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Abstract: This paper analyses the effects of doubly fed induction generator (DFIG) tidal current
turbines on a distribution grid under unbalanced voltage conditions of the grid. A dynamic model
of an electrical power system under the unbalanced network is described in the paper, aiming to
compare the system performance when connected with and without DFIG at the same location in
a distribution grid. Extensive simulations of investigating the effect of DFIG tidal current turbine
on stability of the distribution grid are performed, taking into account factors such as the power
rating, the connection distance of the turbine and the grid voltage dip. The dynamic responses of the
distribution system are examined, especially its ability to ride through fault events under unbalanced
grid voltage conditions. The research has shown that DFIG tidal current turbines can provide a
good damping performance and that modern DFIG tidal current power plants, equipped with power
electronics and low-voltage ride-through capability, can stay connected to weak electrical grids even
under the unbalanced voltage conditions, whilst not reducing system stability.

Keywords: doubly fed induction generator (DFIG); tidal current turbine; distributed generation
(DG); network unbalance; system stability

1. Introduction

Just like the offshore wind farms, large tidal current turbines are often located in remote offshore
areas where weak grids and unbalanced grid voltage conditions are a common problem [1,2]. Many
tidal current turbines are connected in a distribution grid where asymmetrical loads, asymmetrical
transformer windings or transmission impedance and transient faults (voltage dip) will be the typical
sources of the problem, resulting in unbalanced operations [3,4]. The doubly fed induction generator
(DFIG), as the most popular form of tidal current energy generation [5], is very sensitive to unbalanced
operation of a grid due to its direct coupling to the grid [6,7].

In recent years, lots of research efforts have been devoted to improving the performance of the
steady-state and transient response of DFIG tidal turbines under symmetrical supply voltage [8–10].
In reality, however, asymmetrical faults happen much more frequently than symmetrical faults [11].
Furthermore, it is recognised that both transmission and distribution networks could experience
voltage imbalance, which can also occur in a weak power grid even during normal operations [12–15].
A weak power grid is one where changes in real and reactive power flowing into or out of the network
will cause significant changes in the voltage on the network, which is also referred to as having a low
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short-circuit level or a low fault level [16,17]. Networks in offshore areas are generally weaker than in
mainland or industrial areas. If this is not taken into account by DFIG control systems, the tidal current
turbines might have to be disconnected from the network under unbalanced voltage conditions due to
the excessive stator current imbalances, and power and torque oscillations [18,19].

In order to tackle the problems, recent studies have focused on the impact that the unbalanced
voltage has on DFIG turbines [20,21]. All of them show that even a slight imbalance could have a
clear influence on rotor losses and torque pulsations [3,22]. The effects of voltage imbalance on power
converters, due to the ripples in the output currents and the DC-link voltage, are also taken into
account and a series of strategies have been proposed to minimize these effects [23,24].

Nevertheless, the detailed effects of DFIG on stability of a distribution grid under different load
factors of the tidal current turbine plant and unbalanced grid voltage conditions are still not fully
known [25–27]. In this paper, we study the effect of addition of DFIG tidal current turbines on the
performance of a distribution grid system during abnormal operating conditions. An equivalent
electrical grid and its mathematical model under unbalanced network conditions are described in
Sections 2 and 3, respectively. In Section 4, the effect of DFIG tidal current turbines on stability of the
distribution grid system due to factors such as the power rating, the connection distance and the grid
voltage dip is discussed. Finally, conclusions arising from this research are summarized in Section 5.

2. A Distribution Grid

Distribution grid test feeders with a 2 MW, 1 kV DFIG tidal current turbine added is shown in
Figure 1. The grid system is modelled by a three-phase voltage source of 300 MVA and a three-phase
transformer (the voltage level of primary and secondary windings is 34.5 kV and 12.47 kV, respectively).
In this study, fixed load characteristics are considered, which are represented by rated real (P) and
reactive (Q) powers. The load at node 1 is set to 2.133 MW and 1.6 MVAR while the loads at node 2
and node 3 are both set to 0.266 MW and 0.2 MVAR
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The connection of a distributed generation (DG) unit to a radial distribution system could lead 
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connecting of DFIG tidal current turbines at one node whilst applying a fault component at another 
node in the system. Then, the power flows of the loads and of the grid system are monitored using a 
combination of current (A) and voltage (V) meters in order to determine the necessary protection 
level and to compare the system performance, of which DFIG tidal current turbines are not connected. 

Figure 1 also shows the location of the DFIG turbine to be added and the timed fault logic within 
the grid system. In order to evaluate system stability performance, we simulated a single phase fault 
on the three-phase line, where phase A is set to a phase-grounded fault while phase B and C are in 
the normal conditions. Various scenarios with regards to load factors were tested and the responses 
at three nodes in the system were examined. 

Figure 2 shows the complete model of a DFIG tidal current turbine added to the distribution 
grid [7]. The DFIG uses two pulse width modulation (PWM) voltage fed current regulated inverters 

Figure 1. The distribution grid.

The connection of a distributed generation (DG) unit to a radial distribution system could lead
to situations that are not normally supported by the network in case of faults. This model allows the
connecting of DFIG tidal current turbines at one node whilst applying a fault component at another
node in the system. Then, the power flows of the loads and of the grid system are monitored using a
combination of current (A) and voltage (V) meters in order to determine the necessary protection level
and to compare the system performance, of which DFIG tidal current turbines are not connected.

Figure 1 also shows the location of the DFIG turbine to be added and the timed fault logic within
the grid system. In order to evaluate system stability performance, we simulated a single phase fault
on the three-phase line, where phase A is set to a phase-grounded fault while phases B and C are in
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the normal conditions. Various scenarios with regards to load factors were tested and the responses at
three nodes in the system were examined.

Figure 2 shows the complete model of a DFIG tidal current turbine added to the distribution
grid [7]. The DFIG uses two pulse width modulation (PWM) voltage fed current regulated inverters
that are back-to-back connected in the rotor circuit. The DFIG turbine is controlled by a tidal current
governor with an initial pitch angle, an aerodynamic power coefficient Cp of 0.38 and a power demand
being predefined. The fluid is considered as sea flow and the density is about 1.025 × 103 kg/m3. The
parameter of DFIG is shown in Table 1. The induction machine is started initially in speed control
mode during the initial transients and then switched over to torque control after reaching steady-state.
Pitch control is not included in the simulation since it would not be activated until a few seconds after
the fault and therefore does not affect the behaviour of the system during the fault.
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Table 1. 2 MW, 1 kV doubly fed induction generator (DFIG) model parameters [5]. pu: per unit.

Base Angular
Frequency

Stator
Resistance (Rs)

Wound Rotor
Resistance (Rr)

Magnetizing
Inductance (Lm)

Stator Leakage
Inductance (Lsσ)

Wound Rotor Leakage
Inductance (Lrσ)

314.16 rad/s 0.0054 pu 0.00607 pu 4.362 pu 0.102 pu 0.11 pu

The block diagrams of induction machine control for the DFIG tidal current turbine is shown
in Figure 3. In the rotor side converter (RSC), as shown in Figure 3a, the active power is generated
with regards to tidal current speed and tidal current turbine characteristics while the reactive power
reference is set on the base of the utility demand. The control scheme in the RSC converter is to ensure
the rotor reference currents Ira_ref, Irb_ref and Irc_ref are generated by obtaining the correct values of the
direct and quadrature currents Ird and Irq in a synchronous rotating dq axis frame through the use
of PI error compensators, and then force the active and reactive powers follow the reference signals.
By comparing the rotor reference currents and the measured instantaneous values Ira, Irb and Irc of
the rotor currents, the PWM circuit generates the switching signals T1–T6 to the converter devices.
The desired rotor reference currents Ira_ref, Irb_ref and Irc_ref can be readily calculated using the inverse
dq transformation (a dq/αβ transformation followed by a αβ/abc transformation in the diagram)
with regards to the slip angle. The slip angle represents a relative difference between stator flux and
rotor position.

In the grid side converter (GSC), as shown in Figure 3b, the selection of Idref is for keeping the
capacitor voltage Ecap at its rated value by adjusting the active power. The direct and quadrature
currents Isd and Isq are calculated from the measured instantaneous values of the stator side currents
using the dq transformation. The reference voltage Vsd_ref is controlled by the capacitor voltage error
while Vsq_ref is controlled by the error between the setting and actual value of the stator side reactive
power. The reference voltages Vsa_ref, Vsb_ref and Vsc_ref of the three phase voltages can then be generated
using an inverse dq transformation with regards to the AC grid voltage reference angle phi. In the PWM
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circuit, each of the phase reference voltages is compared with a high-frequency triangle waveform to
generate the firing pulses signals T1s–T6s to the GSC devices.

With the above control schemes, the active and reactive powers of the DFIG tidal current turbine
can be controlled independently. The DFIG is also capable of simultaneous capturing maximum power
of tidal current energy under the fluctuating tidal current speed and improving power quality.Energies 2017, 10, 212 4 of 14 
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3. Network Modelling

The study considers a power system that is connected with DFIG tidal current turbines with
a transmission system for tidal current power delivery. A simplified model in the form of lumped
parameters is shown in Figure 4 [28], where only one phase is drawn. The power sources at the DFIG
side and the grid side are connected via transformers and a transmission line with local loads to carry
power from DG units to the electrical grid. For the tidal current turbines, one of the issues relates to
the transmission system linking between the offshore tidal current farm and the on-land electrical grid.
For small-scale tidal current turbines, a short distance high voltage alternating current (HVAC) system
is normally preferred due to its advantage of low cost, which is the focus of our studies in this paper.
These lines can also represent a certain connection distance between the tidal current farm and the
electrical grid system. It is worth noting that loads shown in Figure 1 can be equivalently considered
as load conditions when configuring the simplified electrical power system.
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The tidal current turbine and power source of the grid system are assumed as ideal three-phase
sources and the transformers have an ideal turn ratio with only leakage impedance being considered.
The transmission line is represented by its lumped impedance by neglecting the capacity of
phase-to-phase and the capacity of phase-to-ground. Nevertheless, the simplified model can still
adequately represent the right AC components and asymmetric DC components of voltages and
currents under the system’s unbalanced fault conditions.

Take phase A as an example. Under normal conditions without any faults, the differential equation
of phase A can be written as below, where the boundary condition iwa = −iga applies, and iwa and iga

are the phase A currents supplied from DFIG and grid sides of the line, respectively,

Ewa − Ega =
Xsw + Xtw + X1 + Xsg + Xtg

2π f
diwa

dt
+ (Rsw + Rtw + R1 + Rsg + Rtg)iwa (1)

where Ewa and Ega represent the phase A source voltages at both sides, respectively. The parameter
f is the power line frequency of the electric power grid. The parameters Xsw and Rsw denote the
impedance of the AC source representing the DFIG, while Xsg and Rsg denote the impedance of the
AC source representing the grid system. The parameters Xtw and Rtw are the leakage impedance of
the tidal current-turbine side transformer while Xtg and Rtg are the leakage impedance of the grid side
transformer. X1 and R1 are the positive sequence impedance of the line.

When a phase-A grounded (AG) fault occurs at location k, as shown in Figure 4, then iwa 6= −iga,
the zero sequence current of DFIG side of the line iw0 = −(iwa + iwb + iwc) 6= 0, and the zero sequence
current of grid side of the line ig0 = −(iga + igb + igc) 6= 0, where iwa, iwb, iwc and iga, igb, igc are
three-phase currents supplied from both ends. Hence, the electrical topology of the system will change
accordingly. The differential equations of phase A can now be described by Equations (2)–(6), where
Vf is the voltage at the fault location and R f represents ground transient resistance; V0w and V0g are the
zero sequence voltage at the neutral connector of the transformers of both sides, respectively; X0 and
R0 are the zero sequence impedance of the line, and fault location k is represented by its percentage
(0–1) of the line:

Ewa + V0w −Vf =
Xsw + Xtw + kX1

2π f
diwa

dt
+ (Rsw + Rtw + kR1)iwa (2)

Ega + V0g −Vf =
Xsg + Xtg + (1− k)X1

2π f
diga

dt
+ (Rsg + Rtg + (1− k)R1)iga (3)

V0w = k(X0 − X1)
diw0

dt
+ k(R0 − R1)iw0 (4)

V0g = (1− k)(X0 − X1)
dig0

dt
+ (1− k)(R0 − R1)ig0 (5)

Vf = R f (iwa + iga) (6)

The currents of the faulty phase will be greater than the rated current of the system, which can be
rearranged as below:

diwa

dt
=

2π f
Xsw + Xtw + kX1

[
Ewa + V0w −Vf − (Rsw + Rtw + kR1)iwa

]
(7)

diga

dt
=

2π f
Xsg + Xtg + (1− k)X1

[
Ega + V0g −Vf − (Rsg + Rtg + (1− k)R1)iga

]
(8)

The differential equations related to phases B and C can be obtained similarly; therefore, the
unknown phase currents of both sides can be resolved. Having obtained the phase currents, bus
voltages at both sides can be computed based on the Equations (9) and (10) by taking phase A as the
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example. By arbitrarily setting the initial load condition and fault situation, the system under normal
and unbalanced fault conditions can be examined:

Vwa = Ewa −
Xsw + Xtw

2π f
diwa

dt
+ (Rsw + Rtw)iwa (9)

Vga = Ega −
Xsg + Xtg

2π f
diga

dt
+ (Rsg + Rtg)iga (10)

The above differential and algebraic equations can be solved using a suitable iterative numerical
algorithm such as a higher order Runge–Kutta or trapezoidal integration method to minimize the
round-off errors in calculation. Although the DG system model shown in Figure 4 is a simplified one
and the Equations (2)–(6) only consider the positive sequence components, undoubtedly, the model
and solutions still can provide insight into the dynamics of the system behaviour under fault conditions
in a very straightforward way [29]. It is worth noting that typical distribution network configurations
and models are much more complex compared to the one shown in Figure 4. For the unsymmetrical
fault conditions, a negative sequence network that omits all positive-sequence generators needs to
be considered under such conditions. For example, for a single-phase-to-ground fault, the negative
sequence network is connected in series with the positive sequence network while, for a phase-to-phase
fault or a phase-to-phase-ground fault, the negative sequence network is connected in parallel with
the positive sequence network. Additionally, the lines have been modelled as lumped longitudinal
impedances whilst, in reality, unbalanced impedances that also consider transverse parameters need
to be taken into account. Equations (2)–(6) also neglect the mutual coupling between the phases
and the presence of transverse parameters. Therefore, simulation tools such as EMTP, PSS/E and
PSCAD/EMTDC can be used for the dynamics analysis of the power system [30,31]. In our study,
we use the power system commercial software platform PSCAD/EMTDC because it is capable of
modelling the dynamics of a complex electrical system in details under normal and fault conditions.

4. Investigation of Effects of Doubly Fed Induction Generator (DFIG) Tidal Current Turbines

4.1. Addition of a DFIG Tidal Current Turbine

Simulations of the original network without DFIG tidal current turbines connected are firstly
performed in order to establish a baseline system performance. The simulations are then turned into
connecting the DFIG at one node and applying a fault component at another node in the system. The
currents and voltages are monitored in order to determine the necessary protection level, and the
power flows in terms of both active and reactive powers are also monitored to compare the system
performance with and without DFIG connected. In the simulations, the system is allowed to reach a
steady state after initial start-up, and a single phase-grounded fault is applied to phase A at 15 s with
fault duration of 0.5 s. Simulation time was set to 20 s, which is sufficient for each case to re-reach
steady state.

Figure 5 shows a simulation with the grid system alone, followed by the addition of a DFIG tidal
current turbine to node 1 and application of an AG fault at node 3 in the system. As can be seen from
the results, the peak value of phase-A current during the fault at node 1 is lower with DFIG than
without DFIG. Thus, the overall fault detection level of the system must be set to below the smaller
value but above the normal operational magnitude of the power system when operating alone, or the
grid engineer must know when the DFIG is in on-line or off-line operation so that the protection level
is modified accordingly [32].
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Figure 5. Phase-A currents at node 1 with and without DFIG connected, where an AG fault is applied
at node 3.

There is no instability problem for active and reactive powers during the observation period,
as shown in Figure 6. Therefore, when connected to node 1, the DFIG tidal current turbine will supply
more active power, thus increasing the power output level of the system. The active power also has
less power fluctuations during the fault. Figure 6 also shows that the reactive power is relatively lower
in a steady state; however, there are significantly increased oscillations in reactive power during the
fault in the case when the DFIG is connected. This is because the DFIG tidal current turbine added in
the system can greatly improve the low voltage ride through (LVRT) capacity by providing less active
power fluctuations and good reactive power compensation during the grid fault period.
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Figure 6. Active and reactive powers at node 1 with and without DFIG connected, where the active
power with DFIG is in the same level as the active power without DFIG.

Next, we apply the AG fault at node 3 and then perform the same simulations with and without
the DFIG connected to node 3 as we previously did at node 1. Figures 7 and 8 show that, with the
DFIG connected to node 3, the phase-A current and the active power are larger in steady state and
the phase current also has a larger current drop during the fault. This may result in a serious problem
if the larger current or active power at node 3, due to the addition of DFIG, exceeds the maximum
interrupting rating of the circuit breaker. Therefore, the circuit breaker must be changed to meet the
requirements. It can also be seen from Figure 8 that, during the fault, the reactive power with DFIG
connected is increasing, which would be helpful for the recovery of the system during the fault.
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Figure 7. Phase-A currents at node 3 with and without DFIG connected, where an AG fault is applied
at node 3.
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Figure 8. Active and reactive powers at node 3 with and without DFIG connected, where an AG fault
is applied at node 3.

Therefore, the addition of a DFIG tidal current turbine to the distribution grid system cannot be
done directly and simply. As we know that the distribution system is normally a radial system, the
different location at which a DG unit like DFIG turbine is connected and where a fault is applied can
lead to totally different results. Consequentially, the protection settings and circuit breakers of the
system may need to vary to accommodate the system configuration requirements.

4.2. Effect of the Rated Power

In this subsection, we discuss the system stability of the grid system under unbalanced voltage
conditions when a tidal current power plant operating at a different level of the rated power is attached.
The tidal current power plant is added to node 1, while the fault is applied at node 3. In this study, the
DFIG is started in speed control mode with the rotational speed of the generator being set to the rated
speed up to 1.1 per unit (pu) speed and is then switched over to torque control after 0.5 s of the initial
transients of the machine, eventually reaching steady-state.

For this simulation, the tidal current power plant is set to generate 3.5 MW and controls its own
terminal voltage. Several levels of power generation have been investigated in order to determine how
low the power can be set to whilst still maintaining the system stability in the operation under different
unbalanced voltage conditions. Normal operation starts from t = 0 s to t = 12 s. Then, an unbalanced
grid fault (AG fault) with a duration of 500 ms is applied. Tidal current speed is assumed to be constant
during the simulation. Initially, the tidal current power plant is assumed to operate at 1 MW or 30% of
its rated output power.
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As shown in Figure 9, when the turbine is operating at 30% of its rated output power, the active
and reactive powers of the system return back to the pre-fault conditions after the fault ends. It can be
seen that there is no instability problem during the observation period. Hence, the power system is
stabilized when a 3.5 MW DFIG tidal current farm is connected at node 1 and operates at 1 MW output
or 30% of its rated output power.
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Figure 9. (a) The active power of the system when the DFIG operates at different levels of rated power;
(b) The reactive power of the system when the DFIG operates at different levels of rated power.

Let us consider what happens if we increase the output power to 2.45 MW or 70% of its rated
output power. As shown in Figure 9, both the active and reactive powers at post-fault condition
settles at a different value from the pre-fault value because of the higher system impedance when
a single phase fault happens. Oscillations in the curves after the clearance of the fault are clearly
evident compared to the pre-fault data. This implies that the system begins to lose its stability after the
fault ends when the output power of DFIG is increased to 2.45 MW or 70% of its rated output power.
Consequentially, 70% rated output power can be considered as a critical point of the system being
studied in this paper. Once the rated power was set to higher than this critical point, the grid system
will lose its stability.

Figure 9 also shows the case when the tidal current farm is operated at 100% rated power of
3.5 MW. The tidal current speed is set to 3.5 m/s, which is higher than the rated tidal current speed,
in order to keep the DFIG on a full rated output power. The value of active power within a pre-fault
period is larger than that during the post-fault period, while the value of reactive power has the
opposite situation. Compared to the 70% case, it can be found that the active power operating at 100%
rated power exhibits oscillations with a higher frequency. On the other hand, reactive power is very
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responsive, implying that more reactive power comes from the full rated power than from the 70%
rated power of the tidal current plant.

With more and more DFIG tidal current turbine generators being integrated into the power system,
the potential occurrence of the oscillatory phenomenon due to the induction generator effect and
torsional interactions is well known as the subsynchronous-resonance (SSR) issues. The SSR problems
can be mitigated with sophisticated controller techniques such as a flexible AC transmission system
(FACTS) device and a thyristor-controlled series capacitor (TCSC) [33,34]. The detailed descriptions of
these techniques are beyond the scope of this paper.

4.3. Effect of the Connection Distance

In this subsection, we perform simulations of the network with a certain connection distance
between the grid source and the DFIG tidal current turbine. Take wind farms, for example, particularly
small-scale ones. The HVAC system is normally preferred for short distance power delivery (less than
50 km) [35]. Therefore, four short distances of 5 km, 10 km, 15 km and 20 km are considered for the
tidal current turbine with rated power of 3.5 MW being analysed in the paper. From the simulation
results, as shown in Figures 10 and 11, we can conclude that when the tidal current turbines are added
in the distribution grid, the closer to the grid source, the larger the active power of the system at node 1
would be. The same result applies to the reactive power. Additionally, the closer to the grid source, the
less the oscillations of both active and reactive powers are evident during the grid fault. Furthermore,
the change of active power with the connection distance seems not apparent during the fault; however,
the shorter the connection distance, the larger the increase in reactive power during the fault.
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Figure 10. The active power of grid system under different connection distance between the grid source
and the DFIG.
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4.4. Effect of the Grid Voltage Dip

Simulation results of the DFIG tidal current turbine under symmetrical and different
unsymmetrical voltage dip conditions are shown in Figure 12. Figure 12a shows that, under a
symmetrical voltage dip situation, the severest problem is the transient overcurrent of Id and Iq, the two
orthogonal components of the rotor current, followed by a large electromagnetic torque Te. In the tidal
current turbine control systems, the Id component is used to regulate power factor or terminal voltage
while the Iq component is used to regulate the torque. This overcurrent problem can be generally
protected by a so-called crowbar protection, which can be activated to short circuit the rotor windings
during the fault and will be kept off until the stator voltage is recovered [36,37].
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Figure 12. (a) Symmetrical voltage dips of 70% rated value; (b) Single-phase unsymmetrical voltage
dips of 70% rated value; and (c) Two-phase unsymmetrical voltage dips of 70% rated value.
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Figure 12b shows that, when an unsymmetrical voltage dip of 70% rated value occurs,
the maximum rotor currents become smaller. Compared to Figure 12b,c with two-phase unsymmetrical
voltage dips of 70% rated value, it can be seen that the case with a two-phase unsymmetrical voltage
dip has larger oscillations in rotor currents. Just like the situation of symmetrical voltage dip, a larger
voltage dip also causes larger ripples in electromagnetic torque Te and dc voltage Ecap during the
voltage sag period, no matter it is a single phase or two-phase unbalanced voltage conditions. It is
worth noting that the amplitude of rotor current oscillations depends on the time instant at which the
voltage dip applies. A new coordinated control strategy has been proposed to improve the oscillatory
responses, where the RSC is controlled to eliminate the torque oscillations while the GSC is designed
to obtain constant active power output and to minimize the oscillations in the DC link voltage [38].

5. Conclusions

In this paper, we have attempted to examine the performance of a distribution grid in terms
of transient stability under different unbalanced grid voltage conditions when DFIG tidal current
turbines are or are not attached. A distribution grid model under the unbalanced voltage conditions
has been built. The effect of the location, the rated power, the connection distance of the DFIG added
in the distribution grid system and the effect of different grid voltage dip conditions on the system
performance have been investigated through the extensive simulations performed by PSCAD/EMTDC.
The results have demonstrated that tidal current turbines added in the distribution grid system would
provide good reactive power compensation under these conditions, which can greatly improve the
LVRT capacity of the system. The results has also supported the conclusion that modern DFIG tidal
current power plants, equipped with power electronics and LVRT capacity, can be interconnected to
the distribution grids even under unbalanced grid voltage situations without reducing stability. In
this paper, the network loads are represented as fixed-power elements whilst, during fault transients,
their dynamic behaviour might play a fundamental role. Future work includes the use of dynamic
load models to understand the entire system dynamics during the faults. A more complex distribution
network will also be examined, where unbalanced impedances that consider transverse parameters
need to be taken into account.
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