure 2.5A).  

 

2.4.4.1.2. Lipid-free apoA-I monomer 

The H5 helical region (residues 121-143) that holds the apoA-I dimer together 

via anti-parallel helices is the most flexible AB repeat, in particular residues 136-

141 which has little helical conformation, when in isolation. It is believed that in 

monomeric apoA-I this region acts as a hinge, with the final two AB repeats (H6 

and H7) folding back on the rest of the molecule to self-associate with its own N-

terminus rather than the N-terminus of its dimeric partner (Mei and Atkinson, 

2011; Gursky et al., 2012), as shown in Figure 2.5B. Therefore, the 4 helical 

bundle remains, but unlike the dimeric apoA-I, all 4 helices belong to the same 

molecule. It is predicted that the remaining peptide, residues 185-243, is largely 
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unstructured in the monomeric species (Gursky et al., 2012), suggesting that this  

model is a good representation of the full-length monomeric apoA-I.  

Figure 2.5A was produced using the PDB file 3R2D and generating 

symmetry mates within 6 Å, in order to produce the dimer interactions between 

the H5 regions, which are separated by approximately 5 Å (Mei and Atkinson, 

2011).  

Figure 2.5B was produced by Professor D. Middleton using the 

MODELLER programme and switching the residues 143-182 of H6 and H7 in the 

second molecule to the first molecule, before re-introducing residues 121- 143 of 

H5 in order to form the hinge region and link the domain swapped region to the 

rest of the apoA-I peptide.  
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Figure 2.5 Crystal structure of lipid-free apoA-I (Δ185-243) at 2.2 Å, deduced by 

Mei and Atkinson (2011). (A) Dimeric apoA-I linked via an anti-parallel H5-H5 

interaction (PDB 3R2D) and (B) Monomeric apoA-I model formed via domain 

swapping of the H6 and H7 regions and conversion of the H5 helix into a hinge, 

produced by D. Middleton. Hot spot regions are highlighted in green. 
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2.4.5. Lipid-bound apoA-I  

Lipid-bound apoA-I accounts for 90-95% of all circulating apoA-I, indicating 

apoA-I’s high affinity for cholesterol lipids (Ajees et al., 2006; Das et al., 2016; 

Tate et al., 2006).  

 

2.4.5.1. Lipid-bound apoA-I structure 

The structure of the lipid-free peptide is highly conserved upon binding lipids, 

with the sequence prediction for the 11 and 22 residue α-helical A and B repeats 

remaining the same (Gursky et al., 2012).   

It is proposed that upon lipid interaction, mediated by the C-terminus, the 

N-terminus of monomeric apoA-I unhinges, and opens itself to the formation of 

intermediate dimeric apoA-I. The N-terminus then continues to unfold, exposing 

hydrophobic interiors that then allow insertion of lipids. The N-terminus then 

interacts with the C-terminus of its opposing dimer, forming a double belt 

discoidal HDL particle. It is proposed that the N-terminal H1 and H2 repeat 

regions interact with the H8 and H9 of the C-terminus, regions that are not 

shown on the apoA-I (Δ185-243) model (Mei and Atkinson, 2011). This model 

agrees with the lipidated apoA-I (Δ1-43) structure of a figure of 8 bundle with 4 

helices deduced by Borhani et al. (1997) as shown in Figure 2.6A.  

The structure of reconstituted HDL associated full-length apoA-I is 

described in Wu et al. (2009) and shows similarities to the Borhani structure 

with the overall figure of 8 conformation and an anti-parallel helical dimer 

(Figure 2.6B), despite being deduced at a lower resolution. This structure is 

based on the apoA-I associated into the HDL complex, with cholesterol and POPC 

lipids at 10 and 100 times the molar concentration of apoA-I (Figure 2.6C). 
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Figure 2.6D gives better insight into the 3D structure of apoA-I dimer wrapped 

around a reconstituted HDL particle. Helices 1 and 10 show the highest affinity 

for cholesterol and phospholipids, whilst an 11-residue sequence in helix 9 is 

essential for ABC AI interaction, highlighting the importance of the C-terminus in 

the role of apoA-I (Oram and Vaughan, 2006). 

 

 

Figure 2.6 Structure of lipid-bound apoA-I. Figure of 8 dimer deduced by (A) 

Borhani et al. (1997) and (B) Wu et al. (2009). The Wu et al. structure was 

produced in the presence of 10 and 100-fold molar excess cholesterol and POPC 

lipid, compared to apoA-I (C), which gives a full 3D structure of apoA-I wrapped 

around the HDL particle (D). 
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2.4.6. NMR studies of apoA-I 

Section 2.4.3 details the current models of apoA-I, based on either full-length 

apoA-I, or shortened peptides, such as the apoA-I (Δ1-43) and apoA-I (Δ185-

243). All 4 of these models were produced using data from X-ray crystallography 

studies, highlighting a lack of high-resolution solid-state NMR data in this area of 

study. This is due to issues with the insolubility of the aggregates, and the 

difficulty in assigning NMR residues of apoA-I. This arises because of the broad 

line widths, which are common in peptides with a flexible, open structure, such 

as apoA-I. NMR has been used to study the structure of small peptide sequences 

from the full-length apoA-I, including: residues 142-187 (PDB 1GW3/1GW3) 

(Wang et al., 1997), 166-185 (PDB 1ODP/1ODQ/1ODR) (Wang et al., 1996) and 

1-93 (Mangione et al., 2001). 

The 142-187 peptide studied by Wang (1997) in lipid environments, was 

found to include 2 amphipathic helical regions, consisting of residues 146-162 

and 168-182, which are believed to be involved in lipid binding. These 2 helices 

form a helix-hinge-helix confirmation, the formation of which is driven by lipid 

interaction. When compared to the full-length, lipid-bound structure of apoA-I in 

a reconstituted HDL particle, deduced by Wu et al. (2009), the 142-187 peptide 

shows a relatively high degree of similarity, in particular the presence of 2 helical 

regions, separated by an unstructured region (Figure 2.7A/B).  The 166-185 

peptide corresponds to the second helix of the aforementioned 142-187 peptide, 

and again matches the helix formed in the Wu et al. structure of lipid-bound, full 

–length apoA-I in a reconstituted HDL particle (Figure 2.7C/D).  

The 1-93 peptide studied by Mangione et al. (2001) is predicted to consist 

of primarily random coil structures, due to the C-terminus in this peptide driving 
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the formation of a coiled-coil conformation. This was confirmed with far UV 

circular dichroism that suggested 44 % of the peptide consisted of random coils, 

32 % β-sheets, 5 % α-helices and 19 % turns. However, both 1D and 2D solution 

NMR spectra failed to identify the random coiled structures. Instead, the 

resonances were clustered around statistically random chemical shifts, 

concluding that the apoA-I (1-93) peptide remained unfolded and highly flexible, 

under the conditions studied. The lack of a methodology for producing 13C and 

15N labelled apoA-I (1-93) hindered any further NMR analysis of this region. 

 

 

Figure 2.7 NMR derived structural models for (A) apoA-I (142-187) and (C) 

apoA-I (166-185) taken from PBD 1GW3 and 10DR, respectively. Figures B and D 

highlights the corresponding regions on the full-length, lipid-bound apoA-I 

structure deduced by Wu et al. (2009).  
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2.4.7. ApoA-I interactions  

ApoA-I interacts primarily with 3 proteins in its function within HDL: ABCA1 on 

peripheral tissues, for localising with free cholesterol; LCAT, to esterify and 

internalise the cholesterol into the HDL particle interior; and SR-B1 on hepatic 

cells, to transfer cholesterol to the liver for removal.  

 

2.4.7.1. ATP-binding cassette protein A1 

The ATP-binding cassette protein A1 (ABC A1), a member of the ABC 

superfamily, is a transporter protein that utilises ATP in order to transport 

cholesterol and phospholipids from cells, including macrophages, into the HDL 

reverse cholesterol transport pathway. Excess cholesterol in cells can lead to 

disruption of the membrane and eventually cell apoptosis, hence the 

requirement for its efficient removal. ABC A1, an integral membrane protein, 

forms a channel through the membrane that allows “flopping” of lipids from the 

inner to the outer surface of the membrane. Upon externalisation, the lipids can 

then associate with apoA-I (Oram and Vaughan, 2006). Lipidation of apoA-I via 

ABC A1 is the rate-limiting step in the production of HDL, and subsequently the 

entire reverse cholesterol transport mechanism. Despite, in theory, the 

overexpression of ABC A1 increasing reverse cholesterol transport, doing so can 

lead to cell viability issues, manifesting itself in unregulated release of 

cholesterol (Liu et al., 2014).  The interaction between ABCA1 and apoA-I is 

promoted by the apolipoprotein A-I binding protein (AIBP), which stabilises the 

interaction, as well as reducing ABCAI degradation (M. Zhang et al., 2016).  
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2.4.7.2. Lecithin cholesterol acyltransferase 

LCAT is the primary enzyme responsible for esterification of cholesterol bound 

to nascent HDL, and hence, for the maturation of HDL. LCAT cleaves fatty acids 

from lecithin and transfers it onto serine 181 of LCAT, before releasing the fatty 

acid to the hydroxyl group of cholesterol through its acyltransferase activity.  

ApoA-I activates the LCAT enzyme in order to esterify its bound cholesterol and 

promote internalisation of the cholesterol-ester, resulting in HDL maturation 

(Ossoli et al., 2015). Residues 145-185 of apoA-I are believed to be involved with 

LCAT activation, since deletion of residues within this region resulted in reduced 

LCAT activity (Minnich et al., 1992).  

 

2.4.7.3. Scavenger receptor B1 

The scavenger receptor B1 (SR-B1) is a receptor for the HDL molecule, located on 

hepatic tissues (Acton et al., 1996). SR-B1 can bind to a host of ligands, including 

HDL, and selectively uptakes lipids into hepatic cells, with its highest affinity for 

cholesterol esters and free cholesterol, and a lower affinity for phospholipids and 

triglycerides. This process occurs via 2 definitive stages: the binding of HDL to 

the SR-B1 via the apoA-I protein, followed by the diffusion of lipid content into 

the plasma membrane. This all occurs without the breakdown of HDL, 

regenerating the lipid-free apoA-I, and reinitiating the RCT cycle (Lewis, 2005; 

Annema and von Eckardstein, 2013; Tate et al., 2006). 
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2.4.8. ApoA-I amyloid 

ApoA-I, due to its lipid binding function, possesses a naturally high 

hydrophobicity and a low structural stability, in order to facilitate the binding of 

lipids, which induces a structural conversion. This also makes the protein 

susceptible to aggregation, in particular into β-sheet structures, bearing the 

hallmarks of amyloid (Figure 2.8).  

 

Figure 2.8 Congo red stained vocal fold biopsy of apoA-I amyloid (A), and 

visualised under cross polarised light (B), image from Hazenberg et al., (2009) 

  

ApoA-I associated amyloid deposition has been associated with two forms of 

human disease: (i) acquired amyloidosis, linked to the deposition of full-length 

apoA-I fibrils within atherosclerotic plaques (Das et al., 2016; Ramella et al., 

2012; Ramella et al., 2011; Mucchiano, Häggqvist, et al., 2001; Wong et al., 2010; 

Chan et al., 2015) and (ii) familial apoA-I amyloidosis (AApoAI), where N-

terminal fragments of mutant apoA-I species become deposited within major 

organs (Raimondi et al., 2011; Das et al., 2016; Andreola et al., 2003; Adachi et al., 

2014; Vigushin et al., 1994).  
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Natively folded apoA-I avoids aggregation into amyloid species by 

sequestering the aggregation hot spot region, residues 14-22, in the middle of the 

4-helix bundle. Mutations in the N-terminus, or cleavage of fragments consisting 

of residues 1-100, results in destabilisation of the helical bundle, allowing the 

formation of β-sheet structures in the 14-22 and 53-58 hot spot regions. It is 

proposed that these β-sheets organise into layers, with side chain interactions 

stabilising a “β-zipper” conformation (Figure 1.11B), propagating through the N 

terminus, or the full peptide (Das et al., 2016; Das et al., 2014).  However, the 

exact mechanism for the conversion of apoA-I into amyloid is unknown.  

 

2.4.8.1. Detrimental effects of apoA-I aggregation  

A reduction in the function of the HDL particle would result in a decrease in the 

reverse cholesterol transport mechanism and lead to an enhanced progression of 

atherosclerosis. Therefore, any change in the activity of apoA-I that could affect 

the formation of the HDL particle, or the effectiveness of its reverse cholesterol 

transport function, would also be detrimental to health.  

Aggregation of apoA-I into amyloid species leads to the inactivation of the 

HDL molecule, in particular its ability to interact with ABCA1, LCAT, SRB1 and 

lipids. Amyloidosis of apoA-I manifests itself as three driving forces for 

atherosclerosis: (i) a reduction in reverse cholesterol transport, (ii) deposition of 

the aggregated apoA-I or inactive HDL molecules within vessels, leading to 

increased plaque loading, and (iii) cytotoxicity of the apoA-I aggregates, or 

aggregation intermediates on endothelial tissue, thus enhancing the 

inflammatory response (Stein and Stein, 1999; Annema and von Eckardstein, 

2013; Baglioni et al., 2006). An increase in apoA-I expression, and a subsequent 
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increase in vascular HDL concentration, results in a reduction in free cholesterol 

and the associated risk of plaque formation, in addition to the removal of 

cholesterol that has already been deposited within plaques (Annema and von 

Eckardstein, 2013).  

Oxidation of apoA-I, via myeloperoxidase, particularly on residue W72, 

leads to an inhibition of the apoA-I’s ability to bind to ABCAI, thus reducing the 

cholesterol absorption ability of the protein, halting the maturation of HDL. 

ApoA-I with the oxidised tryptophan residue is present in only low 

concentrations within the plasma, but accounts for 20% of all apoA-I in vessels 

with atherosclerotic plaques (Huang et al., 2014).  

 

2.4.9. ApoA-I mutants 

ApoA-I is known to have many naturally occurring mutants. Most of the research 

focuses on the atheroprotective R173C “Milano” mutant (Mahley et al., 1983) or 

the amyloidogenic mutants that lead to the release of the apoA-I N terminus, 

resulting in familial apoA-I amyloidosis (Gursky et al., 2012). These include 

G26R, W50R, L60R, L64P, L75P, and L90P (Raimondi et al., 2011).  

 

2.4.9.1. Aggregation inducing mutants  

Raimondi (2011) studied a range of mutations (G26R, W50R, L60R, L64P, L75P 

and L90P) within the N-terminus of apoA-I. Reduction in pH resulted in 

aggregation of all mutants into amyloid species. Fourier transformed infrared 

spectroscopy (FTIR) showed a conversion from primarily unstructured regions, 

to β-sheet structures, characteristic of amyloid. The L90P mutant showed the 

largest increase in amyloidosis, followed by the W50R and L75P mutants, 
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whereas the G26R and L60R had no significant difference in the aggregation 

propensity, compared to the wild type apoA-I (1-93) peptide. Despite this, the 

full-length apoA-I G26R mutant and the N-terminus of the L90P mutant (Soutar, 

1992) have been detected as amyloid deposits within arterial plaques. The 

naturally occurring Iowa G26R mutant is thought to induce amyloidosis of apoA-I 

via destabilisation of the N-terminal region. 

As well as mutations within the 1-93 N-terminus, mutations outside of the 

N-terminus region can lead to increased cleavage and release of the 1-93 peptide, 

which then has an increased propensity to aggregate (Gursky et al., 2012).  

 

2.4.9.2. Atheroprotective mutants  

The R173C “Milano” mutant was the first known natural apoA-I mutant, which 

introduces a cysteine into the native sequence, allowing the increased formation 

of apoA-I homo and heterodimers. Individuals with the Milano variant of apoA-I 

have decreased expression of apoA-I, and subsequent HDL, which normally 

coincides with increased risk of cardiovascular disease. However, the inverse is 

observed, whereby apoA-I Milano has an additional atheroprotective function. It 

is thought that this function is caused by a change in the structure of apoA-I 

Milano compared to the wild type. Removal of the positively charged arginine 

from position 173, and replacement with a cysteine inhibits the salt bridge 

formation between residues 173 and 169, leading to decreased stability of the 

monomeric apoA-I Milano. These changes to the apoA-I Milano structure affect 

its ability to bind lipids, resulting in a lower concentration of the cholesterol-

bound HDL complexes in the plasma. How this results in better cardiac health is 

still unknown (Alexander et al., 2009). 
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2.5. Aims 

The aims of this work were to understand the biophysical and structural changes 

that apoA-I undergoes when aggregating into amyloid species. Secondly, the 

work aims to identify modulators of aggregation as potential therapies. The 

objectives were to: 

 Establish a working protocol for the large-scale production of apoA-I, with 

the ability to modify the expression system to facilitate the production of 13C 

and 15N isotopically labelled apoA-I for analysis by solid-state NMR (SSNMR), 

and insertion of single amino acid mutations. This will be described in 

Chapter 3.  

 Establish suitable conditions for promoting the aggregation of apoA-I into 

amyloid species. This will focus on the effects of pH, heparin and methionine 

oxidation. It will be essential to confirm that scaling up of amyloid 

production can facilitate structural studies of apoA-I aggregates using 

circular dichroism, X-ray diffraction and SSNMR. This will be described in 

Chapter 4. 

 Use biophysical techniques (CD, X-ray diffraction and SSNMR) to propose a 

detailed model for apoA-I aggregation into amyloid species. This will be 

discussed in Chapter 5. 

 Examine the effect of green tea polyphenols on apoA-I aggregation. In 

particular, epigallocatechin gallate (EGCG), which has been shown to inhibit 

aggregation of other amyloidogenic proteins. This will be discussed in 

Chapter 6.  
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3. Recombinant expression of apoA-I and apoA-I 

mutants 

3.1. Introduction 

3.1.1. Protein expression 

Throughout the duration of this study, apoA-I was required in large quantities for 

use in a range of measurements to determine suitable conditions that promote 

its aggregation, and for structural studies, including SSNMR, to study the 

structure of the aggregated material. SSNMR analysis additionally required the 

production of uniformly labelled 13C and 15N apoA-I. Furthermore, the production 

of natural mutants of apoA-I, and mutants that included the introduction of a 

novel cysteine residue into the sequence for fluorescence tagging purposes were 

investigated. Recombinant expression of apoA-I in Escherichia Coli (E.Coli) was 

carried out in order to facilitate these requirements. The size of apoA-I, at 243 

residues, meant that purchasing synthetic protein in the quantities required 

would not be feasible. The cost of labelling the synthetically produced peptide 

would also rule out SSNMR analysis of the protein, due to the cost implications.  

The objectives of this section were to establish a suitable recombinant 

expression and purification system for apoA-I, which would also facilitate site-

directed ligase independent mutagenesis (SLIM) (Chiu, 2004) and expression of 

13C and 15N labelled apoA-I . 

An N-terminally hexa-histidine tagged recombinant protein construct for 

apoA-I, including an E2D mutation, facilitating formic acid cleavage of the his-tag 

via the introduction of a novel acid labile Asp-Pro peptide bond, has been 

successfully expressed in E.Coli cells (Oda et al., 2001). This methodology 
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produced a suitably high yield of apoA-I (3-243) protein, which is referred to as 

apoA-I, or wild type apoA-I to distinguish it from the mutant apoA-I proteins 

throughout the remainder of this thesis. This protocol forms the basis of the 

expression methods used throughout this work and uses the plasmid construct 

kindly provided by Dr. M. Oda (Oakland Children’s Hospital Research Institute). A 

plasmid map is supplied in Appendix 1. Given the success of this methodology, it 

was utilised not only for the production of the apoA-I (3-243) wild type, but also 

the production of mutant apoA-I (3-234) species via SLIM based PCR methods, 

and modified to allow isotopic labelling of the wild type protein.  

 

3.1.2. Labelled protein production 

Recombinant protein expression allows the inclusion of stable isotope labels, in 

particular, 13C and 15N, uniformly or sparsely distributed through the protein 

sequence. These are essential for SSNMR studies, as they allow an increase in 

sensitivity and resolution and can simplify the complexities of the spectra. There 

are several ways to label proteins, depending on the information that is required 

from the solid-state NMR experiments. Selectively labelling individual amino 

acids, such as Ile, Leu and Val, gives insight into the proteins global fold, due to 

their location within hydrophobic cores. However, this requires the purchasing 

of synthetic protein, which was too costly due to the size of apoA-I, or acquiring 

one of the auxotrophic strains of E.Coli. Uniform labelling of apoA-I with 13C and 

15N is more cost effective and a good starting point to assess the resolution 

achieved. Uniform labelling also increases the accuracy of residue assignment, 

when facilitated by multi-dimensional triple resonance experiments (Lian and 

Middleton, 2001).  
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3.1.3. ApoA-I mutants 

The production of mutant apoA-I proteins was investigated for two reasons: (i) 

the comparison of aggregation kinetics of naturally occuring mutant apoA-I to 

native apoA-I, and (ii) to introduce a novel cysteine residue into the apoA-I 

sequence. This cysteine residue will facilitate fluorescently labelled tagging of the 

protein, in order to allow the visualisation of apoA-I uptake and distribution 

within human endothelial cells. Four single amino acid mutations have been 

selected and will be produced via SLIM.  

1. A naturally occurring mutant, apoA-I Iowa, substitutes the glycine in position 

26 with an arginine, and has been found deposited as amyloid aggregates 

within arterial plaques. The mutant also increases the formation of amyloid-

like species in apoA-I (1-83), albeit at a slower rate (Adachi et al., 2012). This 

is thought to be caused by destabilisation of the N-terminus region (Adachi et 

al., 2014). The destabilising effects of G26R on full-length apoA-I correspond 

to its location within the major helix of the N-terminus (Figure 3.1A). It is 

proposed that the introduction of basic charge, carried by the arginine, into 

the hydrophobic face of the helix, increases the solvent exposure of the helix 

bundle, leading to its destabilisation (Adachi et al., 2012).  

2. A mutant corresponding to the replacement of the leucine in position 90 with 

a proline residue, has been shown to enhance the rate of aggregation of the 

apoA-I (1-93) peptide into insoluble material, characteristic of amyloid 

(Raimondi et al., 2011; Monti et al., 2011). This mutation is located within the 

N-terminal 1-100 residues (Figure 3.1B), and its increased propensity to 

aggregate could be linked to destabilisation of the N-terminus, as with the 

G26R mutant.  
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3. A mutant with leucine 44 replaced by a stop codon should facilitate the 

production of apoA-I (3-43). The N-terminal 1-80/100 residues of apoA-I 

have a strong propensity to form amyloid when isolated from the remaining 

apoA-I sequence. Proteolytic cleavage and release of N-terminal fragments 

occurs naturally, leading to increased deposition of these short peptides as 

amyloid species. A peptide corresponding to residues 1-43 has been shown to 

readily form amyloid-like species in isolation (Adachi et al., 2014).  

4. Two cysteine mutants were produced in order to facilitate tagging of the free 

thiol group on the cysteine residue with luminescent tags, since apoA-I lacks 

native cysteine residues. Lysine and arginine in positions 96 and 173, 

respectively, were each replaced with a cysteine residue, producing the K96C 

and R173C mutant (Figure 3.1 C and D, respectively). The R173C mutant is 

the naturally occurring apoA-I Milano mutant, which is of increasing 

significance in the study of lipid-bound apoA-I, due to its reduced 

concentration in carriers of the R173C gene, despite having lower incidence 

of atherosclerosis and associated cardiac disease (Alexander et al., 2009). 

Both of these cysteine mutants have previously been produced, using the 

same expression and purification methods as the wild type protein (Oda et al., 

2001). The K96C mutant is located in the extended helix repeats along 

domain 4/5 but appears internally located, meaning that its ability to be 

tagged is reduced (Figure 3.1C). However, the cysteine introduced into 

position R173C, lies in the domain swapped C-terminus and is exposed to the 

exterior of the protein (Figure 3.1D).  This C-terminal region is involved in 

dimerisation, and introduction of a free thiol group into this region could lead 

to the formation of more stable apoA-I dimers via disulfide cross bridges. 
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Figure 3.1 Structure of monomeric apoA-I (Δ185-243) highlighting the native 

residue to be removed for the apoA-I mutants (A) G26R in red, (B) L90P in 

purple, (C) K96C in green and (D) R173C in orange.  

 

3.1.4. SLIM PCR mutagenesis 

Site-directed ligase independent mutagenesis (SLIM) is a PCR based mutagenesis 

method that allows the rapid insertion, deletion or substitution of single amino 

acids (Chiu, 2004). This method utilises an inverse PCR amplification of the 

template sequence by 4 primers: 2 long-tailed primers, containing the desired 

mutation, and 2 short-tailed, complementary primers.  
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3.1.5. Formic acid cleavage  

The Asp-X bond is readily hydrolysed under acidic conditions. The nucleophilic 

attack of the ionised carboxylate of the aspartic acid side chain on the peptide 

carbonyl group releases the Asp-C-terminal peptide. The reactive N-terminal 

aspartic anhydride is then hydrolysed, releasing the N-terminal peptide, ending 

with aspartic acid residue ta its C-terminus (Figure 3.2).  

 

Figure 3.2 Peptide hydrolysis following incubation of the asp-X peptide bond in 

acidic conditions.  

 

3.1.6. Aims 

The main aim of this chapter of research was to establish a working protocol for 

the large-scale production of apoA-I. This expression system must have the 

ability to be modified, in order to allow expression of 13C and 15N uniformly 

labelled apoA-I for analysis by solid-state NMR. Finally, the procedure should be 

able to facilitate the expression and purification of the apoA-I mutants listed in 

section 3.1.3, following mutagenesis of the apoA-I DNA.  
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3.2. Materials and methods 

3.2.1. Construct design 

3.2.1.1. ApoA-I E2D Construct  

A pNFXex expression vector containing the E2D mutated and codon optimised 

human apoA-I gene with an N-terminal hexa-histidine tag, was kindly provided 

by Dr M. Oda of Oakland Research Institute, USA. Also provided were expression 

vectors for the human apoA-I (G26R) mutant. 

Oda et al. (2001) and Ryan et al. (2003) conducted studies on apoA-I that 

required expression of recombinant apoA-I, and started with a pBluescript K+ 

plasmid, containing the gene for apoA-I (Figure 2.3).  The cDNA of human apoA-I 

has a distinctive lack of useful restriction endonuclease sites, required for sub-

cloning and DNA manipulation. As such, several silent mutations were 

introduced into the apoA-I DNA to produce 13 new restriction endonuclease sites 

(Table 3.1). The pBluescript K+ plasmid is suitable for the manipulation of DNA 

and is commonly used for sub-cloning, sequencing and site-directed mutagenesis 

(Mayer, 1995). In the work by Oda et al. and Ryan et al., the plasmid allowed (i) 

attachment of a hexa-histidine tag to the N-terminus of apoA-I (ii) insertion of 

the E2D mutation into the apoA-I sequence, creating an Asp-Pro acid labile bond 

to facilitate formic acid cleavage of the N-terminal histidine-tag and linker region, 

and (iii) 18 individual codon optimisations (Table 3.2), which removed codons 

that utilise tRNA molecules of low abundance in E.coli. Changing the codons in 

the human apoA-I DNA sequence to those corresponding to the same residue, but 

with increased use in bacterial cells, leads to a 5-fold increase in protein yield. 

This recombinant gene was then sub-cloned into the highly expressive pET20b+ 

plasmid, producing the expression vector pNFXex, containing the sequence 
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shown in Figure 3.3, and a gene corresponding to ampicillin resistance (Ryan et 

al., 2003). 

 

Table 3.1 Codon changes made in apoA-I cDNA to introduce 13 new endonuclease 

sites (Ryan et al., 2003).  

 

Amino acid  Codon change  Restriction site 

Asp 1 GAT to GAC ClaI 

Pro 7 CCC to CCA Nco 

Gyl 35 GGC to GGA BamHI 

Gln 41 CAG to CAA MfeI 

Leu 42 CTA to TTG  

Leu 44 CTA to CTT AflII 

Thr 54 ACC to ACG AatII 

Glu 70 GAG to GAA EcoRI 

Leu 126 CTC to CTG PstI 

Gln 127 CAA to CAG  

Val 156 GTG to GTC SalI 

Ala 164 GCC to GCG KasI/NarI 

Ala 175 GCC to GCG AscI 

Gly 186 GGC to GGG  

Arg 188 AGA to CGG ApaI 

Glu 234 GAG to GAA DXhoI 

Leu 240 CTC to CTT HindIII 
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Table 3.2 Codon optimisations made in human apoA-I cDNA, and the codon 

frequency per 1000 in E.coli cells. Red letters indicate the altered nucleotide. 

Information taken from Ryan et al, (2003). 

 

Residue  Original 

Sequence 

Original 

Frequency 

Modified 

Sequence 

Modified 

Frequency 

Pro 3 CCC 5.4 CCG 22.3 

Pro 4 CCC 5.4 CCG 22.3 

Pro 7 CCC 5.4 CCA 8.5 

Pro 99 CCC 5.4 CCG 22.3 

Pro 165 CCC 5.4 CCG 22.3 

Pro 209 CCC 5.4 CCG 22.3 

Pro 220 CCC 5.4 CCG 22.3 

Arg 10 CGA 3.7 CGC 21.1 

Arg 83 AGG 1.6 CGC 21.1 

Arg 188 AGA 2.7 CGC 21.1 

Leu 42 CTA 4.0 TTG 11.3 

Leu 44 CTA 4.0 CTT 11.3 

Leu 46 CTC 10.6 CTG 50.9 

Leu 47 CTT 11.3   CTG 50.9 

Leu 126 CTC 10.6 CTG 50.9 

Leu 214 CTC 10.6 CTG 50.9 

Leu 233 CTC 10.6 CTG 50.9 

Gly 39 GGA 8.6 GGC 28.6 
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Figure 3.3. N-terminally his-tagged apoA-I (E2D) sequence in the pNFXex 

expression vector. The red lowercase letters represent the nucleotides that were 

altered in the codon optimisation step (listed in Table 3.2). The sequences 

highlighted in blue, orange and red are the hexa-histidine tag, thrombin cleavage 

site and formic acid cleavage site, respectively. 
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3.2.1.2. Production of mutant constructs via SLIM PCR 

As described in Section 3.1.4, the SLIM PCR method of mutagenesis utilises 4 

primers to amplify the template DNA: 2 long tailed primers, containing the 

desired mutation; and 2 short primers. These are detailed in Appendix 2. 

Amplification of the template DNA by the 4 primers in complementary pairs 

result in the formation of 4 PCR products. Following denaturation and 

subsequent re-hybridisation, 16 hybrid products are formed, 2 of which able to 

form plasmids spontaneously. The entire procedure is simplified in Figure 3.4. 

 

Figure 3.4 Schematic of the SLIM PCR protocol adapted from Chiu et al., (2004). 

This example includes the primers used to create the K96C mutation in apoA-I. 
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SLIM PCR mutagenesis followed the same procedure for all 4 mutants, utilising 

the Novagen KOD Hot Start DNA Polymerase Kit.  

To each of the 3 PCR tubes: reaction 1, reaction 2 and the control sample, 

12.5 μL water, 5 μL Phusion HF buffer (ThermoFisher), 2.5 μL DTNPs (Novagen), 

2.5 μL betamine, 0.5 μL Phusion Hot Start II DNa Polymerase (ThermoFisher) 

and 1 μL of template apoA-I E2D DNA were added. 0.5 μL of the forward-long and 

0.5 μL of reverse-short primers were added to reaction 1, whilst 0.5 μL of 

forward-short and 0.5 μL of reverse-long primers were added to reaction 2. No 

primers were added to the control sample.  

After pre-warming all 3 samples at 98 °C for 2 minutes, each reaction 

underwent the first round of PCR. This consisted of 30 cycles of: 95 °C for 30 

seconds, 50 °C for 30 seconds and 68 °C for 8 minutes, prior to holding at 4 °C.   

Samples of 5 μL were removed from each reaction for analysis by agarose 

gel electrophoresis, in order to determine whether the DNA had been amplified. 

The control reaction was then discarded following the gel electrophoresis stage.  

To degrade the original methylated template DNA, 1 μL of Dpn1 restriction 

enzyme (New England BioLabs) was added to reactions 1 and 2 and incubated at 

37 °C for 1 hour. 30 μL of hybridisation buffer was added to each reaction, prior 

to combining the two. After denaturing the DNA at 98 °C for 3 minutes, the 

combined reactions underwent a second round of PCR. This involved 2 cycles of 

heating to 65 °C for 5 minutes and then cooling to 30 °C for 15 minutes. After 

holding at 4 °C the mutated plasmid DNA was then removed and stored at -80 °C. 
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3.2.1.3. Confirmation of PCR products via agarose gel 

After the first round of PCR, 5 μL samples of DNA taken from reactions 1, 2 and 

the control to confirm the amplification of DNA on a 0.8 % agarose gel.  

0.8 g of agarose was dissolved in 100 mL Tris acetate EDTA (TAE) buffer, 

along with 10 μL SYBR Safe DNA Gel Stain (Invotrogen). The gel solution was 

poured into a gel cast and allowed to set.  

5 μL of each of sample (reaction1, reaction 2 and the control sample) were 

combined with 1 μL of Gel Loading Buffer (ThermoFisher) and loaded onto the 

gel, along with 6 μL Quick Load 1Kb DNA Ladder (New England BioLabs). The gel 

was run at 100V for 60 minutes, before imaging under UV light using a Chemidoc 

XRS+ imaging system, running the Image Lab 4 programme. The pre-set 

programme for SYBR Safe stain, and automatic exposure were selected, to detect 

the highest intensity bands. 

 

3.2.2. Transformation into E.coli 

Transformation involves the incorporation of an engineered plasmid vector into 

the genomes of competent cells. For this study, 2 separate E.coli cell lines were 

used, XL1Blue and BL21 (DE3), to allow plasmid vector storage and recombinant 

expression, respectively. 

 

3.2.2.1. Transformation into XL1Blue cells 

DNA from each of the apoA-I species, apoA-I E2D, G26R, L90P, K96C, R173C and 

L44Stop, required transformation into an E.coli XL1Blue strain for long-term 

storage.  
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50 μL of E.coli XL1Blue cells (Agilent Technologies) for each of the 6 apoA-I 

species (apoA-I E2D, G26R, L90P, K96C R173C and L44Stop) were thawed on ice, 

prior to the addition of 1.7 μL of β-mercaptoethanol (BioRad). After 10 minutes, 

5 μL of plasmid DNA (provided by Oda or produced via SLIM PCR, as described in 

section 3.2.1.2) was added, gently mixed, and left on ice for 30 minutes.  The 

cells were then heat-shocked at 45 °C for 45 seconds before returning to ice for 2 

minutes. 900 μL of SOB media was slowly added and incubated for 1 hour at 37 

°C with shaking.  

Following incubation, 200 μL of culture was plated out on LB agar plates, 

containing 200 μM ampicillin. The plates were then returned to incubation at 

37°C overnight. Growth on the plates, in the presence of ampicillin, indicated that 

the cells had taken up the plasmid vector containing the gene for ampicillin 

resistance and the apoA-I fusion peptide. Individual colonies were selected and 

grown in overnight cultures of LB media containing 200 μM ampicillin at 37 °C. 

Overnight cultures were used to create 50 % glycerol stocks and frozen at -80 °C. 

 

3.2.2.2. Transformation into E.coli Bl21 (DE3) cells 

In addition to the long-term storage of the plasmid vectors in the E.coli XL1Blue 

cell line, the vectors were also transformed into an E.coli BL21 (DE3) expressing 

cell line (Agilent Technologies) to increase protein expression yields. This allows 

the formation of expressing cell line glycerol stocks, meaning that repeated DNA 

isolation from the XL1Blue cell line and transformation into the BL21 (DE3) cell 

line, prior to protein expression, can be avoided.  

The method for the transformation of DNA into BL21 (DE3) cells was 

identical to the transformation into the XL1Blue cell line (Section 3.2.2.1).  
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3.2.3. Production of apoA-I 

3.2.3.1. Recombinant protein expression 

Small overnight cultures of E.coli BL21 (DE3) cells, containing each of the apoA-I 

mutant plasmids, were prepared in LB media, containing 0.1 % ampicillin 

(Melford Biolabs), from the glycerol stocks produced in Section 3.2.2.2. The 

cultures were incubated at 37 °C overnight, with shaking. These cultures were 

then used to inoculate 2 L of LB media.  

The 2L cell culture was incubated at 37 °C until an OD600 of 0.6 had been 

reached. Once the OD600 was sufficient, a 1 mL sample of culture was removed, 

for analysis by gel electrophoresis.  

Protein expression was induced by addition of 1mM isopropyl β-D-

thiogalactoside (IPTG) (Melford Biolabs). Incubation continued at 37 °C, with 

shaking, for a further 5 hours following induction. Samples of the induced cells 

were taken every hour from the second hour-point for gel electrophoresis. 

 

3.2.3.2. Minimal media growth 

Transformed cells were also induced in minimal media, enriched with labelled 

glucose and ammonium chloride (CortecNet), as the sole 13C and 15N sources. The 

cells were grown as previously described in Section 3.2.3.1. Briefly, overnight 

cultures of the BL21 (DE3) cells, containing the desired apoA-I plasmid were 

prepared and used to inoculate 2 L of LB media, which was grown at 37 °C until 

an OD600 of 0.6 was reached.   

The cells were then pelleted by centrifugation at 5000 g and re-suspended 

in 1 L pre-warmed minimal media (88 mM Na2PO4, 55 mM KH2PO4, 1 mM MgSO4, 

0.3 mM ampicillin, 0.1 mM CaCl2, 0.03 mM thiamine HCl, 22 mM glucose, 19 mM 
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NH4Cl). The cells were left to adjust to the new media for 30 minutes, before 

induction with 1mM IPTG. Cells were incubated for a further 5 hours, to allow 

protein expression. 

 

3.2.3.3. Cell harvest and lysis 

Following the 5-hour induction, cells were harvested through centrifugation at 

5,000 g for 20 minutes. The cells were then re-suspended in 6 M guanidine 

hydrochloride cell lysis buffer (6 M GnHCl, 20 mM NaPO4 pH 7.4) and frozen at     

-20°C to aid lysis. The re-suspended cells were further lysed through sonication 

at 20 microns of power, for 5 cycles of 15 seconds on, 45 seconds off. The cells 

were kept on ice during this time to avoid overheating. Cell debris was removed 

through centrifugation at 43,000 g for 30 minutes, and the supernatant was 

collected.   

 

3.2.3.4. Immobilised metal ion affinity chromatography (IMAC) 

The fusion protein, containing the apoA-I (E2D) gene and the hexa-histidine tag, 

can be isolated from the other cell proteins via immobilised metal ion affinity 

chromatography (IMAC). The hexa-histidine tag binds with high affinity to a 

nickel sepharose resin, whilst the remaining cell proteins pass through the 

column in the flow-through. The his-tagged protein can then be washed and 

eluted with increasing concentrations of imidazole, which out-competes the 

hexa-histidine tag for nickel binding. 

A 20 mL HisTrap FF™ pre-packed Nickel Sepharose column (GE 

Healthcare) was set up on an AKTA Start system (GE Healthcare) running the 

UNICORN control software. The column was equilibrated with guanidine lysis 
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buffer until the conductivity and UV readings were constant, which was roughly 

5 column volumes.  

The cell lysis supernatant was loaded onto the column at a flow rate of 1 

mL/min and the flow-through was collected. The column was sequentially 

washed with (I) guanidine lysis buffer (II) 20mM NaPO4, 0.5M NaCl, pH 7.5 (III) 

20mM NaPO4, 0.5M NaCl, 25mM imidazole, pH 7.5 (IV) 20mM NaPO4 0.5M NaCl, 

50mM imidazole, pH 7.5, each at a flow rate of 5 mL/min, until the UV remained 

constant, roughly 3-4 column volumes of each. 10 mL fractions were collected at 

each stage for analysis by SDS-PAGE. The fusion protein was then eluted with 

20mM NaPO4, 0.5M NaCl 0.5M imidazole pH 7.5, running at 1 mL/min with 1 mL 

fractions collected. 

The concentration of elution fractions were measured using a Nanodrop 2000 

(Thermo Scientific) and those with high UV absorbance and protein 

concentration were pooled. A 50 μL sample of the eluted fractions was taken for 

analysis by gel electrophoresis.  

 

3.2.3.5. Dialysis and cleavage  

The elution fractions with the highest UV and concentrations were pooled in a 

cellulose dialysis membrane and dialysed against 50 mM Tris HCl, 1 mM 

benzamidine, 1 mM EDTA, pH 7.4 at 4 °C overnight.  

The dialysed protein was then filtered through a 0.2 μm syringe filter 

(Corning) to remove a white precipitate that had developed during dialysis. The 

filtered protein was then incubated in 45 % v/v formic acid (Sigma) at 55 °C for 5 

hours to cleave the hexa-histidine tag from the apoA-I, via the acid labile Asp-Pro 

sequence, introduced with the E2D mutation.  
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Following cleavage with formic acid, the protein was dialysed a further 2 

times into 50 mM Tris HCl, 1 mM benzamidine, 1 mM EDTA pH 7.4 at 4 °C for 16 

hours to remove the residual formic acid. A second filtration through a 0.2 μm 

membrane removed any precipitate that formed during the dialysis. Finally, the 

protein was dialysed into McIlvaine buffer (165 mM Na2HPO4, 17.6 mM citrate, at 

pH 7.0) overnight. This step was incorporated to enable apoA-I aggregation to be 

monitored over a large pH range (pH 2.2-8). The final protein product was then 

frozen at -20 °C.  

 

3.2.4. Characterisation of recombinant apoA-I 

3.2.4.1. SDS poly-acrylamide gel electrophoresis (PAGE) 

SDS-PAGE gels were run in order to determine the expression level and purity of 

apoA-I at various stages of the procedure. The proteins were separated using a 

15 or 17.5 % polyacrylamide gel in a Bio-Rad gel electrophoresis system. 18 μL of 

protein samples were added to 2 μL of 10x sample buffer (20 % 1 M Tris HCl, 40 

% glycerol, 2 % mercaptoethanol, 5 % 0.5 M EDTA, 4 % SDS and 29 % water). 

The samples were heated at 95 °C to aid denaturing, and loaded into a 5 % 

stacking gel, along with 5 μL of PageRuler™ Low Range Unstained Protein Ladder 

(Thermo Scientific). All gels were run at 200 V for roughly 60 minutes, prior to 

fixing with 25 % isopropanol and 10 % acetic acid in water. Gels were then 

stained with 10 % acetic acid and 6 % Coomassie Brilliant Blue G-250 overnight. 

The excess stain was removed with 10 % acetic acid. 
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3.2.4.2. Native poly-acrylamide gel electrophoresis (PAGE) 

Native PAGE gels were run in order to determine the native fold of apoA-I, in 

particular the oligomeric state of the wild type and cysteine mutants (K96C and 

R173C) in non-reducing conditions. The introduction of the cysteine residue into 

the apoA-I sequence gives rise to a free thiol group, which has the ability to form 

apoA-I dimers via disulphide cross links.  

The proteins were run on a NativePAGE™ 4-16% Bis-Tris gel (Life 

Technologies) with the NativePAGE gel running system.  Protein samples of 7.5 

μL were added to 2.5 μL of NativePAGE™ sample buffer and loaded onto the gel. 

The gel was run using NativePAGE™ Anode Buffer and NativePAGE™ Dark Blue 

Cathode Buffer at 150 V for 120 minutes with a NativeMark Unstained Protein 

Standard (Thermo Fisher).  

 

3.2.4.3. Mass spectrometry 

Electrospray ionisation mass spectrometry of apoA-I and apoA-I mutants was 

carried out in order to determine the identity of the proteins. This analysis was 

undertaken at the Institute of Integrative Biology at Liverpool University, 

assisted by Mr Mark Prescott. ApoA-I samples, in 30 % acetonitrile, were loaded 

into the nano-electrospray source of the mass spectrometer (Waters Q-ToF 

micro) at a rate of 250 μL/hour, via syringe.  The positive ion mass spectrum was 

collected, containing multiply-charged ions, and analysed by applying MaxEnt to 

the data, in order to determine a single mass for the peptide.  
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3.2.4.4. Gene sequencing  

Following transformation of the plasmid into E.coli XL1Blue cells for long-term 

storage, as described in section 3.2.2.1, it was necessary to isolate the DNA from 

the cells in order to sequence the plasmid. This was done using the GenElute™ 

Plasmid DNA Mini-Prep system (Sigma Aldrich). Overnight cultures of 5 mL were 

spun down at 12,000 g into a pellet. The pellet was then re-suspended in 200 μL 

re-suspension solution, prior to lysing the cells, using 200 μL of the GenElute 

alkaline-SDS based lysis solution. This was gently mixed before the lysis was 

stopped with 350 μL neutralisation solution. The solution was mixed again 

before centrifugation at 12,000 g for 10 minutes to pellet the cell debris. The cell 

lysis was then loaded onto a GenElute MiniPrep Binding Column and centrifuged 

at 12,000 g for 1 minute to remove any non-DNA material in the flow-through. 

The DNA bound to the column was washed with 750 μL of the diluted wash 

solution, prior to another centrifugation at 12,000 g. This removed any residual 

salts and other contaminants. Excess ethanol from the lysis buffer was removed 

by repeating the centrifugation step. DNA was eluted with 100 μL of molecular 

biology reagent water by centrifugation at 12,000 g. DNA samples were sent to 

Source-Bioscience for sequencing, followed by translation into amino acid 

sequence using the ExPASy Translate online server. The sequences for each of 

the five apoA-I species are shown in Appendix 3.  
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3.3. Results  

3.3.1. SLIM PCR mutagenesis  

3.3.1.1. PCR amplification of the DNA by the mutated primers  

SLIM PCR was used to introduce a series of single amino acid mutations into the 

apoA-I E2D sequence: G26R, L44Stop, L90P, K96C and R173C. Following the 

incubation of the paired primers in two separate reactions, and the first round of 

the PCR amplification, DNA samples of the two separate reactions for each 

mutant were taken.  

Agarose gel electrophoresis confirmed the PCR amplification of the DNA 

for the L44Stop, L90P and R173C in both reactions, as seen in Figure 3.5. The 

K96C mutant samples show amplification of the DNA in reaction 1, but not in 

reaction 2. The two reaction samples were combined, regardless of the lack of 

PCR product in reaction 2, and taken forward into transformations and 

subsequent DNA sequencing. This was due to the successful amplification of the 

other 3 mutants and presence of a band in reaction 1.   

 

3.3.1.2. Confirmation of mutation by gene sequencing 

Sequencing of the DNA from all apoA-I species was performed by Source-

Bioscience (Nottingham, UK), the sequences determined are shown in Appendix 

3. The sequence for apoA-I E2D, L44Stop, K96C and R173C came back as 

expected, confirming successful substitution of the desired nucleotides. However, 

the G26R and L90P mutant contained undistinguishable nucleotides, resulting in 

an incomplete amino acid conversion (Appendix 3, blue X). However, these 

indistinguishable codons are away from site of mutation, suggesting that the 

cause is due to a sequencing error, rather than an issue with the mutation. 
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Moreover, the G26R sequence contained codons that could not be distinguished 

in the linker region between the his-tag and the formic acid cleavage site, in 

particular, the Glu 2 residue that should have been mutated into an Asp residue 

to facilitate the formic acid cleavage.  

 

Figure 3.5 Agarose gel electrophoresis of apoA-I (A) L90P, K96C, R173C and (B) 

L44Stop DNA, after the first round of SLIM PCR. 
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3.3.2. ApoA-I expression and purification 

3.3.2.1. Expression of apoA-I 

Once the pNFX expression plasmid, containing the apoA-I E2D gene, had been 

successfully transformed into the E.coli BL21 (DE3) expressing cell line, the next 

stage involved large-scale expression in LB media, enriched with ampicillin. The 

methods outlined in Oda et al., (2001) and Ryan et al., (2003) had already been 

optimised to produce yields of up to 100 mg/L culture, which used an incubation 

temperature of 37 °C, and induction with 1mM IPTG at an OD600 of 0.6, for 3 

hours.  

Incubation times from 2 to 5 hours were monitored to determine if longer 

incubation after induction would lead to a further increase in apoA-I yield. This   

enhancement may be required when it comes to expressing apoA-I in minimal 

media. A sample of the cell culture taken prior to induction with IPTG (pre-

induction) and was run on an SDS PAGE gel to highlight the low level of apoA-I 

expression (Figure 3.6). This is essential as it confirms that cell growth can be 

carried out in LB media without expressing apoA-I fusion protein, prior to 

transfer into minimal media for induction of labelled protein expression. This 

will result in a negligible amount of unlabelled apoA-I being produced, whilst 

simultaneously maximising labelled apoA-I expression. 

The gel in Figure 3.6 also included samples of the cell culture taken at 

various time points after induction with IPTG and activation of the T7 promoter, 

controlling the expression of the apoA-I fusion peptide. Expression of a protein 

that migrates to the 25-30 kDa region of the gel, and consistent with the apoA-I 

fusion peptide (29642 Da), is dramatically increased after 2, 3, 4 and 5 hours of 

induction. The yield of apoA-I fusion peptide was sufficient for further work after 
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induction for 3 hours. However, induction for 5 hours led to a slightly denser 

band in the apoA-I fusion peptide region, suggesting an increase in yield, without 

increasing the expression of cellular proteins not under the LAC operon control. 

As such, it was decided that expression would continue with incubation for 5 

hours after induction.  

 

Figure 3.6 15% SDS PAGE gel of apoA-I fusion peptide expression prior to, and 

after induction for 2, 3, 4 and 5 hours with 1 mM IPTG.  

 

Following optimisation of the length of induction, expression of apoA-I was 

trialled using a range of IPTG concentrations, and at a reduced temperature. 

Figure 3.7 shows that at 30 °C, the lowest maintainable incubator temperature 

available in the lab, expression of apoA-I was still accomplished, albeit at a 

reduced level, compared to expression at 37 °C, across all IPTG concentrations 

and regardless of the induction time. This concluded that, if necessary, induction 
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of apoA-I expression could be carried out at a lower temperature but would 

result in a decreased yield. At 37 °C, the concentration of IPTG added made no 

difference to the protein yield.  

 

Figure 3.7 15 % SDS PAGE gel of the expression tests for apoA-I at 37 °C (A-C) 

and 30 °C (D-F) following induction with 0.1 mM (A/D), 0.5 mM (B/E) or 1 mM 

(C/E) IPTG and left to express protein for up to 5 hours.  

 

Next, expression of apoA-I in minimal media was investigated. Expression was 

induced at 37 °C with 0.5 or 1 mM IPTG. Expression was monitored overnight, in 

order to deduce whether leaving cells in minimal media overnight would affect 

the protein yield. Due to the slow growth of E.coli cells in labelled media, it is 

often common to leave expressing cells to grow overnight at reduced 

temperatures. Figure 3.8 shows the expression of apoA-I is induced with both 
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0.5 and 1 mM IPTG, independent of the concentration. As with Figure 3.6, 

incubation for 5 hours or longer resulted in a slightly higher concentration of 

protein expressed. This gel also confirms that if need be, cells can be induced in 

minimal media overnight without effecting the protein yield, or resulting in 

protein fragmentation.  

 

 

Figure 3.8 15 % SDS PAGE gel of the expression tests for apoA-I production in 

minimal media at 37 °C, monitored overnight following induction of protein 

expression with 0.5 or 1 mM IPTG.  
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3.3.2.2. Expression of apoA-I mutants  

The methodology for the apoA-I mutant fusion peptide expression, followed that 

of the apoA-I E2D procedure outlined in Oda et al., (2001) and Ryan et al., (2003), 

with an increased induction time of 5 hours. 

Upon induction with IPTG, the L90P, K96C and R173C mutants all 

experienced increased expression of a protein, which migrated to the expected 

regions on an SDS gel for the mutated apoA-I fusion peptide, (Figure 3.9). 

However, the expression level of the mutants was considerably less compared to 

the native protein.  

No increase in expression of a protein corresponding to the apoA-I 

L44Stop was observed following induction (Figure 3.9 lanes 2/3). This could 

have been due to the small size of the apoA-I (1-43) fusion peptide (roughly 

7,300 Da), running poorly on the 15 % gel, or a poor staining result, again due to 

its small size in comparison to the remainder of the proteins stained in the gel. 

Figure 3.9 shows that any proteins running below 10 kDa, including the protein 

marker, are poorly resolved. Expression of this mutant did not go any further, 

due to time restraints on the project. However, if this were to continue, a full 

expression test would be required to determine suitable conditions for 

expressing short recombinant peptides, or attempt an alternative expression 

system.  
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Figure 3.9 15% SDS PAGE of apoA-I L44Stop, L90P, K96C and R173C mutants 

prior to induction and after 5 hours incubation, following induction with 1 mM 

IPTG.  

 

3.3.2.3. Immobilised metal ion affinity chromatography 

Following expression, cell harvesting, lysis and the removal of cell debris, the 

lysis supernatant was loaded onto a hisTrap column, using an AKTA StartTM 

purification system. This system allows the UV monitoring of the material leaving 

the column at 280 nm, which is roughly proportional to the protein 

concentration. 

After collecting the flow-through, which produced a high UV absorbance, 

consistent with the elution of large quantities of non-binding cellular proteins 

(Figure 3.10: Flow-through), an initial wash stage with the guanidine lysis 
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buffer removed a large concentration of impurities (Figure 3.10: Wash 1). The 

subsequent wash stages with sodium phosphate buffer, containing 0 %, 5 % and 

10 % of a 500mM imidazole buffer (0, 25 and 55 mM, respectively), removed 

additional non-specific binding proteins, shown by peaks in the UV absorbance 

(Figure 3.10: Wash 2, 3 and 4). 

Elution with 500 mM imidazole buffer resulted in a large spike in UV, 

consistent with the elution of the his-tagged apoA-I (Figure 3.10 Elution). This 

was collected in 1 mL fractions and the fractions containing the highest protein 

concentration were pooled. Combined fractions underwent dialysis into Tris 

buffer, in order to remove the imidazole. 

Samples of fractions 3, 5, 10, 17 and 22 coinciding with the flow-through, 

wash 1, wash 2, wash 3 and wash 4, were taken and underwent ethanol 

precipitation to remove guanidine, prior to analysis by SDS-PAGE (Figure 3.11). 
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Figure 3.10 Chromatograph of the labelled apoA-I fusion peptide purification 

using a nickel IMAC his-trap column. The UV absorbance (blue), 500mM 

imidazole buffer ratio (pink), and fraction numbers (red) are included in this 

diagram, along with a description of each step.  

 

Samples of the flow-through and various wash stages for the labelled apoA-I 

purification were run on SDS PAGE gel electrophoresis to determine what 

protein content was being removed from the column at each step.  
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Figure 3.11 indicates a high level of impurities present in the flow-through, as 

expected, due to the high UV absorbance seen in Figure 3.10. Wash 1, with 

guanidine, removes non-specifically binding proteins, associated with the apoA-I 

fusion protein, whilst wash 3 and 4, containing low concentrations of imidazole, 

remove proteins that are bound weakly to the column, presumably via the 

proteins native histidine residues. This results in a much purer elution profile. 

 

 

 

Figure 3.11 15% SDS PAGE of samples from each of the stages of the his-Trap 

purification of labelled apoA-I. Samples of the lysis, flow-through, wash 1, wash 2, 

wash 3, wash 4 and the 2 elution peaks with the highest UV absorbance were 

selected.  
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3.3.2.4. Cleavage of the fusion peptide 

Following incubation with formic acid for 3 hours, gels of the cleavage products 

identified 2 bands in close proximity (gel not shown), similar to that shown in 

Figure 3.12 for the 2.5 hour sample. These 2 species were believed to be the 

isolated apoA-I (2-243) product, and the fusion peptide that has not undergone 

cleavage of the his-tag. It was unclear at this time whether the formic acid 

concentration, incubation time or temperature was leading to incomplete 

cleavage. Initially, samples were incubated in 45 % formic acid at 55 °C 

overnight, with samples taken at various time points. This experiment confirmed 

that the length of the incubation period was the cause of the incomplete cleavge. 

3 hours was shown not sufficient to cleave all of the fusion peptide. After 2.5 

hours, 2 species of protein are detected, presumed to be the fusion peptide and 

cleaved apoA-I. However, beyond 5 hours, only a single product with the smaller 

molecular weight is detected without any additional protein degradation. As 

such, all future formic acid treatment steps were carried out for 5 hours.   

 

Figure 3.12 15 % SDS PAGE of samples taken at various time points, during the 

incubation of the apoA-I fusion peptide in 45 % formic acid.  
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3.3.3. ApoA-I characterisation 

Incubation of proteins in 45 % formic acid leads to the cleavage of peptides 

following aspartic acid residues, in particular, between the aspartic acid and 

proline residues, introduced into the apoA-I N-terminus via the E2D mutation. 

This results in the release of the hexa-histidine tag connected to the linker region 

and the apoA-I peptide, minus the first 2 residues. The sequence apoA-I (3-243) 

will be referred to as apoA-I or the wild type protein for the remainder of this 

thesis, unless stated otherwise. All additional mutants produced, such as G26R, 

L44Stop, L90P, K96C and R173C all carried the same E2D mutation to promote 

formic acid cleavage.  

 

3.3.3.1. SDS PAGE  

SDS PAGE analysis of the purified apoA-I, labelled apoA-I, apoA-I K96C and apoA-

I R173C mutants confirmed a single protein product for each mutant, which 

migrated to a region on the gel with a molecular weight of approximately 25 kDa 

(Figure 3.13). This is in agreement with the predicted molecular weight of 

27834 Da, 27809 Da and 27781 Da for the wild type apoA-I, the K96C and R173C 

mutants, respectively.  The gel appears to show multiple faint bands for each 

protein product. However, since the same occurs for the protein marker, and 

individual gels confirm the purity of each species, this increased bandwidth is 

presumed to be caused by uneven running of the gel, or poor staining.  

The apoA-I L90P mutant was also run on an SDS PAGE gel as shown in 

Figure 3.14. The apoA-I (L90P) mutant produced a band in the 25 kDa region 

corresponding to full-length apoA-I, consistent with the predicted mass of the 

peptide (27817 Da). However, unlike the other mutants, apoA-I L90P also 
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produced two additional bands in the 15 and 10 kDa regions (Figure 3.14). At 

this point, it was noticed that the introduction of the L90P mutation produced a 

second Asp-Pro acid labile bond. Upon incubation with formic acid to cleave the 

N-terminal his-tag, an additional cleavage of the peptide between residues Asp 

89 and Pro 90 would result in the production of 2 apoA-I fragments, 3-89 and 90-

243, with masses of 10005 and 17847, respectively, corresponding to the 2 

additional bands on the apoA-I L90P gel. Despite the interest in the N-terminal 

region of apoA-I, the purification of the apoA-I (3-89) peptide was not continued, 

due to time restraints on the project.  

 

 

Figure 3.13 SDS PAGE analysis of apoA-I and apoA-I mutants, showing the 

protein purity following immobilised metal-ion chromatography and cleavage of 

the hexa-histidine tag with formic acid.  
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Figure 3.14 17.5 % SDS PAGE of apoA-I (L90P), highlighting the region 

associated with full-length apoA-I L90P, and fragments in the 15 and 10 kDa 

regions corresponding to apoA-I (3-89) and (90-243).   

 

3.3.3.2. Native PAGE 

Native PAGE gels of apoA-I, and the cysteine K96C and R173C mutants were run 

in order to determine the oligomeric state of the proteins. Native apoA-I 

produces a single band in the 25-30 kDa region, confirming the protein is in its 

monomeric state (Figure 3.15). Introducing a novel cysteine residue into the 

apoA-I sequence could lead to the formation of apoA-I disulphide-linked homo-

dimers. ApoA-I K96C appears to remain monomeric, showing a similar banding 

pattern to wild type apoA-I. In the apoA-I R173C sample, a main band in the 25-

30 kDa region is present and suggests that the majority of the protein is in the 

monomeric state. However, unlike the wild type and apoA-I K96C species, the 
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R173C mutant also produces an additional band in the 66 kDa region, which is 

likely caused by partial dimerisation of apoA-I (Figure 3.15). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15 4-16 % Native PAGE gel of wild type apoA-I and the apoA-I K96C 

and R173C cysteine mutants. 

 

3.3.3.3. Mass spectrometry 

In order to confirm the identity of the purified product as apoA-I, samples were 

analysed by electrospray ionising mass spectrometry. ApoA-I (2-243) has a 

predicted intact mass of 27834 Da. Figure 3.16 shows an intact peak of 27837 

Da for apoA-I, in concurrence with the predicted masses and sufficient to confirm 

the identity of the protein as apoA-I. Despite not matching with the predicted 

mass exactly, it is closer than the mass published in Ryan et al., (2003) of 27816 

Da. 
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Although the gene sequence of the mutant apoA-I species confirmed successful 

mutation, none of the mutant plasmids produced here could be expressed as 

proteins corresponding with the intact predicted masses, according to 

electrospray ionisation mass spectrometry. ApoA-I G26R has a predicted mass of 

27933 Da, but the mass spectrometry detected a peak mass of 28557 Da (Figure 

3.17). The gene sequencing for this mutant did highlight 6 codons that it could 

not detect as amino acids, due to missed nucleotides, 5 of which would be 

present in the cleaved 3-243 residue peptide. It is possible that these 

undistinguishable amino acids do not match up to the native sequence, and as 

such have resulted in a mass higher than predicted.     

ApoA-I K96C peptide has a predicted mass of 27809 Da. However, the 

mass spectrometry detected a main peak at 27888 Da (Figure 3.18). ApoA-I 

R173C has a predicted average mass of 27781 Da, but the mass spectrometry 

returned a peak mass of 18207 Da (Figure 3.19). Despite a much lower mass 

than expected, there is no reason to suggest that cleavage of the apoA-I (R173C) 

peptide occurred. Both the K96C and R173C mutant plasmid DNA returned a 

gene sequence consistent with only the intended single amino acid mutation into 

the native apoA-I species.   

ApoA-I L90P has a predicted mass of 27818 Da for the intact peptide, but 

as discussed in section 3.3.3.1, this mutation leads to the cleavage of the peptide 

into fragments 3-89 and 90-243. These fragments have intact masses of 10005 

Da and 17847 Da, respectively. The smaller of these fragments was detected via 

mass spectrometry as a major peak (10005 Da), whilst only a small contribution 

came from a mass of 17849 Da (Figure 3.20). Cleavage of the apoA-I L90P would 

result in equal ratios of the 3-89 and 90-243 peptide present in solution. 
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However, despite a band appearing on the SDS gel, the low intensity of the peak 

corresponding to the apoA-I (90-243) peptide suggests that the majority of the 

peptide is no longer in solution. 

 

3.3.3.4. Detection of labelled apoA-I. 

Uniformly labelled apoA-I was produced to enable solid-state NMR analysis of 

the structure of apoA-I. The expression of a peptide consistent with apoA-I was 

successful, as shown in Figure 3.16, although the only way to determine the 

protein produced had incorporated the 13C was to run a 1D spectrum of the 

lyophilised labelled apoA-I at pH 7. Figure 3.21 confirms the intensity of the 13C 

signal is sufficient to allow structural studies to be carried out, thus confirming 

that the expression in minimal media was successful.  
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Figure 3.21 Preliminary 1D 13C DP MAS spectrum of labelled apoA-I, confirming 

the expression of apoA-I in minimal media enriched with 13C glucose produced a 

uniformly labelled protein.  
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3.4. Discussion 

The research carried out in this thesis required large quantities of apoA-I in 

order to allow characterisation of conditions that promoted the aggregation of 

apoA-I into insoluble, amyloid-like aggregates. Isotopically labelled apoA-I was 

also required for structural studies by SSNMR. There is also evidence to suggest 

that chemically synthesised proteins can behave differently to those produced 

via recombinant expression methods, in particular in their aggregation potential 

(Finder et al., 2010). As such, expression of apoA-I, adapting the previously 

published methods of Oda et al., (2001) and Ryan et al., (2003) was utilised and 

modified to allow production of 13C and 15N uniformly labelled apoA-I.  

This chapter aimed to ensure that sufficient apoA-I could be produced via 

a bacterial expression system to enable large-scale production of apoA-I. Figure 

3.13 confirms the purity of the final apoA-I product that was produced with a 

yield of roughly 80 mg per litre of culture. This system was successfully modified 

to incorporate protein induction in minimal media solution, containing 13C 

glucose and 15N ammonium chloride as sole carbon and nitrogen sources. This 

resulted in the production of uniformly labelled 13C and 15N apoA-I with a yield of 

22 and 29 mg per litre of culture respectively, which is suitable for NMR studies.  

Manipulation of the gene DNA, through SLIM PCR meant that mutant plasmids 

corresponding to L44Stop, L90P, K96C and R173C could be produced and used 

for protein expression. Despite all mutants forming plasmids with the correct 

amino acid sequence (Appendix 3), only the apoA-I G26R, L90P, K96C and 

R173C were expressed under the same experimental procedure as the wild type 

apoA-I. From those that were expressed, only the G26R, K96C and R173C mutant 

were able to be isolated as pure protein. The introduction of the L90P mutant 
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produces an Asp-Pro sequence at residues 89-90, which is acid labile. The use of 

formic acid cleavage, in order to cleave the apoA-I mutant protein from the 

bound his-tag, degrades the apoA-I L90P protein into fragments, corresponding 

to residues 2-89 and 90-243. These fragments were detectable in a 17.5 % SDS 

PAGE gel (Figure 3.14) and a peptide with a mass corresponding to residues 3-

89 was detected in the mass spectrometry.  

Despite the apoA-I G26R, K96C and R173C mutant plasmids containing 

the correct DNA sequence, and the expression of a protein, which migrated to the 

area associated with apoA-I on an SDS page gel, mass spectrometry failed to 

identify any of the mutant apoA-I species by their mass. The use of the apoA-I 

mutants in the remainder of this project was limited, with only their aggregation 

propensities compared to the wild type protein, and structural characterisation 

was not attempted, due to a lack of time.  

Future work would need to focus on modifying the expression and 

purification procedure, in order to facilitate the production of the mutants listed. 

SLIM PCR successfully produced the mutant plasmids, as determined by DNA 

sequencing, and uptake of the plasmids into E.Coli cells was confirmed, via 

selection of colonies that were resistant to ampicillin. This implies that 

somewhere between the expression procedure and the final dialysis of the 

purified and cleaved apoA-I mutants into McIlvaine buffer, there has been an 

error that did not occur in expression of the wild type apoA-I and labelled apoA-I.  

 

3.4.1. Production of N-terminal apoA-I peptides 

For the N-terminal 1-43 peptide, expression of the full-length peptide with a 

cleavage site mutated into the sequence may be more successful than introducing 
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a stop codon into the apoA-I sequence. Given the serendipitous observation that 

the introduction of the proline residue in position 90 lead to the cleavage of the 

intended L90P mutant peptide into apoA-I (3- 89) and (90-243), the arginine in 

position 49 could be mutated into a proline residue, creating an Asp-Pro formic 

acid cleavage site at residues 48-49. After treatment with formic acid, a step that 

would still be necessary to remove the his-tag, apoA-I peptides corresponding to 

residues 3-48 and 49-243 would be produced. The apoA-I (3-48) peptide could 

then be separated from the his-tag and the remainder of the apoA-I 90-243 

sequence by size exclusion chromatography, avoiding the loss of the short 

peptide through the dialysis membrane, which has a molecular weight cut-off of 

14 kDa.  

Following on from the L90P mutant, looking into the ability of the apoA-I 

(3-89) peptide to form amyloid and its structure upon aggregation would be 

interesting, given the increased propensity of the first 100 residues in the N-

terminus to aggregate into amyloid species. Here is presented a method by which 

a peptide corresponding to the majority of the apoA-I N-terminus can easily be 

produced, in an expression system that can be modified to produce uniformly 

labelled protein. Alternatively, cleavage of the N-terminal tag could be carried 

out with thrombin protease, in order to avoid the addition of formic acid, since 

the apoA-I pNFX plasmid also contains a thrombin cleavage sequence. This would 

also result in the production of the entire apoA-I (1-243) peptide, rather than the 

3-243 sequence.  

Successful expression and purification of apoA-I facilitated the analysis of 

apoA-I aggregation in chapter 3, the structural studies of the amyloid-like 

material in chapter 4 and preliminary inhibition experiments in chapter 5.  
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4. Determination of the factors responsible for apoA-I 

aggregation 

4.1. Introduction 

4.1.1. ApoA-I amyloid 

Current understanding of the aggregation of apoA-I into amyloid is that the 

protein can become deposited within human arteries as either N-terminal 

fragments of apoA-I, or as the full-length protein. Familial apoA-I amyloidosis is 

associated with N-terminal fragments of mutant apoA-I, which become deposited 

within major organs (Ramella et al., 2012; Das et al., 2016; Rosú et al., 2015; Sipe 

et al., 2014; Monti et al., 2011; Chan et al., 2015). Alternatively, acquired 

amyloidosis is linked to the deposition of full-length protein as amyloid within 

atherosclerotic plaques (Ramella et al., 2011; Chan et al., 2015; Mucchiano, 

Häggqvist, et al., 2001). Deposition of full-length apoA-I as insoluble aggregates 

reduces its ability to form functioning HDL, leading to a reduced atheroprotective 

function and a potential increased pathogenic fibril load (Ramella et al., 2011). 

Cleavage of the N-terminus of apoA-I can occur when the protein undergoes a 

transition from its lipid-bound to lipid-free structure (Mucchiano, Jonasson, et al., 

2001), but may also occur after the deposition of full-length protein.  

The presence of myeloperoxidase-oxidised lipid-free, full-length apoA-I in 

atherosclerotic plaques has been reported (Chan et al., 2015; Sigalov and Stern, 

2001). This may be significant because oxidation of methionine residues, in 

particular Met-86 and Met-148, promotes the aggregation of lipid-free apoA-I 

into amyloid. In serum, oxidised apoA-I can account for up to 25 % of circulating 

apoA-I, although the extent of oxidation of each individual protein can vary from 
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1 to all 3 methionine residues (Wong et al., 2010). Even though oxidative 

cleavage of apoA-I has been reported, the chemical oxidation methods described 

by Chan et al. (2015) and Sigalov and Stern (2001) avoid oxidative cleavage.  

Amyloid formation by apoA-I in vitro occurs under conditions that reflect 

environments experienced by lipid-free apoA-I at the pro-inflammatory sites of 

atherosclerotic plaques (Ramella et al., 2012). Such conditions include oxidation, 

either chemically or enzymatically (Chan et al., 2015); interaction with GAGs, in 

particular heparin in the circulatory system, as discussed in section 1.1.5.1 

(Ramella et al., 2012; Madine et al., 2013); and acidic pH (Ramella et al., 2011; 

Raimondi et al., 2011), caused by the release of arachidonic acid during platelet 

activation in an immune response against atherosclerotic plaques (Ross, 1999a). 

The aim here is to produce a more detailed description of the factors that 

influence apoA-I aggregation than work previously published, and to identify 

suitable conditions to produce aggregates for structural analysis in Chapter 5. 

Here follows a brief description of the techniques used in this study, also 

summarised in Table 4.1 for each of the amyloid structures.   

 

Table 4.1 Analytical techniques used to study amyloid proteins (Li et al., 2009).  

 

Native 
Monomer 

Small 
Oligomers 

Intermediate 
Protofibril Amyloid Fibril 

Atomic Structure Solution-state NMR   Solid-state NMR 

  Circular Dichroism Thin Film CD 

Secondary     X-ray Fibre Diffraction  

Structure     Thioflavin T Assay 

    Transmission Electron Microscopy 

Fibril   Atomic Force Microscopy  

Morphology  Intrinsic Fluorescence   

  Gel electrophoresis     

Assembly Size Dynamic Light Scattering   

  Mass spectrometry      
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4.1.2. Biophysical Techniques 

4.1.2.1. Thioflavin T 

A technique widely used to study the aggregation of proteins into amyloid 

species in vitro is Thioflavin T (ThT) fluorescence. ThT is a benzothiazole salt dye 

that selectively stains amyloid fibrils, due to its high affinity binding to cross-β 

strand ladders, the solvent exposed grooves between parallel β-sheet structures 

(Biancalana and Koide, 2010; Coelho-Cerqueira et al., 2014; Nelson et al., 2005).  

The restricted oscillations of the benzothiazole and aminobenzoyl rings, upon 

binding to consecutive β-strands, causes rotation of the bond outlined in Figure 

4.1 (Girych et al., 2014; Chan et al., 2015). This causes a red shift in the 

fluorescent properties of the molecule with increased emission at 482 nm, when 

excited at 450 nm (Wolfe et al., 2010; LeVine, 1999; Girych et al., 2014). This 

allows quantification of the extent of amyloid formation, and measurement of 

aggregation kinetics.  

 

 

 
 

 

 

Figure 4.1 Chemical structure of Thioflavin T, highlighting the bond that rotates 

upon binding to β-sheet structures (red), causing a red shift in the compound’s 

fluorescent properties, with enhanced emission at 482nm when excited at 

450nm.  
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Figure 4.2 gives a typical ThT fluorescence curve in the presence of amyloid 

forming peptides, derived from incubation of ThT with the amyloidogenic N-

terminal apoA-I G26R mutant (Girych et al., 2014). This curve shows the main 

stages in the nucleation-dependent polymerisation mechanism, which is common 

among most amyloid species. The process shown below does not include any 

secondary nucleation stages, which would produce an additional increase, 

similar to the elongation phase (Cohen et al., 2013).  

 

Figure 4.2 ThT fluorescence increase upon incubation with amyloidogenic apoA-

I 1-83 (G26R) at 0.9 μM. Image modified from Girych (2014) to highlight the 

nucleation-dependent growth mechanism.  
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Using ThT does have its disadvantages, including its reduced binding to β-sheets 

at acidic pH (Li et al., 2009) and the ability to promote the aggregation of amyloid 

species, as shown for α-synuclein (Coelho-Cerqueira et al., 2014). As such, 

studies of apoA-I incubated in the presence of ThT, allowing real-time changes in 

the ThT fluorescence to be monitored, may not be reliable and should be 

complemented with single point measurements. In single point experiments ThT 

is added after the aggregation end point, so as not to interfere with the 

aggregation process. Doing so will also allow assays with longer incubation 

periods to be measured, as real-time measurements are limited to approximately 

6-7 hours at 37 °C, before solvent evaporation affects the fluorescence signal.  

 

4.1.2.2. Congo red 

Congo red is a dye which selectively binds to the β-sheets of amyloid species 

(Puchtler et al., 1962) with high affinity. The exact interaction between Congo 

red and amyloid is currently unknown. Nevertheless, it is assumed that the dye 

binds to the cross-β structures, similar to how ThT interacts with amyloid.  Upon 

binding to amyloid, Congo red’s absorbance spectrum changes, with a shift in the 

maximum absorbance from 490 nm to 540 nm, causing the amyloid species to be 

stained red when visualised under a microscope. This can be measured both 

qualitatively, for determining the presence of amyloid in tissue samples; and 

quantitatively, in order to determine the amount of amyloid formed using in vitro 

experiments (Klunk et al., 1999b; Li et al., 2009). Upon cross-polarisation of 

microscope lenses, the Congo red stained amyloid exhibits a green birefringence, 

an example of which is shown in Figure 4.3.  
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Figure 4.3 Methionine oxidized apoA-I aggregates stained with congo red and 

visualised with an uncrossed polariser  (A) and after crossing by 90 ° Image 

taken from Wong et al., (Wong et al., 2010)wong.  

 

4.1.2.3. Intrinsic Fluorescence  

 Intrinsic fluorescence of specific amino acids within a protein, namely 

tryptophan, phenylalanine, and tyrosine, have been used to determine whether 

or not a change in the environment of these residues occurs during self-assembly 

of the peptide (Vivian and Callis, 2001; Andrews and Forster, 1972). 
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Internalisation of residues to a less polar environment within the β-sheet 

structures of amyloid can give rise to a blue shift in the spectrum, whereas the 

inverse results in a red shift. Fluorescence excitation of tryptophan residues at 

280 nm gives rise to emission maximum at around 355 and 335 nm for solvent 

exposed and hydrophobic environments, respectively (Das et al., 2016; 

Touchette et al., 2010). The location of tryptophan residues, in close proximity to 

either acidic or basic residues, can also alter the maximum emission wavelength. 

An acidic residue near the pyrrole end or a basic residue near the benzene end of 

tryptophan will result in a red shift of the fluorescence spectrum, with the 

inverse configuration producing a blue shift (Vivian and Callis, 2001). Acidic and 

basic residues surrounding tryptophan residues can also result in the quenching 

of fluorescence signals.  

 

4.1.2.4. Morphology of amyloid 

Amyloid fibrils have a highly characteristic morphology on the nano-scale, 

consisting of networks of long un-branched fibrils, roughly 10 nm in diameter 

(Serpell, 2000; Serpell, Sunde, et al., 2000), described in detail in section 1.4.1. 

TEM is the most commonly used microscopic technique for studying the 

morphology of amyloid fibrils and intermediate oligomeric species. In addition, 

AFM is unique in its ability to detect and measure dimensions of substrates 

adsorbed onto mica surfaces. By detecting how far the cantilever deflects as it is 

traced across the surface, the height of the sample from the mica surface can be 

measured, and the topography determined (Harper, Wong, et al., 1997). A 

combination of these techniques can be used to determine the morphology of 

insoluble protein aggregates, including their length, width and height. 
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4.1.2.5. X-ray diffraction 

X-ray diffraction patterns can be used to study the secondary structural content 

of amyloid deposits, without the requirement for high-quality crystal structures 

that can make x-ray crystallography difficult. All X-ray diffraction patterns of 

amyloid contain broad reflections at roughly 10 Å for the equatorial region and 5 

Å for the meridional reflections. These values are characteristic of the spacing 

between the β-sheet layers (Figure 1.11B) and individual β-sheet motifs (Figure 

1.11A), respectively, as discussed in Section 1.4.3 and shown in Figure 1.10. 

These values can vary, depending on the protein sequence, due to the side chain 

interactions (Jahn et al., 2010; Li et al., 2009), but are present in all amyloid 

species. 

 
4.1.3. Aims 

The main aim of this chapter of research was to establish suitable conditions for 

promoting the aggregation of apoA-I into amyloid species, focusing on the effects 

of pH, heparin, and methionine oxidation.  

Previous reports have observed that acidification of full-length apoA-I 

induces amyloid formation, which is enhanced in the presence of heparin, as well 

as noting the aggregation-inducing effects of methionine oxidation on apoA-I. 

Here, these conditions are examined in further detail, with the aim to determine 

whether any differences can be detected between the aggregates formed in the 

absence and presence of heparin. Upon confirmation of amyloid formation under 

these conditions, it will be essential to confirm that scaling up of the amyloid 

formation can be achieved, allowing structural studies using circular dichroism 

and solid-state NMR.  
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4.2. Methods  

Unless otherwise stated, all samples are solubilised in a phosphate/citrate 

(McIlvaine) buffer, containing 165 mM Na2HPO4 and 17.6 mM citrate and 

adjusted to the correct pH, using concentrated HCl (37%) or 5M NaOH, giving a 

buffer range of pH 2.2 to pH 8.0 (McIlvaine, 1921). This buffer was used by 

Ramella (2011) in the study of apoA-I across a pH range of 4 to 8. This work 

showed that, when apoA-I was incubated in McIlvaine buffer at neutral pH, the 

protein was stable and avoided aggregation. However, at acidic conditions, in 

particular pH 4, the protein readily aggregated into insoluble material (Ramella 

et al., 2011). Throughout this thesis, apoA-I was routinely assayed at 36 μM, 

equivalent to 1.0 mg/ml, whenever possible. Lower concentrations of apoA-I 

were used in some of the ThT experiments, in order to reduce the quantity of 

protein required. 

 

4.2.1. Quantification of protein solubility  

ApoA-I at 1 mg/ml (36 μM) was incubated in the absence and presence of a 2-

fold molar excess (72 μM) of heparin (14-15 kDa, Iduron), over a range of pH 4 to 

pH 8, at 37 °C for 3 days. Samples were then centrifuged at 13,400 rpm in a bench 

top centrifuge and the supernatant removed. The soluble protein concentration 

of the supernatant was measured in triplicate on a Thermo Scientific Nanodrop 

2000, which takes absorbance measurements at 260 nm (RNA contribution) and 

280 nm (protein contribution). These measurements were then used to calculate 

the percentage of starting material that had converted to insoluble aggregates 

and been removed by sedimentation.   
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4.2.2. Thioflavin T fluorescence 

For all assays, the fluorescence of ThT (Sigma-Aldrich) was measured using a 

Flexstation 3 Microplate Reader (Molecular Devices Ltd.) in a 96-well clear-

bottomed, black-walled microplate (Nunc), with the fluorescence read from 

below the plate, taking an average of 6 reads. ThT was excited at 450 nm and the 

emission signal recorded at 482 nm (Wolfe et al., 2010). The assay was 

conducted at 37 °C with agitation of the sample, regardless of whether it was a 

continual read or end-point measurement (see below).  

Continual read experiments were carried out on apoA-I, in the presence of 

ThT at all times. Fluorescence measurements were taken from triplicate samples 

of 20 μM ThT incubated with apoA-I at 7.2 μM every 30 s for 10 minutes prior to 

a change of conditions (see results section for specific details on each 

experiment). Measurements were then taken every 30 seconds for 10 hours, or 

until evaporation occurred. All experiments were carried out at 37 °C, with 

agitation of the plate for the duration of the experiment.  

In end-point experiments, 1 mL of apoA-I (36 μM) was incubated in sealed 

eppendorf tubes at 37 °C with agitation for 3 days, in the absence of ThT. After 

this time, 196 μL of the sample was removed and added to 4 μL of ThT (1 mM 

stock in McIlvaine buffer), to give a final ThT concentration of 20 μM, and total 

fluorescence was measured from triplicate samples and recorded as the total 

fluorescence (FT). The remaining ThT-free sample was centrifuged and the 

supernatant removed. Protein concentration of the supernatant was measured, 

according to Section 4.2.1, and 196 μL was added to 4 μL (20 μM final 

concentration) ThT. Fluorescence measurements were taken in triplicate and 

recorded as the supernatant fluorescence (FS).  
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The above procedure was adapted to examine apoA-I under various conditions. 

These included determining the effects of pH over a range of pH 4 – 8, 

determining the effects of apoA-I concentration, the role of heparin, oxidation of 

apoA-I methionine residues, and mutations in the apoA-I sequence. The protein 

concentration used, the measurement type (continual or end point), and the 

change of conditions administered during the continual read experiments will be 

described in the results section.  

 

4.2.3. ApoA-I methionine oxidation 

Approximately 25 % of circulating apoA-I contains at least one of its three native 

methionine residues oxidised, as a result of myeloperoxidase induced oxidation, 

or interacting with oxidised lipids (Wong et al., 2010). Oxidative modifications to 

apoA-I have been shown to induce amyloid formation. ApoA-I was dialysed into 

10 mM NaH2PO4 pH 7.5 overnight, before incubation with H2O2 (1000 fold molar 

excess), overnight, at 37 °C. The sample was then dialysed back into 10 mM 

NaH2PO4 at pH 7.5 twice, in order to remove any excess hydrogen peroxide.  

 

4.2.4. Congo red  

ApoA-I at 18 μM was incubated at pH 4 and pH 7 alone and in the presence of 36 

μM heparin (14-15 kDa, Iduron), for 3 days with agitation at 37 °C. Samples were 

mixed with 90 μM Congo red dye and left for 24 hours at room temperature. 

Single drops were placed onto glass slides and allowed to dry at room 

temperature, before viewing with a Zeiss axioscope A1 microscope in 

transmission mode, with 10x objective lens and polarised lenses at 0 ° for the 

uncrossed measurements, and 90 ° for the crossed measurements.  
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4.2.5. Intrinsic fluorescence of tryptophan residues 

Wild type apoA-I contains 4 tryptophan residues at positions 8, 50, 72 and 108. 

ApoA-I (18 μM) at pH 4 and pH 7, in the absence and presence of heparin (36 

μM), and oxidised apoA-I (18 μM) at pH 7.5 and pH 6 (10mM Na2HP04), were 

incubated at 37 °C, with agitation. Fluorescence spectra from 300 to 400 nm 

were collected on a Cary Eclipse spectrometer, with excitation at 279 nm and a 

band pass of 1 nm, immediately and 1 hour after preparation of the samples.  

 

4.2.6. Transmission electron microscopy 

ApoA-I (36 μM) at pH 4 and pH 5, in the absence and presence of heparin (72 

μM); oxidised apoA-I (36 μM) at pH 6, and apoA-I (46-59) at pH 4, were 

incubated at 37 °C, with agitation for 3 days. Samples were centrifuged and the 

pellets washed several times with distilled water to remove buffer salts. Pellets 

were then diluted to 18 μM, before 10 μL was loaded onto carbon-coated copper 

grids and left for 2 minutes. Excess sample was removed by blotting. The grid 

was then stained by inverting it onto a droplet of 0.2 % uranyl acetate. After 30 

seconds of staining, the grids were blotted and left to dry for 1 hour. The sample 

was then visualised on a Tecnai 10 electron microscope at 100 kV.  

 

4.2.7. Atomic force microscopy  

ApoA-I (36 μM) at pH 4, in the absence and presence of heparin (72 μM), was 

incubated at 37 °C, with agitation for 3 days. Samples were diluted to 18 μM and 

loaded onto freshly cleaved mica, prepared through the removal of a single layer 

of tape from the mica surface. The sample was left to adhere to the membrane 

overnight, followed by washing with distilled water to remove any buffer salts. 
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AFM was performed with a Keysight Technologies (Santa Rosa, Ca, USA) 5500 

series instrument fitted with a 90x90 μm scanner. All images were acquired in 

acoustic alternating contact (AAC or “tapping”) mode, using etched silicon probes 

(PPP-NCL, Keysight), with nominal fundamental resonance frequencies of 190 

kHz.  These 225 μm long cantilevers have a nominal force constant (k) of 48 N/m, 

a top height of 10-15 nm, and a tip radius of <10 nm. PicoView (V1.2, Keysight) 

was used to control the AFM and capture the images. Height (topographic), 

amplitude, and phase shift images were recorded simultaneously over an area of 

0.5 x 0.5 μm, at a frequency of 160 kHz, a scan rate of 0.5 lines/sec, and a setpoint 

(Asp) of 2.2 V. Analysis of images was performed using Gwyddian V2.44. 

 

4.2.8. X-ray diffraction  

ApoA-I (36 μM) at pH 4, both in the presence and absence of heparin (72 μM), 

was incubated at 37 °C, with agitation for several days. The fibrils were pelleted 

through centrifugation at 5,000 rpm into a glass capillary using a bench top 

centrifuge. The sample was irradiated, using a Cu-Kα radiation (1.54 Å 

wavelength), and images were collected using a charged coupled device (CCD) 

detector (Atlas-S2). Using CrysAlis software, plots of intensity against 2θ were 

taken from the image and d spacings were calculated using Bragg’s law 

(Equation 4.1). The order (n) is set to 1, and wavelength (λ) set to 1.54 Å for this 

experiment.  

 

𝒏𝝀 = 𝟐𝒅𝒔𝒊𝒏𝜽    [4.1]  
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4.3. Results 

As highlighted previously, the main aim of this chapter was to determine suitable 

conditions, in the context of the pro-inflammatory environment of 

atherosclerosis, for promoting the aggregation of apoA-I into amyloid, allowing 

structural studies. The effects of each factor are described below. 

 

4.3.1. Effect of pH on apoA-I aggregation  

ApoA-I at 36 μM was incubated for 3 days, over a range of pH conditions. During 

this time, a white precipitate formed in the acidic samples, which was removed 

through centrifugation. The concentration of the remaining soluble protein was 

then measured, in order to quantify the amount of protein that had converted 

into insoluble material. Previous studies reported that acidic environments 

promote the aggregation of soluble apoA-I into insoluble material (Ramella et al., 

2012). Here, at neutral and mildly basic pH conditions (pH 8) the percentage of 

protein that had converted to insoluble material remained negligible. This 

percentage increased to roughly 35 % at pH 6, and was considerably higher in 

the extreme acidic conditions, with 80 and 95 % of material converting into 

insoluble material at pH 5 and pH 4, respectively (Figure 4.4A).   

It was next investigated whether the insoluble aggregates produced at 

acidic pH were typical of amyloid species. This was initially done using the 

amyloid specific binding characteristics of the ThT dye. At neutral and mildly 

basic pH conditions, the total fluorescence of the ThT (FT in Figure 4.4B), after 3 

days incubation, was consistent with ThT and buffer control samples, and 

showed no significant increase in fluorescence intensity. This indicates that no 

amyloid-like material is formed at neutral and basic pH.  
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Experiments also determined that incubation of ThT across the entire pH 

range 4-8 did not induce a change in the control ThT fluorescence (FC). This 

confirms that any difference in the ThT fluorescence intensity is caused by 

aggregation of the protein, not protonation of the ThT compound. Previous work 

by Hackl et al., (2015) and Sabatè et al., (2008) identified a decrease in 

fluorescence intensity when ThT was incubated below pH 3 and above pH 8.  In 

the pH range studied here (pH 4-8) the molecule is predicted to be in its mono-

ionised form, allowing comparative study (Sabaté et al., 2008). 

However, when incubated in acidic conditions, the total fluorescence (FT) 

increased for all 3 pH conditions, with enhanced intensity at pH 4 and pH 5, 

compared to pH 6.  

After centrifugation and removal of any insoluble material, the ThT 

fluorescence of the supernatant (FS) at all 5 pH conditions are equal, and have 

similar intensities to the control samples. This suggests the absence of any 

amyloid-like material remaining in the supernatant.  

This implies that the insoluble material that is formed at low pH, which is 

removed through centrifugation, gives rise to the ThT response observed during 

incubation at acidic pH.  This is characteristic of amyloid, and infers that the 

majority of the amyloid-like species, which bind to the ThT, are confined within 

the insoluble material.  
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Figure 4.4 (A) Percentage of apoA-I that is converted into insoluble material 

across a range of pH conditions. (B) ThT fluorescence of apoA-I (36 μM) after 3 

days’ incubation at a range of pH conditions, showing the ThT controls at each pH 

condition (FC) total increase (FT) and remaining fluorescence after centrifugation 

(FS). Data shown is the mean of 3 samples with ± standard error.  
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4.3.2. Measuring the time course of aggregation  

ThT fluorescence was used to monitor the kinetics of apoA-I aggregation in real 

time. ApoA-I at 36 μM (1 mg/ml) was incubated at neutral pH for 10 minutes, 

prior to the addition of a sufficient volume of concentrated HCl to acidify the 

samples to pH 4. This was confirmed using a narrow Mettler Toledo pH probe. 

Previous work suggests that heparin enhances the propensity for apoA-I 

to aggregate at acidic conditions (Ramella et al., 2011). Figure 4.5 shows the ThT 

fluorescence of apoA-I, in the absence and presence of 2-fold molar excess of 

heparin, following the addition of HCl. Fluorescence at pH 7, before acidification, 

remained at the baseline level, consistent with the absence of amyloid-like 

species. This remained the case for the pH 7 sample throughout the experiment.  

However, following acidification to pH 4, an instantaneous increase in ThT 

fluorescence intensity is observed, both in the absence and presence of heparin. 

This initial ThT intensity will be referred to as FI. The rapid increase in ThT 

fluorescence at pH 4 was observed within the time taken to add the HCl to the 

sample, mix it thoroughly, return the plate to the plate reader, and take the next 

measurement. The ThT fluorescence continues to increase after this initial jump 

in fluorescence until it reaches a plateau, referred to here as the total 

fluorescence intensity (FT). 

Due to the rapid increase in ThT fluorescence upon acidification of apoA-I, 

parameters that are commonly used to compare aggregation kinetics, such as 

rate and lag time, were unable to be calculated. As such, the total ThT 

fluorescence after the intensity leveled off (FT) and the initial ThT fluorescence 

(FI), were the two main parameters used to compare ThT fluorescence in the 

continual read experiments.  
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ApoA-I at pH 7 has an FI intensity consistent with the buffer and ThT 

controls, and a similarly low FT value, consistent with the absence of any 

amyloid-like species. However, acidification of apoA-I to pH 4 causes an increase 

in both FI and FT fluorescence, the intensity of which is dramatically enhanced in 

the presence of heparin. The effects of heparin will be studied in more detail later 

in this chapter. Controls of ThT and heparin alone did not show any increase in 

fluorescence upon acidification (Figure 4.5B).  

Previous studies of amyloid have shown that agitation of the peptide 

during fibril formation can significantly increase the rate of fibril formation, by 

reducing the lag time (Nielsen et al., 2001). This occurs because mechanical 

agitation promotes the fragmentation of the peptide, leading to an increased 

number of fibril-free ends, each of which can promote fibril extension, via a 

secondary nucleation mechanism (Xue et al., 2008). Here, apoA-I was agitated 

throughout the incubation period for all experimental procedures. It was not 

possible to thoroughly mix the samples with the concentrated HCl, without 

agitating the peptide. Since the aggregation of apoA-I was so rapid, by the time 

the mixing of HCl into the solution had ceased, insoluble material had already 

begun to appear in the sample. Therefore, it was decided agitation was to 

continue, in order to produce homogenous aggregates. With the high levels of 

precipitate formed during the incubation (>90 %), agitation also facilitated 

mixing of the sample during incubation, rather than letting the insoluble material 

sediment out of solution. This could have inhibited the interaction of the 

insoluble fibril with soluble, monomeric species, thus halting elongation. 
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Figure 4.5 (A) ThT fluorescence of apoA-I (36 μM) in the absence and presence 

of heparin at pH 7, and at acidic pH following the addition of concentrated HCl 

(arrow points to the time point when HCl was added) (B) FI and FT values for 

apoA-I at pH 7 and 4, in the absence and presence of heparin. Data shown is the 

mean of 3 samples, with ± standard error bars shown in Figure B. 
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4.3.3. Effects of heparin on apoA-I aggregation 

As described in section 1.1.5.1, GAGs, in particular heparin, have been shown to 

influence the aggregation and deposition of amyloidogenic proteins in vitro, and 

are commonly found co-localised with amyloid deposits (Cohlberg et al., 2002). 

GAGs have been shown to enhance the rate of amyloid formation in amyloid-

associated proteins, as well as induce the formation of amyloid in proteins with 

no natural propensity to aggregate (Madine et al., 2013). The percentage 

sedimentation and end-point ThT experiments, described in Figure 4.4, were 

repeated with the inclusion of 15 kDa heparin at a 2-fold molar excess to the 

apoA-I (36 μM).  

The presence of heparin has no significant effect on the amount of 

insoluble material produced after 3 days, over the entire pH range of 4 to 8, 

compared to the protein alone (Figure 4.6A). At neutral and basic pH, the 

percentage of insoluble material formed remains negligible, as was the case for 

apoA-I incubated alone. At pH 6, approximately 35 % of protein is converted to 

insoluble material, whilst at more acidic conditions this percentage increases to 

roughly 80 and 95 % for pH 5 and pH 4, respectively. These percentages are 

similar to those in Figure 4.4, when apoA-I was incubated alone. 

Conversely, ThT fluorescence was dramatically enhanced at acidic pH in 

the presence of heparin, compared to the protein alone (Figure 4.6B). At neutral 

and basic pH, the ThT fluorescence produced after 3 days’ incubation was 

consistent with control samples, showing no increase in ThT fluorescence 

intensity (FT) and suggesting that no amyloid-like material was formed. This is 

the same as when apoA-I was incubated in the absence of heparin under the 



 127 

same conditions. Upon centrifugation, no change in fluorescence intensity was 

observed (FS). 

However, after incubation for 3 days in acidic conditions, the 3 acidic 

samples, pH 6, pH 5 and pH 4, all showed an increase in ThT fluorescence. 

Furthermore, this increase in intensity was greatly enhanced by the presence of 

heparin, as shown by comparing the FT values in Figures 4.6B. Similar to the 

samples of apoA-I without heparin, pH 4 and pH 5 produced a much higher FT 

intensity than the pH 6 sample. Upon centrifugation and removal of the insoluble 

material, the FS values at acidic conditions were reduced to the level associated 

with no amyloid formation.  

This confirms, as with the un-heparinated samples, that the insoluble 

material that is formed from the incubation of apoA-I in the presence of heparin 

at acidic conditions is the source of the ThT fluorescence. Therefore, this also 

confirms that the majority of the amyloid-like species are confined to the 

insoluble aggregates.  
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Figure 4.6 (A) Percentage of apoA-I that is converted into insoluble material 

across a range of pH conditions, in the absence and presence of 2-fold molar 

excess of heparin. (B) ThT fluorescence of apoA-I (36 μM) after 3 days incubation 

in the absence and presence of heparin (72 μM), at a range of pH conditions, 

showing the total (FT) and remaining fluorescence after centrifugation (FS). Data 

shown is the mean of 3 samples with ± standard error bars. 
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In order to quantify the effect heparin has on the ability for apoA-I to form 

amyloid-like insoluble material, apoA-I at 7.2 μM (0.2 mg/ml) was incubated 

with increasing concentrations of heparin, in molar ratios of apoA-I to heparin of 

1:0.25, 1:0.5, 1:1, 1:2 and 1:5. After incubation at pH 7 for 10 minutes, 

concentrated HCl was added to reduce the sample to pH 4.  

Upon addition of HCl, an instantaneous increase in ThT fluorescence was 

observed for all heparin concentrations (Figure 4.7A). The intensity of this 

initial jump in ThT fluorescence (FI) was dependent on the concentration of 

heparin, with higher concentrations resulting in a larger FI values (Figure 4.7B). 

Following the initial increase, the ThT fluorescence intensity continued to rise at 

a roughly equal rate, regardless of heparin concentration (Figure 4.7C), resulting 

in a final FT value that appeared dependent on the FI intensity, and thus, the 

heparin concentration. The ThT response of the control sample of apoA-I alone at 

pH 4 is negligible, due to the low protein concentration used in the experiment.  

In Tris buffer, apoA-I remained soluble at pH 4 and aggregation into 

insoluble material only occurred in the presence of heparin. Figure 4.8A shows 

the ThT response of apoA-I incubated in Tris buffer at pH 4, in the absence of 

heparin for 10 minutes, and then upon addition of increasing concentrations of 

heparin. In the absence of heparin there was no increase in ThT fluorescence 

over the course of the incubation. However, upon addition of heparin, an instant 

increase in ThT was observed for all heparin concentrations. The FI intensity was 

dependent on the concentration of heparin, as observed previously in Figure 

4.7B. Again, following the initial increase the ThT intensity continued to increase 

at a similar rate (Figure 4.8C), independent of heparin concentration, until the 

total fluorescence (FT) was reached.  
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Figure 4.7 (A) ThT fluorescence of apoA-I (7.2 μM) in McIlvaine buffer at pH 4 

with increasing concentrations of heparin, following acidification. (B) FI and FT 

parameters taken from the continual ThT data in A. (C) Rate of increase between 

FI and FT. Data shown is the mean of 3 samples with ± standard error bars. 
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Figure 4.8 (A) ThT fluorescence of apoA-I (7.2 μM) in Tris buffer at pH 4 

following the addition of increasing concentrations of heparin. (B) FI and FT 

parameters taken from the continual ThT data in A. (C) Rate of increase between 

FI and FT. Data shown is the mean of 3 samples with ± standard error bars. 
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The rate of aggregation was determined by fitting the fluorescence intensity 

between the FI and FT points with the exponential equation 4.2, where k is the 

rate constant, y is the fluorescence intensity, a is the intercept and x is the time in 

minutes. The fittings are shown in Appendix 4.  

 

𝒀 = 𝒂 + 𝒃 ∗ 𝒆𝒙𝒑(−𝒌𝒙)   [4.2] 

Heparin is thought to act as a scaffold for stabilising proteins in a conformation 

that promotes the formation of β-sheet structures (Madine et al., 2013; Iannuzzi 

et al., 2015). In order for this to occur, apoA-I has to bind to heparin. Heparin, the 

structure of which is shown in Figure 1.3, carries a highly negative charge. It is 

assumed that heparin binds ionically to apoA-I, carrying a positive charge on its 

basic residues, when incubated at a pH lower than the PI value of 5.6 for apoA-I, 

hence the increased ThT response only at acidic pH (Figure 4.6).  

The FI enhancement observed in Figures 4.7B and 4.8B following the addition of 

HCl and heparin, respectively, could be modelled using the Hill equation 

(Equation 4.3) and Origin Pro software. Where the fluorescence (V) is 

dependent on the maximum fluorescence (VMax), the concentration of heparin (S), 

the Hill co-efficient (n) and the dissociation constant (KD).  

 

V = VMax [S]n / KD+[S]n [4.3] 

This produced apparent dissociation constants for heparin of 2.6 (±1.1) 

μM and 5.1 (±1.5) μM at pH 4 (Figure 4.9), with a free enthalpy change of -31.8  

kJ/mol and 30.2 kJ/mol, based on the addition of HCl and heparin, respectively. 

This value is the mean of 3 samples. These 2 dissociation constants are similar, 

and suggest a strong affinity of apoA-I for heparin.  
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Figure 4.9 Heparin concentration dependence of apoA-I aggregation, measured 

by ThT fluorescence (FI) and modelled by the Hill equation. FI values were used 

following acidification of apoA-I incubated in the presence of heparin (A) and 

addition of heparin to apoA-I, already incubated at pH 4 (B).  
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ApoA-I was incubated at pH 4 in Tris buffer, with increasing concentrations of 

NaCl salt, prior to the addition of a 2-fold molar excess of heparin. This was in 

order to determine whether NaCl was able to interfere with the ionic interaction 

between heparin and apoA-I.  

A control for apoA-I incubated in the presence of heparin but no NaCl is 

the baseline for this experiment, and any ThT intensity decrease in comparison, 

is suggestive of inhibition of the heparin-mediated aggregation. No decrease in 

fluorescence intensity was observed as a result of increasing the concentration of 

NaCl when added to apoA-I alone, (data not shown) confirming that the presence 

of NaCl does not affect the natural propensity of apoA-I to aggregate.  

However, when apoA-I is incubated with a 2-fold molar excess of heparin, 

a decrease in ThT fluorescence intensity in the presence of NaCl is observed. 

Increasing the concentration of NaCl leads to a further decrease in both the FI 

and FT fluorescence measurements (Figure 4.10). This suggests that NaCl can 

inhibit the pro-amyloidogenic properties heparin exhibits on apoA-I aggregation 

into amyloid-like material. Thus confirming an ionic interaction between heparin 

and apoA-I.  

  

 

 

 

 

 

 



 135 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 Effects of salt on heparin induced apoA-I aggregation. (A) ThT 

response of apoA-I (7.2 μM) incubated at pH 4 with increasing concentrations of 

NaCl, following the addition of heparin (14.4 μM). (B) Initial increase in ThT 

upon addition of heparin (FI), and the total increase in ThT fluorescence (FT).  

Data shown is the mean of 3 samples with ± standard error bars.  
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4.3.4. Effects of concentration of apoA-I aggregation 

ApoA-I was incubated at pH 4 at increasing concentrations (7.2, 18 and 36 μM), 

alone and in the presence of a two-fold molar excess of heparin for 3 days. After 

this time, end point ThT measurements were taken. All three concentrations gave 

rise to an increase in ThT fluorescence (Figure 4.11), with higher concentrations 

of protein leading to higher fluorescence intensity, with an enhancement of 

fluorescence in the presence of heparin at each of the three concentrations. This 

shows that the formation of ThT reactive material increased with protein 

concentration. Following removal of the insoluble material by centrifugation, the 

FS value of all 3 concentrations decreased to levels associated with no amyloid-

like material. This shows that the soluble ThT reactive element remains small 

and constant, regardless of the protein concentration.  

 

 

 

 

 

 

 

 

Figure 4.11 ThT fluorescence of apoA-I at 0.2, 0.5 and 1 mg/ml (7.2, 18 and 36 

μM) in the absence and presence heparin, following acidification to pH 4. Data 

shown is the mean of 3 samples with ± standard error bars. 



 137 

4.3.5. Ability of apoA-I mutants to aggregate 

ApoA-I has many naturally occurring mutants, as outlined in section 2.4.9 of this 

thesis. Mutants corresponding with single amino acid changes were produced, as 

described in section 3.3.2.2, for two reasons: i) in order to compare the 

differences in aggregation propensity between wild type apoA-I and the mutant 

apoA-I G26R species, and ii) to incorporate a unique cysteine residue into the 

apoA-I sequence, in order to attach a fluorescent tag for cellular imaging 

purposes (K96C and R173C). All mutants were subject to end-point ThT analysis 

to determine their propensity to aggregate, compared to the wild type apoA-I. 

 

4.3.5.1. ThT responsiveness of apoA-I G26R 

The naturally occurring G26R Iowa mutant of full-length apoA-I has been found 

deposited as amyloid-like aggregates within arterial plaques. This mutation also 

induces aggregation of the apoA-I (1-83) peptide, the mechanism of which is 

thought to be linked to the destabilisation of the N-terminus of apoA-I (Adachi et 

al., 2012; Adachi et al., 2014).  However, the mutation has been shown to have no 

effect on the ability of full-length apoA-I to form amyloid-like aggregates 

(Raimondi et al., 2011). 

Here, putative apoA-I G26R produces a similar ThT response to the wild 

type protein after 3 days of incubation at pH 4. However, unlike the wild type, the 

G26R mutant gives rise to an enhanced FT value at neutral pH (Figure 4.12 A and 

B). The ThT response of the protein remaining in solution (FS) was minimal, 

following centrifugation. This is consistent with no amyloid formation. This 

confirms that the ThT responsive material is confined to the insoluble material, 

formed at both pH 4 and pH 7.  
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4.3.5.2. ThT responsiveness of apoA-I K96C and R173C 

The putative apoA-I K96C and R173C peptides were produced, in order to allow 

tagging of the novel cysteine residue for cell imaging purposes. Therefore, it was 

preferable that both mutants had similar amyloidogenic properties to the wild 

type apoA-I peptide, allowing direct comparison of their cellular uptake and 

distribution.  

Figures 4.12 C and D show that at pH 7 neither mutant produced a 

significant increase in the FT, consistent with control samples and the absence of 

amyloid-like material.  

At acidic pH, wild type apoA-I is shown to produce an increase in the FT 

value, which is greatly enhanced in the presence of heparin. However, the K96C 

and R173C mutants produce an increase in FT, only in the presence of heparin at 

pH 4. This fluorescence increase is shown to be caused by the insoluble material 

produced during incubation at pH 4 in the presence of heparin, since the FS value 

returns to the baseline level, following its sedimentation.   

 

4.3.5.3. Quantification of apoA-I mutant solubility  

Quantification of the conversion from soluble apoA-I to insoluble material for the 

wild type protein is discussed in section 4.2.1 and 4.3.1. At neutral and basic pH, 

less than 10 % of apoA-I becomes incorporated into insoluble material and 

removed through centrifugation. This percentage increases dramatically at acidic 

pH, with almost 95 % of the protein having been converted into insoluble 

material. This is the case for samples both in the absence and presence of 

heparin.  
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The G26R mutant produces a similar percentage conversion into insoluble 

material at acidic pH to the wild type apoA-I. However, at pH 7, the G26R mutant 

loses ≈ 60 % of its soluble protein, following centrifugation (Figure 4.13 red).  

ApoA-I K96C and R173C mutants produce very similar sedimentation 

data. Neither mutation leads to the conversion of insoluble material at neutral 

pH, consistent with the wild type apoA-I. At pH 4 alone, no insoluble material is 

formed, unlike the wild type apoA-I. Conversion from soluble apoA-I to insoluble 

aggregates only occurs at pH 4 in the presence of heparin (Figure 4.13 blue and 

green). This mirrors the ThT findings for the cysteine mutants, discussed in 

Section 4.3.5.2. 

 

Figure 4.12 End-point ThT fluorescence of apoA-I wild type (A), G26R (B), K96C 

(C) and R173C (D). Data shown is the average of 3 samples with ± standard error 

bars. 
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Figure 4.13 Percentage of starting material converted into insoluble material for 

apoA-I wild type (black) G26R (red), K96C (blue) and R173C (green).  

 

4.3.6. Ability of oxidised apoA-I to aggregate  

4.3.6.1. Characterisation of oxidised apoA-I 

ApoA-I was oxidised, following procedures outlined by Chan (2015). After 

incubation with H2O2 and dialysis back into 10 mM phosphate at pH 6, oxidised 

apoA-I produced a white precipitate. As such, dialysis into phosphate buffer at 

pH 7.5 was attempted instead, resulting in a clear protein sample. The oxidised 

product was shown to be slightly heavier than the wild type apoA-I when run on 

an SDS gel (Figure 4.14), consistent with oxidation of at least one of the three 

native methionine residues.  
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Figure 4.14 15 % SDS PAGE gel of chemically oxidised apoA-I and untreated, 

wild type apoA-I. 

 

In order to determine the extent at which incubation in hydrogen peroxide 

oxidised the methionine residues of apoA-I, oxidised apoA-I underwent mass 

spectrometry analysis. Oxidation of apoA-I at all three methionine residues 

results in a predicted mass of 27882 Da, compared to the predicted mass of 

27834 Da for the un-oxidised apoA-I. Figure 3.16 indicates a mass for the intact 

un-oxidised apoA-I of 27837 Da, whilst Figure 4.15 shows that oxidised apoA-I 

has an intact mass of 27891 Da, 54 Daltons higher than the un-oxidised apoA-I. 

Oxidation of three methionine residues would result in a mass increase of 48 

Daltons but, given the variance between the detected mass and the predicted 

mass for the un-oxidised apoA-I, the difference of 4 Daltons is deemed negligible. 

As such, the putative oxidised apoA-I is considered oxidised at all three 

methionine residues, as expected following the methods outlined by Chan et al. 

(2015). 
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4.3.6.2 Oxidised apoA-I aggregation 

Oxidation of 3 methionine residues (86, 112, 148) in apoA-I has been shown to 

induce aggregation of apoA-I into amyloid species at pH 6 (Wong et al., 2010; 

Chan et al., 2015). Here, the effect of chemical oxidation of apoA-I on the ability to 

form amyloid-like aggregates will be determined across a more physiologically 

relevant pH range (pH 6–7.5), and used to produce aggregates for structural 

analysis by solid-state NMR.  

Here, Figure 4.16A indicates that at neutral pH, a negligible amount (<10 

%) of oxidised apoA-I becomes converted into insoluble material, consistent with 

the percentage conversion of wild type apoA-I at pH 7. The ThT fluorescence (FT) 

of the oxidised apoA-I at neutral pH also remains negligible and is consistent 

with control samples, suggesting that oxidised apoA-I does not form amyloid-like 

material under these conditions.  

At pH 6, the percentage of apoA-I converted to insoluble material 

increases to roughly 40 %, similar to the wild type protein at this pH. This is 

despite the formation of a large white precipitate upon acidification of oxidised 

apoA-I to pH 6. The formation of a visible precipitate was only seen for the wild 

type protein at pH 4 and 5, where upwards of 90 % of the protein was converted 

into insoluble material.  

Oxidised apoA-I produced a significant increase in ThT fluorescence (FT) 

at pH 6, which was reduced upon centrifugation and removal of the insoluble 

material to FS, consistent with no amyloid-like material. This suggests that the 

amyloid-like material was confined solely to the insoluble material and not the 

remaining soluble oxidised apoA-I.  
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These results suggest that oxidised apoA-I has an increased propensity 

to aggregate, compared to wild type apoA-I.  
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Figure 4.16 Percentage insolubility (A) and ThT fluorescence (B) of oxidised 

apoA-I at pH 7.5 and pH 6. Data shown is the mean of 3 samples with ± standard 

error bars. 
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4.3.7. Ability of apoA-I (46-59) to aggregate  

As mentioned earlier, several groups have reported the amyloidogenic 

properties of peptides comprising the first 90/100 residues from the N-terminus 

of apoA-I (Rosú et al., 2015; Sipe et al., 2012; Mucchiano, Häggqvist, et al., 2001; 

Adachi et al., 2012). In particular, the peptide comprising of residues 46-59 has 

been shown to bind ThT, form fibrils with a typical amyloid morphology, and 

produce an XRD reflection pattern, consistent with the formation of amyloid at 

neutral pH (Wong et al., 2012). Here, the ability of apoA-I (46-59) to seed, and be 

seeded, by full-length apoA-I into amyloid-like aggregates was studied, as well as 

the effect heparin has on apoA-I (46-59) aggregation.  

ThT fluorescence data shown in Figure 4.17, suggests that apoA-I (46-59) 

does not form amyloid-like material at neutral pH, neither in the absence nor the 

presence of heparin. However, at acidic pH, apoA-I (46-59) produces a large 

increase in ThT fluorescence, both in the absence and presence of heparin, but 

not in a similar manner to the full-length apoA-I. Full-length apoA-I undergoes a 

dramatic increase in ThT fluorescence, following acidification, measured as the 

ΔFI parameter. However, apoA-I (46-59) has a much slower increase in ThT 

fluorescence following acidification, which is more common of amyloid-like 

aggregates (Wong et al., 2012).  Wild type apoA-I showed a dramatic 

enhancement in the presence of heparin, whereas no significant difference is 

observed when heparin is incubated with the apoA-I (46-59) peptide. This 

suggests that heparin has no effect on the aggregation of apoA-I (46-59) at acidic 

pH.  
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Figure 4.17 ThT fluorescence of apoA-I (46-59) at pH 4 and pH 7 alone, and in 

the presence of heparin, following acidification by addition of concentrated HCl. 

Data shown is the mean of 3 samples. 

 

4.3.7.1. Ability of full-length apoA-I to seed apoA-I (46-59) 

The ability of amyloid aggregates formed by full-length, wild type apoA-I in the 

presence of 2-fold molar excess of heparin, to seed apoA-I (46-59) aggregation 

was studied. At pH 4, apoA-I (46-59) was shown to aggregate spontaneously 

(Figure 4.17), with a less dramatic FI increase compared to full-length apoA-I.  

The incubation of full-length seeds with apoA-I (46-59), prior to 

acidification, results in a similar FI increase upon addition of HCl. However, the 

presence of seeds results in a lower FT intensity (Figure 4.18). This is more 

consistent with the ThT response of full-length apoA-I at pH 4 (Figure 4.5), 

rather than the ThT response of apoA-I (46-59) alone.  

At pH 7, apoA-I (46-59) shows no ThT response when incubated alone, 

but an FI increase following addition of full-length apoA-I seeds. However, this 
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increase in ThT intensity is similar to the ThT response of the full-length apoA-I 

seeds controls (Figure 4.18B). This suggests that full-length seeds cannot 

promote the aggregation of apoA-I (46-59) at neutral pH. However, at acidic pH, 

the seeds affect the ThT response of the aggregates formed. The reduction in ThT 

fluorescence, following the initial increase in Figure 4.18B, could be caused by 

sedimentation of the insoluble apoA-I seeds out of solution. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18 ThT fluorescence of apoA-I at pH 4 and 7 in the absence and 

presence of seeds formed from full-length aggregates.  
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4.3.8. Congo red binding ability of apoA-I 

Congo red is an amyloid specific dye that binds selectively to β-sheet structures 

of amyloid, staining the deposited, insoluble material red. Upon visualisation 

under polarised light, a green birefringence is observed, indicating a positive 

result for amyloid (Puchtler et al., 1962; Klunk et al., 1999a; Li et al., 2009).  

ApoA-I, both in the absence and presence of heparin, does not produce 

any aggregated material at pH 7, thus there is no insoluble material to which the 

Congo red dye can bind. This is shown in the images taken with uncrossed 

polarising lenses, where no red material is visible (Figure 4.19). When the 

polarising lens is rotated 90 degrees, a lack of green birefringence confirms 

amyloid is not formed under these conditions.  

Upon acidification of apoA-I to pH 4, both in the absence and presence of 

heparin, apoA-I forms insoluble material (as defined above in section 4.3.1 and 

4.3.3) that binds to the Congo red dye and is visualised as a red deposit with 

uncrossed lenses. Upon cross polarisation of the lenses, the dye produces a 

yellow-green birefringence, confirming the insoluble material is characteristic of 

amyloid.  

This data suggests that, despite a large difference in the ThT response 

produced by aggregates formed in the absence and presence of heparin at pH 4, 

both aggregates bind to Congo red, which is a characteristic trait of all amyloid 

species.  
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Figure 4.19 Congo red-stained apoA-I samples at pH 7 and pH 4 in the absence 

and presence of heparin, following incubation for 3 days. Lenses were at 0 and 

90° for the uncrossed and crossed images, respectively.  
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4.3.9. Intrinsic fluorescence of tryptophan residues 

Intrinsic fluorescence studies of apoA-I were carried out to determine whether 

any significant change in the environment surrounding the aromatic residues, in 

particular tryptophan (8, 50, 72 and 108) occurred. A change of environment 

could give insights into a structural rearrangement occurring during the 

aggregation of apoA-I. Solvent-exposed tryptophan residues have a peak 

emission at roughly 355 nm, with slight variance for the specific environment, 

upon excitation at 279 nm. However, tryptophan residues in hydrophobic 

environments, such as those experienced when the residues are buried within 

secondary structural elements, undergo a blue shift in the spectrum and have 

their peak emission centred around 335 nm (Touchette et al., 2010). ApoA-I 

consists of a majority α-helical content in the native structure, and all four of the 

tryptophan residues are located within helical structures, as shown in Figure 

4.20A (Das et al., 2016).  
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Figure 4.20 (A) Structure of monomeric apoA-I (Δ185-243), highlighting the 

tryptophan residues in the native sequence. Tryptophan fluorescence emission 

spectra for apoA-I samples at pH 7 (B/C) and pH 4 (D/E), after excitation of 

tryptophan residues at 279 nm.  Peak emission wavelengths are highlighted for 

each spectrum. 
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At pH 7, the emission maximum occurs at 337 nm in both the absence and 

presence of heparin (Figure 4.20 B and C), which remains unchanged after 2 

hours incubation, despite a small decrease in intensity. These emission maximum 

are consistent with hydrophobic environments (Touchette et al., 2010). This was 

expected, given that many of the tryptophan residues are located at the 

hydrophobic interface of monomeric apoA-I. 

Incubation of apoA-I at pH 4 in the absence of heparin produces a similar 

spectrum to the pH 7 sample, with a maximum fluorescence of 337, although the 

decrease in fluorescence intensity is considerably higher, consistent with 

increased protein precipitation at acidic pH (Figure 4.20 D). In the presence of 

heparin at pH 4, the fluorescence intensity is reduced considerably compared to 

the other 3 samples, suggesting a faster aggregation and precipitation. A blue 

shift in the spectrum also occurs, resulting in a maximum fluorescence peak of 

334 nm for the fresh solution (Figure 4.20 E). This shift suggests that heparin 

causes a change in the environment surrounding one or more of the tryptophan 

residues, and a blue shift in particular is consistent with movement to a less polar 

environment.   

In summary, heparin appears to induce a different aggregation pathway. 

Oxidation of methionine residues within apoA-I causes a red shift in the peak 

emission wavelength, compared to the native apoA-I at pH 7.4, towards 345 nm 

(Figure 4.21). This red shift suggests that apoA-I undergoes unfolding, following 

oxidation of the three methionine residues, consistent with previous studies that 

oxidation leads to the destabilisation of the native apoA-I structure (Wong et al., 

2010). Upon incubation for 1 hour at pH 6, a slight decrease in signal intensity is 

observed, due to the formation of insoluble material. A blue shift in the 
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spectrum’s peak emission, from 345 nm at pH 7.4 to 340 nm at pH 6, also occurs, 

suggesting that the tryptophan residues become incorporated into more 

hydrophobic regions following acidification, consistent with amyloidosis.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.21 Tryptophan fluorescence emission spectra for oxidised apoA-I at pH 

7.4 (A) and pH 6 (B). Peak emission wavelengths are highlighted. 
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4.3.10. Morphology of apoA-I aggregates 

4.3.10.1. Transmission electron microscopy 

Insoluble aggregates produced during incubation of apoA-I at acidic pH were 

visualised via TEM. Figure 4.22 shows negatively-stained apoA-I aggregates 

formed at pH 4 and pH 5, in both the absence and presence of heparin; oxidised 

apoA-I at pH 6 and apoA-I (46-59) at pH 4.  

In the absence of heparin, large quantities of amorphous aggregates are 

deposited at pH 4 and pH 5, which do not resemble amyloid species (Figure 4.22 

A and C). However, in the presence of heparin, apoA-I forms dense networks of 

long, un-branched fibrils that are more characteristic of amyloid, at both pH 4 

and pH 5 (Figure 4.22 B and D).  

Oxidised apoA-I at pH 6 produced long, thin fibrils (Figure 4.22E), 

characteristic of amyloid and consistent with previous TEM images, observed 

under the same conditions (Wong et al., 2010). Large quantities of smaller 

spherical structures also appeared, which could potentially be oligomeric 

species.  

Finally, apoA-I (46-59) incubated at pH 4 also produced fibrils 

characteristic of amyloid species (Figure 4.22 F). 

In summary, aggregates with a highly conserved amyloid morphology are 

only observed following the aggregation of oxidised apoA-I or apoA-I (46-59). 

Although the aggregates formed at pH 4 and pH 5 do not resemble true amyloid 

fibrils, the inclusion of heparin leads to a network of more fibrillar material.  
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Figure 4.22 TEM images of apoA-I (36 μM) after 3 days’ incubation at pH 4 

(A/B) and pH 5 (C/D) in the absence (A/C) and presence (B/D) of heparin, 

oxidised apoA-I at pH 6 (E) and apoA-I (46-59) at pH 4 (F).  
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4.3.10.2. Atomic force microscopy  

ApoA-I aggregates formed at pH 4 in the presence of heparin for 3 days were 

loaded onto mica sheets and visualised using AFM. Figure 4.23 shows networks 

of thin, un-branched fibrils are formed, similar to the TEM results. Furthermore, 

AFM allows a height calculation of approximately 5 nm, which is an additional 

characteristic of amyloid fibrils (Serpell et al., 1997). This technique was also 

attempted for apoA-I aggregates formed in the absence of heparin, however, no 

material was detected on the mica surface.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.23 AFM phase (A) and topography (B) images of apoA-I (36 μM) after 

several days’ incubation at pH 4 in the presence of heparin (72 μM). 
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4.3.11 X-ray diffraction 

Samples of insoluble material formed following incubation of apoA-I at pH 4, in 

the absence and presence of heparin, were analysed by X-ray diffraction, in order 

to determine if any reflections consistent with β-sheet spacings were detectable. 

In the absence of heparin, the diffraction pattern of apoA-I suggests that the 

aggregates are amorphous, with no deducible secondary structural content. A 

large reflection at 3.27 Å, does not coincide with β-sheet spacing. Thus, it does 

not suggest that the formation of amyloid occurs under these conditions (Figure 

4.24A and B).  

However, in the presence of heparin, 2 distinct reflections are detected 

with d-spacings of 4.47 Å and 9.7 Å (Figure 4.24C and D). These both coincide 

with the predicted spacings for β-sheet structures, approximately 4.7 Å and 10 Å 

for equatorial and meridional reflections, respectively (Li et al., 2009). These 

reflections coincide with the spacings between the individual β-strands, running 

perpendicular to the fibril axis; and the distance between the multiple β-sheet 

layers, as described in Figure 1.10. Separation of the equatorial and meridional 

reflections was not possible, due to the inability to align the fibrils in the capillary 

tube.  

In summary, despite both the aggregates formed alone and in presence of 

heparin exhibiting a ThT response and binding to Congo red, only the aggregates 

formed in the presence of heparin produce X-ray diffraction reflections, 

consistent with the presence of β-sheets.  
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Figure 4.24. X-ray diffraction pattern of apoA-I (36 μM), after incubation at pH 4 

in the absence (A and B) and presence (C and D) of heparin for several days. 

Arrows in A and C highlight the reflections detected as peak intensities in the 1D 

spectra. 
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4.4. Discussion  

Much of the current literature on apoA-I aggregation in vitro focuses on the first 

90-100 residues of the N-terminus, which become cleaved from the full peptide 

and deposited as amyloid, leading to familial apoA-I amyloidosis (Raimondi et al., 

2011; Girych et al., 2014; Das et al., 2016; Monti et al., 2011; Sipe et al., 2014). 

Studies into the aggregation of full-length apoA-I have determined that 

acidification or oxidation of the protein can induce misfolding, which leads to a 

structural rearrangement, resulting in the formation of insoluble material, with 

many amyloid characteristics (Ramella et al., 2011; Chan et al., 2015; Mucchiano, 

Jonasson, et al., 2001).  

The aim of this chapter of research is to provide a more detailed 

description of the factors that influence apoA-I aggregation, and to identify 

physiologically suitable conditions for promoting the aggregation of full-length 

apoA-I into amyloid species. These conditions will then be used to produce large 

quantities of apoA-I derived amyloid, allowing structural analysis of the insoluble 

material.  

 

4.4.1. Acidic pH induces apoA-I aggregation 

Initial experiments repeated the work by Ramella (2011) and looked at the effect 

of pH on apoA-I aggregation. By incubating apoA-I over a pH range of 4-8 for 3 

days, it was shown that apoA-I readily forms insoluble aggregates at acidic pH, in 

particular, pH 4 and pH 5. This experiment also confirmed that apoA-I was not 

converted into insoluble material at neutral and basic pH, suggesting the protein 

is stable in these conditions.  
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The insoluble material at acidic pH also produced an increase in ThT 

fluorescence at 482 nm. Upon sedimentation of the insoluble protein through 

centrifugation, a large decrease in ThT fluorescence in the supernatant was 

observed. This confirms that the insoluble aggregates were the source of the ThT 

response, and that the majority of the ThT responsive material is retained in the 

insoluble material. At neutral and basic pH, no increase in ThT fluorescence was 

observed, confirming the stability of apoA-I under these conditions. ThT 

fluorescence response was shown to be dependent on protein concentration, 

suggesting a nucleation-based growth mechanism of apoA-I in the absence of 

heparin. The amount of amyloid formed, and thus the ThT response, is a linear 

function of the free monomeric protein available (Cabriolu et al., 2010).  

ApoA-I aggregates formed at pH 4 in the absence of heparin were able to 

bind to Congo red and exhibited a green birefringence upon cross-polarisation, 

suggesting the aggregates are amyloid-like. However, when visualised by TEM, 

large amorphous aggregates became deposited as clumps of non-fibrillar 

material. These aggregates did not produce X-ray diffraction patterns consistent 

with β-sheet structures, although a broad reflection at 3.3 Å may mask any β-

sheet contributions. 

Maximum fluorescence emission of the 4-tryptophan residues in apoA-I at 

337 nm suggests they are located within hydrophobic regions, which is 

consistent with natively folded apoA-I at neutral pH. The reduction in intensity 

results from the high percentage of material that becomes converted into 

insoluble aggregates at pH 4, but the emission peak remains mostly unchanged.    

These findings are physiologically relevant. In normal circulation, where 

the pH of serum is roughly neutral, lipid-free apoA-I avoids aggregation, in order 
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to carry out its role in cholesterol clearance. However, at acidic pH, such as those 

experienced at sites of inflammation or atherosclerotic plaques (Ross, 1999a; 

Thijssen and Mensink, 2005), the protein readily undergoes aggregation into 

insoluble material. This is significant, since it is at atherosclerotic sites where 

full-length apoA-I has been found deposited as amyloid. This material gives rise 

to a ThT response and a green birefringence when stained with Congo red, both 

of which are suggestive of amyloid. However, these aggregates lack many of the 

amyloid hallmarks, including their morphology, XRD patterns and the 

fluorescence of tryptophan residues suggesting the environments remain similar 

to the natively folded apoA-I.  

 

4.4.2. Heparin induced apoA-I aggregation 

Glycosaminoglycans, as described in section 1.1.5, have been shown to associate 

with amyloid deposits (Cohlberg et al., 2002; Iannuzzi et al., 2015), and are 

involved in promoting amyloidosis in protein species with no natural propensity 

to form amyloid (Madine et al., 2013). Sedimentation experiments deduced that 

the percentage of starting material that was converted into insoluble material 

remained the same in both the absence and presence of heparin, across the 

entire pH range studied.  

However, the insoluble material formed at acidic pH in the presence of 

heparin showed enhanced ThT fluorescence, compared to the material formed in 

its absence. The enhanced ThT response in the presence of heparin is not 

observed at neutral and basic pH, suggesting that the binding of heparin to apoA-

I is dependent on ionic interactions (Stewart et al., 2016). Heparin only induces 

an aggregation response in apoA-I when incubated at acidic pH, with a dramatic 
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enhancement in ThT fluorescence at pH 4 and pH 5. These two pH conditions are 

both below the isoelectric point of apoA-I, which was predicted by the online 

Expasy server to be 5.4 (Gasteiger et al., 2003). At pH 4 and 5, apoA-I carries net 

positive charges, which can bind ionically to the heparin molecule. The addition 

of sodium chloride systematically reduces the ThT enhancement caused by the 

introduction of heparin, further confirming the interaction between apoA-I and 

heparin is electrostatic.  

ApoA-I was shown to bind heparin with micromolar affinity, and induce 

aggregation in a concentration-dependent manner. The addition of increasing 

concentrations of heparin led to a rapid increase in ThT fluorescence, which was 

dependent on the heparin concentration and not consistent with a nucleation-

dependent mechanism. This initial increase was followed by a slower increase in 

ThT fluorescence, the rate of which was independent of heparin concentration, 

consistent with a secondary nucleation event. 

ApoA-I aggregates formed in the presence of heparin bind to Congo red, 

and exhibit a green birefringence upon cross-polarisation. Unlike the insoluble 

aggregates formed from apoA-I alone, apoA-I aggregates formed in the presence 

of heparin also have a morphology more consistent with amyloid-like fibrils, and 

produce XRD patterns that suggest the presence of β-sheet structures.  Intrinsic 

fluorescence spectra suggest that aggregation of apoA-I in the presence of 

heparin results in a less polar environment surrounding the tryptophan residues, 

consistent with amyloid formation.  
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4.4.3. Oxidation induced apoA-I aggregation 

Oxidation of methionine residues in apoA-I has been shown to promote 

aggregation of the apoA-I at pH 6 (Wong et al., 2010). Here, upon acidification to 

pH 6, the oxidised apoA-I produced large quantities of white precipitate. This 

insoluble material gave rise to a ThT response, a morphology consistent with 

both amyloid fibrils and oligomeric species, and a blue shift in the fluorescence 

maximum of tryptophan residues. This blue shift suggests the conversion to a 

less polar structure, consistent with amyloid formation. This data suggests that 

oxidised apoA-I is more susceptible to amyloidosis than un-oxidised apoA-I.  

 

4.4.4. Aggregation of apoA-I mutants 

ThT fluorescence and the percentage insolubility of mutant apoA-I species were 

used to determine the aggregation propensity of apoA-I mutants, compared to 

wild type apoA-I. The G26R mutant was shown to have similar propensity to 

aggregate as the wild type at acidic pH but unlike the wild type, G26R had an 

increased ThT fluorescence and percentage insolubility at neutral pH. Both of the 

cysteine mutants, the K96C and R173C, showed no increased propensity to 

aggregate when compared to the wild type apoA-I. This makes them both 

suitable candidates for fluorescent tagging, in order to study cellular 

internalisation and distribution of apoA-I models. The apoA-I (46-59) peptide 

was monitored, via ThT and sedimentation experiments, in order to determine 

suitable conditions to allow structural comparisons to the wild type, full-length 

apoA-I. ApoA-I (46-59) at pH 4 in the absence of heparin produced a ThT 

response and morphology consisting of amyloid fibrils. However, the addition of 

heparin showed no increase in ThT fluorescence, unlike the full-length peptide.  
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4.4.5. Conclusion  

In conclusion, the data presented here confirm that the acidification of apoA-I 

induces at least a partial conversion from the native structure of apoA-I into 

insoluble aggregates that, despite giving rise to a ThT response and Congo red 

birefringence, lack many of the hallmarks of amyloid.  

However, upon inclusion of heparin, more ordered aggregates are formed 

with an enhanced ThT response. These aggregates produce a birefringence when 

stained with Congo red, have a more fibrillar morphology, and produce an X-ray 

diffraction pattern, suggestive of β-sheet structures. Intrinsic fluorescence 

suggests a difference in the aggregation mechanism of apoA-I in the presence of 

heparin, resulting in a more amyloid-like structure.  

Oxidation of apoA-I gives rise to insoluble aggregates that match all of the 

amyloid characteristics of the apoA-I aggregates formed at pH 4 in the presence 

of heparin, but produce fibrils with a typical amyloid morphology, including 

potential oligomeric species.  

Work in Chapter 5 will look into whether the inclusion of heparin or 

oxidiation of apoA-I results in a structural difference between the insoluble 

aggregates, compared to apoA-I alone. The conditions determined here that will 

be taken forward for the structural analysis of apoA-I include: a concentration of 

36 μM wherever possible, an apoA-I: heparin molar ratio of 1:2 and incubation at 

pH 4 with agitation for 3 days.   
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5. Structural analysis of apoA-I aggregates 

5.1. Introduction 

Characterising the structure of apoA-I derived amyloid is essential for 

understanding the mechanism of apoA-I aggregation. With this knowledge, 

advancing the design of apoA-I amyloid inhibitors is possible, as is determining 

whether any intermediate aggregates are formed during the aggregation 

mechanism that could be cytotoxic (Amijee et al., 2012; Walsh et al., 2002; 

Uversky, 2010). Given the insolubility of amyloid, and the rate at which apoA-I 

readily aggregates into insoluble material upon acidification, the aggregates 

prove difficult to study using standard structural techniques. X-ray 

crystallographic analysis of amyloid fibrils has proved difficult, due to the large 

and heterogeneous nature of the aggregates (Toyama and Weissman, 2011).  

Eisenberg’s group were able to produce micro-crystals, 6-7 residues in length, for 

the yeast Sup35 amyloidogenic protein, and acquire adequate diffraction data 

(Nelson et al., 2005).  However, the limitations on the size of these amyloid 

fragments, and the inability of all peptides to form micro-crystals still restrict the 

use of X-ray crystallography (Toyama and Weissman, 2011). Studying amyloid is 

also not amenable to solution NMR and therefore, solid-state NMR is required.  

Currently, there are no structural models for apoA-I derived amyloid 

deposited within the protein databank. In fact, there are only full-length models 

for the most studied amyloidogenic proteins, in particular: Aβ (Tycko, 2011; 

Madine et al., 2012; Paravastu et al., 2009; Paravastu et al., 2008; Serpell, Blake, 

et al., 2000), α–synuclein (Tuttle et al., 2016), IAPP (Soriaga et al., 2015) and AL 

amyloidosis (Brumshtein et al., 2015; Brumshtein et al., 2014).   
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Many studies get around the challenges in studying the structure of amyloid by 

utilising model systems consisting of peptide regions from within the full-length 

amyloid-associated protein (Nelson et al., 2005; Petrlova et al., 2014; Serpell, 

Blake, et al., 2000; Gursky et al., 2012; Borhani et al., 1997). However, the 

structure of the aggregated material is very sensitive to the protein sequence, 

thus, truncation or mutation of amino acid residues can dramatically change the 

overall structure of the amyloid deposited, compared to the parent protein. For 

example, full-length Aβ (1-40), forms parallel β-sheets (Petkova et al., 2002), 

whilst fragments of the peptide, including the 16-22 and 11-25 residues, form 

anti-parallel β-sheets (Petkova et al., 2004).   

 

5.1.1. Structure of natively folded apoA-I 

As described in section 2.4.3, and shown in Figure 2.4 of this thesis, only 4 

structural models for soluble, native apoA-I exist in the protein databank, all of 

which are derived from soluble apoA-I. The 3 models corresponding to the most 

complete protein are of (i) lipid-free apoA-I (Δ185-234) at 2.2 Å resolution, 

deduced by X-ray crystallography (Mei and Atkinson, 2011); (ii) the full-length, 

lipid-bound apoA-I at a much lower resolution, using small angle neutron 

scattering (Wu et al., 2009); and (iii) lipid-bound apoA-I (44-243) at a resolution 

of 4 Å, using X-ray crystallography (Borhani et al., 1997). Crucially, there are no 

structural details for the insoluble apoA-I aggregates. Here, structural analysis 

via circular dichroism and nuclear magnetic resonance will be acquired for the 

lipid-free apoA-I aggregated material. As such, all future comparisons to the 

native apoA-I will refer to the PDB 3R2P (Mei and Atkinson, 2011) lipid-free 

structure.     
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5.1.2. Secondary structural content 

The structure of apoA-I (Δ185-243), described in section 2.4.4.1, contains 

approximately 60-80 % α-helical content (Mei and Atkinson, 2011), and is in 

good agreement with other studies of the full-length apoA-I (Chetty et al., 2009). 

The remaining peptide, such as the region corresponding to residues 44-55, 

consists of predominantly β-sheet structures (Mei and Atkinson, 2011; Gursky et 

al., 2012). The C-terminus of apoA-I is involved in lipid binding and, as such, it 

possesses a large degree of flexibility. In the absence of lipids, this region is 

disordered. However, upon interaction with lipids or other apoA-I molecules, it 

reforms into an amphipathic helix, as shown in Figure 5.1 (Chetty et al., 2009). 

This structural change was determined by site-directed, spin-label electron 

paramagnetic resonance spectroscopy (Oda et al., 2003) 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Structural conversion of the apoA-I C-terminus (residues 163-243), 

from a lipid-free conformation (green), to the extended helices, observed in the 

presence of lipids (yellow). Image taken from Oda et al. (Oda et al., 2003) 
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5.1.3. Techniques used to study the structure of apoA-I 

Here, circular dichroism and, for the first time, SSNMR were used to determine 

the structural changes underlying apoA-I aggregation. Circular dichroism 

techniques can be used for solution and solid-states (thin film CD), with solution 

CD having been used to study many amyloidogenic proteins (Bieschke et al., 

2010; Huang et al., 2000; Raimondi et al., 2011; McLaurin et al., 1998; Srinivasan 

et al., 2003; Jiménez et al., 2002; Chiti and Dobson, 2006).  

 

5.1.3.1. Circular Dichroism 

Circular dichroism (CD) is a powerful spectroscopic technique that can be used to 

rapidly determine the local secondary structure of proteins. Circular dichroism 

measures the difference in absorption of left and right handed circularly 

polarised light by molecules with chiral centres, as a function of wavelength (Li et 

al., 2009; Fasman, 1996). A beam of light contains electric and magnetic fields, 

and upon polarisation, the electric field (E) will oscillate in a single plane. This 

wave can be visualised as the combination of two vectors of equal length, but 90 ° 

out of phase (Figure 5.2A). These vectors trace out circles, one of which that 

rotates clockwise (ER) and the other counter-clockwise (EL), oscillating about the 

direction of propagation (Z). The X and Y components of right-handed circular 

polarised light are shown in Figure 5.2B, and the vector sums in Figure 5.2C. 

The resulting right-handed electric wave (ER) is depicted in Figure 5.2D.  
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Figure 5.2 Description of right hand circularly polarised light. (A) The electric 

vectors, 90 ° out of phase, along the direction of light propagation (z), (B) the X 

and Y components of the electric vectors, (C) resulting sum of the vectors, 

highlighting a circular motion when viewed along the Z axis, and (D) right-

handed circularly polarised light oscillating along the Z axis. Figure taken from 

Fasman (1996). 
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When asymmetric molecules with chiral centres interact with light, the 

chromophores in the molecule will absorb the left and right-handed circularly 

polarised light to different extents. In proteins, the CD active chromophores 

include the amide group in the peptide backbone, and the phenyl, phenolic and 

indole groups of the Phe, Tyr and Trp aromatic amino acid side chains, 

respectively (Fasman, 1996). The UV-CD spectra of proteins are dominated by 

contributions from the π to π* and n to π* electron transitions of the amide group 

in the peptide backbone (Figure 5.3). These transitions, and thus the spectra, are 

influenced by the geometry of the protein backbone, in particular the ϕ and ψ 

angles, which is highly sensitive to secondary structure (Whitmore and Wallace, 

2008). Due to the well-defined ϕ32 and ψ angles in α-helical conformations, 

compared to the variability in β-sheet structures, structural analysis by circular 

dichroic is much more accurate at determining helical contributions (Whitmore 

and Wallace, 2008).  However, CD spectra reflect the overall secondary structure 

of the protein. 

  

 

 

 

 

 

 

 

Figure 5.3 Structure of the peptide bonds with the orientation of the transition 

dipoles π to π* and n to π*.  



 171 

For example, α-helical proteins produce a spectrum with negative bands at 222 

nm, from the nπ transition; 206 nm, from the parallel ππ* transition; and a 

positive band at 190 nm from the perpendicular excitation ππ* transition, as 

shown in Figure 5.4 (Holzwarth and Doty, 1965). β-sheet structures produce 

negative bands at 218 nm and positive bands at 195 nm (Greenfield, 2007). CD 

values can be de-convoluted and fitted using algorithms based on libraries of 

proteins with known secondary structure to deduce the protein’s secondary 

structural content (Whitmore and Wallace, 2008). However, the disadvantages to 

this technique include its inability to distinguish between a solution of 

homogenous proteins containing multiple secondary structure elements, and a 

heterogeneous sample consisting of some proteins containing just one secondary 

structural element, and other peptides containing another (Li et al., 2009). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Far UV circular dichroism spectra of the main protein secondary 

structural elements. 
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5.1.4. Nuclear magnetic resonance 

NMR is a powerful technique that can be utilised to study the structure and 

dynamics of proteins and has been since the late 1950’s (Wuthrich, 2001; Kay, 

2005), following its discovery in 1946 (Mlynarik, 2016). To date, 11,732 protein 

structures have been deposited in the Protein Data Bank determined by NMR, 

whilst only 99 have been produced through solid-state NMR techniques, with 

over 10 % of these structures based on the Aβ peptide (Berman et al., 2000). 

 

5.1.4.1 Nuclear magnetic resonance theory 

Nuclear magnetic resonance is a phenomenon in which the nuclei of atoms that 

contain a non-zero spin and a magnetic moment (μ0), for example 1H, 13C and 15N, 

interact with a static magnetic field (Bo). In the absence of a magnetic field, the 

nuclei’s magnetic moments are randomly orientated, with equal energies and no 

net magnetisation. Upon its application, the B0 magnetic field orientates the 

nuclear spins, which acts as a magnetic dipole moment, into either a low or high-

energy state, with respect to the direction of B0. This process is called the Zeeman 

effect (Mlynarik, 2016; Luca et al., 2003; Veeman, 1997; Hore, 1995).   

For this introduction, the high-energy, antiparallel state will be referred to as β 

and the low-energy, parallel state as α. The difference between these 2 energy 

states (ΔE) is dependent on the strength of B0 (as described in Figure 5.5), the 

gyromagnetic value of the nucleus of interest (γ) and Planck’s constant (h/2π), 

which is outlined in Equation 5.1 (Hore, 1995). At equilibrium, more nuclei align 

with B0 in the low-energy state, than oppose B0 in the high-energy state.  

 

𝜟𝑬 =  𝒉𝜸𝑩𝟎           [5.1] 
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Figure 5.5 Schematic detailing the orientations of a nuclei’s magnetic moment 

upon interaction with a magnetic field (B0), in either the high (β) or low (α) 

energy state, giving rise to an energy difference (ΔE).   

 

The population of nuclei in the high and low energy states is temperature-

dependent, and thus, can be calculated by the Boltzmann distribution in 

Equation 5.2. In this equation, Nα and Nβ refer to the population of nuclei in the 

low and high-energy states, respectively; kB is Boltzmann constant (1.3805 x10-23 

m2 kg s-2 K-1), and T is temperature in Kelvin.  

 

𝑁𝛼

𝑁𝛽
= exp (

∆𝐸

𝑘𝐵𝑇
)  [5.2] 
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The net magnetisation difference observed between the high and low energy 

states is negligible, compared to the perpendicular B0 strength, thus it cannot 

accurately be measured. Therefore, the orientation of the net magnetisation is 

transferred to a transverse plane by addition of a second, pulsed magnetic field 

B1 at radiofrequency and perpendicular to the B0 field, at 90 °. This results in the 

net magnetisation shifting away from the B0 direction towards the B1 (Figure 

5.6), allowing detection (Mlynarik, 2016).  

If the B1 magnetic field is at a frequency that matches the ΔE of the target 

nuclei, referred to as the Larmor frequency, the nucleus absorbs the energy. This 

energy causes a perturbation in the orientation of the nuclear spin, causing re-

alignment, with respect to the direction of B0 (Rabi et al., 1938; Becker, 1993; 

Cavanagh et al., 1995; Becker, 1999; Bothwell and Griffin, 2011; Veeman, 1997).  

 

Figure 5.6 Net magnetisation of the nuclei’s magnetic moments in (A) the B0 

magnetic field, along the Z axis, and (B) the B0 and B1 magnetic fields 

perpendicular to each other, resulting in a transfer of the net magnetisation away 

from the Z axis.   
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5.1.4.2 Relaxation times 

The relaxation time of atoms in NMR experiments is described by two factors. 

The longitudinal relaxation (T1), is the time required for the populations of the 

two nuclei spins to return to equilibrium, and has the rate constant R1=(1/T1). 

The transverse relaxation (T2), refers to the loss of phase coherence from the 

nuclei, and is the time taken for the net magnetisation to restore back to the 

original orientation, parallel to B0, following the pulsed B1. T2 and has the rate 

constant R2=(1/T2). T2 is usually smaller than T1 (Mlynarik, 2016). The rate at 

which repeated NMR scans can be obtained is dependent on the T1 time (Wink, 

1989; Cavanagh et al., 1995).    

 

5.1.4.3 Chemical shift 

The location of a nucleus with a molecule alters the magnetic field strength 

observed (B0), and therefore, the size of the ΔE and Larmor frequency. These 

changes are referred to as the chemical shift (σ), a standardised unit described in 

parts per million (ppm), and calculated using Equation 5.3. This equation is 

based on the Larmor frequency of the nucleus of interest (ϖ) and the Larmor 

frequency of a standard nucleus (ϖref), both measured in Hz. For 1H NMR this 

standard is a proton in tetramethylsilane (TMS), which is given a chemical shift 

(σ) of 0 ppm (Mlynarik, 2016).   

 

𝜎 = (
𝜛−𝜛𝑟𝑒𝑓

𝜛𝑟𝑒𝑓
) ×106  [5.3] 
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5.1.4.4 Chemical shielding  

The biggest contributor to changes in chemical shift come from electron 

shielding. The observed nuclei are surrounded by electrons, each of which 

possesses their own small magnetic moment. These magnetic moments align in 

an orientation against the external magnetic field (B0) direction. This leads to a 

net loss in magnetisation observed at the nucleus, resulting in a smaller Larmor 

frequency. Equation 5.4 shows how BLocal (the effect of electron shielding) 

decreases the B0, resulting in Bob, the observed magnetic field.  

 

𝑩𝑶𝒃𝒔𝒆𝒓𝒗𝒆𝒅 = 𝑩𝑨𝒑𝒑𝒍𝒊𝒆𝒅 − 𝑩𝑳𝒐𝒄𝒂𝒍   [5.4] 

 

The electron shielding of nuclei varies dramatically (Hz scale), depending on the 

specific environment of the nucleus (Cavanagh et al., 1995; Mlynarik, 2016). This 

is why TMS is used as the standard for both 1H and 13C NMR spectroscopy 

(Figure 5.7), the highly electron-donating silicon means that both the 1H and 13C 

nuclei are fully shielded (Hoffman, 2006; Mlynarik, 2016). Any reduction in 

electron shielding caused by the attachment of target nuclei to electron 

withdrawing groups results in a downfield shift of the chemical shift, to higher 

ppm values.  

 

 

 

 

Figure 5.7 Chemical structure of TMS, highlighting the electron donating silicon 

that ensures full electron shielding of the adjoining carbon atoms.  
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5.1.4.5 Spin-spin (J) coupling 

Nuclei of the same atom experiencing the same environment are referred to as 

equivalent, and will have the same chemical shift. Non-equivalent nuclei can 

interfere with the chemical shift of other nuclei by exerting an influence, both 

positive and negative, on the strength of the magnetic field observed (Bob) by the 

nuclei of interest (Fukui, 1999; Becker, 1999; Bothwell and Griffin, 2011). This is 

called J coupling and effects nuclei within 3 bond lengths. J coupling leads to 

“splitting” of the NMR peaks by the n+1 rule, where n is the number of 

neighbouring nuclei (Cavanagh et al., 1995; Foster et al., 2007; Mlynarik, 2016), 

as demonstrated by the schematic in Figure 5.8. This coupling is independent of 

the orientation of the nucleus (Veeman, 1997). Splitting by spin-spin coupling 

can be used to assign NMR signals of similar nuclei, such as multiple CH3 groups. 

 

 

Figure 5.8 (A) Structure of propan-2-ol, highlighting the CH3 protons of interest 

(blue) and (B) the energy states possible from splitting of the CH3 environment 

by the hydrogen on the adjacent carbon. (C) The doublet peak in the CH3 region 

of the 1H NMR spectrum. 
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5.1.4.6 Dipolar coupling  

J coupling requires the two interacting nuclei to be connected via chemical 

bonds. However, dipole-dipole interactions occur through space, and their 

strength is related to the distance (r) between 2 nuclei (I and S) cubed, and the 

angle of interaction (θ), as shown in Figure 5.9. The limit of dipole interactions is 

approximately 10 Å. The relationship between the strength of the dipole 

coupling, the distance and the angle are given in Equation 5.5. Here, μ0 is the 

vacuum permeability constant and λ is the nuclear magnetogyric ratio.  

 

𝐻𝐷 = (
𝜇0

4𝜋
)𝜆2(

3𝑐𝑜𝑠2𝜃−1

2𝑟3 )  [5.5] 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 Dipolar coupling between two nuclei, I and S each with their own 

gyromagnetic value (γ) and a distance (r) of up to 10 Å.   
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Therefore, these couplings can be influenced by the tertiary or quaternary 

structure of a protein. Dipole-dipole interactions are caused by the magnetic 

effect of one nucleus influencing the observed magnetic field on a neighbouring 

nucleus; this can be the same nucleus (homonuclear) or a different nucleus 

(heteronuclear). These interactions are averaged out in solution-state NMR via 

Brownian tumbling. However, in solid-state NMR, these anisotropic dipolar 

interactions cause increased breath of peaks and lead to lower resolution spectra 

(Foster et al., 2007; Becker, 1999; Veeman, 1997).  

 

5.1.4.7 Solution and solid-state NMR 

In solution-state NMR, the natural Brownian tumbling of molecules within the 

solution averages out the anisotropy of dipole and chemical shielding 

interactions, leading to a well resolved spectrum with narrow peaks. In SSNMR, 

the fixed orientations of each molecule leads to orientationally distributed 

chemical structures, which produce broad peaks on the spectrum (Foster et al., 

2007; Pines et al., 1973; Veeman, 1997), as shown in Figure 5.10. By utilising a 

combination of ultrahigh magnetic fields, magic angle spinning, proton 

decoupling and cross-polarisation techniques, high resolution solid-state spectra 

can be achieved that allow assignment of individual residues and determination 

of protein structure (Luca et al., 2003). The effect of each of these techniques will 

be discussed below. 
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Figure 5.10 (A) Solution 31P NMR and (B) solid-state 31P CP MAS SSNMR spectra 

of DPPBA-truncated gold nanoparticles. Image taken from Marbella et al. (2016). 

 

5.1.4.8 Magic angle spinning 

Increased line width is a result of the inability of solid samples to tumble freely, 

leading to anisotropic dipole-dipole interactions and chemical shifts. Only the 

spin-spin interactions (J couplings) are consistent between solution and solid-

state NMR, since these are not dependent on the nuclei’s orientation. Equation 

5.5 indicates the angular dependence on the Hamiltonian equation, with the 

dipole-dipole interaction proportional to (3cos2θ-1). In solid-state experiments, 

the orientation of the nuclei, and thus the angle between two interacting dipoles 

(θ), is not consistent. However, when the sample is spun at an angle of 54.7 °, the 

angular term is removed (Bothwell and Griffin, 2011; Tycko, 2006). 
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Under these conditions, removal of the anisotropic chemical shifts and dipole-

dipole interactions leads to a narrow spectrum, as shown in Figure 5.11 

(McDermott, 2009; Tycko, 2006).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11 13C SSNMR spectrum of L-valine powder with increasing frequencies 

of MAS spinning. Image taken from Tycko (2006).  

 

5.1.4.9 Cross-polarisation  

Cross-polarisation (CP) involves transferring polarisation from nuclei with a high 

gyromagnetic ratio, such as hydrogen, to nuclei with a low ratio, such as 13C and 

15N. This technique is often used to increase the relatively low sensitivity of 13C 

and 15N signals in proteins (Levitt et al., 1986; Kolodziejski and Klinowski, 2002; 
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Morris, 1980).  In order for this to occur, the system has to adhere to the 

Hartmann-Hahn principle, outlined in Equation 5.6, where γ and B1 are the 

gyromagnetic ratio and magnetic field strength of the abundant I nucleus, usually 

1H and the less sensitive S nucleus, such as 13C, respectively.  

 

  𝛾𝐼𝐵1𝐼 = 𝛾𝑆𝐵1𝑆         [5.6] 

The 1H magnetisation is orientated by an electromagnetic field at its Larmor 

frequency. The 13C or 15N resonance is obtained at the same time with a second 

electromagnetic field. As long as the 2 separate nuclei have the same Larmor 

frequency, a cross-relaxation and transfer of magnetisation will occur, from 1H to 

13C or 15N (Hartmann and Hahn, 1962). In the case of 13C, the signal is enhanced 

up to 4 fold, as shown in Figure 5.12. The magnetisation grows, based on the CP 

rate (THC), which is dependent on the number of protons (Kolodziejski and 

Klinowski, 2002) and the distance between two nuclei. After reaching a 

maximum, the magnetisation decays, based on the I spin T1 relaxation time (Fyfe 

et al., 2005). This allows increased acquisition of the spectra, since the T1 

relaxation time is dependent on the pulsed excitation of the proton, rather than 

the carbon nucleus. The pulse sequence for a basic Hartmann-Hahn cross-

polarisation experiment is shown in Figure 5.13. The net magnetisation of the 

proton nucleus is shifted from the Z plane into the XY transverse plane by 

addition of a pulse at 90 °. Simultaneous spin locking pulses (B1I and B1S) are 

applied at, or close to, the resonance frequency of both the I and S nuclei, 

satisfying the Hartmann-Hahn condition. During this period (the contact time) 

the polarisation transfers from the I to the S nucleus. The B1S field is switched off, 

allowing its free induction decay (Kolodziejski and Klinowski, 2002).  
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Figure 5.12 Magnetisation on the 13C grows, based on the CP rate (THC), to a 

maximum contact time, before decaying, which is dependent on TI1, not the TS1. 

 

 

Figure 5.13 Cross-polarisation pulse sequence. The net magnetisation of the 

abundant nuclei (I) is shifted into the transverse plane by an initial magnetic field 

at 90 °. B1I and B1S, which satisfy the Hardmann-Hahn principle, are applied 

simultaneously, producing a contact time (t) where polarisation can cross from 

the I nucleus to the more sensitive S nucleus. (Kolodziejski and Klinowski, 2002). 
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5.1.4.10 INEPT polarisation transfer 

Cross-polarisation, as mentioned above, is utilised in the majority of protein solid 

state MAS NMR experiments, in order to increase the signal detectable from the 

13C and 15N nuclei. However, this technique requires heteronuclear dipolar 

couplings in order to transfer the cross-polarisation.  These dipole interactions 

are averaged out by Brownian tumbling in soluble or dynamic protein regions, 

rendering this technique useful only in static systems (Zhang et al., 2016).  

Insensitive nuclei enhanced by polarisation transfer (INEPT) uses a different 

pulse sequence in order to transfer the magnetisation through J couplings, rather 

than dipole interactions, thus allowing analysis of dynamic systems (Zhang et al., 

2016; Nowacka et al., 2013). The J couplings rely on bound 1H and 13C nuclei, 

meaning only signals from protonated carbons are detected.  

 

5.1.4.11 Combined CP and INEPT NMR analysis 

Depending on the type of SSNMR experiment that is conducted, information can 

be gathered on the dynamics of a protein. Direct polarisation experiments allow 

observation of signals, regardless of whether the molecule is in a solid or mobile 

phase. Cross-polarisation is reliant on 1H-X dipole interactions that become 

averaged out in a protein’s dynamic regions (Zhang et al., 2016). As such, the CP 

spectra only gives rise to chemical shift intensities from regions of the protein 

that remain in a static state. Conversely, INEPT spectra record chemical shifts of 

nuclei from only mobile regions (Zhang et al., 2016; Sackewitz et al., 2008; Heise 

et al., 2005). By comparing all three of these spectra, the DP, CP and INEPT, it is 

possible to determine global changes in the secondary structure of proteins, and 

establish whether these structural changes cause a change in dynamics. 
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The combined use of CP and INEPT NMR spectra to establish amyloid mobility 

was utilised by Debelouchina et al. (2011) on the study of β2-microglobulin. 

Comparison of amyloidogenic aggregates formed at two pH conditions 

determined different morphologies, not only in the β-sheet content but also in 

the aggregate’s structural mobility. INEPT NMR experiments of β2-microglobulin 

have also been utilised in the analysis of the SUP35 amyloid aggregates.  INEPT 

spectra identified a rigid, amyloid core, referred to as the M domain, formed by 2 

β-strands in the sequence. These regions were detected and assignable on the 

INEPT spectra, whereas the remaining regions of the protein did not, suggesting 

that these regions show increased mobility (Luckgei et al., 2014).  

 

5.1.4.12 Multi-dimensional NMR 

For small molecules, the chemical shift and splitting patterns of peaks should be 

sufficient to identify the chemical group to which they belong. However, due to 

overlapping signals and small differences in chemical shift values, identification 

of individual peaks is often difficult for larger systems, such as proteins. Instead, 

multi-dimensional NMR can be used to detect the nuclei from more than one 

element in an experiment. This allows deduction, for example, of 1H nuclei 

connected to 13C nuclei, via heteronuclear pulsed experiments. These 

experiments are essential for the structural analysis of proteins, where large 

number of resonances, all in close proximity, cause extensive overlap. Protein 

backbones contain amide bonds, meaning that a combination of carbon, nitrogen 

and hydrogen nuclei can all be probed, including simultaneously in 3D NMR 

experiments (Bothwell and Griffin, 2011; Wuthrick, 1990). 

Mixing techniques such as dipole assisted rotational resonance (DARR) 
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allows the recoupling of long-range dipolar interactions. Magnetisation is 

transferred from the 1H (I) to the 13C (S1) nuclei. This 13C (S1) can then transfer 

the magnetisation to other 13C nuclei (S2), which are close in space and have 

overlapping spinning sidebands (Takegoshi et al., 2001). This mechanism of 

transfer requires S1 and S2 to be dipolar coupled.  

 

5.1.5. Aims 

This chapter describes the structural analysis of native-lyophilised, and 

aggregated apoA-I, formed under conditions determined in Chapter 4. A 

mechanism for apoA-I aggregation has already been proposed by Das et al. 

(2016), based on the crystal structure of apoA-I. However, there is currently no 

structure for apoA-I amyloid. Information on the structure of the aggregated 

material, deduced by NMR, could either confirm this theory, or suggest 

refinements. In Chapter 4 it was shown that apoA-I is stable at pH 7, and that 

acidification to pH 4, or oxidation of the three-methionine residues, leads to its 

rapid conversion into insoluble material. The presence of heparin or oxidation of 

methionine residues on apoA-I enhances the aggregation, and leads to a more 

ordered amyloid morphology. This chapter of study will utilise a combination of 

circular dichroism and, for the first time, solid-state NMR in order to determine 

whether the native apoA-I structure undergoes a conformational change upon 

acidification or oxidation.  
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5.2 Methods 

5.2.1 Circular Dichroism  

5.2.1.1 Stability of apoA-I to UV radiation 

UV stability tests of apoA-I were carried out on a Chirascan plus qCD 

spectrometer (Applied Photophysics) between 200 and 250 nm with a 

bandwidth of 1 nm and a path length of 2 mm. 50 scans of apoA-I and oxidised 

apoA-I (7.2 μM) in McIlvaine buffer at pH 7 were taken. 

 

5.2.1.2 Thermal stability of apoA-I 

The thermal stability of apoA-I and oxidised apoA-I (7.2 μM) in McIlvaine buffer 

at pH 7 was determined on a Chirascan plus qCD machine with a bandwidth of 1 

nm and a 2 mm path length, between 200 and 250 nm, across a temperature 

range of 20 – 90 °C. The temperature was controlled with a Quantum Northwest 

temperature controller, with 1 °C increment. The temperature was maintained 

during the scan acquisition. The thermal denaturation data was analysed using 

the Global 3 Thermal Analysis Software.  

 

5.2.1.3. ApoA-I secondary structure analysis    

Secondary structure of apoA-I was determined by synchrotron radiation circular 

dichroism (CD) using a nitrogen flushed Module X end-station spectrometer at 

B23 Synchrotron Radiation CD Beam line at the Diamond Light Source, 

Oxfordshire UK. ApoA-I (72 μM) at pH 7 and pH 4, in the absence and presence of 

heparin (144 μM), was incubated at 37 °C with agitation. The concentration was 

increased to 72 μM to allow a narrow path length. This reduced the background 

noise resulting from the citrate in the buffer, which absorbs in the far UV region 
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(Miles and Wallace, 2006). Samples were taken at 0, 1, 2 and 5 hour intervals and 

centrifuged at 13,400 rpm, in a bench top centrifuge, to pellet any insoluble 

material. The concentration of the supernatant was measured before loading into 

quartz cuvettes with a path length of 0.2 mm. Circular dichroism experiments 

were performed between 185 and 260 nm, with an increment of 1 nm. The data 

was analysed using CDApps software (Siligardi et al., 2002) and fitting was 

performed using the CONTINLL algorithm with dataset SMP56 between 190 and 

250 nm. The CONTINLL algorithm factors in the sample concentration, the 

protein molecular weight, path length and the mean mass of amino acids (113 

Da), to produce spectra with a Δε scale, the per residue molar absorption unit (M-

1cm-1). 

 

5.2.1.4. Thin film circular dichroism 

Samples of aggregated apoA-I, formed at pH 4 in the absence and presence of 

heparin, were deposited on Suprasil type quartz plates and dried under a stream 

of nitrogen at 23 °C to form a thin film. CD spectra were acquired between 180 

and 260 nm using an integration time of 1 second and a bandwidth of 1.2 nm on a 

nitrogen flushed module B end-station spectrometer at the B23 Synchrotron 

radiation CD beam line at Diamond Light Source, Oxfordshire UK.  

 

5.2.2. Preparation of samples for solid-state NMR 

Uniformly 13C and 15N isotopically labeled apoA-I was incubated at 36 μM, alone 

and in the presence of 72 μM heparin, at pH 4 for 3 days at 37 °C, with agitation. 

Fibrils were harvested through centrifugation at 12,000 g and the supernatant 

removed. Samples were flash frozen in liquid nitrogen, prior to centrifugation 
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into a zirconium 3.2 mm rotor with a Kel-F cap (Brucker, U.K).  ApoA-I at pH 7 

was 189yophilized in order to produce a solid, apoA-I product. This was then 

centrifuged into a 3.2 mm zirconium NMR rotor.  

 

5.2.2.1 One-dimensional solid-state NMR 

One-dimensional proton-decoupled 15N CP-MAS SSNMR experiments were 

carried out on a Brucker Avance 400 MHz spectrometer, operating at a magnetic 

field of 9.3 Tesla, equipped with a 3.2 mm HXY MAS probe at 25 °C. Hartmann-

Hahn cross-polarisation was achieved at a proton nutation frequency of 78 kHz, a 

2 ms contact time, 100 kHz proton decoupling with SPINAL-64 during the signal 

acquisition, and a recycle delay of 2 ms. Magic angle spinning was controlled at a 

frequency of 8 kHz ± 1 Hz. Each spectrum was the result of accumulating 20,000- 

100,000 transients.  

 

5.2.2.2 Two–dimensional solid-state NMR 

Two-dimensional 13C-13C spectra were recorded at a magnetic field of 9.3 Tesla 

with a 3.2 mm HXY probe operating in double resonance mode, with magic angle 

spinning at 14 kHz and the temperature maintained at 4 °C. Hartmann-Hahn 

cross-polarisation was achieved with a 2 ms contact time and 100 kHz proton 

decoupling with SPINAL-64 applied during signal acquisition. For broadband 

dipolar recoupling, spectra were recorded with a 10 ms mixing time, during 

which the proton nutation frequency was adjusted to the MAS frequency of 14 

kHz to meet the dipolar assisted rotational resonance (DARR) condition. The 

time domain matrix was the result of 400 T1 increments, each averaged over 

between 128 and 320 transients. Phase sensitivity was achieved using the States-
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TPPI method. For selective dipolar recoupling, the proton nutation frequency 

was set to 100 kHz during a mixture time of 1-15 ms and the spinning frequency 

was adjusted to the frequency difference of the nuclei to be coupled. 

 

5.2.2.3 Simulated spectra 

Simulated spectra of the natively folded apoA-I (Δ185-243) were produced in 

order to establish whether the SSNMR spectra acquired here, were consistent 

with the crystal structure deduced by Mei and Atkinson (2011). SHIFTX2 online 

server was used to calculate the chemical shifts from the PDB 3R2P structure. 

This program combines sequence alignment and ensemble machine learning 

methods to calculate the backbone and side chain 1H, 13C and 15N chemical shift 

from a library of 197 proteins, each with a resolution of at least 2.1 Å, deduced by 

X-ray crystallography (Han et al., 2011).  These predicted chemical shift values 

were then used to generate a simulated DARR spectrum, using a C program 

developed by Professor D. Middleton. In order to simplify the spectra, only short-

range couplings representing directly bonded atoms were used.  
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5.3. Results 

5.3.1. Circular Dichroism  

Solution circular dichroism was used to determine the secondary structural 

content of apoA-I. Scans were acquired during the early stages of aggregation, 

prior to removal of insoluble material by centrifugation. The time window 

available was dependent on the pH, heparin and oxidation state, as shown in 

Chapter 4. The insoluble material was measured separately, after being dried 

down into a thin film.  

 

5.3.1.1. Stability of native apoA-I 

ApoA-I was incubated at pH 7 and scanned 50 times with single scans of far UV 

synchrotron radiation, in order to monitor the stability of the peptide (Figure 

5.14A). The data show no sign of protein degradation after 50 scans, suggesting 

that apoA-I is stable when exposed to UV radiation, and that changes observed 

following aggregation are caused by changes in structure, not radiation damage.  

A fresh apoA-I solution at pH 7 was then monitored over 7 hours, under 

which conditions the protein was shown previously to be stable and not to 

aggregate (Figure 4.4), in order to monitor any structural changes during this 

time and to determine the secondary structural content of native apoA-I.  

Prior to each measurement over the 7 hour period, apoA-I was incubated 

at 37 °C, with agitation. Insoluble material was removed through centrifugation, 

and the concentrations were measured using a nanodrop. CD scans were then 

acquired. Figure 5.14B shows the spectra remain similar over the 7-hour period, 

apart from a small change in intensity at the 2-hour point, confirming that no 

structural change occurs during incubation at pH 7.  
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Figure 5.14. Far UV synchrotron radiation circular dichroism of apoA-I at pH 7. 

(A) 50 repeated scans of apoA-I (7.2μM) to determine the stability of the peptide 

under UV radiation. The numbers represent the number of repeated exposures to 

UV radiation. (B) ApoA-I (72 μM) monitored over 7 hours.  
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5.3.1.2 Secondary structure of native apoA-I 

The spectrum of apoA-I (72 μM) at pH 7, after 0 and 5 hours incubation, are 

shown in Figure 5.15A, and are consistent with a high degree of α-helical 

structure, shown by the characteristic minima at 208 and 222 nm. Fits calculated 

from the CONTINLL algorithm are also shown, and were used to estimate the 

percentage secondary structure of apoA-I.  

The CD spectra of proteins can be expressed as a combination of the 

individual secondary structural elements. The CONTINLL algorithm is based on 

the CONTIN method, which uses a ridge regression procedure, fitting the 

observed CD spectrum to a large database of reference proteins (Sreerama and 

Woody, 2000; Greenfield, 2007). This results in accurate estimates for proteins 

containing α-helical and β-sheet structures, which is of particular interest in 

amyloidogenic proteins, especially for those that contain a high proportion of 

native α-helices (Greenfield, 2007).  

At pH 7, apoA-I is shown to consist of a majority of α-helical elements, 

which make up 60 % of the overall secondary structure. This value is consistent 

with previous studies (Nagao et al., 2014; Saito et al., 2003; Chetty et al., 2012; 

Chetty et al., 2009; Gursky et al., 2012; Das et al., 2014), which range between 60 

and 80 % of α-helices, when measured with CD. The structure is also shown to 

remain stable, following incubation at 37 °C for 5 hours (Table 5.1). 
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Figure 5.15 (A) CD spectra of apoA-I (72 μM) at pH 7 after 0 h and 5 h 

incubation, along with fits using the CONTINLL algorithm. 

 

Table 5.1 Secondary structural content of apoA-I at pH 7 after 0, 2 and 5 hours 

incubation in the absence of heparin, calculated using CONTINLL algorithm fits, 

with the standard deviation (SD) shown.  

 

 

Percentage Secondary Structure   

Time α-helix β-sheet Turn Unordered S.D 

0 Hours 65 8 13 14 0.032 
2 Hours 62 9 24 5 0.031 

5 Hours 60 5 16 19 0.039 
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5.3.1.3. Structural rearrangement of apoA-I upon aggregation 

In order to determine whether any structural rearrangement occurs upon 

aggregation, apoA-I was incubated under the conditions determined in section 

4.3, at pH 4, in the absence and presence of heparin, at 37°C. After 2 hours 

incubation, samples of the aggregating apoA-I were removed and centrifuged to 

remove any insoluble material that could distort the CD signal, through light 

scattering and/or absorption flattening. The concentration was then re-

measured and the sample loaded into quartz cuvettes. The supernatant was 

analysed by SRCD and the molar CD (Δε) calculated based on the new 

concentration.  

The CD spectra for apoA-I alone, and in the presence of heparin at pH 4 

(Figure 5.16, A and B, respectively) are shown after 0 and 2 hours of incubation. 

Fits of these spectra using the CONTINLL method were also performed to deduce 

the percentage secondary structure, and are also shown in Figure 5.16.  

At pH 4, large quantities of apoA-I were precipitated, as described in 

Chapter 4, which after its removal, led to a reduced signal to noise ratio. In the 

absence of heparin, the remaining soluble protein retained a significant 

proportion of the native α-helical content, even after 2 hours (Figure 5.16A). 

However, in the presence of heparin, the intensities of the spectra are reduced, 

even at the initial time point, to the extent that the characteristic α-helical 

minima at 208 and 222 nm, are not distinguishable (Figure 5.16B).  

Upon fitting of the apoA-I spectra, using the CONTINLL algorithm, the data 

was able to be accurately de-convoluted. This facilitated the calculation the 

secondary structural contributions, with a standard deviation of <0.1, apart from 

apoA-I in the presence of heparin, which was too close to the baseline. The fits for 
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the heparinated sample after 0 and 2 hours had a standard deviation of 0.52 and 

0.68, respectively. This means the structural information deduced from this 

fitting must be treated with more caution. The protein concentration of the 

supernatant was so low that the data was not deemed to represent the 

aggregating material.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16. Far UV circular dichorism spectrum for apoA-I (72 μM ) at pH 4 in 

the absence (A) and presence (B) of 144 μM heparin after 0 h and 2 h incubation, 

at 37 °C with agitation. Fits derived using the CONTINLL algorithm are also 

shown for each spectrum as dotted lines.   
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De-convolution of the apoA-I CD spectrum at pH 7, revealed a predominantly α-

helical structure (65 % α-helical, 8% β-sheet, 13% turns and 14% unstructured), 

consistent with the crystal structure of C-terminally truncated apoA-I (Mei and 

Atkinson, 2011).  

At pH 4, apoA-I alone has a slightly lower α-helical content, and an 

increase in unstructured regions (Table 5.2), but is still predominantly helical. 

After incubation for 2 hours, the helical contribution remains similar to the 

native structure, but an increase in β-sheet is observed (Table 5.2).  

However, in the presence of heparin, at pH 4, a dramatic reduction in α-

helical content, and an increase in β-sheet and unstructured regions are observed 

instantaneously. After 2 hours incubation, the reduction in protein concentration 

by precipitation means that the remaining soluble material does not accurately 

represent the aggregating material, as shown by the dramatic increase in the 

standard deviation. Therefore, the insoluble material was dried into thin films 

and analysed using thin film CD (Section 5.3.1.4).  

 

Table 5.2. Secondary structural content of apoA-I at pH 7 and 4, in the absence 

and presence of heparin after 0 and 2 hours incubation, calculated using 

CONTINLL algorithm fits with standard deviation (SD) shown. 

  
Percentage secondary structure   

Condition Time (h) α-helix β-sheet Turn Unordered S.D 

pH 7 0 65 8 13 14 0.032 

 
2 62 9 24 5 0.031 

pH 7 + heparin 0 60 8 21 11 0.028 

 
2 65 9 14 12 0.033 

pH 4 0 53 5 18 24 0.057 

 
2 61 16 21 2 0.095 

pH 4 + heparin  0 4 41 22 32 0.521 

  2 19 8 16 57 0.681 
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5.3.1.4. Thin film circular dichroism of apoA-I 

The insoluble, aggregated material that was removed from solution, prior to 

obtaining the solution CD spectra, was analysed by thin film circular dichroism. 

This allowed determination of the secondary structure of the apoA-I aggregates, 

rather than the protein that was left in solution.  

Thin film CD of the aggregated material formed in the absence of heparin 

produced a spectrum that appeared similar to apoA-I at pH 7, with spectral 

minima at 208 and 222 nm, suggestive of a high helical content remaining 

(Figure 5.17).  

However, the material formed in the presence of heparin produced a 

spectrum that appeared to consist of both α-helical and β-sheet contributions. 

The spectrum maximum shifts from 193 nm to 195 nm, which is consistent with 

a conversion from α-helical to β-sheet. The spectra minimum at 222 nm, one of 

the identifying features of α-helices, becomes red shifted to 226 nm, and the 

intensity of the spectral minimum at 208 nm, is also reduced. These are all 

suggestive of an increase in β-sheet content (Chan et al., 2015).  

Differential spectra, obtained by subtracting the heparinated sample from 

the sample of apoA-I alone, can be assigned to conformational changes occurring 

in the presence of heparin. This spectrum infers the presence of 40 % β-sheet 

content. However, this technique cannot determine whether the entire, 

heparinated aggregate contains 40 % β-sheets, or whether just the region that 

differs from the un-heparinated sample contains 40% β-sheets.   

Therefore, thin film CD has to be used with caution. The random 

alignment of molecules in the film leads to anisotropic sampling, and it has been 

reported that thin film CD overestimates β-sheet content (Noguez, 2014). 
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Figure 5.17. Thin-film far UV circular dichroism spectrum of apoA-I aggregates 

formed at pH 4, in the absence and presence of heparin.  

 

5.3.1.5 Stability of oxidised apoA-I 

Oxidation of apoA-I has been shown to induce its aggregation into amyloid-like 

aggregates, with typical fibril morphology, at a more physiologically relevant pH 

than the wild type apoA-I. As such, the structure of oxidised apoA-I was probed 

with CD. 

Oxidised apoA-I was incubated in 10mM phosphate buffer, rather than 

McIlvaine buffer. This meant that CD scans could be acquired from 185-260 nm 

without excessive noise below 200 nm, caused by the citrate in the McIlvaine 

buffer. 
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In experiments mirroring those described in section 5.3.1.1, oxidised 

apoA-I underwent repeated scans of high intensity UV radiation, in order to 

determine whether the oxidised apoA-I was prone to UV degradation. Figure 

5.18 indicates that oxidised apoA-I at pH 7.5 remains stable to UV radiation, 

similar to wild type apoA-I. 

 

 

Figure 5.18 25 repeated scans of oxidised apoA-I (72 μM) at pH 7 with far UV 

synchrotron radiation to determine the stability of the peptide under UV 

radiation. Numbers represent the number of repeated exposures to UV radiation.   
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5.3.1.6. Secondary structure of oxidised apoA-I 

Circular dichrosim spectra of oxidised apoA-I were obtained, in order to 

determine the secondary structural content. At pH 7.5, oxidised apoA-I has been 

shown to be stable and is not predisposed to aggregation (Chan et al., 2015). The 

spectrum of oxidised apoA-I, shown in Figure 5.19A, can be fitted with the 

CONTINLL algorithm, resulting in the secondary structural values shown in 

Figure 5.19B. These percentages confirm a predominantly helical conformation. 

However, the helical content of 46 % for the oxidised apoA-I is considerably 

lower than the 60 % α-helices in the un-oxidised apoA-I. This is concurrent with 

previous studies, which determined that the secondary structural content 

decreased by approximately 10 % upon oxidation of methionine residues (Chan 

et al., 2015). This 10 % reduction in helical content appears to have rearranged 

into unstructured regions, in agreement with Wong et al. (2010). It is thought 

that this decreased structural stability is what drives the aggregation of oxidised 

apoA-I into amyloid species.  

Oxidised apoA-I at pH 6 was not studied by solution CD, due to the 

inaccuracy of the fitting observed at pH 4, in the presence of heparin. Instead thin 

film CD of oxidised apoA-I was attempted, in order to determine the secondary 

structural contributions of the aggregated material. However, upon drying down 

the insoluble aggregates, as done previously with native apoA-I at pH 4, the thin 

films were opaque, and lead to extensive light scattering when CD spectra were 

acquired.  
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Figure 5.19 (A) CD spectra of oxidised apoA-I (72 μM) at pH 7.5, with the 

CONTINLL fitting, using dataset SMP56. (B) Secondary structural content of 

oxidised apoA-I at pH 7.5, estimated using the CONTINLL algorithm.  
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5.3.1.7 Circular dichroism of apoA-I (46-59) 

ApoA-I (46-59) was shown in Figure 4.17 to readily assemble into ThT-

responsive aggregates, characteristic of amyloid. As such, the aggregation of 

apoA-I (46-59) was monitored for 4 hours with circular dichroism. At pH 7 

(Figure 5.20B), apoA-I retains a predominantly random coil structure, with a 

spectra minimum around 195-200 nm and a maximum around 215 nm. Upon 

acidification to pH 4, the spectra in Figure 5.20A remains relatively unchanged, 

still suggestive of random coil structure. However, after incubation for 4 hours at 

pH 4, the spectra changes dramatically to one more associated with β-sheets.  

 However, upon fitting with CONTINLL algorithms, the secondary 

structure shows no difference, following aggregation (Table 5.3). This does not 

match the dramatic change in the shape of the spectra. As such, the fittings were 

not deemed to accurately represent the data and were rejected. Therefore, the 

structure of apoA-I (46-59) aggregates will be further studied by natural 

abundance SSNMR.   

 

Table 5.3 Percentage secondary structure of apoA-I (46-59) at pH 7 and pH 4 

after 0 and 4 hours incubation. 

   

Condition Time Percentage secondary structure 

  
α-helix β-sheet Turn Unordered 

pH 7 0 hours 5 40 22 33 

 
4 Hours 5 40 22 32 

pH 4 0 Hours 5 40 22 34 

 
4 Hours 4 37 22 36 
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Figure 5.20 Circular dichroism of apoA-I (46-59) at the aggregation inducing pH 

4 (A), and neutral pH 7 (B) where apoA-I (46-59) was shown to be stable and did 

not spontaneously aggregate.  
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5.3.2. Thermal stability studies of apoA-I 

5.3.2.1 Thermal stability of native, soluble apoA-I 

Thermal stability experiments were carried out on a bench top instrument, 

rather than at Diamond Light Source. At Diamond, high concentrations of apoA-I 

meant shorter path lengths could be used. Due to the lower radiation intensity of 

the bench top instrument, measurement required a longer path length, as such, 

the contribution from the citrate buffer at low wavelengths caused a high level of 

noise. Therefore, the spectra presented for thermal stability analysis of both 

apoA-I and oxidised apoA-I at 7.2 μM is shown from 200-250 nm.  

Far UV circular dichroism measurements of apoA-I at pH 7, across a 

temperature range of 20-90 °C, were taken in order to determine whether the 

structure of apoA-I was dependent on temperature, and if so, what temperature 

induced a change in the native fold. At 20 °C, apoA-I produced a CD spectrum 

consistent with the scans of apoA-I in Figure 5.21, suggesting a high content of 

α-helical secondary structure. As the temperature increased, the intensity of the 

troughs at 208 nm and 224 nm, characteristic of α-helical contributions, reduced. 

As the temperatures exceeded 60 °C, the spectra appeared to take on a more 

random coil characteristic (Figure 5.21A), consistent with apoA-I undergoing 

thermal destabilisation. The isodichroic point around 203 nm is suggestive of a 

local 2 state population. This is confirmed by the spectra from these two separate 

species, shown in Figure 5.21B. The contribution of these two structural 

variants of apoA-I can be plotted against temperature, using the Global 3 Thermo 

Analysis software. The point where the 2 lines converge highlights a temperature 

of 57.5 °C, at which 50 % of the initial, mostly helical structure has converted into 

a random coiled structure (Figure 5.21C).  
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Figure 5.21 (A) Far UV circular dichroism spectrum of apoA-I at neutral pH 

incubated at increasing temperatures, (B) the 2 distinct species at the extremes 

of the temperature range and (C) the fractional composition of the 2 species at 

each temperature. Data was analysed by Global 3 thermo analysis software.  
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5.3.2.2. Thermal stability of oxidised apoA-I 

Oxidation of methionine residues in apoA-I has been shown to reduce the 

secondary structural content of soluble apoA-I by approximately 10 % (Chan et 

al., 2015). However, one study has found that oxidation of methionine residues 

causes partial unfolding of the protein, and inhibition of dimerisation (Wong et 

al., 2010). Both of these studies deduced an increased susceptibility to thermal 

destabilisation, compared to the un-oxidised apoA-I.  

Figure 5.22 shows that oxidised apoA-I undergoes two major transitions 

between 20 and 90 °C. At 20 °C oxidised apoA-I produces a CD spectra that 

appears similar to the native, soluble apoA-I (Figure 5.22A and B), thus, is 

qualitatively presumed to contain a high proportion of α-helices, due to the 

presence of spectral minima at 208 and 222 nm. Upon increasing the 

temperature above 30 °C, the spectra of oxidised apoA-I shows a decrease in 

intensity at 222 nm, and a blue shift of the 208 nm peak to approximately 205 

nm, consistent with the formation of unordered structures. This is characteristic 

of protein unfolding. This is also similar to the transition of un-oxidised apoA-I at 

pH 7 from helical to random coil (Figure 5.21B), although oxidation decreases 

the temperature at which this conversion occurs by 25 °C. This effect has been 

reported elsewhere, but to a much lower extent (Wong et al., 2010). Upon further 

heating above 70 °C, CD spectra of oxidised apoA-I produces spectral minima at 

208 and 222 nm, but at reduced intensities, consistent with refolding into α-helix 

structures, which has not been shown before. The lack of an isodichroic point at 

203 nm confirms the 2-state transition observed in Figure 5.21 no longer occurs. 

Therefore, this data confirms oxidation causes increased structural unfolding of 

apoA-I. 
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Figure 5.22  (A) Far UV circular dichroism spectrum of oxidised apoA-I at pH 7.5 

incubated at increasing temperatures, (B) the 3 distinct species determined by 

the Global 3 Thermo Analysis software and (C) the fractional composition of the 

3 species at each temperature. 
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5.3.3. Solid-state NMR 

Since CD analysis of proteins can only give an estimation of the overall secondary 

structural content, SSNMR was utilised in order to determine local structural 

features at a higher resolution. Chapter 3 describes the recombinant expression 

of uniformly 13C and 15N isotopically labeled apoA-I, allowing analysis by SSNMR. 

Chapter 4 details the conditions that promoted the aggregation of apoA-I into 

insoluble material, characteristic of amyloid. This work allows a more in-depth 

study of the global structure of apoA-I, in particular the folding pattern of the 

native and aggregated forms of the protein, via a combination of one and two-

dimensional SSNMR experiments.   

 

5.3.3.1 Structure of native apoA-I 

Initial SSNMR experiments were used to determine the structure of the native 

apoA-I protein at pH 7, where it has been shown to remain stable and avoid 

aggregation. Two-dimensional, 13C-13C CP-MAS SSNMR spectra were obtained for 

lyophilised apoA-I at pH 7. Cross-peaks identify nuclei in close proximity, such as 

those that are directly bonded, with the transfer of magnetisation from one 

nucleus to another during the mixing phase.  

Figure 5.23 shows broad lines (±5 ppm) for the lyophilised sample 

(black), suggesting a degree of heterogeneity, which is common for SSNMR 

analysis of amyloid fibrils formed by full-length proteins (Morris et al., 2012). In 

addition to this heterogeneity, the overlap of individual amino acid peaks, caused 

by the large size of apoA-I, prevented a full residue assignment of the spectrum. 

However, the spectrum is suitably well resolved to observe cross-peaks from 

several amino acid species, in particular alanine, leucine, valine, threonine and 
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serine. The chemical shift patterns of these residues alone can be used to infer 

secondary structural content of the overall protein, given their uniform 

distribution throughout the apoA-I sequence (Figure 2.3). The spectrum of 

lyophilised apoA-I at pH 7 contains Cα-Cβ and Cα-carbonyl carbon cross-peaks 

for these amino acid residues with chemical shifts, which are characteristic of α-

helices, as shown in Table 5.4.  

 

Table 5.4 Average chemical shift (ppm) of amino acids, according to their 

secondary structural content (Wang and Jardetzky, 2002). 

 Cα  Cβ  C-amide  

 α-helix β-sheet Random 
Coil 

α-helix β-sheet Random 
Coil 

α-helix β-sheet Random 
Coil 

Ala 54.86 50.86 52.67 18.27 21.72 19.03 179.58 175.3 177.39 

Gly 47.02 45.08 45.34    176.31 173.01 174.3 

Leu 57.54 53.94 54.85 41.4 44.02 41.87 178.42 175.16 176.61 

Pro 65.52 62.79 63.53 31.08 32.45 31.87 178.34 176.41 176.91 

Ser 60.87 57.14 58.35 62.81 65.39 63.88 176.51 173.52 174.33 

Thr 65.89 61.1 61.59 68.64 70.82 69.75 176.62 173.47 174.62 

Val 65.69 60.72 61.8 31.41 33.81 31.68 177.75 174.66 175.76 

 

 

The spectrum also shows a strong resemblance to a simulated spectrum of apoA-

I (Δ185-243), which was produced from the predicted chemical shifts from the 

PDB 3R2P model determined by SHIFTX2 (Han et al., 2011). This provides strong 

evidence that the native protein at pH 7 is in a predominantly α-helical structure. 

It should be noted that the simulated spectrum corresponds to the apoA-I (Δ185-

243) protein, whereas the lyophilised apoA-I spectrum contains signals from the 

full-length peptide (minus the first 2 residues). Therefore, the experimental 

spectrum contains signals from the remaining residues, 185-243, which are not 

present in the Mei and Atkinson model. These residues in apoA-I are believed to 
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be involved in lipid binding, and thus, have a highly variable secondary structure, 

consisting of either α-helical or random coil structures (Chetty et al., 2009). If 

this C-terminal region was in a random coil conformation, Cα-Cβ cross-peaks 

from threonine 197, 200, 237 and 242 and serine 201, 204, 224 and 228 residues 

would appear with chemical shifts of 61.6/69.8 ppm for the threonine residues 

(green circle), and 58.3/63.8 ppm for the serine residues (blue circle) (Figure 

5.23). The Cα-Cβ cross-peaks for threonine and serine residues in α-helical 

conformations occur closer to the diagonal. Since no cross-peaks occur in the 

region associated with random coil, the spectra suggests that under the 

conditions studied here, the C-terminus of apoA-I is in an α-helical conformation.   

 

Figure 5.23 2D 13C-13C SSNMR spectra with DARR mixing of lyophilised apoA-I at 

pH 7 (black) and a simulated spectrum from the apoA-I (Δ185-243) model (Mei 

and Atkinson, 2011) in red. The blue and green circles highlight chemical shift 

regions associated with Thr and Ser residues in random coil conformations.   
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5.3.3.2 One-dimensional solid-state NMR of apoA-I aggregates 

Proton-decoupled 15N CP-MAS NMR spectra of apoA-I were acquired for 

lyophilised apoA-I at pH 7, and for the fibrillar material formed at pH 4 and pH 5 

in the presence of heparin (Figure 5.24). Chemical shifts of the backbone amide 

nitrogen, in addition to the Cα, carbonyl and Cβ positions, are highly sensitive to 

protein secondary structure. Figure 5.24 also includes the predicted 15N 

chemical shift spectra for the apoA-I (Δ185-234) structure shown in red (Mei and 

Atkinson, 2011). 

Figure 5.24A shows the amide 15N chemical shifts for the native 

lyophilised apoA-I, centred around ≈119 ppm. This is consistent with the 

chemical shift of amide nitrogen atoms in α-helical conformation, which range 

from 114.8 ppm to 121.7 ppm, with an average of 118.3 ppm (Wang and 

Jardetzky, 2002). The experimental spectrum agrees with the simulated 

spectrum for apoA-I (Δ185-234), suggesting that at pH 7, lyophilised apoA-I 

shows a strong resemblance to the Mei and Atkinson (2011) model. The spectra 

in Figures 5.23 and 5.24 also confirm that the lyophilisation of apoA-I does not 

affect the native structure.  

Upon aggregation at pH 4, at both 36 and 18 μM (Figure 5.24 B and C), 

and at pH 5 at 36 μM (Figure 5.24 D) in the presence of heparin, apoA-I 

produces a 15N spectrum peak centred around ≈121 ppm. Average chemical 

shifts for amino acid residues in β-sheet (122 ppm) and random coil (119.5 ppm) 

conformations are higher than those seen in corresponding α-helical (118.3 

ppm) conformations (Wang and Jardetzky, 2002). In all three spectra of apoA-I at 

acidic pH, the experimental spectrum of the apoA-I aggregates show a deviation 

from the apoA-I (Δ185-234) simulated spectra.  
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In summary, although the spectra do not provide site-specific information, the 

1D 15N spectrum confirms the aggregation of apoA-I at acidic pH, in the presence 

of heparin, causes a structural rearrangement. This results in a shift from its 

natively α-helical structure, to an increased β-sheet and/or unordered structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.24 15N 1D SSNMR showing the backbone amide region of (A) 

lyophilised apoA-I at pH 7 and (B-D) aggregated apoA-I formed in the presence 

of heparin. Specific aggregation inducing conditions were (B) pH 4 with 36 μM 

apoA-I, (C) pH 4 with 18 μM apoA-I, and (D) pH 5 with 36 μM apoA-I. The 

simulated spectra for the apoA-I (Δ185-234) model, calculated using the 

SHIFTX2 online server, is shown in red.  
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5.3.3.3. Two-dimensional ssNMR of apoA-I aggregates 

Two-dimensional 13C-13C CP-MAS SSNMR spectra for hydrated apoA-I aggregates, 

formed in the absence and presence of heparin (Figure 5.25), give more detail 

on the structural composition of the aggregates than was possible with one-

dimensional studies (Figure 5.24).  ApoA-I alone (red) shows a high similarity to 

apoA-I aggregates formed in the presence of heparin (black), despite the 

differences observed via XRD, TEM, CD and ThT, which suggested a different 

aggregation mechanism occurred in the presence of heparin. Both samples 

produce spectra with broad, overlapping peaks. The overlap is less than that 

observed for the lyophilised apoA-I at pH 7 in Figure 5.23, however, a sequential 

assignment is still not feasible.  

The 2D spectrum of aggregated apoA-I (Figure 5.25) contains cross-

peaks for Ala, Val, Leu, Ser and Thr residues that correspond to α-helical 

contributions, as observed with the lyophilised apoA-I at pH 7 in Figure 5.23. 

However, in addition to these α-helical cross-peaks, additional sets of cross-

peaks for each of these residues are present, with chemical shifts associated with 

β-sheets. This suggests that upon aggregation, apoA-I undergoes a structural 

rearrangement, from a highly helical native structure, into a combination of α-

helices and β-sheets. All 5 of the amino acids identified in Figure 5.25 are 

uniformly distributed throughout the apoA-I sequence (Figure 2.3), meaning 

that it was not possible to locate the unique regions of the peptide that 

correspond to α-helices or β-sheets.  

In summary, apoA-I aggregates, formed both in the absence and presence 

of heparin, contain both α-helical and β-sheet contributions, suggesting a partial 

conversion from its native α-helical content.  
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Figure 5.25 Two-dimensional 13C-13C CP-MAS SSNMR spectrum with DARR 

mixing of apoA-I aggregates formed in the absence (red) or presence (black) of 

heparin, showing the amide (left) and high field (right) carbon regions. 

Annotations of α and β refer to cross-peaks with chemical shifts consistent with 

the residues in an α-helical or β-sheet conformation.   

 

5.3.3.4 Oxidised apoA-I 

Chemical oxidation of apoA-I, with H2O2, was shown to induce aggregation into 

amyloid-like aggregates in Chapter 4, which are ThT-responsive and have an 

appearance of more typical amyloid morphology, compared to the aggregates 

formed by un-oxidised apoA-I (Figure 4.22). Here, the SSNMR spectra of 

oxidised apoA-I (blue) is very similar to the to the spectra of un-oxidised apoA-I 

aggregates formed at pH 4 in the presence of heparin (black), as shown in Figure 

5.26. Both spectra contain cross-peaks corresponding to both α-helical and β-
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sheet conformations, and are virtually superimposable. Therefore, it is 

reasonable to assume that the oxidised and heparinated aggregates have similar 

structures, and thus, are created as a result of the same changes to the core 

structure. 

 

Figure 5.26 Two-dimensional 13C-13C CPMAS SSNMR spectra with DARR mixing 

of apoA-I aggregates formed at pH 4 in the presence of heparin (black) and 

oxidised apoA-I aggregates at pH 6 (blue). 

 

5.3.3.5. β-sheet model of apoA-I 

The N-terminal residues 1-80 and 1-100 of apoA-I are known to readily form into 

amyloid structures when cleaved from full-length apoA-I (Das et al., 2016; Das et 

al., 2014). A model for apoA-I (1-90) with a high percentage of β-sheet structure 

was produced by Professor David Middleton. This model consisted of residues 

14-59 (incorporating the 2 hot spot regions 14-22 and 53-38) in an anti-parallel 
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β-strand conformation, with a turn encompassing Gly 33, Gly 37 and Gln 39, with 

disordered flanking regions. Back calculation of the 13C chemical shifts of this 

structure allowed a simulated 2D 13C-13C SSNMR spectrum to be produced. The 

13C SSNMR spectrum of apoA-I aggregates formed in the presence of heparin 

(black), and the simulated spectrum for the simulated apoA-I (1-90) aggregated 

peptide (blue), are shown in Figure 5.27. The apoA-I (1-90) β-sheet simulation 

produces theoretical cross-peaks, which are concurrent with many of the cross-

peaks for apoA-I in the presence of heparin. In particular, the simulated spectrum 

matches with the cross-peaks assigned to β-sheet conformations in the full-

length apoA-I, but does not superimpose onto the α-helical cross-peaks. This 

suggests that the apoA-I aggregates contain the N-terminal 1-90 residues in 

majority β-sheet conformation.  

 

 
 
 
 

Figure 5.27 Two-dimensional 13C-13C CP-MAS SSNMR spectrum with DARR 

mixing of apoA-I aggregates formed in the presence of heparin (black) and a 

simulated spectrum for the model apoA-I (1-90) as entirely β-sheets (blue).  
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5.3.3.6 Structure of apoA-I 46-59 

The structure of apoA-I (46-59) was probed through natural abundance 13C 1D 

SSNMR. Figure 4.17 indicates that apoA-I readily forms amyloid-like material at 

pH 4, which is consistent with a conversion from random coil to β-sheet 

structures, as shown by the circular dichroism spectra in Figure 5.20. A natural 

abundance 13C SSNMR spectrum of apoA-I (46-59) aggregates for the α-carbon 

region is shown in Figure 5.28, alongside simulated spectra for the peptide 

sequence in entirely α-helical, random coil and β-sheet conformation, produced 

by Professor D. Middleton. The spectrum for the apoA-I (46-59) fibrils is in good 

agreement with the simulated β-sheet spectrum, and the small discrepancies 

could be explained by the disorder of the terminal residues. 
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Figure 5.28 Cα region of the 13C SSNMR spectrum of apoA-I (46-59) fibrils 

(black) with simulated spectra of the peptide in entirely α-helical (A) random coil 

(B) and β-sheet (C) conformations shown in red.  
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5.4 Discussion 

ApoA-I solutions at pH 7 were analysed by CD and shown to be resistant to UV 

decay, and stable up to 57.4 °C. Upon deconvolution of the CD spectrum, the 

estimated secondary structure was consistent with the crystal structure deduced 

by Mei and Atkinson (Mei and Atkinson, 2011), with 60 % in α-helical and >10 % 

in β-sheet conformations. Upon acidification of apoA-I, a structural 

rearrangement occurred, resulting in a decrease in α-helical content and an 

increase in β-sheet. This conversion is enhanced in the presence of heparin. This 

is consistent with the formation of amyloid species, which convert into a highly 

ordered β-sheet conformation, prior to becoming insoluble fibrils that can no 

longer be measured by CD. In contrast to the solution CD, the thin-film CD 

appeared to remain helical in the absence of heparin, and produce a spectrum 

that contained signal contributions from both α-helices and β-sheets in the 

presence of heparin, with 40 % of the protein in a β-sheet conformation. 

A combination of α-helices and β-sheets is something that is not commonly 

observed with amyloid formation. Usually, natively helical proteins refold into β-

sheet structures, with minimal native content remaining (Ding et al., 2003). 

Therefore, the structure of the apoA-I aggregates was assessed by SSNMR.  

Initial SSNMR studies were carried out on lyophilised apoA-I at pH 7, but 

due to broad and overlapping lines, sequential assignment of the spectrum was 

not possible. However, the spectrum was suitably resolved to identify 5 amino 

acids (Ala, Leu, Val, Ser and Thr) with cross-peaks correlating to their inclusion 

in α-helical structures. When the experimental spectrum was superimposed with 

a simulated spectrum for the apoA-I (Δ185-243) model deduced by Mei and 

Atkinson (2011), the two spectra were complementary.  
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NMR spectra of apoA-I aggregates, both those formed in the absence and 

presence of heparin, were acquired and compared to the native lyophilised apoA-

I. Interestingly, the cross-peaks that correlated with α-helical elements in the 

lyophilised apoA-I occurred in the spectra of the aggregated material. However, 

novel cross-peaks for these amino acids within β-sheet structures were also 

present. Unfortunately, all 5 of these amino acids are uniformly distributed 

throughout the apoA-I sequence, so determining where the α-helical or β-sheet 

regions are within apoA-I was not possible. These findings confirmed the thin 

film CD spectra, which suggested the aggregates consisted of a combination of α-

helical and β-sheet structures. Spectrum for oxidised apoA-I at pH 6 appeared 

similar to the wild type apoA-I aggregates, with both α-helical and β-sheet 

contributions. 

 

5.4.1 Current model for apoA-I amyloidosis  

A current theory detailing the mechanism of apoA-I amyloidosis is 

proposed by Das et al., (2014; 2016). Three N-terminal “hot spot” regions, 

consisting of residues 14-22, 53-58 and 69-72, are protected from spontaneous 

aggregation by their incorporation in the 4-helical bundle, which makes up the 

majority of the native N-terminus. Destabilisation of this 4-helical bundle, by 

mutation or oxidation, leads to the spontaneous aggregation of the hot spots into 

β-sheet structures, which extend up to residues 76-81. This short sequence, 

EKETEG acts as a natural β-sheet breaker at neutral pH, resulting in apoA-I (1-

76) consisting of β-sheets, and the remaining C-terminus retaining its native fold. 

This opens apoA-I up to cleavage, in particular at residue 83, forming N-terminal 

fragments that deposit as amyloid in familial apoA-I amyloidosis.  
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However, upon protonation of the glutamic acid at acidic pH, the EKETEG 

sequence loses its β-sheet breaking ability, allowing the β-sheet to propagate into 

the C-terminus, forming full-length apoA-I amyloid. 

  ApoA-I (1-90) in a β-sheet conformation was modeled and back 

calculation of the 13C chemical shifts produced a simulated NMR spectrum. The 

simulated spectrum superimposes well onto the apoA-I aggregates, with the 

simulated correlating with the β-sheet cross-peaks for the experimental 

spectrum. This suggests that the full-length apoA-I aggregates contain the first 1-

90 residues in a β-sheet conformation. However, this spectrum does not rule out 

other structural possibilities, including β-sheet formation in other areas. 

 

5.4.2 Refinement of the model for apoA-I amyloidosis   

Based on the SSNMR data presented here, a modification of the current model for 

apoA-I amyloidosis is proposed. Following acidification or oxidation, the apoA-I 

N-terminus becomes less stable, leading to the exposure of the hot spot regions 

at residues 14-22, 53-58 and 69-72. This allows their spontaneous aggregation 

into β-sheet structures in the N-terminus, which extend up to the β-sheet 

breaking sequence at residues 76-81, in keeping with the current theory. 

However, it is proposed here that the remaining apoA-I sequence, incorporating 

approximately residues 76-243, retains its native α-helical structure, even at 

acidic pH, as modeled in Figure 5.29. This explains the splitting of the alanine, 

valine, leucine, threonine and serine cross-peaks into chemical shifts associated 

with both α-helical and β-sheet structures. This model is also supported by the 

CD data presented here, which suggests a decrease in the native helical content, 

resulting a mixture of α-helices and β-sheets in the aggregated material.  
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It is likely that the pro-amyloidogenic effects of heparin are caused by its 

interaction with apoA-I aiding in the destabilisation of the N-terminus. This 

explains why the ThT response is concentration-dependent, but only affects the 

initial stage of aggregation, rather than the secondary elongation. 

What these data cannot deduce, for certain, is whether the α-helical and β-

sheet contributions in the CD and SSNMR spectra are present in each molecule of 

apoA-I, or whether the conditions studied here promote the formation of 2 

distinct apoA-I species. One species may consist of the native helical structure, 

whilst the other is converted to predominantly β-sheets following amyloidosis. 

The intensities of the SSNMR, and the CD spectra both consistently estimate the 

β-sheet content to be roughly 40 %. Although this figure must be treated with 

caution, the consistency and the high percentage of β-sheet is suggestive that 

each monomer contains a combination of α-helix and β-sheet.  

 

 
 

Figure 5.29 Five models for aggregated apoA-I (Δ185-243) (PDB 3R2P) with the 

N-terminal 1-75 region in a non-helical conformation, whilst residues 76-180 

retain their natively helical structure. Residues 14-59, incorporating the hot spot 

regions 14-22 and 53-58 are modeled as antiparallel β-sheets, separated by a 

turn including Gly 33, Gly 37 and Gln 39. The remaining N-terminal residues are 

disordered. Figure produced by D. Middleton.  
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6. Inhibition of apoA-I aggregation 

6.1. Introduction  

6.1.1. Amyloid inhibition  

The misfolding of proteins into amyloid species is linked to a whole range of 

disease states, as outlined in section 1.1.2. ISA currently recognises 30 human 

proteins capable of forming amyloid, many of which are involved in pathological 

links to amyloid-related diseases (Sipe et al., 2014). These include Aβ and tau in 

Alzheimer's disease, α-synuclein and tau in Parkinson’s disease, IAPP in type II 

diabetes, immunoglobulin light chain in AL amyloidosis, medin in aortic medial 

amyloidosis, and apoA-I in apoA-I amyloidosis, associated with atherosclerosis 

(Chiti and Dobson, 2006). From this list, it is clear that the proteins involved in 

amyloidosis are not all structurally or sequentially linked, and can include: full-

length proteins, peptide fragments or products of general protein decay (Stefani, 

2007). As such, large variety in amyloidogenic proteins makes developing 

therapeutic compounds for inhibiting their aggregation difficult, and various 

methods will be discussed in detail later in this introduction. Deposition of 

amyloid fibrils is detrimental to health, and leads to many of the diseases listed in 

Table 1.1 (Chiti and Dobson, 2006). However, in many amyloid associated 

diseases, it is the cytotoxic oligomeric intermediates that mediate the disease 

pathology (Meier et al., 2006; Kayed, 2003). Therefore, there is increased 

motivation for research into devising techniques for inhibiting the aggregation of 

native amyloidogenic proteins into both the oligomeric species, known to be 

cytotoxic; and full-length fibrils, the deposition of which causes further disease 

progression (Hard and Lendel, 2012).  
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Despite the lack of understanding of the specific mechanism behind the 

aggregation of most amyloid proteins, a general mechanism of protein unfolding, 

prior to aggregation has been found to be common to most, including apoA-I. 

This suggests that a particular method of inhibition for one species of 

amyloidogenic protein, may be suitable for other, non-related species (Hard and 

Lendel, 2012; Wang and Raleigh, 2014). The potential for this general amyloid 

inhibition strategy is highlighted by the ability of some amyloidogenic proteins to 

be seeded by amyloid fibrils from other, non-related amyloid proteins (Larsson 

et al., 2011), suggesting a common aggregation mechanism. Common methods 

for amyloid inhibition are outlined below and summarised in Figure 1.14. 

 

6.1.1.1. Targeting the protein source 

Amyloid formation is dependent on the presence of the amyloidogenic peptide, 

be it the wild type protein, a mutant protein, or a cleaved peptide. Reduction of 

the concentration of the amyloidogenic peptide, at an expression or post-

translational modification level, can be a highly effective treatment against 

systemic amyloidosis (Gillmore and Hawkins, 2006). Examples of this technique 

include anti-inflammatory drugs targeting the production of SAP in AA 

amyloidosis, chemotherapy against B-cells to reduce immunoglobulin light 

chains, such as Melphalan (Kyle et al., 1997); liver transplantation to remove the 

abnormal TTR mutant, and targeting the β and γ secretase enzymes to inhibit the 

cleavage of the amyloidogenic Aβ(1-40) and (1-42) fragments (Gillmore and 

Hawkins, 2006). Alternatively, inhibiting the interaction of amyloidogenic 

proteins with GAG’s, known to promote amyloidosis, is another promising 

general amyloid inhibitor. Fibrillex™, an N-acetylglucosamine analogue of 
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heparin, binds to amyloid precursor proteins and stops the interaction of heparin 

with amyloidogenic proteins (Gillmore and Hawkins, 2006). 

 

6.1.1.2. Promoting alternative folding pathways    

It is widely accepted that protein oligomers or aggregation intermediates, rather 

than fibrillar species, in many cases, lead to the cytotoxic entity of amyloidogenic 

proteins, manifesting in cell death and amyloid-associated disease progression 

(Kayed, 2003). In some cases, the native protein readily forms oligomeric species, 

which remain cytotoxic for a prolonged period of time. Agents that promote the 

aggregation of these proteins into the benign fibril or amyloid-like structures, 

which do not result in cytotoxicity, could reduce the disease pathology (Bodner 

et al., 2006; Madine and Middleton, 2010). GAG’s have the potential to promote 

aggregation of a protein into a non-toxic fibrillar structure, avoiding potential 

cytotoxic oligomeric species (Iannuzzi et al., 2015). Promoting the formation of 

amyloid-like structures can both avoid the cytotoxic oligomer species, and inhibit 

fibril elongation. The ZAβ3 inhibitor forms a dimer around the β-hairpin 

structure of Aβ, creating a four-stranded β-sheet, in effect stabilising the 

monomeric amyloid (W. Hoyer et al., 2008).   

 

6.1.1.3 Peptide based β-sheet breakers  

The amyloidogenic propensity of Aβ arises from a central hydrophobic hot spot 

region comprising residues 17-21, in addition to contributions from residues 32-

37 and 37-42 (Doig and Derreumaux, 2015). Such hot spot regions, which initiate 

amyloid formation, are found in all amyloidogenic proteins (Amijee et al., 2009). 

Targeting these sequences with short complementary peptides to block 
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aggregation or inhibit elongation of the extending fibril are attractive therapeutic 

techniques. Designing these inhibitors against the amyloidogenic protein 

sequence can increase specificity (Tjernberg et al., 1996; Soto et al., 1998). The 

iAβ5 β-sheet breaker peptide was shown to not only inhibit in vitro amyloidosis 

of Aβ, but also completely inhibit fibril formation in vivo in the brains of rats 

(Soto, et al., 1998). However, one problem with these short peptides is their 

potential to increase amyloidosis through elongation of the fibril (Hard and 

Lendel, 2012). As such, these short peptide sequences have since been modified 

to include proline residues, a natural β-sheet breaker (Wood et al., 1995); 

charged amino acid ends, to increase solubility; and the use of D-amino acids 

rather than L isomers, in order to avoid proteolytic cleavage (Soto et al., 1998; 

Doig and Derreumaux, 2015; Jagota and Rajadas, 2013). N-methylation of the 

backbone residues of these short peptide β-sheet breakers not only increases 

solubility of the peptide, but interferes with hydrogen bonding on the outer edge 

of the extending amyloid fibril, inhibiting further elongation (Hughes et al., 2000; 

Kokkoni et al., 2006).  

 

 6.1.1.4. Small molecule inhibition of amyloidosis 

Designing small molecules against the aggregation of amyloidogenic proteins has 

proven to be much more difficult than normal drug design, partially due to the 

lack of understanding about the aggregation mechanism of most proteins. 

Therefore, the majority of the successful small molecules act as general anti-

amyloid agents, having inhibitory effects on several amyloidogenic proteins 

(Hard and Lendel, 2012), and are often found from screening of extensive 

compound libraries. One of the issues with researching these compounds is their 
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potential interaction with fluorescent amyloid binding molecules used to 

quantify amyloid formation. For example, interactions occur between the small 

molecule rifampicin and ThT in the study of IAPP amyloidosis (Meng et al., 2008) 

and between Congo red, which can inhibit amyloidosis, and ThT (Buell et al., 

2010). Studies into the inhibition of tau aggregation screened a library of 

200,000 compounds, which identified 77 successful inhibitor compounds, based 

on 4 groups: the N-phenylamines, anthraquinones, phenylthiazolylhydrazides 

and thioxothiazolidinones (Bulic et al., 2009). This work highlighted the 

requirement for ring structures and hydrophobic patches (Figure 6.1), which 

promote hydrogen bonding to the protein (Bulic et al., 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Structure of (A) N-phenylamines, (B) 9,10-anthraquinone, (C) 

phenylthiazolylhydrazides (Pickhardt et al., 2007), and (D) thioxothiazolidinines 

(Bursavich et al., 2007), all successful inhibitors of tau aggregation.  
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Some small molecule compounds can be easily modified in order to exhibit 

different effects on amyloid aggregation. For example, inositol compounds have 

the ability to both inhibit and promote the aggregation of Aβ into β-sheet 

structures, depending on the specific orientation of the hydroxyl groups.  

 Scyllo-inositol (Figure 6.2 A) has been shown to inhibit the aggregation of 

Aβ by stabilising small, soluble Aβ complexes, with no fibrils visible by TEM. As 

with the tau compounds, hydrophilic patches were key in forming hydrogen 

bonds between the inhibitor and the soluble Aβ monomer. Removal of the 

hydroxyl groups from scyllo-inositol, to form 1-4-dideoxy-scyllo-inositol (Figure 

6.2 B), decreased the inhibitory effect, with intermediate length fibrils and 

amorphous aggregates visualised by TEM. This highlights an essential structure-

activity relationship with the hydroxyl groups. However, increasing the 

hydrophobicity of the compound with two methyl groups (Figure 6.2 C) also 

prevented the elongation of full-length fibrils, by stabilising the proto-filament 

intermediate, which often can be a cytotoxic oligomeric species (Hawkes et al., 

2010).  

 

Figure 6.2 Structure of (A) Scyllo-inositol, (B) 1-4-dideoxy-scyllo-inositol, and 

(C) 1,4,di-O-methyl-scyllo-inositol.  
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From a screening of 169 compounds, 15 were shown to inhibit the aggregation of 

α-synuclein in vitro, including dopamine.  However, the inhibition of α-synuclein 

by dopamine and L-dopa lead to a build up in the levels of cytotoxic protofibrils 

(Conway et al., 2001). This highlights the complexity of designing amyloid 

inhibitors that are suitable for pharmacological use. 

  

6.1.2. Polyphenol compounds 

Polyphenols are natural, secondary metabolites of plants found in fruits, 

vegetables and cereals. Over 8000 natural polyphenol compounds have been 

identified and can be split into 4 main characteristic groups: phenolic acids, 

stilbenes, lignans and flavonoids (Figure 6.3).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3 Four main groups of natural polyphenol compounds: (A) phenolic 

acid (hydroxyl-benzioc), (B) flavonoids,  (C) stilbenes and (D) lignans. 
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The most studied of the 4 polyphenol groups are the flavonoids, which are 

comprised of 2 aromatic rings connected by three carbons in an oxygenated 

heterocycle (Figure 6.3 B) (Pandey and Rizvi, 2009). The health benefits of 

polyphenol compounds are extensive, including: cardio-protective, anti-cancer, 

anti-diabetic, anti-aging, UV protection, improved metabolism, and neuro-

protective effects (Pandey and Rizvi, 2009). From a screening of over 184,000 

compounds, 25 benzothiazole compounds were found to inhibit the aggregation 

of huntingtin. This included the discovery of the green tea polyphenol 

epigallocatechin gallate (EGCG) (Ehrnhoefer et al., 2006). Later work discovered 

the inhibitory effects of EGCG on the aggregation of Aβ, α-synuclein (Ehrnhoefer 

et al., 2008; Bieschke et al., 2010) and the amyloid model κ-casein (Hudson et al., 

2009).  

 

6.1.2.1 Epigallocatechin gallate 

Green tea has long been associated with increased cardiovascular function and 

metabolic health (Wolfram, 2007). The polyphenol compounds, in particular the 

flavonoids, appear to be responsible for this. The major flavonoid in green tea is 

epigallocatechin gallate (EGCG) (Doig and Derreumaux, 2015), the structure of 

which is shown in Figure 6.4. EGCG in isolation has been shown to: reduce the 

oxidative damage to DNA, reduce the postprandial lipid response in patients with 

hypertriglyceridemia, decrease glucose plasma levels in patients suffering from 

type II diabetes mellitus, reduce the progression of atherosclerosis, inhibit 

smooth muscle cell proliferation, and increase weight loss and energy 

expenditure (Wolfram, 2007; Nagao et al., 2005; Rudelle et al., 2007; Wolfram et 

al., 2006; Chyu, 2004; Won et al., 2006; Kavantzas et al., 2006).  
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Figure 6.4 Chemical structure of epigallocatechin gallate, an amyloid inhibitor. 

 

EGCG has been shown to have amyloidosis-inhibiting effects on Aβ, α-synuclein 

and huntingtin (Ehrnhoefer et al., 2006; Bieschke et al., 2010; Ehrnhoefer et al., 

2008; Masuda et al., 2006; Doig and Derreumaux, 2015), as well as causing a 

structural remodelling of mature α-synuclein (Bieschke et al., 2010), Aβ1-40 and 

IAPP fibrils (Palhano et al., 2013).  

EGCG is thought to promote an off-pathway aggregation mechanism of 

amyloidogenic proteins into unstructured, non-toxic oligomers, which lack the 

ability to progress into amyloid fibrils (Ehrnhoefer et al., 2008).  However, the 

precise mechanism of how this occurs is currently unknown (Wang and Raleigh, 

2014). EGCG has been shown to interact with Aβ, via hydrogen bonds at residues 

1-16 and via hydrophobic interactions at residues 17-42 (Wang et al., 2010).  

EGCG is reported to inhibit the aggregation of apoA-I (1-83) and the apoA-I (1-

83/G26R) Iowa mutant, but produced mixed results on its ability to disaggregate 

preformed fibrils (Nakajima et al., 2016). As yet, no interaction has been reported 
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for full-length, wild type apoA-I with EGCG, which could be a potential therapy 

for atherosclerosis.  

 

6.1.3. Aims 

This chapter aims to determine whether green tea polyphenols, including EGCG, 

affect the aggregation propensity of apoA-I and/or the properties of the 

aggregates. The binding of EGCG to apoA-I aggregates will be determined using a 

co-sedimentation experiment, and the effects of EGCG on apoA-I aggregation will 

then be studied using ThT fluorescence. Finally, the structure of apoA-I 

aggregates formed in the presence of EGCG, and with EGCG added after 

aggregation has ceased will be determined via SSNMR and compared to apoA-I 

aggregates alone.  

 

6.2. Methods 

6.2.1 Isolation of polyphenol compounds from green tea 

2 g of green tea (Twining’s™ pure) was added to 40 mL of water. The solution 

was microwaved at 900 W of power for 2 cycles of 30 seconds, followed by 4 

cycles of 15 seconds with a minute between each heating. The solution was 

filtered through a 1μm filter paper (Whatman) and filtered with a 0.2 μm corning 

syringe filter. The solution was then freeze-dried at -70  °C and 0.0026mbar 

pressure for 24 hours, using a Christ-Alpha 2 system. 

 

6.2.2 Characterisation of compounds isolated from green tea 

A catechin mixture (Sigma) was purchased as a reference set for the polyphenol 

compounds present in green tea, to assist in the assignment of high performance 
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liquid chromatography (HPLC) spectral peaks. Analysis certificates confirming 

the mass and purity of the compounds can be found in Appendix 5. The 

reference material and mixture of compounds isolated from green tea were 

separated using HPLC, in order to characterise the unknown compounds. 

Separation was performed on a Nexera UHPLC (Shimadzu) system, with a mobile 

phase of 0.1 % orthophosphate in ultrapure water (A) or in acetonitrile (B), 

whilst the static phase consisted of a shim-pack XR-ODS 2.2 μm reverse phase 

column. The gradient elution, at a flow rate of 1 mL/min consisted of 0-3 minutes 

(5% of B), 3-10 minutes (5-20 % B), 10-13 minutes (20-50 %) and 13-13.1 

minutes (50-5 % B). Green tea extracts were diluted to 7.2 mg/ml of lyophilised 

material in water, prior to HPLC analysis. 

 

6.2.3. Effect of green tea compounds on the aggregation of apoA-I  

The ThT fluorescence experiments carried out in this section of work, mirrored 

those for the continual read experiments in Section 4.3.2. ApoA-I (7.2 μM) was 

incubated with ThT alone and in the presence of 14.4 μM heparin. Samples were 

also incubated with, or without, either pure EGCG or green tea extract at 2-fold 

molar excess to the apoA-I. After measuring the fluorescence for 10 minutes, 

concentrated HCl was added to reduce the sample to pH 4 and induce 

aggregation. ThT fluorescence measurements were taken for 300 minutes, with 

the initial increase in fluorescence (Δ FI) and total increase in ThT fluorescence 

(Δ FT) recorded. 
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6.2.4 Determination of compounds binding to EGCG by HPLC 

200 μL of apoA-I fibrils (formed at 36 μM) and Aβ fibrils (formed at 44 μM) were 

centrifuged for 10 minutes at 12,000 g. 200 μL of a 1/10 dilution of the 

compounds isolated from green tea was added to the fibrillar pellets, and 

incubated at 37 °C for 24 hours, with agitation. The fibrils were pelleted through 

centrifugation and the supernatant removed, prior to analysis by HPLC.  

 
6.2.5. Absorbance of EGCG 

In order to deduce whether the EGCG concentration could be measured by 

absorbance and utilised to measuring the binding of EGCG to apoA-I, EGCG at a 

range of concentrations from 0.01 mM to 1 mM was scanned across a UV range of 

190 to 360 nm. The maximum absorbance intensity at 274 nm was recorded.  

 

6.2.6. Binding of EGCG to apoA-I 

ApoA-I (36 μM) was incubated in the presence and absence of increasing 

concentrations of EGCG at pH 4, at 37 °C with agitation for 3 days. Following the 

production of insoluble material, EGCG was added to the apoA-I samples that did 

not contain any EGCG during fibril formation and left for 24 hours. The insoluble 

material was removed through centrifugation at 13,400 rpm in a bench-top 

centrifuge. The absorbance of the supernatant at 274 nm was then measured and 

used to determine how much EGCG remained in solution. 

 

6.2.7. Solid-state NMR 

ApoA-I (36 μM) was incubated in the presence and absence of a 2-fold molar 

excess of EGCG at pH 4, at 37°C with agitation for 3 days, in order to form 
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insoluble aggregates. Following the production of insoluble material, EGCG was 

added to the apoA-I samples that did not contain any EGCG during fibril 

formation, and left for 24 hours. Fibrils were harvested through centrifugation at 

12,000 g for 10 minutes. The aggregates were frozen in liquid nitrogen, prior to 

centrifugation into a zirconium 3.2 mm rotor with a Kel-F cap (Bruker, U.K). 

 

6.2.7.1 One-dimensional solid-state NMR 

One dimensional proton-decoupled 15N CP-MAS SSNMR experiments were 

carried out on a Bruker Avance 400 MHz spectrometer, operating at a magnetic 

field of 9.3 Tesla, equipped with a 3.2 mm HXY MAS probe at 25 °C. Hartmann-

Hahn cross-polarisation was achieved at a proton nutation frequency of 78 kHz, a 

2 ms contact time, 100 kHz proton decoupling with SPINAL-64 applied during 

the signal acquisition, and a recycle delay of 2 ms. MAS was controlled at a 

frequency of 8 kHz ± 1 Hz. Each spectrum was the result of accumulating 20,000- 

100,000 transients. Direct polarisation (DP) experiments were the same except 

the CP step was replaced with a 3.5 ms 90 ° pulse at the 13C frequency.  

 

6.2.7.2 Two–dimensional solid-state NMR 

Two-dimensional 13C-13C spectra were recorded at a magnetic field of 16.3 Tesla 

on a Bruker Avance III 700 MHz spectrometer, with a 3.2 mm HXY probe 

operating in double resonance mode, with magic angle spinning at 14 kHz and 

the temperature maintained at 4 °C. Hartmann-Hahn cross-polarisation was 

achieved with a 2 ms contact time, and 100 kHz proton decoupling with SPINAL-

64 applied during signal acquisition. During the mixing time of 10 ms, the 1H 

nutation frequency was lowered to 14 kHz, to achieve DARR mixing. 
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6.3 Results 

6.3.1 Isolation of compounds from green tea 

Green tea compounds were extracted, following methods described in section 

6.2.1. The compounds in the tea extract were then separated using HPLC, 

producing the chromatograph shown in Figure 6.5. Nine separate peaks 

corresponding to individual compounds were identified by HPLC and labelled a-i, 

according to increased retention times.    

 

 

Figure 6.5 HPLC chromatograph for the separation of compounds extracted 

from green tea. The compounds were labelled a-i, according to their retention 

time.  
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In order to determine what each of the uncharacterised compounds labelled a-i 

in Figure 6.5 were, a reference catechin mixture was purchased from Sigma and 

separated using the same HPLC system. This reference set mixture contains 8 

common catechins present in green tea. Separation by HPLC matched the 

reference material provided in Appendix 5, identifying the compounds in Figure 

6.6 as (1) gallocatechin, (2) caffeine, (3) catechin, (4) epicatechin, (5) 

epogallocatechin-3-gallate (EGCG), (6) gallocathin-3-gallate, (7) epicathechin-3-

gallate, and (8) catechin-3-gallate. The structures for each of these compounds 

are shown in Figure 6.7. 

 

Figure 6.6 HPLC chromatograph of the separation of compounds present in the 

Sigma catechin reference set.  Numbers refer to (1) gallocatechin, (2) caffeine, (3) 

catechin, (4) epicatechin, (5) epogallocatechin-3-gallate (EGCG), (6) gallocathin-

3-gallate, (7) epicathechin-3-gallate, and (8) catechin-3-gallate. 
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Figure 6.7 Chemical structures for the 8 compounds in the catechin mix 

purchased from Sigma. 
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The chromatograms in Figure 6.5 and 6.6 exhibit peaks with almost identical 

retention times, apart from peak (g) in Figure 6.5, which does not match up with 

any compounds in the catechin mixture. Therefore, it is reasonable to assume 

that the compounds isolated from green tea extracts in Figure 6.5 are (a) 

gallocatechin, (b) caffeine, (c) catechin, (d) epicatechin, (e) epogallocatechin-3-

gallate (EGCG), (f) gallocathin-3-gallate, (h) epicathechin-3-gallate, and (i) 

catechin-3-gallate. Now that the compounds from the tea extract have been 

identified, they will be referred to by the numbers 1-8.  

 

6.3.2 Concentration of catechins in green tea extracts 

HPLC analysis of the reference material, which contained each of the 8 

compounds at 100 μg/ml, allows estimation of the catechin concentration in the 

green tea extract, based on the peak area. The concentration of each catechin is 

shown in Table 6.1, confirming that epigallocatechin-3-gallate (EGCG), 

highlighted in bold, is the most abundant compound in green tea. 

 

Table 6.1 HPLC retention time, peak intensity, area under the peak, reference 

concentration scaling factor, and the concentration of each of the 8 catechins in 

the green tea extract.  

Compound  Retention 
Time (min) 

Peak  
Height 

Peak 
Area 

Scaling 
Factor 

Concentration 
(μg/ml)  

Gallo-catechin 1.1 1364.3 42.8 0.31 139.3 
Caffeine 3.0 3202.6 286.9 0.86 335.0 
Catechin 3.8 18240.7 1822.8 3.61 504.4 
Epi-catechin 6.5 2481 136.5 0.82 165.8 
EGCG 6.6 22504.1 1419.0 1.50 947.2 
Gallocathin-gallate 7.5 951.1 62.3 1.84 33.9 
Epicatechin-gallate 9.0 6840.1 453.8 2.22 204.0 
Catechin-gallate 9.2 1635.5 128.3 2.33 54.9 
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6.3.3. Effect of green tea extracts on Aβ and apoA-I amyloidosis. 

EGCG has been shown previously to inhibit the aggregation of Aβ in vitro 

(Ehrnhoefer et al., 2008). Therefore, the effects of green tea extracts on the 

aggregation of Aβ were assessed by ThT fluorescence. Aβ was prepared as 

detailed in Stewart et al. (2016). Figure 6.8 confirms that incubation of Aβ (35 

μM) in conditions that promote the aggregation of apoA-I, leads to its aggregation 

into ThT responsive material after approximately 10 minutes. Inclusion of green 

tea extract at a concentration of 1.5 mM, calculated using the molecular weight of 

EGCG, inhibits the formation of ThT responsive material, confirming that the 

green tea extract inhibits Aβ amyloidosis.  

 

Figure 6.8 ThT fluorescence in the presence of Aβ (35 μM) alone, and with 1.5 

mM green tea extract.  
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Given that the data here suggests green tea extracts inhibits Aβ aggregation, in 

addition to pure EGCG, as shown by Ehrnhoefer et al., (2008), ThT experiments 

were carried out to assess the ability of both the green tea extract and pure EGCG 

to inhibit apoA-I aggregation.  

The experiment followed previous ThT procedures, and apoA-I (7.2 μM) 

was incubated, alone or in the presence of a 2-fold molar excess of heparin, 

and/or EGCG or green tea extract at pH 7, prior to addition of concentrated HCl, 

to reduce the sample to pH 4 and induce aggregation.  

 Figure 6.9A shows that in all 6 conditions (± heparin and ± EGCG/ tea 

extract), apoA-I at pH 7 showed a low ThT fluorescence, consistent with control 

samples and no amyloid formation during the entire experiment. This is 

consistent with previous findings, such as those in Figure 4.5 and 4.7, and 

confirms that EGCG does not induce a ThT response at pH 7. 

Following acidification to pH 4, apoA-I aggregates into insoluble material, 

with an increase in ThT fluorescence. This ThT response is dramatically 

enhanced in the presence of heparin (Figure 4.5 and 4.7). In samples containing 

either a 2-fold excess of EGCG, or green tea extract, the ThT fluorescence 

response shows virtually no difference, neither in the initial increase (FI), nor the 

total ThT fluorescence after 300 minutes (FT) (Figure 6.9B). This suggests that 

these catechins do not exhibit any inhibitory effects on the aggregation of apoA-I, 

as they do with Aβ.  
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Figure 6.9 ThT fluorescence of apoA-I incubated at pH 4 in the presence or 

absence of heparin, and with the addition of EGCG or green tea extract, prior to 

acidification. Measurements are the mean of 3 samples ± standard error.   
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6.3.4 Binding of green tea extracts to apoA-I.  

The binding of catechins extracted from green tea to both Aβ and apoA-I was 

assessed using co-sedimentation experiments. Green tea extract was added to 

preformed Aβ and apoA-I fibrils, and incubated with agitation for 24 hours. The 

insoluble aggregates were then removed through centrifugation, co-pelleting any 

bound catechin compounds. The remaining concentration of each compound was 

estimated using HPLC analysis. Pure EGCG was then added to apoA-I fibrils, 

incubated for 24 hours, then the fibrils and any bound EGCG were removed 

through centrifugation. The remaining concentration of EGCG left in the 

supernatant was calculated, using the absorbance of EGCG at 274 nm (Section 

6.3.4.2).  

 

6.3.4.1 Calculation of catechin binding by HPLC analysis 

EGCG has previously been shown to inhibit amyloidosis of Aβ, by binding to the 

natively unfolded protein and inhibiting its conversion into β-sheet structures 

(Ehrnhoefer et al., 2008; Bieschke et al., 2010). Therefore, we would expect to see 

a reduction in the HPLC spectrum peak for the EGCG compound (peak 5) in the 

supernatant, following incubation with Aβ.  

Figure 6.10A confirms a considerable selective reduction in peak 

intensity for compounds 2, 4, 5 and 7 corresponding to caffeine, epicatechin, 

epogallocatechin-3-gallate (EGCG), and epicathechin-3-gallate. Table 6.2 

confirms the reduction in the concentration for these 4 compounds, suggesting 

89, 100, 100 and 92 % of the caffeine, epicatechin, epogallocatechin-3-gallate 

(EGCG), and epicathechin-3-gallate, respectively, was bound to Aβ and removed 



 245 

from the solution by co-precipitation with the Aβ. EGCG is shown to bind to Aβ at 

a higher concentration than any of the other catechin compounds.  

Upon incubation of the tea extract with apoA-I, the HPLC analysis of the 

supernatant shows a considerable reduction in the peak intensity for 

epigallocatechin-3-gallate (5), gallocathin-3-gallate (6) and epicathechin-3-

gallate (7). (Figure 6.10 B) However, from the 9 identified compounds, EGCG 

shows the greatest reduction in concentration (Table 6.2), with 232 μmoles 

binding to apoA-I. 

This data confirms that Aβ binds to EGCG, as expected, since EGCG inhibits 

the aggregation of Aβ. However, interestingly, even though EGCG does not induce 

a reduction in the aggregation of apoA-I, it appears to bind with high affinity.  
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Figure 6.10 HPLC spectrum of the supernatant, following incubation of the green 

tea extract with (A) Aβ and (B) apoA-I fibrils, and removal of the insoluble 

aggregates and associated compounds by centrifugation. HPLC spectra of the 

green tea extract control are also included for intensity comparison.
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Table 6.2 Analysis of the green tea supernatant following incubation with preformed Aβ and apoA-I fibrils. The * indicates compounds 

that did not produce a measureable peak at the expected retention time.  

 

 
 

Aβ (8 nmoles) 

 
Control (μg/ml) Supernatant (μg/ml) Bound (μg/ml) Bound (%) Bound (μmoles) 

Gallo-catechin 343.5 301.8 41.6 12.1 27.2 

Caffeine 124.7 14.2 110.5 88.6 113.8 

Catechin 449.1 434.0 15.1 3.4 10.4 

Epi-catechin 127.3 * 127.3 100 87.7 

Epigallocathechin-3-gallate 297.7 * 297.7 100 129.9 

Gallocathin-gallate 19.1 3.8 15.4 80.2 6.7 

Epicatechin-gallate 140.0 10.9 129.1 92.2 58.4 

Catechin-gallate 65.5 20.3 45.2 69.0 20.4 

      

 

ApoA-I (7.2 nmoles) 

 
Control (μg/ml) Supernatant (μg/ml) Bound (μg/ml) Bound (%) Bound (μmoles) 

Gallo-catechin 337.1 329.9 7.3 2.2 4.7 

Caffeine 302.9 240.3 62.6 20.7 64.4 

Catechin 506.4 460.3 46.0 9.1 31.7 

Epi-catechin 154.9 156.9 0 0 0 

Epigallocathechin-3-gallate 958.7 425.5 533.2 55.6 232.7 

Gallocathin-gallate 35.2 10.3 24.8 70.6 10.8 

Epicatechin-gallate 200.3 102.3 98.0 48.9 44.3 

Catechin-gallate 52.7 43.0 9.7 18.5 4.4 
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6.3.4.2 Calculation of EGCG binding to apoA-I by absorbance 

EGCG, at a range of concentrations from 0.1 mM to 1 mM, was scanned with UV 

radiation in order to determine whether UV absorbance was a viable quantitative 

method for determining the concentration of EGCG.  

Figure 6.11A shows that the absorbance of EGCG, between 250 and 320 

nm, was dependent on the concentration of EGCG added, with the intensity of the 

peak absorbance at 274 nm increasing with higher concentrations of EGCG, and 

an average extinction co-efficient of 16,816 M-1cm-1. When EGCG concentration 

was plotted against the absorbance intensity at 274 nm, a linear relationship was 

shown (Figure 6.11B), which confirms that the intensity at 274 nm can be used 

to estimate EGCG concentration, over a range of 0 to 500 μM.  

Analysis of the supernatant remaining after the removal of aggregated 

apoA-I, and any bound catechins from the green tea extract by HPLC, indicated 

that EGCG bound to apoA-I. The next stage involved assessing whether EGCG 

bound to apoA-I during the aggregation process, or just to preformed fibrils. A 

simple method of confirming which of these interactions occur involved 

incubating apoA-I in aggregation-inducing conditions, with increasing 

concentrations of EGCG added before or after promoting fibril formation. 

Removal of the aggregated material and tightly bound EGCG by centrifugation, as 

previously, will allow the absorbance of the supernatant at 274 nm to be taken, 

and the remaining concentration calculated from the concentration plot in 

Figure 6.11B. 
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Figure 6.11 (A) Concentration dependence of EGCG on absorbance intensity 

between 190 and 360nm, with a peak absorbance at 274 nm. (B) Plot of 

absorbance intensity at 274 nm against EGCG concentration, showing a linear 

relationship.  
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In order to quantify the binding potential of EGCG to apoA-I, EGCG was added at a 

range of concentrations, from 9 to 180 μM, representing ¼ to 5-fold molar 

excess, compared to apoA-I at 36 μM. Binding of EGCG to apoA-I was monitored 

under 2 conditions: (i) EGCG was added to apoA-I (36 μM) at pH 7, prior to 

acidification with concentrated HCL, which was shown in Section 4.3.2, to 

induce aggregation of apoA-I, and (ii) with EGCG added to pre-formed apoA-I 

aggregates at pH 4. The experiment scheme is shown in Figure 6.12. 

 

 

 

 

 

 

Figure 6.12 Experiment schematic showing the aggregation of apo-I (i) with 

EGCG added, prior to induction of aggregation (+), and (ii) with EGCG added to 

preformed fibrils (- +).   

 

Figure 6.13A shows a reduction in the concentration of EGCG remaining in the 

supernatant, after removal of the apoA-I aggregates. This is consistent with EGCG 

binding to apoA-I. It also shows no difference between the amount of EGCG that 

binds to apoA-I when added before or after the induction of aggregation.  

At apoA-I: EGCG molar concentrations of 36:9 μM and 36:18 μM, no EGCG 

remains in solution following sedimentation of the insoluble apoA-I material. 

This suggests that all of EGCG has bound to the apoA-I and co-sedimented with 

the protein aggregates. At equimolar concentrations, approximately 60 % of the 
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EGCG added had bound to apoA-I and was removed through sedimentation. 

When EGCG was in a 2 and 5 fold molar excess to apoA-I 36:72 μM and 36:180 

μM, respectively, approximately 55% and 25 % of the EGCG added had bound 

and co-pelleted with apoA-I, respectively. Interestingly, this corresponds to 

approximately 34 μM at both concentrations.  Therefore, saturation of apoA-I 

with EGCG appears to occur at approximately 34 μM when the stoichiometry of 

apoA-I and EGCG is equal. Conversely, estimation of the catechin concentrations 

remaining by HPLC showed that an excess of EGCG binds to apoA-I, at a molar 

ratio of 1:32 for apoA-I to EGCG. However, this data should be treated with 

caution, since it is based on integration of the HPLC peak areas.   

The binding of EGCG to apoA-I could be modelled using the Hill equation 

(Equation 6.1) and Origin Pro software, where the bound EGGC (B) is related to 

the maximum binding (Bmax), the concentration of EGCG added (A), the hill co-

efficient (n) and the dissociation constant (kD). This produces an apparent 

dissociation constant of 29.5 μM and 40.5 μM, for EGCG binding during the 

aggregation process and to pre-formed aggregates, respectively (Figure 6.13B).   

 

𝐵 = 𝐵𝑚𝑎𝑥[𝐴]𝑛/ 𝑘𝐷 + [𝐴]𝑛  [6.1] 

The apparent dissociation constant for EGCG added to pre-formed fibrils 

has to be considered with caution, since only 5 data points are plotted, and 

because of the increased error in the sample containing a 5-fold molar excess. 

This binding data is calculated based on the assumption that, as shown via ThT, 

EGCG does not inhibit the aggregation of apoA-I. However, EGCG may be affecting 

the aggregation of apoA-I, or disturbing the pre-formed fibril, in a manner that is 

unfeasible to detect via ThT, which could affect the binding of EGCG to apoA-I.  
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Figure 6.13 (A) Concentration of EGCG remaining in solution, after pelleting the 

insoluble apoA-I material, compared to the concentration of EGCG added. EGCG 

was added either before or after aggregation. Concentrations are representative 

of triplicate samples, with standard error shown.  (B) EGCG binding to apoA-I 

modelled by the hill equation.  
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6.3.5 Secondary structure of EGCG treated apoA-I aggregates 

EGCG has been shown to remodel mature amyloid fibrils (Bieschke et al., 2010; 

Palhano et al., 2013), which has therapeutic implications as a method of 

reversing amyloid deposition in amyloid-associated disease pathology.  

 

6.3.5.1 EGCG added to preformed aggregates 

Figure 6.14A shows the two-dimensional cross-polarisation 13C-13C MAS 

spectrum for apoA-I aggregates formed at pH 4 in the absence of heparin (black), 

and following treatment of the preformed aggregates with EGCG (red). The 

spectrum of the EGCG treated aggregates contain cross-peaks for several easily 

assigned residues, with chemical shifts that correspond to both α-helical and β-

sheet content within the aggregates. This is consistent with the untreated apoA-I 

aggregates formed in the absence of heparin (black).  

However, when apoA-I aggregates are treated with EGCG, the intensities 

of the cross-peaks with chemical shifts that correspond to α-helical contributions 

are profoundly reduced, compared to those for the untreated aggregates. Caution 

should be taken when estimating the percentage contribution of secondary 

structural components, based on the intensities of chemical shifts. However, the 

dramatic decrease in the intensity of the α-helical cross-peaks, in particular for 

alanine (54.9/18.3 ppm for the Cα/Cβ), and valine (66.0/31.4 ppm for the 

Cα/Cβ) as shown in Figure 6.14 B and C, respectively, and the complete 

disappearance of the alanine α-helical cross-peak (179.6/18.3 ppm for the C-

amide/Cβ) in the carbonyl region, is sufficient to confirm that EGCG causes a 

decrease in helical structures.  
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Figure 6.14 2D 13C-13C SSNMR spectra with DARR mixing of (A) apoA-I 

aggregates formed in the absence of heparin that are untreated (black) or with 

EGCG added to preformed aggregates (red).  Figures (B) and (C) show the alanine 

and valine regions in more detail, highlighting the decrease in cross-peak 

intensity at chemical shifts associated with α-helices, upon treatment with EGCG.  



 255 

6.3.5.2 EGCG added during aggregation of apoA-I 

After determining that the addition of EGCG to pre-formed apoA-I aggregates 

resulted in a reduction of α-helical structures, a spectrum was acquired for apoA-

I aggregates formed in the presence of EGCG.  

The spectrum of apoA-I aggregates formed in the presence of EGCG 

(Figure 6.15A blue) contains cross-peaks for several easily assignable amino 

acids, with cross-peaks associated with both α-helical and β-sheet structures. 

However, when compared to the NMR spectrum of untreated apoA-I aggregates 

(Figure 6.15A black), the inclusion of EGCG during aggregation is shown to 

result in a decrease in the intensity of the α-helical contributions. The extent of 

intensity decrease in the α-helical cross-peaks is shown for alanine (Figure 

6.15B) and valine (Figure 6.15C) residues.  

This data suggests that treatment of apoA-I with EGCG, both during and 

after aggregation into amyloid-like fibrils, causes a change in the aggregates 

structure, resulting in a reduced α-helical content.  
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Figure 6.15 2D 13C-13C SSNMR spectra with DARR mixing of (A) apoA-I 

aggregates formed in the absence of heparin that are untreated (black) or formed 

in the presence of EGCG (blue).  Figures (B) and (C) show the alanine and valine 

regions in more detail, highlighting the decrease in cross-peak intensity at 

chemical shifts associated with α-helices, upon treatment with EGCG.  
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6.3.6 Effects of EGCG on the dynamics of apoA-I aggregates. 

6.3.6.1 Dynamics of apoA-I aggregates 

Determination of the overall protein secondary structure from one-dimensional 

13C SSNMR experiments relies on the characteristic chemical shift patterns of the 

amide carbonyl, α-carbon, and β-carbons as markers for protein secondary 

structure. By utilising a range of 1D 13C SSNMR techniques, it is possible to 

deduce whether the secondary structural contribution in the NMR spectrum 

originates from either a static or dynamic region of the peptide. Section 5.1.4.9, 

and 5.1.4.10 describe the theory behind the CP and INEPT NMR experiments in 

detail, and the benefits of each. Section 5.1.4.11 describes how a combination of 

DP, CP and INEPT experiments can be used to determine the dynamics of a 

protein region. In summary, DP spectra show signals from the full protein, 

whereas, due to the requirement for dipolar interactions in CP experiments, this 

technique only collects signals from static regions of the peptide. INEPT 

experiments on the other hand, rely on J couplings. Therefore, they are able to 

detect interactions within dynamic regions of proteins.  

Figure 6.16 contains DP, CP and INEPT spectra of apoA-I aggregates 

formed at pH 4 in the absence of heparin. The DP spectrum in red produces 

broad peaks in the carbonyl and alpha carbon regions with chemical shifts of 

172.5-175.9 ppm and 51.9-54.6 ppm respectively, which are concurrent with the 

average chemical shift of amino acids in a β-sheet conformation (174.5 ppm and 

55.1 ppm for the amide and α-carbon, respectively). Shoulder peaks in the amide 

carbon region of the spectrum at approximately 180 ppm, and in the α-carbon 

region at approximately 60 ppm, is suggestive of α-helical contributions (177.5 

ppm and 59.6 ppm for the amide and α-carbons, respectively).  
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The CP spectrum in black shows a high degree of similarity to the DP 

spectrum, although individual peaks within the broad 172.5-175.9 ppm amide 

carbon peak are more resolved. The high intensity, and similarity to the DP 

spectrum suggests the apoA-I aggregates are dynamically constrained.  

Conversely, the INEPT spectrum contains no distinguishable peaks above 

the background noise. This suggests the protein contains no mobile or dynamic 

regions, in concurrence with the CP data.  

 

 

Figure 6.16 DP (red) CP (black) and INEPT (blue) MAS SSNMR of apoA-I 

aggregates formed at pH 4 in the absence of heparin.   
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6.3.6.2 Dynamics of EGCG treated apoA-I aggregates 

DP and CP spectra were acquired for apoA-I, with EGCG added to preformed 

fibrils (Figure 6.17A), and apoA-I fibrils formed in the presence of EGCG (Figure 

6.17B) in order to determine whether treatment with EGCG caused a change in 

the dynamics of the apoA-I aggregates.  

 

When EGCG was added to preformed fibrils, the DP SSNMR spectrum 

acquired (Figure 6.17A black) contains a broad peak, spanning both chemical 

shift values associated with the presence of both β-sheet and α-helices. The main 

amide carbon peak at 174 ppm matches the predicted β-sheet value of 174.5 

ppm calculated by Wang and Jardetzky (2002), whilst the shoulder at 177 ppm 

corresponds with the predicted value of 177.5 ppm for α-helical contributions. 

The α-carbon region of the spectrum contains a main peak at 53.7 ppm, 

consistent with the average chemical shift for the α-carbons in a β-sheet 

conformation (55.14 ppm). However, a the peak shoulder at 59.8 ppm is 

suggestive of α-helical contributions (Wang and Jardetzky, 2002). The line 

widths of the DP spectrum also appear narrower than the untreated apoA-I 

spectrum in Figure 6.16, suggestive of increased ordering. In summary, the DP 

spectrum for apoA-I aggregates with EGCG added after their formation, suggest 

the presence of both α-helical and β-sheet structures, as shown previously in the 

2D 13C NMR spectra, similar to the untreated aggregates.  

CP experiments of apoA-I with EGCG added to preformed fibrils (Figure 

6.17A red) produce a spectrum with a much lower intensity than the DP 

spectrum (Figure 6.17A black). This is suggestive that not all of the protein is in 

a dynamically constrained conformation, as was seen for the untreated apoA-I 
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aggregates (Figure 6.16). The peaks in the CP spectrum coincide with the 

chemical shifts for the peaks in the DP spectrum, suggesting both α-helical and β-

sheet structures remain in the static regions of the protein. 

 

The DP spectrum for apoA-I aggregates formed in the presence of EGCG (Figure 

6.17B black) is consistent with the DP spectrum of aggregated apoA-I alone 

(Figure 6.16) and apoA-I with EGCG added to preformed fibrils (Figure 6.17A). 

However, it is not as well resolved as either of these spectra. A broad peak in the 

carbonyl region, with a chemical shift of 174 ppm (Figure 6.17B black), is easily 

identifiable as β-sheet by Wang and Jardetzky (2002) who predict chemical shifts 

of 174.5 ppm for β-sheet structures. Unfortunately, the broad width of the peak 

makes any contribution from α-helices at the predicted chemical shift of 177.5 

ppm, which were observed in the DP spectrum for aggregated apoA-I alone and 

apoA-I with EGCG added after aggregation as shoulder peaks, difficult to 

distinguish.  

CP experiments produce a spectrum with much lower intensity peaks, 

compared to the DP spectrum, instantly suggestive of a less constrained 

conformation. The chemical shift pattern in the carbonyl region, in particular a 

broad line spanning both 174 ppm and 177 ppm, implies both α-helical and β-

sheet contributions are present in the static phase of the apoA-I aggregates 

(Wang and Jardetzky, 2002).  
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Figure 6.17 1D 13C DP (black) and CP (red) SSNMR spectra of (A) apoA-I with 

EGCG added to preformed apoA-I aggregates, and (B) apoA-I aggregates formed 

in the presence of EGCG.  
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The data presented in Figure 6.16 suggests that untreated apoA-I aggregates are 

dynamically constricted. However, the inclusion of EGCG, both during 

aggregation and added pre-formed aggregates, results in a reduced CP spectra 

intensity (Figure 6.17), suggestive of increased protein dynamics. 

INEPT spectra were acquired for EGCG added to preformed apoA-I 

aggregates (Figure 6.18A), and for apoA-I aggregates formed in the presence of 

EGCG (Figure 6.18B). Both spectra contain intense peaks that were not observed 

in the untreated apoA-I INEPT spectrum (Figure 6.16). This suggests that 

treatment of apoA-I with EGCG leads to increased structural dynamics in the 

aggregated material. 

The 1D INEPT spectrum observed when EGCG was added to preformed 

fibrils is not well resolved in the aromatic or α-carbon regions, making overall 

secondary structure estimations difficult. However, the presence of a peak 

consistent with the β-carbon of threonine residues at 68.9 ppm is suggestive of 

their involvement in α-helical structures (Wang and Jardetzky, 2002).  

The two-dimensional INEPT spectrum of apoA-I aggregates formed in the 

presence of EGCG, shown in Figure 6.18B gives further insights into the 

structural arrangement of apoA-I treated with EGCG. Cross-peaks for aromatic 

13C and 1Hα are detected at chemical shifts of approximately 110-130 ppm and 

3.5-4.5 ppm, respectively.  Cross-peaks also occur in the Cα and Cβ regions with 

chemical shifts of 0-40 and 40-60 ppm, respectively. Both of these 13C chemical 

shift patterns are consistent with the 1D 13C peaks in Figure 6.18A.  

In summary, the INEPT spectra suggest that the inclusion of EGCG, either 

during aggregation, or to preformed fibrils results in an increased dynamic 

structure of the apoA-I aggregates. 
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Figure 6.18 (A) INEPT SSNMR spectra of apoA-I with EGCG added to preformed 

fibrils, and (B) 2D 13C-1H INEPT SSNMR spectra of apoA-I fibrils formed in the 

presence of EGCG. 
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6.4 Discussion  

The ability of polyphenols and catechins, in particular epigallocathin gallate 

(EGCG), to inhibit aggregation of amyloidogenic proteins has been well 

documented (Ehrnhoefer et al., 2006; Ehrnhoefer et al., 2008; Hudson et al., 

2009; Bieschke et al., 2010).  The EGCG compound has been shown to inhibit the 

aggregation of Aβ, huntingtin, α-synuclein, IAPP and amyloid models (Doig and 

Derreumaux, 2015; Ehrnhoefer et al., 2008; Bieschke et al., 2010; Masuda et al., 

2006), as well as cause a structural rearrangement in preformed fibrils (Palhano 

et al., 2013; Bieschke et al., 2010). However the precise mechanism behind this 

inhibition is still unknown. The current leading theory involves EGCG driving the 

aggregation of the amyloidogenic protein into an alternative conformation, 

possibly an oligomeric state, which is unable to undergo further aggregation into 

amyloid species (Ehrnhoefer et al., 2008). EGCG has been shown to inhibit the 

aggregation of apoA-I (1-83/G26R) (Nakajima et al., 2016), but no other 

inhibitory studies of full-length, wild type apoA-I exist. Due to the aggregation 

inhibiting effects of EGCG on other amyloidogenic proteins, including the 

mutated apoA-I (1-83/G26R) species, it was questioned whether the non-

specificity of this amyloid inhibition extended to full-length apoA-I.  

Initially, experiments were carried out in order to determine the identity 

of catechins present in a green tea extract. Analysis by HPLC and comparison to a 

catechin reference set determined 8 catechin compounds were present, the most 

abundant of which were catechin, and epigallocatechin gallate (EGCG). As such, 

the effects of the green tea extract on the aggregation of Aβ and apoA-I were 

assessed. The green tea extract was shown to inhibit the aggregation of Aβ, as 

expected, given the previously published literature on purified EGCG inhibiting 
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the amyloidosis of Aβ. However, neither the green tea extract, nor pure EGCG 

were shown to inhibit the aggregation of apoA-I.  

Despite not showing an inhibitory effect on the aggregation of apoA-I, 

experiments were carried out to determine which, if any, of the catechins present 

in green tea bound to Aβ and apoA-I. Co-sedimentation of EGCG with Aβ and 

apoA-I aggregates, and analysis of the resulting supernatant by HPLC identified 4 

compounds bound to Aβ aggregates (caffeine, epicatechin, EGCG and 

epicathingallate), whilst only EGCG bound to apoA-I aggregates with high affinity. 

Therefore, the binding of pure EGCG to apoA-I aggregates was calculated, using 

the absorbance of EGCG, which was found to bind at roughly equimolar 

concentrations. The discovery that EGCG interacts with apoA-I, despite not 

inhibiting its aggregation, is interesting and could potentially direct further 

research into apoA-I amyloid inhibitors.  

Given that EGCG was shown to bind to apoA-I, the structure of the apoA-I 

aggregates treated with EGCG was assessed through SSNMR. EGCG was either 

added to preformed fibrils, or included during the aggregation process. SSNMR 

determined that treatment with EGCG, in both conditions, lead to a structural 

rearrangement in the apoA-I aggregates. 2D SSNMR identified a reduction in α-

helical content, upon treatment with EGCG, whilst the β-sheet content appears to 

remain unchanged. This structural rearrangement coincided with an increase in 

the protein dynamics, as determined through a combination of CP and INEPT 

SSNMR experiments. However, this data cannot determine whether EGCG 

induces a structural change in apoA-I aggregates that gives rise to a more 

dynamic structure, or whether EGCG solubilises apoA-I aggregates, leading to 

increased protein dynamics.  
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In the model proposed in Chapter 5 of this thesis, the β-sheet structures 

are restricted to the N-terminal 90/100, whilst the C-terminus retains its native 

helical content. Therefore, given the data presented here, it is further proposed 

that EGCG interacts with the C-terminus of the apoA-I aggregates, both during 

and after the formation of fibrils. This interaction interferes with the α-helical 

structures, converting the C-terminus into a more dynamic structure, whilst the 

N-terminal β-sheet structures remain unaffected. The increase in dynamics of the 

helical C-terminus is confirmed by the presence of a peak in the 1D 13C INEPT 

spectrum, corresponding to threonine residues in an α-helical conformation. 5 

threonine residues are present in the C-terminus (90-243) region of apoA-I that 

is thought to be in an α-helical conformation.  

Binding of EGCG to the C-terminus would also explain why EGCG appears 

to have no effect on the aggregation of apoA-I into amyloid-like aggregates, as 

determined by both ThT and SSNMR, since the β-sheet structures characteristic 

of amyloid are confined to the N-terminus. Neither an increase in the intensity of 

the β-sheet cross-peaks is observed upon treatment with EGCG, nor is an 

enhanced ThT response. Therefore, it can be assumed that the interaction of 

EGCG with the C-terminus of apoA-I does not induce β-sheet formation in the C-

terminus, nor propagation of the N-terminal β-sheet into the remaining protein, 

as originally proposed by Das et al. (2014). 

Further work on studying the interaction of apoA-I with EGCG, in order to 

determine how the compound causes a structural reformation, and the potential 

effects it could have on the apoA-I aggregates morphology, is discussed in 

Chapter 7.  
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7. General discussion and future work 

The overall aims of the research presented in this thesis have been to study the 

conditions that induce the misfolding of apoA-I into amyloid-like structures and 

investigate the structure of these aggregates.  

 

7.1 ApoA-I aggregation 

Current literature on apoA-I aggregation identifies 2 separate mechanisms that 

result in the deposition of amyloid-like material. In acquired amyloidosis, full-

length apoA-I becomes deposited as amyloid fibrils in arteries and associates 

with atherosclerotic plaques (Das et al., 2016; Ramella et al., 2011; Ramella et al., 

2012; Mucchiano, Häggqvist, et al., 2001; Wong et al., 2010; Chan et al., 2015). In 

familial apoA-I amyloidosis, N-terminal fragments of apoA-I, incorporating 

peptides 80-100 amino acids in length, become deposited within major organs 

(Raimondi et al., 2011; Das et al., 2016; Andreola et al., 2003; Adachi et al., 2014; 

Vigushin D.M et al., 1994). In both cases, aggregation of apoA-I leads to the 

misfolding of the native apoA-I. This manifests into poor cardiac health, via 3 

processes: a reduction in the HDL driven RCT, deposition of insoluble amyloid 

increases the plaque loading in atherosclerotic lesions, and an increased 

inflammatory response at atherosclerotic sites, due to possible cytotoxic amyloid 

intermediates.  

 

7.2 Current mechanism for apoA-I aggregation  

Native apoA-I, in its lipid-free state, possesses a high helical content, between 60-

80 %, depending on the conformation of the flexible C-terminus. The current 

model describing the mechanism of apoA-I aggregation has been proposed by 
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Das et al. (2016; 2014) and details how the N-terminal 4 helical bundle inhibits 

the SRE regions, residues 14-22, 53-58, and 69-72, from spontaneously 

aggregating into β-sheet structures. Mutations in this region or oxidation of 

methionine residues lead to destabilisation of the N-terminus. This allows the 

SRE regions to rearrange into β-sheet structures. The EKETEG region, spanning 

residues 76-81, acts as a natural β-sheet breaker at neutral pH, limiting the β-

sheet propagation to the N-terminal 1-76 residues (Das et al., 2014). This 

exposed region is now more accessible to proteases that cleave the N-terminal 1-

83 peptide, resulting in its deposition as amyloid. Alternatively, upon protonation 

of the glutamic acid residues in the β-sheet breaking sequence, this protective 

property is lost. Therefore, the β-sheets formed from the SRE elements can 

propagate into the C-terminus, extending into a β-zipper, which then forms full-

length amyloid (Das et al., 2014).  

This mechanism is supported by the high number of mutations in the N-

terminal 1-80 peptide that result in destabilisation of the 4-helical bundle. This 

opens the structure up to proteolytic cleavage, explaining why N-terminal 

fragments of mutated apoA-I appear as amyloid in familial apoA-I amyloidosis.  

 

7.3 Expression of apoA-I 

Recombinant apoA-I was expressed following previously published methods 

(Oda et al., 2001; Ryan et al., 2003) with suitable yields to facilitate biophysical 

analysis described in Chapter 4. Expression in minimal media enriched with 13C 

glucose and 15N ammonium chloride allowed the first SSNMR spectrum of apoA-I 

to be collected, aiding structural analysis.  SLIM based PCR methods were utilised 

to produce plasmid DNA for several apoA-I mutants, including G26R, L44Stop, 
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L90P, K96C and R173C. Agarose gel electrophoresis confirmed the PCR reaction, 

used to incorporate mutated primers, had produced large quantities of DNA, 

whilst gene-sequencing data showed the intended mutations were successfully 

incorporated. The L44Stop mutation was unable to be expressed, and, of the 

remaining 4 mutants that were expressed, none produced a protein product that 

matched the predicted mass, when measured by electrospray ionisation mass 

spectrometry. The L90P mutant, which is of particular interest in this work, 

causes an increased rate in the aggregation of the apoA-I 1-93 peptide. DNA 

sequencing confirmed the introduction of the proline in the correct position and 

expression of the protein produced a band that appeared in the correct region on 

an SDS gel. However, upon treatment with 45 % formic acid, in order to cleave 

the his-tag between the formic acid labile Asp-Pro sequence, 2 smaller peptides 

were detected on an SDS gel and via mass spectrometry. After studying the 

sequence, the mutated proline in position 90 was found to produce a second acid 

labile Asp-Pro sequence, leading to the production of peptides corresponding to 

residues 3-89 and 90-243.  

 

7.3.1 Further work with apoA-I (3-89) and (90-243) 

Unfortunately, isolation of these two peptides from the his-tag was not 

attempted, due to time restrictions in the project and the focus on full-length 

apoA-I. However, a simple HPLC process should be able to separate out the 2,533 

Da his-tag and linker region, the 10,005 Da apoA-I (3-89) peptide, and the 17,881 

Da apoA-I (90-243) peptide.  

N-terminal fragments of apoA-I are commonly found deposited as amyloid 

in familial associated amyloidosis. Although structural analysis has already been 
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attempted on N-terminal peptides of apoA-I, the expression methods used here, 

in particular the ability to produce labelled apoA-I, would allow SSNMR analysis 

of both the soluble and aggregated peptide. Structural analysis of the aggregated 

apoA-I (3-89) peptide would confirm whether this region contains entirely β-

sheet structures. If this is the case, then it is justified to assume that the α-helical 

contributions detected by CD and SSNMR arise from the C-terminus, as proposed 

in the refined amyloidosis model in Chapter 5.  

Currently, the structure of soluble, lipid-free apoA-I is incomplete, with 

the C-terminal 185-243 residues not shown in the model proposed by Mei and 

Atkinson (2011). Isolation of the apoA-I (90-243) peptide would allow structural 

analysis of the full C-terminus region of apoA-I, and refinement of the full-length 

structure. This peptide could also be used to determine whether the C-terminus 

of apoA-I has a natural propensity to aggregate, by repeating the biophysical 

experiments carried out in Chapter 4. The current model for full-length apoA-I 

amyloidosis assumes that the C-terminus has no natural propensity to aggregate. 

It proposes that the presence of β-sheets in the C-terminus only occurs, due to 

extension of the N-terminal β-sheets. If it is found that apoA-I (90-243) can form 

amyloid in isolation, it would dispute the Das et al. (2016) model. If apoA-I (90-

243) only forms amyloid when seeded with apoA-I (3-89) amyloid, it could 

confirm the Das et al. model. However, if apoA-I (90-243) does not aggregate 

under any physiologically relevant conditions, it will support the refinement 

proposed in Chapter 5.  
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7.4 Conditions that promote aggregation of apoA-I 

In this study, apoA-I was incubated at a range of pH conditions, alone, and in the 

presence of a 2-fold molar excess of heparin. Acidic pH induced a conversion 

from soluble apoA-I into insoluble aggregates both in the absence and presence 

of heparin, with an excess of 90 % of protein precipitating out of solution.  

In the absence of heparin, the insoluble aggregates were ThT responsive, bound 

to Congo red dye and exhibited a green birefringence. However, they did not 

have the typical amyloid morphology when viewed by TEM, or produce XRD 

patterns consistent with the presence of β-sheet structures. CD experiments 

showed that after 2 hours incubation, both the remaining soluble material and 

the insoluble aggregates retained a high proportion of the native helical content.  

Conversely, when incubated with an excess of heparin, the insoluble material 

gave rise to a ThT response, a green birefringence when stained with Congo red, 

exhibited a more common amyloid morphology, and produced intense XRD 

reflections, consistent with the presence of β-sheets. ThT data confirmed the ThT 

response was heparin concentration-dependent. CD analysis of the aggregates 

determined a dramatic reduction in α-helical content, with an increase in β-sheet 

structures, which is characteristic of amyloid. The thin film CD spectra contained 

both α-helical and β-sheet contributions and, upon comparison to the aggregates 

formed in the absence of apoA-I, the β-sheet contribution was calculated to be 

approximately 40 %.  

Oxidation of apoA-I was confirmed through MS, and CD analysis 

determined a slight reduction in the α-helical content at neutral pH, suggesting 

unfolding of the native structure. This is consistent with previous analysis of 

chemical oxidation of apoA-I (Chan et al., 2015). Intrinsic fluorescence studies 



 272 

implied that the oxidised apoA-I has a more relaxed structure, with increased 

exposure of the 4-tryptophan residues to hydrophobic environments. Upon 

incubation at pH 6, the oxidised apoA-I readily formed ThT reactive aggregates, 

with a morphology similar to the apoA-I aggregates, formed in the presence of 

heparin.  

The conditions determined here that promote aggregation of apoA-I are 

physiologically relevant. At sites of atherosclerotic lesions, where apoA-I is 

deposited, the local pH can be reduced dramatically, given the immune response 

against the oxidised LDL (Thijssen and Mensink, 2005). GAG’s, such as heparin, 

are commonly associated with amyloid deposits (Cohlberg et al., 2002). 

Oxidation of methionine residues on apoA-I by myeloperoxidsase has been 

shown to induce aggregation into amyloid species (Chan et al., 2015). 

 

7.5 SSNMR analysis of apoA-I amyloid   

The PDB contains a distinct lack of apoA-I structures determined by NMR. To 

date, only 4 structures have been deduced, corresponding to residues 142-187 

(Wang et al., 1997) 166-185 (Wang et al., 1996) and 1-93 (Mangione et al., 2001). 

This is due to the high flexibility of the apoA-I structure, which gives rise to broad 

line widths, which was observed in the SSNMR spectra obtained for this thesis. 

However, new structural information could be deduced from the 13C spectra, in 

regards to the local secondary structural content, which has previously been 

unavailable.  

Thin film CD of apoA-I aggregates, formed in the presence of heparin, 

suggested the presence of both α-helical and β-sheet content, something 

uncommon in amyloid species. SSNMR confirmed that the aggregated material 
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formed at pH 4 alone, in the presence of heparin, and upon oxidation at pH 6, all 

retained a high proportion of their native α-helical elements, whist also 

possessing cross-peaks that are consistent with the presence of β-sheet elements. 

This conflicts with the mechanism of apoA-I amyloidosis, proposed by Das et al. 

(2016), which claims that the entire aggregate consists of β-sheet in acidic 

conditions.  

Therefore, a refinement of the amyloidosis mechanism is suggested in 

Chapter 5. Destabilisation of the 4-helical bundle in native apoA-I, either by 

acidification or oxidation of the 3-methionine residues, results in the conversion 

of residues 1-90 into a non-helical conformation, with the conversion of the hot-

spot regions into β-sheets. However, the β-sheet structures are restricted to the 

N-terminus, and the C-terminus of apoA-I retains its majority α-helical content, 

as shown in Figure 5.29, unlike the mechanism proposed by Das et al. (2016).  

 

7.5.1 Future SSNMR experiments 

In order to confirm this theory, more detailed structural analysis of apoA-I via 

SSNMR is required. In addition to the experiments outlined above for the apoA-I 

(3-89) and apoA-I (90-243) peptides, spectra for amino acids located in solely 

the N or C-terminus of apoA-I would confirm the local secondary structure. 

Unfortunately, all 18 amino acids in apoA-I (excluding cysteine and isoleucine) 

are uniformly distributed among residues 1-89 and 90-243. Isoleucine could be 

mutated into either region, and its conformation probed by 13C-13C CP SSNMR, 

since the Cα -Cβ cross-peaks produced by isoleucine are easily assignable on the 

2D 13C spectrum.  
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Alanine is an attractive alternative amino acid, since their cross-peaks are one of 

the most identifiable in the complex spectrum produced by full-length apoA-I, 

and their chemical shift patterns make it easy to distinguish between their α-

helical and β-sheet signals. Only 2 alanine residues are present in the N-terminal 

(1-90) region, compared to 17 in the C-terminus, which are distributed 

throughout residues 95-229. Production of a double mutant to remove the 

alanine residues at positions 15 and 37 would result in an alanine Cα-Cβ cross-

peak, solely from the C-terminus of apoA-I. Mutation from alanine to leucine 

would have a minimal effect on the structure of apoA-I. If the cross-peak occurs 

only at chemical shifts associated with α-helical contributions, then it supports 

the refined theory. Any β-sheet signals would mean the model needs further 

revision.  

Similarly, the lone tryptophan residue in the C-terminus at position 108 

could be mutated out of the sequence, leaving the 13C cross-peaks corresponding 

to the 3 tryptophan residues in the N-terminus.  

All three of these methods could make use of the uniformly labelling 

techniques used in this chapter. Alternatively, a combination of mutagenesis and 

sporadic labelling, or addition of excess labelled amino acid to a minimal media 

expression, would produce an NMR spectra containing cross peaks from just the 

amino acid of interest, such as alanine residues only in the C-terminus.  

 

7.6 ApoA-I inhibition  

The overall aim of studying the structure of amyloidogenic proteins is to improve 

the understanding of how the soluble, native protein misfolds into amyloid, and 

thus, manifests itself in disease pathology. This can then direct the design of 
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therapeutic techniques in order to control or inhibit the disease progression. 

Currently, there are no known compounds that inhibit the aggregation of apoA-I. 

EGCG, a catechin found in green tea, has been shown to inhibit the 

aggregation of several amyloidogenic proteins, including Aβ, α-synuclein and 

huntingtin. Data presented here confirms that EGCG binds to apoA-I with 

micromolar affinity, but does not cause a reduction in the production of ThT 

responsive material. However, binding of EGCG to apoA-I does induce a 

structural change in the aggregates formed at acidic pH. EGCG leads to a 

reduction in the helical content of apoA-I aggregates and an increase in the 

protein dynamics. If EGCG can inhibit the amyloidosis of apoA-I, or cause an 

alternative aggregation mechanism, this could have potential health benefits. A 

reduction in fibril formation may allow apoA-I to retain its native function in the 

atheroprotective reverse cholesterol transport, or reduce the atherosclerotic 

plaque load. Alternatively, since EGCG is known to bind to apoA-I, structural 

analogues could be designed, based on the apoA-I-EGCG interaction, as potential 

drug compounds with higher efficacy.  

Future work on the interaction of apoA-I with EGCG should focus on 

determining whether EGCG effects the aggregation of apoA-I. This will involve 

extensive biophysical analysis, similar to that carried out in Chapter 4. EGCG has 

been shown to compete with ThT for binding sites on amyloid (Palhano et al., 

2013), so alternative methods of measuring aggregation kinetics might be 

required.  Determination of whether the EGCG modified apoA-I structure induces 

cytotoxicity of the fibrils will also be important in taking this compound forward 

as a treatment model. If EGCG inhibits fibril formation, but induces the formation 

of off-pathway aggregates that are cytotoxic to endothelial or other cardiac cells, 
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the treatment mechanism fails. Alternatively, if EGCG is solubilising the fibrils, 

which is a possibility, given the increased dynamics upon treatment with EGCG, 

this could also lead to the production of cytotoxic oligomers. Therefore, cell 

viability studies are essential future work, both in the study of the inhibition of 

aggregation and treatment of preformed fibrils.  

In addition to the NMR data presented in Chapter 6, CD analysis of apoA-I 

aggregates, in particular the use of orientated thin film SRCD, could give further 

insight into the structural changes observed during the aggregation in the 

presence of EGCG, and whether EGCG added to preformed fibrils alters their 

conformation. Computer modelling of the interaction between EGCG and apoA-I 

could allow comparison to how EGCG interacts with Aβ, huntingtin and α-

synuclein, for which it is known to inhibit amyloidosis. Since EGCG appears to 

induce an alteration in the helical region of the apoA-I aggregates, the refined 

amyloidosis model would suggest an interaction involving the C-terminus of 

apoA-I. This would also explain why EGCG does not cause a reduction in the ThT 

response, caused by the β-sheet structures, located in the N-terminus. This could 

be confirmed through determining whether EGCG will bind to the apoA-I (3-89) 

and apoA-I (90-243) peptides separately.  

 

In conclusion, the research carried out in this thesis has furthered the 

understanding of apoA-I aggregation, and has begun assessing a known amyloid 

inhibitor for its effects on apoA-I. 
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Appendix 1 

pBluescript K+ plasmid Map  
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Appendix 2 

Site-directed ligase independent mutagenesis (SLIM) primers  

Mutated triplicates are highlighted in bold with the individual changed 
nucleotide/s highlighted in red. 
 
L44STOP  
 
Forward Long Primer  

TTG  AAC  TAG  AAG  CTG  CTG  GAC  AAC  TGG  GAC AGC  GTG  ACG  T    

Forward Short            

GAC  AAC  TGG  GAC AGC  GTG  ACG  T 

Reverse Long Primer  

CAG  CAG  CTT  CTA  GTT  CAA  TTG  TTT  GCC  CAA  GGC  GGA  TCC  T 

Reverse Short 

TTG  TTT  GCC  CAA  GGC  GGA  TCC  T   

 

L90P 

Forward Long Primer 

AGC  AAG  GAT  CCG  GAG  GAG  GTG  AAG  GCC  AAG  GTG  CAG  CCG  TAC  C  

Forward Short Primer 

GTG  AAG  GCC  AAG  GTG  CAG  CCG  TAC  C    

Reverse Long Primer 

CTC  CTC  CGG  ATC  CTT  GCT    CAT  CTC  CTG  GCG   CAG  GCC  CTC T 

Reverse Short Primer 

CAT  CTC  CTG  GCG   CAG  GCC  CTC  T  
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K96C 

Forward Long Primer 

GTG  AAG  GCC  TGC  GTG  CAG  CCG  TAC  CTG   GAC GAC  TTC  CAG  A    

Forward Short Primer 

CCG  TAC  CTG  GAC  GAC  TTC  CAG A  

Reverse Long Primer      

CTG  CAC  GCA  GGC  CTT  CAC  CTC  CTC  CAG  ATC  CTT  GCT  CAT  C 

Reverse Short Primer 

CTC  CTC  CAG  ATC  CTT  GCT  CAT  C 

 

R173C 

Forward Long Primer 

CTG CGC  CAG  TGC  TTA  GCG  GCG  CGC  CTT  GAG  GCT  CTC  AAG  G 

Forward Short Primer 

GCG  CGC  CTT  GAG  GCT  CTC  AAG  G  

Reverse Long Primer 

CGC  TAA  GCA  CTG  GCG  CAG  CTC  GTC  GCT  GTA  CGG  CGC  CAG  A 

Reverse Short Primer 

CTC  GTC  GCT  GTA  CGG  CGC  CAG A 
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Appendix 3 

Gene Sequencing of apoA-I Mutants  

The sequence in brackets contains the expressed fusion peptide, consisting of the 

hexa-histidine tag (green), the linker region (orange) and apoA-I mutant 

sequence (black) with mutants underlined. The formic acid cleavage site is 

shown as “|” and indistinguishable amino acids are shown as blue “X”s. 

 

ApoA-I E2D 

I G R P Q R F P S R N N F V Stop L Stop (E G D I H M H H H H H H G L V P R G S I D 

D | P P Q S P W D R V K D L A T V Y V D V L K D S G R D Y V S Q F E G S A L G K 

Q L N L K L L D N W D S V T S T F S K L R E Q L G P V T Q E F W D N L E K E T E 

G L R Q E M S K D L E E V K A K V Q P Y L D D F Q K K W Q E E M E L Y R Q K V E 

P L R A E L Q E G A R Q K L H E L Q E K L S P L G E E M R D R A R A H V D A L R 

T H L A P Y S D E L R Q R L A A R L E A L K E N G G A R L A E Y H A K A T E H L S 

T L S E K A K P A L E D L R Q G L L P V L E S F K V S F L S A L E E Y T K K L N T Q 

Stop) S A L E L V D L R P H S S T T T T T T E I R L L T K 

 

ApoA-I G26R 

K X X X X L X X G X X H M H H H H H H I E G X D X | X X X S P W D R V K D X X T 

V Y V D V L K D S R R D Y V S Q F E G S A L G K Q L N L K L L D N W D S V T S T F 

S K L R E Q L G P V T Q E F W D N L E K E T E G L R Q E M S K D L E E V K A K V 

Q P Y L D D F Q K K W Q E E M E L Y R Q K V E P L R A E L Q E G A R Q K L H E L 

Q E K L S P L G E E M R D R A R A H V D A L R T H L A P Y S D E L R Q R L A A R 

L E A L K E N G G A R L A E Y H A K A T E H L S T L S E K A K P A L E D L R Q G L 

L P V L E S F K V S F L S A L E E Y T K K L N T Q Stop) G A L E L V D L R P H S S T 

T T T T T E I R L L T K P 

 

ApoA-I L44Stop 

X X X X X X X F C L L Stop (E G D I H M H H H H H H G L V P R G S I D D P P Q S P 

W D R V K D L A T V Y V D V L K D S G R D Y V S Q F E G S A L G K Q L N Stop) K 

L L D N W D S V T S T F S K L R E Q L G P V T Q E F W D N L E K E T E G L R Q E M S 

K D L E E V K A K V Q P Y L D D F Q K K W Q E E M E L Y R Q K V E P L R A E L Q E 

G A R Q K L H E L Q E K L S P L G E E M R D R A R A H V D A L R T H L A P Y S D E L 

R Q R L A A R L E A L K E N G G A R L A E Y H A K A T E H L S T L S E X A K P A L E 

D L R Q G L L P V L E S F K V S F L S A L E E Y T K K L N T Q Stop S A L E L V D L R P 

H S S T T T T T T E I R L L T K P E R K L X W L L P P L X N N Stop 
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ApoA-I L90P 

X X X X X X F C L L Stop (E G D I H M H H H H H H G L V P R G S I D D | P P Q S P 

W D R V K D L A T V Y V D V L K D S G R D Y V S Q F E G S A L G K Q L N L K L L 

D N W D S V T S T F S K L R E Q L G P V T Q E F W D N L E K E T E G L R Q E M S 

K D P E E V K A K V Q P Y L D D F Q K K W Q E E M E L Y R Q K V E P L R A E L Q 

E G A R Q K L H E L Q E K L S P L G E E M R D R A R A H V D A L R T H L A P Y S 

D E L R Q R L A A R L E A L K E N G G A R L A E Y H A K A T E H L S T L S E K A K 

P A L E X L R Q X L L P V L E S F K V S F L S A L E E Y T K K L N T Q Stop) S A L E 

L V D L R P H S S T T T T T T E I R L L T K P E R K L S W L L P P L S N N Stop H N P 

L G X L N G S W X G F F A E R R N 

 

ApoA-I K96C 

X X X X X F C L L Stop (E G D I H M H H H H H H G L V P R G S I D D | P P Q S P W 

D R V K D L A T V Y V D V L K D S G R D Y V S Q F E G S A L G K Q L N L K L L D N 

W D S V T S T F S K L R E Q L G P V T Q E F W D N L E K E T E G L R Q E M S K D 

L E E V K A C V Q P Y L D D F Q K K W Q E E M E L Y R Q K V E P L R A E L Q E G 

A R Q K L H E L Q E K L S P L G E E M R D R A R A H V D A L R T H L A P Y S D E 

L R Q R L A A R L E A L K E N G G A R L A E Y H A K A T E H L S T L S E K A K P A 

L E D L R Q G L L P V L E S F K V S F L S A L E E Y T K K L N T Q Stop) S A L E L V 

D L R P H S S T T T T T T E I R L L T K P E R K L S W L L P P L X I T S I T P W G L 

Stop T G X E G F F A E R X T I S X I X R Met G R X X X R R I K R  

 

ApoA-I R173C 

X X X X X X X X X X C X X Stop (E G D I H M H H H H H H G L V P R G S I D D | P P 

Q S P W D R V K D L A T V Y V D V L K D S G R D Y V S Q F E G S A L G K Q L N L 

K L L D N W D S V T S T F S K L R E Q L G P V T Q E F W D N L E K E T E G L R Q 

E M S K D L E E V K A K V Q P Y L D D F Q K K W Q E E M E L Y R Q K V E P L R A 

E L Q E G A R Q K L H E L Q E K L S P L G E E M R D R A R A H V D A L R T H L A 

P Y S D E L R Q C L A A R L E A L K E N G G A R L A E Y H A K A T E H L S T L S E 

K A K P A L E D L R Q G L L P V L E S F K V S F L S A L E E Y T K K L N T Q Stop) S 

A L E L V D L R P H S S T T T T T T X I R L L T K P E X K L X W L L P P L X N N Stop 

H X P W G S K R V L R G F L L K X N Y I P D W X X X X R X Stop R R I Stop R X G X X 

X X R X X D 
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Appendix 4 

Fittings for the calculation of rates of fluorescence increase between the FI and FT 
points. Data from this is incorporated into Figures 4.7, 4.8 and 4.10 for A, B and C 
respectively.   
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Appendix 5 
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