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Abstract. Einstein’s General theory of relativity permits spacetime singularities, where null
geodesic congruences focus in the presence of matter, which satisfies an appropriate energy
condition. In this paper, we provide a minimal defocusing condition for null congruences
without assuming any ansatz-dependent background solution. The two important criteria are:
(1) an additional scalar degree of freedom, besides the massless graviton must be introduced
into the spacetime; and (2) an infinite derivative theory of gravity is required in order to avoid
tachyons or ghosts in the graviton propagator. In this regard, our analysis strengthens earlier
arguments for constructing non-singular bouncing cosmologies within an infinite derivative
theory of gravity, without assuming any ansatz to solve the full equations of motion.

ar
X

iv
:1

60
5.

02
08

0v
2 

 [
gr

-q
c]

  2
8 

D
ec

 2
01

6

mailto:a.conroy@lancaster.ac.uk
mailto:alexey@ubi.pt
mailto:a.mazumdar@lancaster.ac.uk


Contents

1 Introduction 1

2 Raychaudhuri’s equation in General Relativity 2

3 Infinite derivative gravity 3

4 Defocusing conditions of Null Congruences for Infinite Derivative Gravity 5

5 Conclusion 7

1 Introduction

The classical theory of General relativity (GR) admits spacetime singularities, see [1, 2] and
[3]. Such a singularity manifests itself, at short distances, as a blackhole and, at small time
scales, as the cosmological Big Bang singularity. In particular, the latter has a detrimental
impact on the construction of an ultraviolet (UV) complete theory of primordial inflation [4].

A major shortcoming of GR is that it may never evade the shadow of the cosmological
singularity problem, unless one violates a relevant energy condition. The appropriate energy
condition depends on the nature of the geodesic congruences involved. For null rays, one
requires a violation of the Null Energy Condition (NEC), i.e. Tµνkµkν ≥ 0, where µ, ν run
from 0, 1, 2, 3 in 4-dimensions, kµ is a null tangent vector, and Tµν is the energy momentum
tensor. For timelike geodesics, one has to violate the Weak Energy Conditions (WEC), i.e.
Tµνξ

µξν ≥ 0, where ξµ is timelike. The famous Hawking-Penrose Singularity Theorems [3]
were derived in the context of null and timelike versions of the Raychaudhuri equation [5] 1

At time scales close to the Planck scale, i.e. MP ∼ 2.4 × 1018 GeV, one would expect
the Einstein-Hilbert action to be modified by higher curvature corrections, i.e. higher deriva-
tive modifications made up of the Ricci scalar, Ricci tensor and the Riemann/Weyl terms.
However, higher derivative theories are beset by classical and quantum instabilities. For in-
stance, quadratic curvature gravity, which is renormalizable, succeeds in improving the UV
behaviour, but at the expense of introducing ghosts in the spin-2 component of the graviton
propagator [8]. The presence of ghosts is not a welcome sign as it renders the vacuum unstable
at both classical and at quantum level.

Recently, the issue of ghosts in the spin-2 component of quadratic curvature gravity has
been addressed in [9], where it was found that one requires an infinite number of covariant
derivatives acting on the curvature to maintain general covariance and avoid the addition of
ghosts at a perturbative level. Although the graviton propagator is modified by these infinite
derivatives, it is still possible to retain the original massless graviton degrees of freedom, if
one requires that no new poles are introduced in either the spin-0 or spin-2 component of the
graviton propagator. This can be achieved if the propagator is modified by an exponent of an

1The definition of a singularity which forms the basis of the Hawking-Penrose theorems concerns geodesic
completeness and it is this notion of a spacetime containing causal (timelike or null) geodesic congruences
which focus, (or indeed defocus) that interests us here. If a spacetime is causally incomplete, then a freely
falling photon passing along this geodesic will cease to exist in a finite ‘time’ (affine parameter). As such, we
can reasonably call this a singular spacetime, see [2], [6], and [7].
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entire function of the d’Alembertian (denoted as � = gµν∇µ∇ν), which contains no roots, by
construction [9–14]. For a further covariant generalisation, see [15].

Typically, such an exponential function in the propagator weakens the classical and
quantum effects of gravity in the UV. For instance, it was found, at the linearised limit,
that there are no blackhole-like singularities in a static spacetime [9], nor a time-dependent
collapse of matter [16]. It was also observed that the gravitational entropy [17], of a static and
axisymmetric metric receives zero contribution from the infinite derivative sector of the action,
when no additional scalar propagating modes are introduced. In this case, the gravitational
entropy is strictly given by the area-law, arising solely from the contribution of the Einstein-
Hilbert action [18]. In the quantum context, the interplay between an exponentially enhanced
vertex operator and an exponentially suppressed graviton propagator ensures that, beyond
1-loop, the theory becomes finite [10, 14, 19]. Furthermore, it was conjectured that the
high energy scattering of gravitons in infinite derivative theories lead to a finite amplitude,
which does not become arbitrarily large for given external momenta [20]. A different and
rather intriguing motivation to investigate infinite derivative theories of gravity arises from
string theory (ST) [21] and string field theory (SFT) models, which appear in the context of
noncommutative geometry & SFT [22], for a review, see [23], and various toy models of SFT
such as p-adic strings [24–27], zeta strings [28], and strings quantized on a random lattice [29–
33]. A key feature of these models is the presence of an infinite series of higher-derivative series
in α′, the inverse of string tension, incorporating non-locality in the form of an exponential
kinetic correction. Similar infinite-derivative modifications have also been argued to arise in
the asymptotic safety approach to quantum gravity [34, 35], see for a review [36].

Note that in GR, even in an asymptotically-flat Minkowski spacetime, if we perturb
matter and curvature while satisfying the NEC, the null congruences will always converge, in
a finite time. The same holds true for timelike geodesics congruences. However, as null rays
more readily converge than their timelike counterparts in a geometrically-flat spacetime, it
is preferable for our aims to analyse the defocusing of null geodesic congruences rather than
timelike. See [7] and [6] for details. The prime question is then: Can null rays “defocus” in
an infinite derivative theory of gravity (IDG), which is also ghost-free?

The aim of this paper is to study the time-dependent singularity problem within the
ghost-free, infinite derivative theory of gravity proposed in Refs. [9, 13], where a non-singular
bouncing solution for an infinite derivative equation of motion was obtained through an
Ansatz-led approach. In this respect our current analysis is quite different from earlier inves-
tigations in the context of IDG theories [13], and [37]. Indeed, our main focus here is to go
beyond a specific Ansatz-dependent background solution, and investigate under what generic
conditions an IDG theory can potentially lead to geodesic completeness, for time-dependent
scenarios.

In Section 2, we discuss the Raychaudhuri equation in GR, before briefly introducing IDG
and its relevant properties, such as dynamical degrees of freedom, see Section 3. In Section
4, we discuss the defocusing of null congruences for ghost-free, infinite derivative theories of
gravity, while comparing this behaviour with a well-known finite, quadratic curvature model
of inflation. In the final section, we conclude our main results.

2 Raychaudhuri’s equation in General Relativity

Let us begin our discussion within GR, where the dynamics of null rays can be understood
in a model independent way by studying the Raychaudhuri Equation (RE) for null geodesic
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congruences, such that kµkµ = 0, where kµ is a four vector tangential to the null geodesic
congruence, the metric signature is mostly positive, i.e. (−,+,+,+), and θ is the expansion
parameter, which is defined by θ = ∇µkµ.

In the simplest case, if we consider the congruence of null rays to be orthogonal to the
hypersurface, then the twist tensors vanish, and we may also neglect the shear tensor, which
is purely spatial, thus making a positive contribution to the r.h.s. of the RE. Thus, we have:

dθ

dλ
+

1

2
θ2 ≤ −Rµνkµkν , (2.1)

where λ is the affine parameter, and Rµν is the Ricci tensor, see [2]. In GR, the Einstein
equation yields,

Gµν = κTµν ,

where κ = 8πG = M−2P , which implies Rµν = κ(Tµν − 1
2gµνT ).

By contracting with the vector fields kµkν yields Rµνkµkν = κTµνk
µkν , and demanding

that the NEC is always satisfied, Tµνkµkν ≥ 0, we obtain the null convergence condition
(NCC):

Rµνk
µkν ≥ 0,

dθ

dλ
+

1

2
θ2 ≤ 0 (2.2)

The above equations suggest that the converging null geodesics cannot start to diverge before
meeting the origin of coordinates, or in other words converging null rays must meet the
spacetime singularity in a finite time within GR, when the NEC is satisfied.

In a geometrically-flat spacetime, the obeyence of the convergence condition (2.2) results
in the formation of a closed trapped surface and subsequently, a singular spacetime. A closed
trapped surface is formed when the ingoing and outgoing expansions of these null rays are
negative, i.e. ∇µkµ < 0. However, in the case of a closed Universe in the k = +1 frame, the
existence of closed trapped surfaces does not necessarily imply a singularity. See, [38] for a
full exposition.

Our aim in this paper is to use the power of the RE to show that IDG can indeed
yield the defocusing of null geodesic congruences, without violating the NEC, nor introducing
ghosts or tachyons, in a geometrically-flat spacetime.

3 Infinite derivative gravity

We shall now analyse how the RE is modified in the framework of quadratic curvature IDG.
First, let us briefly recall the IDG action we are going to investigate, see [9]

S =
1

2

∫
d4x
√
−g
(
M2
PR+RF1(�̄)R+RµνF2(�̄)Rµν +RµνλσF3(�̄)Rµνλσ

)
. (3.1)

Note that �̄ = �/M2 where M < MP is the scale of modification of gravity in the UV.
Current short distance tests of gravity, where there is no departure from Newtonian 1/r fall
of gravity up to 5 × 10−6 m [39], place a rather mild limit on this scale,M ≥ 10−2 eV [15].
The non-local functions are defined by Fi(�̄) ≡

∑∞
n=0 fin(�/M2)n, where the coefficients fin

are fixed by the ghost-free condition, see [13, 40] 2.
2Ref. [41] demonstrates how to recover various limits of action Eq. (3.1), at the level of graviton propagator,

such as Weyl gravity, Gauss-Bonnet Gravity, Massive gravity, and scalar tensor theory. This paper also
classifies which theory can be made ghost free and which cannot.
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In this paper, we will concentrate on linear perturbations around the Minkowski space-
time such that

gµν = ηµν + hµν ,

where ηµν is the Minkowski metric and hµν ≡ δgµν is the metric tensor variation. The full
equations of motion can be found in [40]. At the linearised limit, the linearised equations of
motion can be written in the following concise form

κTµν = a(�̄)R(L)
µν −

1

2
ηµνc(�̄)R(L) − f(�̄)

2
∂µ∂νR

(L) . (3.2)

where � = ηµν∂µ∂ν , L stands for linearised quantities, and

a(�̄) ≡ 1 +M−2P
(
F2(�̄) + 2F3(�̄)

)
�

c(�̄) ≡ 1 +M−2P
(
−4F1(�̄)−F2(�̄) + 2

3F3(�̄)
)
�

f(�̄) ≡M−2P
(
4F1(�̄) + 2F2(�̄) + 4

3F3(�̄)
)
, (3.3)

satisfying the following relations [9]

− a(�̄) + c(�̄) + f(�̄)� = 0 . (3.4)

Taking the trace of the above equation Eq. (3.2) yields:

κT =
1

2

(
a(�̄)− 3c(�̄)

)
R(L). (3.5)

We see here that the trace equation describes the scalar propagating mode, or precisely the
spin-0 component of the graviton propagator 3. This can be seen by studying the graviton
propagator for the action Eq.(3.1), by decomposing it in terms of true dynamical degrees of
freedom around Minkowski spacetime:

Π(−k2) =
P2

k2a(−k2)
+

P0
s

k2 (a(−k2)− 3c(−k2))
, (3.6)

where we have suppressed the spacetime indices for clarity. To ensure freedom from ghosts,
both a and cmust be exponents of entire functions. In particular, amust not contain any roots
in order to avoid the Weyl ghost [41], while c may contain at most one root, which would yield
a scalar tensor theory of gravity. The addition of further poles to the function c will necessarily
be ghost-like or tachyonic, see [13], for further details. Moreover, the GR propagator must be
recovered in the infrared limit as k → 0, with a(−k2) → 1 and c(−k2) → 1. For the choice
a = c, we have

Π(−k2) =
1

a(−k2)

(
P2

k2
− P

0
s

2k2

)
. (3.7)

which simply modulates the physical graviton propagator by an overall factor of ∼ 1/a(−k2).

3For detailed computation of finding the spin projection operators and the graviton propagator for an IDG,
see [9, 41].
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4 Defocusing conditions of Null Congruences for Infinite Derivative Grav-
ity

Note that our action Eq.(3.1) will modify the RE, since κTµν is modified, see Eq.(3.2), and
it is more insightful to first study the linearised limit. By contracting the energy momentum
tensor with the congruences of null geodesics, kµ, we obtain

R(L)
µν k

µkν =
1

a(�̄)

[
κTµνk

µkν +
1

2
kµkνf(�̄)∂µ∂νR

(L)

]
, (4.1)

where the NCC requires R(L)
µν kµkν ≥ 0.

Now let us study the simplest case, when the curvature is solely dependent on the cosmic
time t, so that the D’Alembertian operator is given simply by � = −∂2t . The contribution of
gravity to the RE is then:

R(L)
µν k

µkν =
1

a(�̄)

[
κTµνk

µkν − (k0)2

2
f(�̄)�R(L)

]
. (4.2)

To preserve the NEC, we must have Tµνkµkν ≥ 0, whereas for the null rays to diverge, we
require Rµνkµkν < 0. Furthermore, from the propagator Eq.(4.12), we require a(�̄) acting
upon the curvature to be positive so as to avoid negative residues in the spin-2 component -
a phenomenon known as the Weyl ghost, i.e. a(�̄)R(L) > 0.

Taking all this into account, we obtain the minimal defocusing condition for an IDG theory,
which is independent of a background solution, and would yield a geodesically past-complete
trajectory for a spatially-flat, homogeneous and isotropic background:

f(�̄)�

a(�̄)
R(L) > 0⇒ a(�̄)− c(�̄)

a(�̄)
R(L) > 0, (4.3)

with Tµνkµkν = 0. From this defocusing condition, we may draw 3 important conclusions:

1. a(�̄) = c(�̄): From Eq.(4.1), defocusing of null geodesics can happen only when a(�̄)
acting upon curvature is negative, which comes at the expense of the Weyl ghost [41].

2. a(�̄) 6= c(�̄): Since the curvature is always positive, we need a departure from the
purely massless mode of the graviton propagator in Eq.(3.7). This condition tells us
that in order for the null rays to defocus - a minimum requirement of a singularity-
free theory of gravity - one requires an additional root in the spin-0 component of the
graviton propagator. As a(�̄) does not introduce any new poles, the spin-2 component
of the graviton propagator remains massless. As such, one additional scalar degree of
freedom must propagate in the spacetime besides the massless graviton, if we wish to
satisfy the defocusing condition.

3. By inspection of Eq. (3.3), it is possible to “switch off” any one of the form factors
F1,F2 or F3 that make up the function a(�̄) and c(�̄), without altering the unitarity
of the theory, see [42, 43]. The simplest choice is actually F2 = 0. In a conformally
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flat background such as in Minkowski space, de Sitter or indeed Freedman-Robertson-
Walker metric, the Weyl tensor vanishes in the background. Therefore, in this case, the
action non-linear Eq.(3.1) reduces to the following form:

S =
1

2

∫
d4x
√
−g
[
M2
PR+RF1(�̄)R

]
. (4.4)

Indeed, it is reassuring to note that from the most general covariant IDG action, Eq.(3.1),
we can deduce the simplest action of gravity which has the potential to resolve the cosmological
singularity problem, as given by Eq. (4.4). Such a reduced action has been studied in [13],
where the authors found an exact non-singular bouncing solution for a homogeneous and
istrotropic background for a spatially-flat geometry. However, one must emphasise that the
solution was indeed found based on a given Ansatz, which was invoked in order to solve the
full non-linear equations of motion 4. However, in the present work, our conclusion is deduced
purely from geometric considerations of geodesics of null rays by analysing the RE.

Now, the relevant ghost-free condition of the theory can be derived from the trace equa-
tion Eq.(3.5), where the functions a(�̄) and c(�̄) are recast in terms of another exponent of
an entire function ã(�̄), containing no roots, by

c(�̄) =
a(�̄)

3

[
1 + 2

(
1− αM−2P �

)
ã(�̄)

]
. (4.5)

Here, α is a constant, which a Taylor expansion of the trace equation Eq.(3.5), in conjunction
with Eq.(3.3), reveals to be

α = 6f10 + 2f20 −
M2
P

M2
. (4.6)

The new graviton propagator can now be deduced by substituting Eq.(4.5) into Eq.(3.6), and
subsequently decomposing the scalar propagating mode into partial fractions.

Π(−k2) =
1

a(−k2)

[
P2

k2
− 1

2ã(−k2)

(
P0
s

k2
− P0

s

k2 +m2

)]
, (4.7)

where we have defined the spin-0 particle with a mass,

m2 ≡
M2
P

α
> 0 , (4.8)

which must be positive to ensure that the mass is non-tachyonic, and non-zero to retain the
essential new pole, as discussed previously. Armed with this, we are now in a position to de-
scribe the suitable defocusing condition which precludes the existence of ghosts. Substitution
of Eq.(4.5) into Eq.(4.3) leads to the linear condition;

(1−�/m2)ã(�̄)R(L) < R(L). (4.9)

Before we conclude, we briefly extend our results to inhomogenous spacetimes. We may
expand the general defocusing condition Eq.(4.1), to include solutions, with spatial as well as
temporal dependencies. Without loss of generality, we consider the perturbations along the

4Such an Ansatz, taking the form �R = c1R + c2, where c1,2 are constants and R is the Ricci-scalar,
was further verified in [44, 45]. The sub-and super Hubble perturbations were also studied around the given
bounce solution, and no instabilities were found [46].
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x-direction, where r =
√
x2 + y2 + z2. As before, we require Tµνkµkν ≥ 0 so as not to violate

the NEC. We then read off the minimum requirement for the associated null rays to defocus

f(�̄)

a(�̄)

(
∂2t + ∂2r

)
R(L) < 0, (4.10)

where ∂2r = ∂i∂
i is the Laplace operator.

As an additional note, a closer look at the above action Eq.(4.4) suggests that if we were
to considerM→∞, the action would reduce to that of Starobinsky’s model of inflation [47]:

SR2 =
1

2

∫
d4x
(
M2
PR+ f10R

2
)
. (4.11)

Indeed, a curious question to ask is, could Starobinsky’s action avoid the cosmological singu-
larity? At the limitM→∞, the propagator Eq.(4.7) can be expressed as

ΠR2 = ΠGR +
1

2

P0
s

k2 +m2
, (4.12)

where m is given by Eq. (4.8), with α = 6f10 ≥ 0, and to avoid tachyonic mass, m2 > 0.
However, the fundamental difference can be seen by comparing the propagator for R2-gravity
with an IDG propagator, see Eq.(4.7). In the local limit, a = ã → 1. Furthermore, as we
are making comparisons with the propagator in momentum space, the D’Alembertian takes
the form � → −k2. Taking these limits on the defocusing condition Eq. (4.9) reveals the
analogous condition for the Starobinsky model

(k2/m2)R(L) < 0. (4.13)

In this scenario, in order to avoid convergence, we have two options: either 1.) the spin-0
particle has imaginary mass, i.e. m2 < 0, or 2.) the curvature is negative.

1. A particle/field with imaginary mass is, by definition, tachyonic. As m2 = M2
P /6f10 ,

where f10 is the coefficient attached to the R2 term in the action Eq. (4.11), this
corresponds to the S ∼ R−R2 form of the Starobinsky model.

2. If one dictates that this coefficient is necessarily positive, thus avoiding tachyons, the
defocusing condition may be satisfied if one allows for negative curvature. However,
negative curvature would contradict the requirement of accelerated expansion of the
Universe, which is vital to realise primordial inflation. This corresponds to the S ∼
R+R2 form of the Starobinsky model.

As such, the Starobinsky model cannot pair inflation with resolving the Big Bang Singularity.

5 Conclusion

From very generic considerations of a covariant, higher derivative theory of gravity, one can
conclude that null congruences can be made complete, or can be defocused, provided two es-
sential criteria are satisfied at the microscopic level, i.e. in terms of the graviton propagator:
1) The graviton propagator must contain a scalar propagating mode which contains one addi-
tional root, besides the massless spin-2, i.e. two helicity states; and 2) the infinite derivative
theory of gravity must be, at least, ghost and tachyon free. This conclusion verifies earlier
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analyses, which were dependent on an Ansatz-led, time-dependent solution to the equations
of motion for an IDG theory, which described a non-singular cosmology in an homogeneous,
isotropic and geometrically-flat framework.

This entails that an infinite covariant derivative theory of gravity which can avoid ghosts
or tachyons in the graviton propagator, can yield a non-singular bouncing cosmology, and a
possible UV completion of original Starobinsky inflation [48–50]. In future, we shall be able
to generalise our current discussion to de Sitter backgrounds, based on our recent analysis of
propagator in de Sitter spacetimes [42, 43]. We can also attempt to analyse the defocusing
of null congruences for a generic inhomogeneous and anisotropic backgrounds, however, one
requires to first analyse the true dynamical propagating degrees of freedom in such back-
grounds, and the graviton propagator. Finding the latter would be a subject of discussion by
itself, and we leave these discussions for future publication.
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