Howo | mprove t
Mobi |l e App

An Analysis of Expert Knowledge

LLancasterk

University ©*°
Charles Weir

Security Lancaster
School of Computing and Communications

Lancaster University, UK

A thesissubmitted for the degree of
Masters by Research

February 2017

he S

Devel

With thanks to mwife Julia

The best thing for being sad... is to learn something. That is the only thing that never

fails. You may grow old and trembling in your anatomies, you may lie awake at night
listening to the disorder of your veins, you may miss yourlowg; you may see the
world about you devastated by evil lunatics, or know your honour trampled in the
sewers of baser minds. There is only one thing for ititierlearn. Learn why the

world wags and what wags it. That is the only thing which the oandcever

exhaust, never alienate, never be tortured by, never fear or distrust, and never dream
of regretting. Learning is the thing for you. Look at what a lot of things there are to
learnd pure science, the only purity there is. You can learn astronomyifetime,

natural history in three, literature in six. And then, after you have exhausted a million
lifetimes in biology and medicine and theocriticism and geography and history and
economics why, you can start to make a cartwheel out of the appatgwood, or
spend fifty years learning to begin to learn to beat your adversary at fencing. After

that you can start again on mathematics, until it is time to learn to plough.

White, T. H. (1939). The Once and Future King.

Decl arati on

This thesis is ®tirely my own work, and has not been sutted in any form for the

award of a higher degree elsewhdgthics approval was granted for this research
according to university guidelineSome of the ideas in this thesis were the product of

discussion with m supervisors Professor Awais Rashid and Professor James Noble.

This thesis includes materials from the followpegerreviewedpublishedvork written

by myself:

6 Early Report: How to Improve Programmers' Expertis

ngineering Secure are an

?\ Z Bunen\ﬁpr}e nn‘

App Security?

Weir, C., Rashid, A. &oble, J. 8/04/2018roceedings
of the 1st International Workshop on Innovatioms
Mobile Privacy and Security: &located with ESSo:
2016 Aspinall, D., Cavallaro, L., Seghir, M. «
Volkamer, M. (eds.). London, UK: CEUR/S.org, Vol.
1575, p. 4%60

How to Improve the Securityskills of Mobile App
DevelopersComparing and Contrasting Expert View

Weir, C., Rashid, A. & Noble, J. 7/06/20P8oceedings
of the 2016 ACM Workshop on Security Informat
Workers Biddle, R., Chu, B., Lipford, H. & Murphill
E. (eds.). New York: ACM

Reaching the Masse#®s New Subdiscipline of Apg

Programmer Education

Weir, C., Rashid, A. & Noble, ¥isions and Reflection:
Foundations of Software Engineering Conference 2!
13/11/2016ACM

Charles Weir

Summar y

Much of theworld relies heavily on apps$ncreasingly those apps handle sensitive
information: controlling our financial transactions, enabling our personal communication
and holding intimate details of olives. So the security of those apps is becoming
increasingly vital. Yet research shows that those apps contain frequent security and
privacy problems; and that almost all of these issues could have been avoided had the
developers had sufficient motivatiosupport and knowledge. This lack of developer

knowledge and support is widely perceived as a major threat.

We therefore investigated the skills, approach and motivation required for developers. We
conducted a Constructivist Grounded Theory study, inugl¥aceto-face interviews

with a dozen experts whose cumulative experience totalled over 100 years of secure app
development, to develop theory on secure development techniques. The study identified
that the subdiscipline of app development securityilisastan early stage, and found
surprising discrepancies bet ween current
recommendations. In particular it found that a secure development process tends not to
appeal to app developers; and that the approach difideg common types of security

problems is too limited to give an effective security solution.

Il nstead we identified a set of successful
6di al ecticd means | ear ni ng bgyewihiagamgeofoni ng
counterparties to achieve app security in an effective and economical way. The security

increase comes from continued dialog, not passive learning.

The novel contribution of our work is to provide:

1 A grounded theory of secure app deyghent that challenges conventional
processes and checklists, and

1 A shift in perspective from process to dialectic.

Only by working to develoghe DialecticalSecurity skillsof app developers shall we

begin to see the kinds of secure apps we need to ¢amin@ and privacynvasions

Acknowl edgement s

Thank you first to my supervisors, Awais Rashid and James Noble, especially for their
support for writing conference papers, which have led not only to interesting itiesis in

own right but also to suggestions and to ideas from other academics.

Thank you to all those who generously gave time to be interviewed; their wisdom and

insight were essential to this work.

Thank you to my wife, Julia, for her support both academit @ractical, and for

originally suggesting this ongear research project.

Thank you to Kayla Friedman and Malcolm Morgan for the Microsoft Word thesis
template used as a basis for the document, and to Gerald Kotonya and Debbie Stubbs for

help changingtiand distributing it for Lancaster use.

Thank you to my fellow posgraduate students at Security Lancaster for much help and
support, and especially ®yed Asad Ali Naqgvifor his help with the intricacies of
Grounded Theory.

Content s

1 INTRODUCTION ..iiiiiiiiiiiiiieieee et a s s s s mnne s s s e nnne s nennesannes 1
1.1 State of the Art and ItS LIMItationNS...........coeiiiieiie i eeeeeeeeeeeeen 2
1.2 TheSiS ObJECHVES.....cciiiiii e eeeieeeeeeeeee e
1.3 Novel CoNtriBULIONS.eiiiee e 5
1.4 Conventions iN thisS ThESIS.......ooooiiiiii e 6
1.5 THESIS OVEIVIEWci i e ettt ettt s a e e e e e e e e e e ean 6

2 RESEARCH PROGCESS.......oiiiiiiiiiiiieeee ettt mmma e e 8
P2 I [a1 (0T (U Tod 1 o] o PP PP PP PP PP PRSP 8
2.2 Research PhiloSOPNY........ooiiiiiiiiee e 8
2.3 Introduction to Grounded ThEOLY...........cvvvviiiiiiiir e 9
2.4 A Brief Overview of Grounded TheQry.........cccuuuviriiiiiieeeiiiiiiiieeieeeeeee e 9
2.5 Grounded Theory Stay-Step........ccoeeeeiiiiiiieeeeee e 10
2.6 The Use OLItErature SUIVEYS.......cuuiiiiiiiieeeee e 13
2.7 Incorporating Appreciative INQUILY............evuuueiiiie i e e e e eeeeee e 13
2.8 RESEAICH DESION....ceiiiiiiiiiiiie e 15
2.9 ADOUL the AULNOL........oiiiiiiiiiiiiii et 17
2.10 Introduction to the INTErVIEWEES...........eevvvuiriiiiieeeeiiire e e e e eeeees 18
2.11 Introduction to the Organisations.............cccovvvvviieeee e e e 20
P A N = [1 (=T VT 21
2.13 Analysis of the INtErVIEWS...........ccooiiiiiiiiiieeee e 22

3 EXISTING RESEARCH ON APP PROGRAMMERS AND SECURITY 23
3.1 TWO Types Of Literature............oooviiiiiiiiiiieceee e 23
3.2 Focus of Existing ResearCh.............cccciiiiiimmenii e 24
3.3 Programmer MOtIVAtIQDL...............uvuuueeiiceeeeeeeeiies e e 24
3.4 How DO Programmers LEAIN2..........uuuiiiiieie e eeeeriiee e aeeea e 25
3.5 What Do Programmers Need to Learn?.............ccoeeeeevieeeiiiieee e, 28

4 LEARNING RESOURCES FOR PROGRAMMERScoooiiiiiiiiiiiieeene 30
72t I {1 0 T 3 Tox 1 o 1 30
4.2 SECUILY PatteINS......vviiiiiiiie e eeees e e e e e e e e e e e e e e e eeeaannees 31
4.3 The Practi.t..a.n.e.r.s.a..Ma.v.e.me.n.t........ 33
4.4 Black Hat Literature...........uuuuiiiiiieeiiiieeeiiiiiiiiiieeeeeeeeeeeeeseeeseeeeeeeeeaeaeeeaeeeens 33
4.5 What Books D0 Programmers USE2...........uuueeiiiiieiieeeiiiiiiieeeieeeeeeeeeeeeeea 34
4.6 WebBased INnformation SOUICES........couviiiiiiiiiiiiicceeeeee e 35

5 MOTIVATION AND APP ROACHES TO APP SECURITYcooeeeviiiiiiiii, 38
5.1 Why Is Motivation IMportant2........ccccceeeeiiiiiiiiccce e 38
5.2 What Motivates Our INtervIEWEES2........ccooeeeiiiiiiiiieeee e 39
5.3 Reasons fOr LEAIMING.......ccccuuuiiiiiiiiieieeeiiiibitiee e e e s eeere e e e e e e e e e e e e e 41

5.3.1 Expertsoé Reas.ons..f.or..lLear.ndlng
5.3.2 Expertsodo Reasans..f.or..Cont.i.4ued Le

5.4 Motivating Programmers t0 Learn...........couvuuuiiiieiieeee e 43
5.4.1 Enthusiasm OF WOITY2.......cooiiiiiiiieeee e eeeeeen e 44
5.4.2 Knowledge or TagBaSEA?2......coieiiiiiiiiiieeiiiiimcmeeic et eeevmmme e 44

5.5 Approach to Teamwork on SECULILY.............ccevvvvvvvvimmmrereeeeerriiiiiinnnneee e 45

5.5.1 Teamwork versus Individual RIQOL........ccoouviiiiiiiiiieeciiieeeeeeeeeeeeee, 46
5.5.2 Changing Behaviournnfluencing versus Directing.............................46
5.6 Approach to Implementing SECUNILY..........cccvvvveiiiiiiiicniiiieeee A7
5.6.1 Checklists or Whole System SecCurity?.........cccceceveivvieemvvvvvnnninnnnnn 47
5.6.2 Concentrate on Attacker or Stakeholder?............ccccvviiieeeiiiiiinnnee, 48
5.7 Summary and Implications.............oooviiiiiiiiieeee e 49
6 INTRODUCTION TO DIAL ECTICAL SECURITY .oiiiiiiiiiiiiiiiieeen 51
6.1 INtroducCing DIAIECTHIC.uuueiiii e eeeeee e eeeeeeeeee e 51
6.2 Documenting GOOd PraCtiCe.........cuiiiiiiiiiiiiiii e 53
6.3 Types of Programmer DISCUSSE..........uuuiiiiiiiieiceeeiiiie e aeee s 54
6.3.1 JANE SONO.....euiieiiiiiiie e ———— 54
6.3.2 ROD YOUNQCOIPOIALe......uuueiieiii i e e e e e erne e e e e e e e e 55
6.3.3 JO SOCIAINEIWOIK.....coveeeeieeiii s rrrn e e e e e e e 56
6.4 The Techniques of Dialectical SeCurity...........cccceeeeeiiiieeeiiiiiee e, 58
7 TECHNIQUES OF DIAL ECTICAL SECURITY ..ottt 60
7.1 Technique 1: Brainstorming the Enemy...............ovviiiieeciiiiiiiinniiiiieeeen. 60
7. 1.1 EXAMPIE. ..o anee 60
7. 1.2 EXPIOTALION. ...cuiiiiiiiiiiiiiiie et 61
4 T S Yo |11 4o o P TTPURPPRR 62
A8 I 1= o 1 11 Lo o R 63
7.2 Technique 2: Negotiated SECUMLY.............uuuuuiiiiicceeeiiiiiee e e e e eeenans 65
T.2. 1 EXAMPIE...coiiiiiiiiiiiie e 65
7.2.2 EXPIOration.........covuuuiiiiiiiiii e et s e e e ee e veees e e e e e e e e e e eeeeeeeennnnnnn) 66
7.2.3 SOIULION. ... eee s e e e e e e e e e e e e e anenn s 66
A B B Yo U 11 (o] o PP 68
7.3 Technige 3: CrossTeam Security DISCUSSION............cooeeiiiiiivimnnn i 72
7.3 1 EXAMPIE. ..o e anen 72
7.3.2 EXPIOTALION. ...cuiiiiiiiiiiiiiiee e 73
7.3.3 SOIULION. ... 73
7.4 Techniqué: Security Challenge...........ooooiiiiiiiiee e 74
T4 EXAMPIE. ..o e aaee 75
T.4.2 EXPIOTALION.uiiiiiiiiiiiii e 75

T 4.3 SOIULION. ...t eeeneees 76
A I 1= o1 1 L. | 78
7.5 Technique 5: Automated Challenge............cccoeeeiiiiecciiiiicieeee e 79
T.5. 1 EXAMPIE...coiiiiiiiiiiie e 79
7.5.2 EXPIOratioN........covviiiiiiiiii e eeeen e e e e e e e e 80
48 0 30T] 1o o P 80
7.5.4 DISCUSSION.ciiiiiiiiiiieiiiiiiiteeme ettt st e e e e e e e e e e e e ean 82
7.6 Technique 6: Responsive Development..............uueeeeeieemiiviiriiiieeeeeeeeeen 84
7.6. 1 EXAMPIE. ..o 84
7.6.2 EXPIOTAtION....cuiiiiiiiiiiiiii e 85
7.6.3 SOIULION. ...t e e e e enee s 87
A I 1= o1 1 11 o] o R 89

8 CONCLUSION AND FUTURE WORKccoiiiiiiicicteees s 92

8.1 Summary of DialectiCal SECUIILY............uuuiiiiiiei i cceeeeee e eeee 92

8.2 Discussion of DialectiCal SECUNMtY..........cuuviiiiiiiiiiieeeeeeee e, 93
8.2.1 Relationship to EXiSting WOIKcooiiiiiiiiii e e 93
8.2.2 From Processes to Dialectic Cultures...............uvveiiiiccceeeeviviinnnnnnnn. 95
8.2.3 Patterns of a Different Kind............cccoviiiiiiieeeiiiee 95

8.3 Experience of Grounded TheQIY.........ceviiiiiiiiiiiieeniiiieeeeeeee e 96

8.4 ReViISItiNg ODJECHVES.........cvveiiiiiii e errer e e e e e 96

8.5 ResearcNalidity and Verifiabilitycccuuiimmiiiiiiieeeeee e 97
8.5.1 Verifiability..........ouuuuriiiiiie e 98

8.6 Proposals for Future Wark...........ccooooiiiiiiiiccc e 98

8.7 Researching Dialectical Security TeChNEJUE............vvveiiiiiiiiceeiiiiieen, 99

8.8 Researching Teaching INterventions...........cccoooveiiiiieeciieeee s 99
8.8.1 A Different APProach...............uuuuuuiiiiceseeiiicrer e erenr 99
8.8.2 Games That TeACK...........uuuuiiiiei e 100
8.8.3 StOrY TelliNG.....cccieiiieieiee e e e e e e e e e 100
8.8.4 Adapting Business as Usual Approaches...............ccccccoeeeeeiiiiiinne 101
8.8.5 Research AgendaL...........ooooiiiiiiiiiieee e 101
8.8.6Evaluating Techniques..............oooiiiiiiemen e 102

8.9 CONCIUSION......cciiiii it ener bbb e e e e e e e e e e e e 103

REFERENGCES..... ..ot ieee ettt e e e e e e e e e e e e e e e e e s ammmnaeeas 104
APPENDICES. ...ttt eees bbbttt r e e e e e e e e et e 115

Li st of Tabl es

Table 1: The steps in Grounded ThEQAIY........cooeiiiiiiiieeee e 11
Table 2: Principles of Appreciative INQUITY............ooevvvviiiiiire e 15
Table 3: The experts INtErVIEWEM...........uuuiiiiie e eeeer e 16
Table 4: The organisations represented............cccoocuuvimrmrneeesseiiiieeeire e eeeeeees 20
Table 5: Amazon rankings for selected books at JR@iG...............oooevvverrrnnes 34
Table 6: Summary of Dialectical Security Techniques..............ccccvciiceeeveeinnnns 93

Li st of Figures

Figure 1: Grounded Theory PrOCESS......ciiiiiii e eeeeeerene e 11
Figure 2: AppPreciative INQUILY.......ccooieeeee e eeeieeee e mmme e eeeeeannnes 14
Figure 3: An introduction to the INterviEeWEEeS..............evvveiiiiiccceeeiviiiiie e 19
Figure 4: Interview SCNeAULE............uiiiieii e 21
Figure 5: Motivation forces on a programmer.............cooooieiieemeeeeeeeeecieeeee 39
Figure 6: Reasons for original learning................oouvvviiicciiireeeeeice e 41
Figure 7: Motivation for continued learning............ccceevvvvvvieeeeeeeveeeeeeviiniinnnn . 43
Figure 8: Recommendations how to motivate app programmelts....................45
Figure 9: Expectation of team interaction.............ccccoovviiiccceeee e 47
Figure 10: Preferred approach to app SECUItY...........vvuueeiiiicreeireriieee e 49
Figure 11: Techniques as dialectic interation.............ccoovvviviieeeni e, 59

10

Li st of AbbAevioatmens
ACM Association for Computing Machinery
API........... Application Programming Interface

BCS.......... British Computer Society

CA.....cc.... Certification Authority
CCS......... Conference on Computer and Communications Security
CHI.......... Computer Human Interaction

CISO........Chief Information Security Officer

CMM! Capability Maturity Model

CSCW......Conference on Comput&upported Cooperative Work
DARPA.....US DefenséAdvanced Research Projects Agency

EMV Eurocard, MasterCard and Visa

ENISAEuropean Union Agency for Network and Information Security
ESEC.......] European Software Engineering Conference

ESSoS.....International Symposium on Engineering Secure Software and Systems

FIPS......... Federal Information Processing Standards
FSE.......... Foundations of Software Engineering Conference
() I Grounded Theory

HCC......... HumanCentric Computing
HCI Human Computer Interaction
HIDS........ Hostbased Intrusion Detection System

HTTPS..... Hypettext Transfer Protocol over SSL

ICSE........ International Conference on Software Engineering
ID............. ldentifier

IDE Interactive Development Environment

IEC........... International Electrotechnical Commission

11

arl

IEEE........ Institute of Electrical and Electronics Engineers

iIoS........... iPhone OS

| = Intellectual Property

ISO........... International Standardization Organization
ISP........... Internet Service Provider

IT (i Information Technology

JEE.......... Java Enterprise Edition

LLVM Low Level Virtual Machine

MITM Man In The Middle

MOOC.....Massively Open Online Course

MSDN....... Microsoft Developer Network

NFC......... NearField Communication

OID.......... Object Identifier

OOD.........Object Oriented Design

OS...ccvve Operating System

OSSEC.....Open Source HIDS SECurity (an opsource tool)
OWASP....Open Web Application Security Project

PDF.......... Portable Document Format

PIN........... Personal Identification Number

SANS....... SysAdmin, Audit, Network, and Security (an institute)
SIGSAC....Special Interest Group on Security, Audit & Control

SIGSOFT..Special Interest Group on Software

SPI........... Software Process Improvement
SQL......... Structured Query Language (for databases)
SSL.......... Secure Sockets yar

TED......... Technology, Entertainment and Design (#poofit organisation)

UML] Unified Modelling Language (for software design)
WOOT.....USENIX Workshop @ Offensive Technologies

XML Extensible Markup Language

13

1l ntroducti1 on

The past ten years has seen a massive growth in the creation and usage of mobile phone
and tablet apps. We use apps to communicate, apps to plan, apps to manage our finances,
apps to do our shopping, and apps to remember all our security informatioasiimgiye

those apps are handling sensitive information about us: controlling our financial
transactions, enabling our personal communication and social networking and holding the

intimate details of our lives. So the security of those apps is becomingsimayky vital.

Creating our apps are more than 2.9 million app developers, of whom only some 25% are
professionals developing apps for companj&86]. In these apps, clotthsed
connectivity and social networking functionality are making security and privacy issues
fundanentally important. So security expertisand hence effective security practices

in those developing such apps is vital.

Yet there is considerable evidence that such expertise is lacking. Analysis of the top five
payment apps by Bluebd8], a security slotion provider, found significant security
failures in each; analysis of a range of Android apps by Enck [@Slfound privacy
problems in most of them. Both analyses highlighted that it was the choices that the app
programmers had made that were causing the problems; given the same envirathment an

cloud services they could have chosen probiiera implementations.

Indeed a recent IBMriven survey of opinions about app security in American
companies[84] revealed that more than 70% percent believed that the developer

inexperience was a major threat to their business.

Thusthesecuritp f users and data depends vitally
Therefore, it is important to improve the effectiveness of developers at producing secure
apps.We can choose fronthree possible researclquestionsto address thisall

worthwhile:

(1) Wha kinds of security errors do programmers make?
(2) How do we improvethe systems and compilers tisafpport the developers in
their work; and

(3) How can we improve the security skills of #ngpdevelopershemselve®

There has been a good deal of work on fire question such as the previously
mentioned work by Enck and Bluebox, or work by Xie efldl2] exploring the reasons

why programmers make security errors. Various proje¢tsn c |l udi ng Xi e et
enhancementfl11], compiler improvements andi b Fuz zer 6s [66]dst i ng
address the second question. Taking the third question, however, there is little
understanding how and why app programmers learn security and what approaches are

likely to work best.

This workexamines that third question. In the remainder of this chapter we shall explore
briefly the stateof-the-art, derive research questions and briefly discuss the approach
used, highlight novel aspects of the work and its results, and finally outline thedema

of the thesis.

1.1St at e of t he Art and | ts Li mi

The study of app programmer education and empowerment involves research on

1. how programmers actually learn,
2. how they can be helped to learn, and

3. what they should learn.

Taking each of these agjie of research, there is a small amount of relevant work on how
app developers learn security. Balebako ¢18].surveyed and interviewed over 200 app
developers, and concluded most approached security issues using web search, or by
consulting peers. A survey by Acar et al. concluded the same; and they also determined
experimenthy the surprising result that programmers using digital books achieved better

security than those using web sedizh Yskout et al[116] tested experimentally the
effect of using security patterns in server design; the results suggested a benefit but were

statistically inconclusive.

Considering how programmers can be helped to learn, twegisojXie et alf111] and

Nguyen et al[77], have both developed prototype ID&sed tools to teach programmers

by detecting possible security flaws in dxoid developments. One might expect,
however, that the most effective approach would be a prescriptive set of instructions to
programmers what to do, a 6Secure Develop
Microsoft[69] and others. However Conradi and DyP@] identified that programmers

have difficulty with, and resist leamgy from, formal written routines. This conforms to

the authordés own experience; he has neve
voluntarily adopting a process of that kind. That suggests that app developers need to find

a more lightweight, less prescripgi approach.

Considering what programmers need to learn, there is a good deal of general knowledge
available on software security, such as books by Anderson, by Pfleeger and by Schneier
[7,82,93] though these work at a level that is rarely helpful for app developers.
Knowledge useful to developers derives from a variety of sources. There is the security
patterns movemeiif1], which showed promise but has not been widely addftes];

there are books written by software security practitioners[e@8]), which tend to be

helpful but are rarely adopted by app programrgrgssibly for the reasons idengifl

by Conradi and Dyba above. Then there ar
Hac k er 0 s [3bhdestiibmgpksbible attacks and sometimes suitable mitigations
for programmers to put against them. These seem to sell well, but work only at a
technical level; they do not addréle kind of security or privacy issues that derive from

the app domain rather than the technicalities of app programming.

Lastly there are web questi@amdanswer sites and operating system specific websites
and books on app security, which are consgutig developers but suffer from the same

problemi as well as, in the case of the questamatanswer sites, doubtful accurdey.

Consistent in all this literature, whether the patterns books, the security practitioners, the
black hat literature or weltes, is an emphasis on artefacts; for them processes are ways

to deliver those artefacts. Thus all talk in terms of documents (assessments, architectures,

plans) and aspects of system design. Each source leaves the development team to make
their own deaions how to achieve those artefacts; there has been little research into how
the teams might do this. Moreover whil st
Anderson[7] are excellent at driving a holistic, rather than purely technical, view of
software security, they rarely consider the team interactions needed to achieve the results
they need.

Chapter3 explores the literature on programmer learning in more detail; chépter

discusses learning resources available to programmers.

1.2T hesiec tObyes

Our research model assumes a-swdtivated development team of one or more
developers who are empowered to make their own decisions on development process,
tools and philosophy. In our experience this model reflects common practice in all but the
most disciplined corporate and organisational cultures. The impact of making their own
decisions is important; it means that techniques which are successful but unattractive or

demotivating for developers are unlikely to be of value, since they will naddeted.

We are also interested only in individuals and teams working on software that does have
security and privacy implications. Clearly a team creating a stbome game with no
external communication will not need to worry about security; so weotlmeed to
convert the entire developer world into security fanatics. However as the research above
highlights, many more apps have seclirignd especially privacly implications than
developers may be aware of, and there is a need to consider howuagreadevelopers

to address these.
The research question of this thesis is therefore:

RQ1 What techniques and ideas will appeal to development teams and lead to them

developing more secure app software?

Our purpose in the research was to generate knowddutge good ways to develop apps
securely. We started the research with no preconceptions as to whether we were looking
for a single solution or diverse suite of solutions. Our research approach was driven by

two perceptions:

We had found few resources indting how to tackle app development security.
Existing literature tended to be negative in approach, listing things the developer must
not do; this contrasts with the kinds of books preferred by developers which tend to

be positive in outlook.

Since wehad no initial theory to test, we considered an experimental approach to be
unsuitable. For the same reason we ruled out surveys to test hypotheses. Instead we
wanted to generate theory, based on an exploration of a range expert knowledge of
existing pradte. We therefore chose a Grounded Theory (GT) appi@ach7], since

GT has been used extensively for that purpose in Software Engineering r¢&é8aich

Our major resource was personal connections and links to industry specialists in app
development, including in secure app development. Thus our Grounded Thetyry st
used semstructured interviews over 6 months with a dozen such experts, whose
cumulative experience totalled more than 100 years of secure app development. To
encourage positivity, we used elements of Appreciadtigairy [27] in our questioning:

the6 Di scoveryd6 of best practice and the 6D
The original research question leads to a number of further questions:

RQ2 What motivated the experts themselves to learn software security; how did they
do so; and how do they continue to léarn
RQ3 What are the most effective techniques to deliver app security?

RQ4 How should we effectively introduce security to app development teams?

These further questions motivate the different questions used in the survey, as discussed
in section2.12

1.3No v e | Contributions

From our research we show in chapfethat there is little sni | ari ty i n pe
motivation to learn software security, nor consensus on how to motivate app developers

to do so. We also find diverging opinions on the use of teamwork and on the best
approach to implementing security. From these findings, by coropawish the history

of other paradigms, we suggest in seciofthat the subdiscipline of app development

security is at an early stage of development.

Furthermoe, we show in chaptd that developers need to have a wider view of app
security than merely codevel technical issues, and in sect®it hat t he eXxpe

recommendation is to use O0Odialecticd tech
from a variety of counterparties.cal We id:
Securityo, and exploré& each in some det ai
Finally,inchapteB, we offer a range of original O0i |

techniques even to such a disparate group as solo app developers, and offer possible
research programs to investigate both the techniques of Dialectical Security and the

interventions in more detail.

l4Conventions in this Thesi s

This thesis covers aspects of best practice for app development teams on both security
and privacy. To save cumbersomeness in th
securityo t aspectswhere there is dadistinbtienswe make it plain which

to which we are referring. Similarly a decision in the context of the wider goal for the
software might be a 6commerci al deci si onbé
deci si owvelopmentteaman a goeernment department; for convenience this thesis

refers to both as a 6commerci al deci si onb

This thesis follows the convention of man
author working in conjunction with both supervisdhs thesis refers to Charles Weir the

individual in the third person, as O6the a

15Thesi s Overview

The following chapters in this work describe the results of the Grounded Theory study.
They explore existing work on the subject; analyse surveys witbzan experts of
different types in the app security field; highlight the differences between approaches
from different experts; discuss the range of different resources; synthesises six important
techniques for developers to learn; and conclude with estigms of further work
considering how they might best be taught. Specifically, the chapters are as follows:

Chapter2 introduces the Grounded Theory researchhowtused, explaining the
philosophy used, how the interviewees were chosen, what type of people they were and

how the results were analysed.

ChapteB explores exiting research literature addressing programmer education and app

security.

Chapterd extends the literature review to cover resources available to programmers to

learn about app software security.

Chapter5 analyses our findings from our interviews, exploring the differences amongst

interviewees on motivation and approach.

Chapter6 exploresthdb e st techniques for app securi-t
nature of good app security; and introduces three personas representing different kinds of

app developer.

Chapter7 discussing six specific techniques of Dialectical Security, illustrated with
specific examples using the personas, and including detail from the interviews.

Chapter8 explores possible ways to extend this work, with a vision on approaches to

improve the security behaviour of app programmers generally.

2Research Pr oce

21l ntroducti on

This chapter explores the methods used in the research process. It introduces the author
and aims, and outlines the two foundations to the research: Grounded Theory and
Appreciativelnquiry. It also describes the interview process, the interviewees, and the

two forms of information derived from them.

22Research Philosophy

A good starting point is to define the philosophical approach we have as researchers.
Creswell[30] describes four major philosophical stances depending on the aims and
needs of the researcher. Briefly thesepagtivist looking for a single objective truth;
relativist, rejecting the idea that a single objective truttsisgiand looking for a more

local truth; actionbased aiming for change as a direct result of the research; and

pragmatic looking for specific social or business benefits as a result of the research.

For the author, the purpose of this research is awighe tools to help with software
development; his experience with software developers led to a wish to find better ways of
doing that job. Therefore, our approach to this research is spatiynatic In particular

this means that we use aspects oedédht methodological approaches as seems likely to
get the most effective results. As discussed in sedi@nour two key research
approaches for this work aredemded Theory and Appreciative Inquiry. The following

sections introduce them in more detail.

23l ntroduction to Grounded Theo

Grounded Theory (GT) is a systematic methodolagyconstructheory through the

analysis of datdt originally developed in thelS medical field, where the direct value of

di scoveries about human soci adTle hRivi oav e |
of Grounded Theoryod apMd48]cdntaie a goed dea afl Sen

discussion of the social benefits of the process, and a polemical style against alternatives.

Within 10 years Glaser and Strauss/Coftidllwer e competing for 00\
technique and the two resulting Oéslhravour s
positivisti n essence, though Gl aserds aim is toc

while Strauss is more interested in causes and effésits

Later still, as the technique was adopted by European researchers,£JBajmagdored

it to support therelativist philosophy[79]. The resulting variant is now known as
Constructivist GT, an approach that empha
applicability of any results. In accordance with praigmaticphilosophy, the approach

used in this research is ConstructhGT.

Gl aser and Strauss/ Corbinds works are str
approaches, but less so on practical instructions how to go about making detailed choices

in following the metho@¥5]. However software engineering researchers now have access

to a range of work filling this gap. A go
instructing a novice how to set about a GT research pféglctOther work in this area
extends basic GT with detailed §pand ce, S
Al l an'"s O0Critique @@} Wdinmd | GGrdomdedTaabry T tad o rd
inSoftware Engi nNkEe providas a Rewited@ and ety éxplicit set of

instructions on how to achieve academic rigour.

24A Br i ef Overview of Grounded

Traditional science assumes that theories are generated as hypotheses by the researcher,
which are then repeatedly tested against re@8} The concept is that random theories
are winnowed by the scientific process to leavky those which match observable and

testable fact. Grounded Theory attempts to make theory generation into a more

dependable process, based on textual analysis. Rigorous testing of the theories generated

is expected to happen via other approaches.

The textual analysis is of everything relevant that is available to the researcher. Thus it
might include interview transcripts, survey comments, relevant research literature, field
notes from observation and anything else that can be reduced to text forns This

summed up in the GT princip#dl is data

The process is iterative, with analysis of initial findings from interviews or similar
typically leading to changes in the research thrust and direction, and with every code
written being matched against alétbthers, a technique called tienstant comparative

method

25Grounded TihhegdDtregp St ep

Figurel shows the techniques that we use in the Grounded Theory process.

10

Generate

and locate Open

coding

diregtions

Categories

Figure 1. Grounded Theay process
Tablel describes each technique in more detail, as follows:

Table 1: The steps in Grounded Theory

Technique Description

Open coding We scan each text lidgy-line, highlighting points of interest
We t h e reachto remtesedt specific concepts. We chog
codes to be similar across documents, so that a given

represents the same concept throughout the research.

Memoing As we do that, naturally, ideas will occur to us and thou

11

about how the termmay be interrelated. We write these

separate texts called memos.

In doing this, we are open to new ideas and concepts tha
change and affect our future gathering of data. For examy
we see concepts emerging, we may explore these in more

in future interviews.

Categorisation

Gradually, as we assign codes, we will naturally see them a
in groups of related ancepts. We name these grol
cat egori eséd

Identifying core

categories

In traditional Glassarian research, the aim is to find a s
overarching Core Category: the one which covers the
interesting features in the data. Researchers are encoura
look for categories that cover as much of the variation in the

aspossible.

However in this research, we are looking for not one cate
but a number of concepts which can be identified and n4
separatelywe use the validity criteria for a Core Category

identify each such concept

Gaining
Theoretical

Saturatio

The data gathering is considered complete when further
received does not lead to significant new concepts. Th

termed 6t heoretical satur a

Theory generatior

In building a theory, we are looking for relations betw:
concepts and categoridbat explain the relations betwe

concepts and categories.

Sorting

To provide a coherent output, we need a narrative. Strat
particular talks a good deal about the literary aspectbe
narrati ve, i,therplevanteiothereagdl Thé
sorting process is arranging the codes, memos and categqg

such a way as to produce a convincing narrative.

12

Write -up Here we write up thenarrativeas a coherent repotVe use
extensive anonymised quotations from the data sourcs
provide rigour, and use illustrations and where appropria

convey the information clearly.

26The Use of Literature Surveys

Hoda et al[54] recommends using existing literature in a different way from other forms

of research. Grounded Theory has a major concern about being biased by existing
thinking. So GTds original recommefierdati on
the main bulk of coding and ideas generafRjnHoda et al. disagree with this, poirgi

out that literature surveys are often needed due to academic pressures and the need for the
researcher to be up to speed with the subject terminology. They therefore recommend a
short literature survey to begin with, and a longer one once the majatayechas been

coded. The longer survey may itself contribute to the coding and memo generation.
However we have not seen a suggestion that written papers are coded with the same level

of detail that is given to other research data.

Others suggest a sitar approach: Allafi6] used a literature survey in advance of GT

work to identify if there were compelling theories already in existence.

We hae therefore taken the approach of an initial literature survey to learn nomenclature
and avoid ‘reinventing the wheel'. A final, possearch survey added further detail in the
context of the discoveries from our interviews. In writing the thesis, we io@chibhe

results of both surveys in chapt&rand4.

271 ncor por aetciinagt iAvpeprl nqui ry

A further important question is how to structure the interviews to get the most helpful
results. Our major concern in discussing security with experts was the danger of a litany

of complaints and major problems they had seen. Much security literature aéy o

the 6black hatdé variety, amounts to this

problems, and to focus on what had actually worked well for our interviewees.

This led us to look at Appreciative Inquiry. This method is primarily used astareAc

Research method, with its purpose to chan

13

they reflect on their answers to questions. In this research we did not need to change the
participants (though we believe the reflection involved with answetinguestions was
beneficial, and in two cases the interviewees followed up with emails that said as much).
Instead we want to find the means to help chaegpple like the interviewees or those

they work withn futurei programmers whom we help to learn app seciuréyd so the
Appreciative Inquiry method offers a valuable contribution.

The full Appreciative Inquiry methoj@8] involves a cyat of four processes, as shown

below.

Figure 2: Appreciative Inquiry

The Discovery Phase typically concentrates on the positive aspects of the current
situation, encouraging participants to visuahgeat has worked, and what is now
workingihence the name OAppreciatived. The D
with participants working to establish a shared vision of the future. The Design and
Destiny phases then continue to produce a plamford change that has biunyfrom the

participants.

Governing the use of the four phases is a set of five principles, which we may summarise
simply as shown iTable2 below.

14

Table 2: Principles of Appreciative Inquiry

Principle Summary

Constructionist Our beliefs determine what we do; thought and action emerge|

relationships.

Simultaneity Enquiry changes systems

Poetic Organisationalife is made up from stories agenerated by th

participants

Anticipatory What we do today is guided by our image of the future.

Positive Positive emotions are needed to generate sustainable changd

Appreciative Inquiry has been effective in creatinmgamisational change in a large
variety of different organisatiorj27]. To use it as a research tool requires some changes
that are explored in detail by R€@8]. In this research, however, we are using aspects of

only the first two phas s . Each interview concentrated
and have you done in the past that was su
see in an ideal worl d?0o

28Research Design

Our main data collection was via sestiuctured interviews with stwfare development
specialists. We chose these opportunistically, mainly through their introductions from
former colleagues of the researcher.

't i s important to distinguish between tF
subjects being discussédo pr ogr ammer s6) . The experts <c¢ch
app developers; some were not developers at all, and all had more experience working
with software projects than the developer average of six y&a8}. However the

interviews suggest that between them the chosen interviewees had worke typitial

range of programmers.

Time and practicality limited the number of interviews to a dozen. GbiEssuggests
that further interviews would be unlikely to generate much in the way of further new

15

theory. More I mportant i s, of course, whe
shal revisit this question in sectiofl5. We started with an i1init

analysed that and used the results to direct future interviews.

Table3 belowgives an overview of the experts interviewed. For each, we have given an
indication of the nature of the companies they are currently involved with and their
typical role. In two cases we interviewed a second person in a different role in the same
organiat i on, so the table shows o6éorganisat:i
working for more than one organisation; these are shown with an asterisk in the OID
column and for them the table gives the organisation for which they are currently doing

the most work.

Table 3: The experts interviewed

ID OID Organisation type Typical role

P1 * Bespoke app developer Developing apps for business clients

P2 O1 Mobile phone Leader of large team specialising in

manufacturer security

P3 02 Operating system suppliel Developer of gerfacing web services

P4 O3 Smart card specialists Design and implementation of smart cg
software

P5 04 Securityrelated sftware Architecting and promoting a secure

asservice supplier service
P6 O5 Promoting industry App security consultancy
*
P7 O1 Mobile phone Developer and software architect for O
manufacturer services

P8 06 Telecoms service providel Architecting mobile phone services

P9 O7 Bank Analysis, design and implementing
* changes taveb-based services

P10 08 Secure app technology Architecting and promoting app

provider technologies

P11 02 Operating system suppliel Designing and promoting security

enhancements

P12 * Bespoke app developer Developing apps for business clients

16

Al'l had more than 30 yearso6 experience 1in
around 20 years. Al but P1 had at | east !
development. Regrettably in terms of diversity but typically of their rolessrntiustry

[29], all were male.

29About t he Aut hor

Constructivist Grounded Theory is a relativist approach, as discussed in e2tibn
considers the researcher to be part of the system being analysed. This section, therefore,
introduces the author as a context for the findings.

Charles Weir has experience of over 30 years in commercial software development. He
has worked as programmer within a large company; as a consultant training and
assisting in a large and varied number of projects; and more recently has run a software
development company for 15 years producing innovative bespoke software for mobile
phones.

A constamtheme for his work over the last 25 years has been finding ways to improve
software development. This led to early work on software testing in the 1980s,
involvement in the patterns movement in the 1990s including the authorship of a book
[78], and the introduatin of agile development techniques in both his own company and

others.

In the last few years he has led projects implementing payments and mobile ticketing on
mobile phones. Like most applications software developers he had not previously been
involved in software security, and had indeed avoided such projects because of the
perceived commercial risk. The learning process for software security proved painful,

which is what motivated this research.

The research itself led to some surprises for him. Particular was the finding that most app
developers had no interest in security (sedidh This was because had always been

in a situation where it was obvious that unless he got app security right there would be

bad consequences. Specifically, his company was developing apps for a
telecommunications giant, subject to very stringent and tightly worded csnifabey
messed up they would be sued, and thougt

insurance would cover any penalties, the time cost of defending such a lawsuit and the

17

resulting cost of future Professional Indemnity Insurance would probably yiélséro
company and put everyone out of work. In short, he was scared of the implications, and
put a good deal of effort into ensuring they took a professional and responsible approach

to app security.

Even so, he appreciated that although he knew abouhtkat, his fellow programmers
would not have realised it if he had not pointed it out. After all, the contractual
obligations and chain of future consequences were not part of their daily programming
job, and many of them would not have been aware ohthEherefore, though he
personally was very concerned when he first started developing apps that had a security

requirement, it required communication to extend that concern to his colleagues.

The second surprise was the wide range of applicability ofsapprity and privacy
guestions. To him, one of the first things in a new project was to identify the non
functional requirements. Before he started the research he had mentally divided apps (and
indeed software generally) into those with security requerémand those without. For

the ones without, he had believed that issues like security and privacy were generally not
of interest to app developers. In the course of this research, he learned from discussions
with academic professionals and security ctiasts that any apps that hold keys or
passwords, use HTTPs to communicate, hold personal information, send emails, or even
just read or write the file system, are subject to implied security and privacy
requirements. The finding that most of the develspevolved in programming such

apps do not appreciate the issues is very concerning.

210l nt roduction to the I ntervi e\

We shall be working with these interviewees for the rest of this thesis, so it is worth
providing a more personal introduction. The ithations inFigure3introduce each more

personally, giving each a comment chosen to reflect a flavour of the discussion.

18

Nobody P2

b1 Security is our
Wants' app whole story
securityg It affects

esux everything.

P3

| love solving
security puzzles

We share
responsibility for

aSOdNNA G e o
process.

P4

Getting security is
really promoting
odzaiySaa

P6

Kl yAS XWe need whole
system, not tick box
security

PS5

P7 P8

The key is
communication
between teams

Hit your programmers
with a wet fish until
they get the message

Give your attackers a
honey trap to keep
them happy

Never have
hierarchiesof trust

P9

P10

We're always changing
our defences in

response to better

attacks

P12

Think clearly
about stepwise
changes

P11

Figure 3: An introduction to the interviewees

19

211l nt roduction to the Organisat

All of the interviewees had one organisation for which they were predominantly working.
In some cases this organisation was probably their only significant esqeerience (P2,

P3, P7, P11); others work sometimes or regularly with a variety of other organisations. In
the case of the contractors (P1, P12) their relationship with their main organisation was
for a set period, typically months. The others had lired&meir current roles for at least

two years.

Table4 shows the organisations involved. It shows an indication of the organisation size
(smallfor less than 10 stagffnediumfor less than 1000arge for greater than 1000, or
government or a government department), and a
position on a 6secure soft wRMEC2t8a7RA0BIT | ity
[56]. The organisations varied enormously, from global giants (O1) to companies with

less than a dozen (O3, O8). In the case of solo programmers and smaller companies, we
found the intervi eweed sefationships kith gnech éarger!l | y

organisations too.

Table 4: The organisationsrepresented

People Org Org. size Organisation type

P2, P7 0O1 Medium Mobile phone manufacturer High

P3, P11 O2 Large Operating systeraupplier Very
high

P4 O3 Small Smart card specialists Medium

P5 O4 Medium Securityrelated sftwareasservice High

supplier
P6 O5 Governm Promoting industry Low
ent

P8 O6 Large Telecoms service provider Medium

P9 O7 Large Bank Medium

P10 08 Small Secure app technology provider Medium

P1, P12 Solo Bespoke app developer Low

20

<
R

212The I ntervi ews

Figure 4 shows the questions used as a basis for the interviews. The questions are
designed to be open ended, to encourage the interviewee to cover topics from their own
points of view. Drawing on Apeciative Inquiry, they focus on the positive, on things

that have worked and on techniques that help to achieve positive outcomes.

Interview Schedule:Better Approaches to Secure Usefacing Software
Introduction T establish context

1 Please could you tethe something of your own background?
1 What is your current role, and what do you find yourself doingtdaday?

1 How did you first get involved with developing secure software?
Exploration

1 Can you think of a particular triumph in your work? How did wohieve the
security aspects of that?
1 Please could you give examples of a secure system that has gone well?
gone well and been fixed?
How did you initially learn about adding security to software developme
How do you learn more now?

What aspectef your team (your work) made them particularly good at se

software?
What is the most successful technique you have found?

What advantages are there in the development of the app end (brov

mobile) over the server end?
Clarification

You mentionedspecific technique]. Can you tell me a little more about that?

Figure 4: Interview schedule

21

In many cases interviewees covered answers to later questions in the responses to earlier
ones, or even before any questions were asked. The clarification questions were not
appropriate to all the interviews, so were sometimes omitted. In all cases extept P7
discussion around the questions took at least an hour and in some cases (P4, P5, P8 and

P9) more than two hours.

213Anal ysis of the I nterviews

Some of the interview questions related t
app development; o#hs to their own history and ways of learning about secure app
development. Thus we can distinguish two forms of information from the interviews:
information about how the app security experts had achieved their expertise and kept
themselves updated, andarmation they had about best learning approaches for those
working with them. Since most of the interview content was about this second topic,
treating the interviewees as peers to be consulted rather than subjects to be analysed, in

thisthesiswerefaro t hose i nvolved as 6interviewee

In this thesis we quote extensively from the interviews. To convey correctly the context
and protect the confidentiality of the interviewees, we have amended the quotations
appropriately: names are changed; square brackets show additions and replacements;

ellipses show removals.

22

SEXI sting Rese:
Programmer s al

This chapter examines the literature around the main topic of the thesis: what techniques
and ideas will appeal to development teams and lead to them developing more secure app

software. Thus it considers work on programmer motivation, learning and impeat.e

3.1Two Types of Literature

Recall the overall research question for this thesis:

RQ1What techniques and ideas will appeal to development teams and lead to

them developing more secure app software?

We found in researching literature that the existing work on the subject falls into two
different categories: there is literatuedout programmers, and there is literatdos
programmers. We realised we need to analyse the two types of literature differently. In
this chapter, therefore, we analyse literatat®ut programmers in terms of its
contribution to our research question. In chaptewe shall examine literaturior

programmers in terms of its usefulness in helping programmer learning.

23

32Focus mfg HReisstair ¢ h

As discussed in sectidnl, existing research on the security of software development

focuses on three aspects:

1 Programmer motivation,
1 How do programmers learn, and

1 What do programmers need to learn?

The following sections explore each in turn. Throughout this section, we evaluate each
work in terms of the impact and relevance it may have on the research questions we
identified in sectia 1.2 In line with our pragmatic approach to the research, we comment

on each only in respect of its relevance to those questions.

Clearly while app developments its own environments and cultures, many of the
problems are similar to those in other domains, especially Web Ul development, and
desktop application development, and to a lesser extent server development. We have
found literature about programmer mativn relevant only to programmers in general,

and similarly much of the work on how programmers learn is general. There is more

work available specific to app developers on what they need to learn.

Two closely related domains are Web Ul software devebdopiand workstation software
development. Certainly the study of software security for Web Uls is more mature, and
there has been a good deal of work on specific kinds of security issue, such-ag&ross
scripting, that apply to that area. However teatat helpful to this research. On the more
general issues of how to get development teams to deliver better software, we have found
almost no research specific to Web Ul or workstation software.

33Programmer Motivati on

This and the next section explore wigs related to the research question:

RQ2What motivated the experts themselves to learn software security; how did

they do so; and how do they continue to |€arn

There is a good deal of I|iterature on pro
2008[15] found some 92 papers on the subject. However virtually all of the research

24

cited is abouinotivation to do thegp of programmingrather thammotivation to change
behaviour.There is an implicit assumption that a welbtivated programmer will do a
6goodd job. Tom DeMarcobs pop[83] makesthe o k on

same assumption.

In this work, we are interested in what makes a-wwdltivated developer choose a new

form of behaviour: learning about softweasecurity.

What Beecham et al . 6s survey does in part
motivate programmers. Specifically, they identified that professional programmers tend

to be motivated most by:

1 Problem solving,
1 Working to benefit others, and

1 Technical challenge.

Interestingly, a fear of failure is not among the list of motivators. So the classic security
motivation of 6a terrible thing might h a
encouraging programmeislearn about security. This agrees with the findings of Xie et
al.[112], whose survey interviewed programmers to investigate why they believed they
made security errors; they found a consi s
probl embé. Though the results aresihiSnited

companies, it seems reasonable to conclude that the conclusions may apply more widely.

We can conclude that to inspire programmers to become adept at software security will
require emphasis on the benefits to others and the technical challehgepoblilems

involved.

34How Do Programmers Learn?

There is relatively little literature on how programmers learn, whether about novices or
professional programmers. Johnson and S¢b§gstudied how programmers learned to
function in a complicated organisation, Google. They concluded that the majority of
programmer learning there was peer learning, facilitated by strong corporate standards
and culture; obviously the results are limitedhat organisation. Other studies have

incorporated the concepts of programmer learning into the wider term of Software

25

Process Improvement (SPI). So, for example, asnaging quantitative study by Dyba
[36] examines learning as one aspect of SPI; it differentigbgsloitation the

dissemination of existing knowledge, frérploration the gaining of new knowledge; it
concludes that both have a positive effect poductivity but does not explore

mechanisms.

A little-known work by Enes and Conraf0] used interviews to discover how
professionals, including programmers, acquire their expert knowledge. It concludes that

the preferred learning mechanisms are all informal ones: especigtie gob training

and personal interaction. It also highlights, as an important factor, professional pride in
having 6expert areasd of competence. Unfo

only a very small sample of programmers (4) in a liméezh (Trondheim).

Murphy-Hill et al. explored how developers find new software t¢dB; the research

was more wideganging and included both an initial survey and a larger scale, 79
participant, diarybased survey. They concluded the event is relatively rare, and happens
more through joint working than recommendations, though thesmhlyion proposed

was to create a tool recommendation website. Proksch et al. used an extensive and
carefully analysed literature survey to explore such a recommendation site i{B&¢tail

the result reads as a requirements specification. So far there is little evidence of such

systems being trialtkin practice.

In the context of learning about software security, a particularly important finding is that
of Conradi and Dybf26]. Based on interviews with 21 development team membersin 5
Norwegian companies, they analysed carefully the effectiveness of written routines on
software process improvement. They identified that programmers have difficulty with
learning from the outputf@rocess improvers, and particularly with learning from formal

written routines. As a result, developers tend to avoid such approaches:

Developers are rather sceptical at using written routines, while quality and
technical managers are taking this for gtad. This is an explosive
combination. (Conradi and Dyd&6])

This suggests an Oi mpedance midiongdand hd be
processes for developers, and the developers themselves who are expected to carry them
out. While the geographical scope of the research gives it limited external validity,

26

anecdotal evidence and personal experience of the authors tendsrto tenfinding in
respect of UK and US developers. We can speculate that security experts tend to think in
terms of complete lists of issues and ways to break software; developers think in terms of

simplest ways to create desired functionality.

Thus thoud one might expect the most effective approach to teaching security to be a
prescriptive set of instructions to prog
Lifecycled such as t69)aslethepsrinpradite ¢hdse toynot Mi ¢ r
appeal to developers. This conforms to t
encountered an app development team voluntarily adopting a process of that kind. This
means that for app developers we need td &nmore lightweight, less prescriptive

approach.

A different approach to teaching programm
more detail in sectiof.2 Yskout et al. tested experimentally the effect of using security
patterns in server design; though the paper states there was no benefit, in fact the results

suggest a benefit but were statistically inconcluflde].

Recently several teams have investigated how app developers learn security. Balebako et
al. interviewed a dozen app developersnmall to medium sized US companies, and
surveyed over 200 US app developers to find out their approach to security and privacy
issues. The survey was carefully constructed to avoid bias, and concluded that most
developers approach these issues using walctseor by consulting peefd0].
Interestingly they also found that securagyd privacy behaviours were only weakly
correlated.

A survey by Acar et a[2] also concluded through a survey of nearly 300 successful app
developers worldwide that they learned security through web search and peers. They went
on to use a weltraftedpractical experiment with over 50 Android developers to evaluate
the effectiveness of the different ways of learning app security; this produced the
surprising result that programmers using digital books achieved better security than those

using web seatc

Two projects, by Xie et al. and Nguyen et haye developed IDBased tools to teach
programmers by detecting possible security flaws in Android develop[iéritd1] The
approach ismising, but obviously requires programmers to adopt the tools; also Xie et

27

al .06s project I's now finished and Nguyen
effectiveness can be tested. Others, such as Near and Jackson, and Lejgh, 26kl

have code analysis tools to detect security defects; these work but provide only limited
feedback to developers. So far we are not aware of any literature analysing the

effectiveness of such approaches.

35What PPbogr ammers Need to Learn

In exploring the next research question,
RQ3What are the most effective techniques to deliver app security?

we may be able to edilish what kinds of learning are required from looking at the

security issues found in the past work of programmers.

Enckbés O6Study of An d39uasedbindypcpde analysis of alarxge S e ¢ u
number of free Android applications. This approach is limited to the kinds of error that

can befound with such analysis. Thus they found misuse of APIs, such as using
cryptographic APIs in ways that reduced the security provided by the cryptography; and
they found access to privasgnsitive APIs, such as APIs that gave personal information

about tle user. They could not find errors such as insecure storage of credentials (in
publicly accessible files, for example) or misuse of insecure network connections (such as
using HTTP where HTTPS was needed)42] Fahl 6
used a similar approach to anadaptheyarapps 6
limited to detecting inappropriate use of SSL APIs, which they found in 8% of apps.
Certainly we can conclude from both papers that developers need to be mindful of careful

APl usage.

A recent paper by Nadi et §if4] uses surveys of programmers and of their comments on
discussion pages to examine the reasons why developers had issues using these SSL
APIs. They were asking developers who had had trouble, idricdur purposes might

be regarded as sample bias. Unsurprisingly the conclusion could best be summarised as
Obecause the APIls are difficult to usebo,
them or to wrap them with libraries or code generatiofsigioappears from this paper

too that developers do not see education on security as something they need.

28

Vidas et al . ds paper 06 A tak¥sa differem approadh, Ar e
and examines attacks on Android phones. This is not in the context of app security, but
rather in the context of the whole phone, where apps are seen as potential malware and
the solutions are in terms of OS i mproven
Android app security1] provides a comprehensive view of the state of the art,
concluding that improvements to APIs and the use of web technologies are helping;

however they do not otherse address the expertise of developers.

The openness of Android encourages such studies, but iOS gave rise to a smaller number
of similar evaluations such as that of Dai Z[84]. Unfortunately for our purposes this
reads more as a summary of the security faaglipeovided by Apple rather than an

objective and critical assessment of risks to app developers.

29

4Learni ng fRes ol
Programmer s

This chapter continues the literature survey by examining learning resources available to
programmers. It explores three different movements that have led to the creation of such

|l iterature: the security patterns movemer
literature. It then considers other resources available:basbd static sites and video. It

uses rankings to indicate which are most used by developers.

41l ntroducti on

Our final research question in sectibr? asked:

RQ4 How should we effectively introduce security to app development

teams?

To address this we need resources to help programmers to learn. Whereas3chapter
explores research on how programmers learn; this chapter looks at the resources available

on good practice that may appeal to and benefit programmers.

We identified several categories of such resewas follows:
1. Static literature such as booksheoks and papers;
2. Websites, blogs, and bulletin boards; and

3. Online video

30

To evaluate the resources, we need to consider what attributes we need from them. Since
we are looking for learning tools, academamlidity though relevant must be matched
against considerations such as ease of access, readability, approachability and didactic
approach. For example, academic papers that are not freely available on the web are
unlikely to be widely used by nesicadent programmers, as are books that are out of
print. Similarly books that sacrifice readability for academic rigour or completeness may
be forced on students doing academic courses, but are unlikely to be widely read by

developers if they have the choicenadre readable alternatives.

There are many excellent books describing the theory and practice of software security,
such as Goll mandég49pCe@mpetger Sé6Sedd2k yoy i |
Schneier 0SP3lavtd sAnddr §0rs6S§L;theseworkatEn gi n
a level that is not helpful as anything but background reference for a software developer.
Surprisingly few books are targeted at software engineers. Three separate approaches
appear to have led to such material: the security patterns appibacisecurity
practitionersé approach, and the black hc:

following sections.

42Security Patterns

Security patterns are a development from the software design patterns movement first
brought into prominence withtlieD e s i g n P d46]t aeverynpspdilar bamlowkth
programmers This was in turn built on the architectural patterns work by Christopher
Alexander[5]. Animportant feature of patterns is that they divide up a problem domain

and provide multiple positive solutions. A series otgrats may provide a variety of
competing solutions for the same problem, and the patterns will provide information
(6forcesb6) to help practitioners decide w
of ways to structure objectriented code, mainlyp achieve good partitioning between
components. The term O60Security patterns?o

associated with software securityo.

The security patterns literature shows strong signs of its position as the meeting of two
cultures. The patterns movement authors emphasise the positive aspects of their work
(6solutionsd) and single out particular a

emphasise restrictions (60threatsd6) and ai

31

Theeari est security patterns paper OArchit e
patterns experts Yoder and Barcalfit3], and is designed to be approackats
programmers. Though the patterns are straightforward and high level, the detail in each

is quite complicated to follow. d®lescurity
another early attempt to distil security patterns. It reads as fairly naive, without the
authority and references one might expect.

Kienzl et alriis RepHde $ oyiyPas tsome 20 O6str
with noun names | i ke O0trusted proxybo; an
names | i ke O6document hheomecgpnrdtemigviadal 90
sketchily described, most are valid and useful explorations of security techniques for app
developers; and each includes an examination of the impact on different aspects of

security and performance. A version is publiclpidable.

Ofthetwobesk nown security patter nd98attemisto, 06 Cor
cover the entire domain of Java Enterprise security, but is now somewhat out of date;
naturally it avoids dealingwith@apl i cat i on software. The bool
Schumacher et dB4] incorporates work by several authors and teams, covering security
analysis through to implementation, though it too has little on application security.
Unforturat el y the early chapters read as a 0
highlighted by Conradi and Dyba (see sec8adf. Bejtlich, a respected industry expe
included O6Security Pat[16butfosnd itlessvalaableio mp ar a

practice than other books discussed in the next section.

How valid are security patterns as learning material for programmers? Clearly there is
bound to be overlap: surveys of the literature written between 1997 and 206%ith

days of the patterns movement, claimed variously only 179 distinct pd&2ims only

36 Ot r udldd] quiaof theeseveral hundred aladile. Yskout et al. trialled a
controlled experiment to see if developers benefitted from using security pgttshs

the results suggested a benefit, but were statistically inconclusive.

Interestingly, there has been surprisingly little effort since that time to add to the canon of
software security patterns. Much recent pattetated literatire in the security field has
used the name O6épatternd in its wider sens

across different items (such as attacks,

32

patternsd as toodtsi tfiooneares;el am eerxsa mmlde pirsa

[17].

43The Practitionerso Movement

Security practitionerso |iterature for pr

security, who offer their knowledge in a form suitable poogrammers. The most

approachabl e we encountered [68],wdahboth Mc Gr a

sets forward a clear approach, and uses a fairly readable[B8fjehowever it is
structured as a secure development process, which limits its appeal to developers (see

section3.4).

The most useful learning books for software developers are those that convey information

in a relatively terse and readable form, and in manageable chunks. For this Howard,

LeBl anc and Viegabos 6024 [be]lgpmiidgs aood s o f

introduction; its format is similar to that of the patterns literature.

An alternative resource is books targeted specifically at particular platforms. For Android

there are books explaining the security model and development technigues; examples

i nc | RiodAadro@ 6[64Jand OAndr oi d| §38]cThe first pyovidem t er n a

general security techniques and code in one chapter; the second provides a more complete

overview of the Android security system; both pdw/iexamples. For iOS there are

equi valents, such 4l4]; thougle thisisinnore @ descOpfion 8fe c u r i

security features than a guide to avoiding security issues.

On the web, Apple has web pages to help developers learn the details of app security for
iI0OS[8]; Googk provides a rather more rudimentary set of hints for Andé@if All of
these platforrspecific resources consider only cddeel security and do not emphasise

the O6whol e sgpsctsefepp sevetopmentt y 6

44B|l ack Hat Literature

Some of the most popular (s¢&) platformspecific security books are the ones with a
0Bl ack Hat 6o acah.t aFcokre re,x aanppplre t he[35% anmdlr oi d
its corresponding versions for iOS and web apps, contain a good deal about exploits

against the operating system, a certain amount about analysing existing apps, but little

33

F

about how to guard against exploits as a developer. Theisgi chapters each
examining an arewith a consistent formas reminiscent of the patterns literature.

Further books in the same series include versions for Web Applications, for Mobile
Applications, and for i OS a pdbdokf2R]légakesad ns . C
similar approach, covering®S, Android and even Blackberry platforms, and does
provide limited advice for developers.

There are a number of papers exploring weaknesses in mobile apps, especially Android,
and possible reasons for them. For example Egele et al. studied the misuse of
cryptographic API437], concluding that it was widespread and required better APIs;
Fahl et al[42] studied SSL use, concluded some apps were vulnerable tinrtias

middle attacks, and suggested ways to solve the problems; however the academic format

doesndét appeal to most developers.

45What Books Do Programmers Use

We can gain some idea of the popularity of books from their sales on an international
bookseller such as Amaa. Chevalier has established that this correlates well with actual
saleqg23]. We should of course be wary of making deductions from these figures: we do
not know the proportion of pahasers who are programmers; we do not know how many
readers share books via libraries or other ways; and we do not know what fraction of

purchasers do not read the bodkable5, however, shows selected rankings.

Table 5: Amazon rankings for selected books at January 2016

Book and reference Amazon bestsell

(Low numbers mean popular)

Design Patterns, Gammd46] 24

Android Hacke[B5%9s Han 86

Security Engineering, Anderson[7] 120
Secrets and Lies, Schneig®3] 141
Android Security Cookbook [67] 512

34

Software Security, McGraw [68] 627

Learning iOS Security [11] 900
Security Patterns[94] 918
Application Security for the Android 1218

Platform [96]

Core Security Patterns[98] 1466

From this we can see that the most popular security books are indeed those that take a
O0black haté approach in a specific domai
Mc Gr awds book, and tohckes tmsaoftweare @evdioprmeat sell a t 6
relatively badly, and the security patterns books sell hardly at all. By comparison with the

~

sales of the O0Design Patternsd book we ceé
Hacker 6s handb ook @gokthatpnmht beacgpbcted to bedfaundgn a b

many bookshelves.

This correlates with the finding of sectibrithat few programmers are motivated to find
out about software security; it also correlates with the finding of se8#ithat secure
devel opment processes such as those of M

developers.

46WekHBased I nformation Sources

Software security is a fagtoving area, and websitesed sources have the advantage of
being easy to update, and easy to build progressively as resources allow. They have a
further advantage: web links are easy to insert into discussions or answestawsth

popular programmer sites such as Stack Overflow.

The classic application devel o[fOpltcovers t e on
a range of topi cs rmpletgseaurg defetopnmant iifgicle, too s o f t 6
implementation details for securing Microsoft products. It has the disadvantage of
stressing a procedmsed approach, the Microsoft Secure Development Process, which

may limit its appeal to developers (see sectof). Apple has web pages to help

35

developers learn the details of app security for [8]SGoogle proviés a rather more
rudimentary set of hints for Androj80]. Both are valuable, but strictly techni¢ahey

consider only coding aspects and ignore 0O

TheOpen Wé Application Security Proje¢OWASP) communitywvr i t t en &6 Dev el
Gu i fLEphas a grealeal of content, but is difficult to access in a manageable form;

all the information is in Markdown format, and there do not appear to be compiled PDF

or ebook formats. It is unlikely that many programmers access it. Another document
deriving from the OVASP s our c e SmartphBridd SEudesDevélopment
Guidelines for App Developed4l]. Thi s i s a tersely writte
secure app development; it does consider wider issues than the strictly technical, but is

not an asy read for those inexperienced with security.

The communitywritten OWASP Top Ten Mobile Risks sjte20] is a widely accessed

resource detailing specific programming issues and how to avoid them. Its authority and
availability make it very effective, though it does notcoasid 6 wh ol e syst em
issues. A further commonly referenced resource is the SANS Instit@JitEANS is

a commercial organisation supplying training as well as free information services, a
does have a Owhole system securityd appr

specific to app development.

Some third parties have also constructed websites. A particularly approachable one is the
Android developer security site by popular bloggen@ Judgg60]; it divides its
content into a collection of separate homilies, each argued independently. Again the
format is reminiscent of the patterns form. Though approachable, it has not been widely

accessed by progmmerg61].

App programmers tend to use web search and discustégras their primary source of
information on security2]. For programming questions, the two dominant sites are of

course Google and Stack Overflow. There was more than a touch of truth underlying the

j oke suggestion that @lriongg a$tma ¢igR]. OMe r fe In @ wn

main programmer s® St a cnkal setwkedisdussions coseriige h a ¢

! Based on Google rankings in February 2016

36

application securify A separate Stack Overflow site is devoted specifically to security,
but tends not to handle programming questions.

Unfortunately, as a learning resource, Stack Overflow and similar bulletin boasda ha
significant flaw: they are poor for gaining an overview to a topic, and actively discourage
guestions that do not have focussed answers. Requests for help on security are generally
answered with references to the resources listed earlier in thanséctietailed analysis

of the topics on the Stack Overflow sitg2] found little in the way of overview
discussions. Thus Stack Overfliswaluable in helping programmers sort out problems

they know they have, but does not point out problems that they do not know they may
have; most security problems are likely to be of this second type.

Discussion sites have a second problem relateddarisy: their answers tend to be of
guestionable accuracy especially when they quote code. Acaftaalalysed answers

on Stack Overflow to app security questions, with worrying conclusions:

[Of 139 threads analysed]ewcategoised 41 threads dseing ont o p Ofc é
these, 20 threads contained code snippets. Half of the threads containing

code snippets contained only insecure snipfétsar et al[2])

27400 tagged O6Androidd and 6Securityé; 700 tagged

37

5Mot il vati on anoc¢

to App Secur it

This chapter discusses findings from the Grounded Theory analysis. It examines the
motivation and approaches for developers to learn about and implement app security.
First we introduce the surprising discovery that few app developers are motivatedal to lear
about security, let alone implement it. Then we examine the original motivations of the
interviewees to learn app security and their approach to continued learning; we contrast
their different approaches to working wiathers we conclude that the digdine of app

security is at an early stage of developmant suggest how it may develop

51Why | s Motivation I mportant?

Early in the cycle of interviews, we learned that actually most programmers have very

little interest in security for mobile apps.
Very, very, few developers are actually interested in secyiti)

Thus the answer to the question Ohow do p
seemed to be 6they dondétd. The reason for

have little motivéion to work on security.

AYou can see that from the Apps Worl d

mention of securityatall. t 6s not on Rleopl eds radar . o

38

Accordingly this chapter explores motivation: what motivates the interviewees
themselves to impleemt security in their systems; and how best they encourage that

motivation in others.

52Wh at Moti vates Our |l ntervi ewe

The experts differed widely in their original reasons for learning about software security;
there was correspondingly little agreementhmw best to motivate app programmers

generally to produce good secure apps.

The Grounded Theory analysis of the interviews highlighted four forces motivating a

programmer to learn and act on software security, as illustratédunes.

=
©

Figure 5: Motivation forces on a programmer

These forces are as follows, with some examples from the interviewees.

Knowledge: the knowledge and skills that the programmers have learned in the past or

gained through experience on how to deal with software security issues.

| never learned from reading books; | never took any courses at college on
computer security. All of my wowkas basically selfaught. | think that there
are certain people who have a passion for information security, and those

are the peopleé It i.P1lhard to | earn ac:

Tasks:the formal and informal assignments of code to write, changes to meakang,

and related work that the programmer has as their overt job.

39

So, we send a couple of staff every year to [@® Manufacturers]
ConferenceAnd secondlyjwe learn from] information from our supplieés

technical information(P2)
Worries: theconcerns and fears the programmer has about what they are doing.

[l was called out to handle a security issw@]d so it was Christmas Eve |

was driving down to a data centre, doing a complete factory reinstall to wipe

out any traces of it, couldn'tgec k t o my f a mneveywantAnd | s a
to have this happen again, and | am going to do everything | can te mak

sure this never happens againo P11

Enthusiasms:the positive inspirations that motivate the programmer to make specific

choices.

A Act u ahlwasakuhfortunately, | never released any of this stuff
did actually take copy protection off games for the intellectual challenge of
thiso (P3)

Surprisingly, we found a tension between these as two pairs of alternatives: those who
sawknowledge as a motivation did not feel the need for explicit tasks and vice versa;
those who felt worries were a motivation did not consider enthusiasm and vice versa.
Therefore, where an expertds interview ex
that position as a location on a scale: knowledge versus tasks, and worries versus
enthusiasms. For example, an expert who expressed strong views that security should be
part of every relevant activity in software development would be represented at the
O0lorwl edged end of the scal e; an expert wh
included as the tasks of penetration testing and app hardening would be placed towards

the 6tasksod end of t he scal e.

We found similar tensions between approaches to diffariemts on implementing
security and on the role of teamwork. These tensions we also represented on a second pair
of scales: teamwork versus individual rigour, and influencing versus directive
approaches. A third pair of scales compares a preference thtisteeversus individual

rigour, and for considering the attacker versus considering stakeholders.

40

Thus in diagrams in the following sectiobs3 and 5.4 we position the views or
information expressed by experts on specific topics against axes representing each of the
two related scales. Each diagram shows only the expeatexygressed a clear opinion,

and shows clusters where several shared roughly the same position. The resulting pattern

highlights the range of views expressed.

53Reasons for Learning

Some of the interview questions isieiese abou
(treating the interviewees as subjécsee sectiof.13. The Grounded Theory analysis
hi ghlighted differences i n othdriginallyledrreng vi e we

about software security, and for continuing to learn.

531Expertsdé6 Reasons for Learning

Figure6 expresses the original motivations for the exp#remselves for learning about
software security. Where they |l earned Oac
shown towards the 6knowledged end of the
their job it is a task. Similar the verticakia shows whether they learned out of

enthusiasm, or because of concerns about the potential impact.

%® Enthusiasrr’

(P3)
) XD

>
Knowledge Tasks

Worries

<

Figure 6: Reasons for original learning

The reasons varied significantly. Most had learned fdaato-day experience, given

enthusiasm for the security aspects of that experience; some had started as hackers:

41

So the first security problem | ran into was at my dad's businesses. He was
using it for accounts, ané the accounting system had a béigthat was
affecting his balance sheét$e had a deadline? Sve needed to find a

way of making a copy of copy protected sofavar S@ | started off with
hacking there, and it became a challenge so | then started hacking anything
else that was protecteddeveloped quite a high sophistication in terms of

disc based security, which would later be of huge benefit to me.
Others had started on projects which required security:

Al Whi |l e dhbhad thred verg fgresummers working on top secret
projects andhings like thatwhich had a fair amount of security iroit. (P 1 2)

Al did a lot of firmware work on a magnetic stripe card reader ... that had a

number of security featars Edefinitely got thgsecurity] bug ther@. (P4)

Only P1 had decided to learnaalt software security as a career decigiao build

experience and credibility in a new area

[l went out and]l discoveredabout security]: black hats and white hatf]
go and talk to [them], and go to conferences and see what the attackers are

doing

5.3.2E x p e Rdasorigor Continued Learning

A

Looking at the expertsod reasons for conti
consistency; for most it was an informal task in addition to their normal day job, and they

did it on an aehoc basis. Only ® and P11, who work for a global, security aware,
company, received securdtglated training; and P1, in his role as author, assigned app
security learning as part of his normal work. Most kept up to date through a background

task of following appropriatenternet medid Br uce Sc hneGreandds enCaiylp

[19] was the most commonly mentioned medium (P3, P7, P8), or:

AMy work screen has a Twitter feed jus
Whenever | gt to enough of a break that | can glance over I'll take a look at

whatever is currently up there.o (P7)

42

Al | isten to a few podcastsé Security N
Net worko (P12)

Figure7s hows the expertsdéd reasons for their

covered this topic, and thus three of the interviewees are omitted.

Enthusiasrrf

(PP
(FXPLD

>
Knowledge Tasks

Worriesv

Figure 7: Motivation for continued learning

54Moti vating Prlreg@mrammer s to

The following sections analyse the responses of interviewees consulted as experts, rather

than subjects.

The GT analysis showed a key category of
programmer so. This section explores the

programmers; it showed an unexpected disparity between their approaches.

All the interviewees who discussed programmer behaviour stressed that programmers had
a tendency towid security issues and concentrate on delivering functionality. Some
highlighted that few undergraduate level computing courses incorporate security into

normal examples and practice.

ASo for the majority of people who are currently going through variou
computer science degrees, security doesn't really come into it at all, in any
real contexb. (P10)

43

Many correlated general life experience, software development experience, and especially
formal software development experience with ability at softwamargg. They stressed

the difficulty in motivating inexperienced developers:

AWhen I'm talkingo 22 year old phenomenally brilliant mathematician
software developer who has got almost no life experience atalv do |

by

make him care about thingsthaesem uni mportant to hi m?0 (

However the interviewees showed little consistency in their approaches to solving this

problem and motivating programmers to work on security, as follows.

5.4.1Enthusiasm or Worry?
Some felt the motivation for security should bewypwhere the impact of poor security

is a threat to the programmers:

A We 61 | need a mass security event [ca

programmers to take app security seri ol

Other saw it better as an enthusiasm, wanting programmers to beatesaimut doing a

good job on security:

fitrying to talk to my developers about this and trying to come up with
techniques that make them think about it in a way that makes them care about
ito (P5)

This sometimes could also be a reaction to the costeofth wor r yd appr oach

There are too many technologists and guys with sensible shoes whose
mission is to make you frightened, that will make you pay an awful lot of
money, and whether you are Deloittes or Ernst and Young, or whoever,

privacy impact assessmtg on and on it goegP5)

5.4.2Knowledge or TaskBased?

Some represented making systems secure as part of a process, where developers do the

right thing because they are expert and knowledgeable:

44

ASo you are going to have to get developers to understand tarspence,
and the consequences of the code they are waiting P 6)

Others saw the adding of and planning of security as part of the functionality

requirements and thus as a specific task.

AMIi ne i s muc hlneeditrteeworg, i'llgput somethgy logether
that actually does the job, and | will learn whatever | need to learn to do that

And then move on, if necessary. o (P4)

We observe that these external motivators for programmers naturally follow the same
axes as the motivators the experts reulfor their own learningzigure8 shows how the

experts who expressed views are positioned on the same axes.

Enthusiasr‘rf

4Knowledge ‘ Task:
@

Worries

Figure 8: Recommendations how to motivate app programmers

<

55Approach to Teamwork on Secur |

The GT analysis also highlighted a key t
Further analysis showed a key category of team approaches to achiesecapty.

Whilst the experts tended to agree on the importance of this, they differed on best
approaches to achieve it. This section explores their approaches both to teamwork and to
changing the behaviour of those teams. We found a considerable vamiappnoaches,

and have highlighted these in a diagram similar to those in the previous sections.

45

5.5.1Teamwork versus Individual Rigor

There was agreement that team attitudes are very important in creating secure software.
Some experts stressed the commurocatietween and within teams:

AANd | think one thing that werere incredibly good at with [a specific
project], is bringing the entire project team together probably with the aid of,

as well as the formal meetings, some of the more casual discussions over a
beer And so everybody fully understood the scope of what everyone was
bringing to the table and there was never any of the artificial formalities that
sometimes you can get around these projects where it feels uncomfortable to
pick the phone upto somaely@w (P 8)

Others stressed individual rigor, as their primary tool. For example:

Al tend to | ook at things in a stepwise
softwar e, you donoét necessarily have

sufficiently simple stepstha you can see that (P12 obvi

We saw the latter view expressed usually related to single developer situations where

there were no others with whom to discuss security.

5.5.2Changing Behaviour- Influencing versus Directing

Another distindbn that emerged is that some saw their best means for they themselves to

influence the team members as directive, exerting authority:

A | had success [by] whacking t,lsgeakingppver t

metaphorically.
Others saw their rolesanfluencing, questioning and encouraging:

A[l] throw out a few 'what ifs' you know, what if | did that, and get somebody who is
aware and will have an understanding of what you are suggesting, and they will counter

with a sensible responge.P§).

Figure9 shows these two contrasts.

46

InfluencingA

Directivev

D v >
Individual Team
rigor communications

Figure 9: Expectation of team interaction

Though one might expect the chowd

authority in

t he

i nfluencing

organi sati on,

role gave him authority and P7 was referring to peers.

56Approach

In terms of knowledge @&nsfer and implementing app security the GT analysis showed

t wo Kkey

reactions;

was also a surprising disttion on which counterparties the experts considered: potential

and

t o

6whol e

| mpl ementi ng

vV S

c a tbeogxo r 9 eecsur idtyioc,k whi ch

directir
n fact t h
Secu

evoked

b

system securityo,

attackers or project stakeholders such as product managers. These were more nuanced,

reflecting differences in emphasis.

5.6.1Checklists or Whole System Security?

Some experts preferred a cheésklexcellentcoding attitude to security:

A Ch e c kthink are¢ vgonderful things. And if they are Why, How, What,

Where, When, not just 'doesiifit's not justa'yes/nof t 6 s

goes, in what way have you done thigR5)

a

checkl

The exper expressed concern even about programmersiowappreciate the need for

security This is most typicalof programmers workingn projectswith regulatory

47

st

implicationss uch as t he Oarud,o @&W\N)slded fv prisacydpsC
developerdn that situators ee t heir obligation as O6sat.i
ticking the boxes on a |ist of &é6things th
to implement a secure system for the sake of the users and stakeholders whewiil suff

the event of a breach.

Perhaps that is why [learningitty gritty detailsof codingfaults] is popular
T it is relatively easy to read about in half an hour and say 'l understand

what a buffer overflow i I'm not going to do that anymore' (P6)
Manyinterviewees stressed the importance of various aspects of Whole System security:

fil would just wish that education was better and that developers understood
about separation of code and data and S
of computer securityynd understood the background more and focussed less

on the top 10 vulnerabilities what they happen to be this year. (P 6)

5.6.2Concentrate on Attacker or Stakeholder?

There was an interesting distinction as to whether the emphasis was more on potential
attackers, or on stakeholders such as product managers. Some emphasised the importance

of understanding and reacting to different kinds of attackers:

AYou also try and understand why someor
first place And try to give the what they want up front, so they lose interest

and go away.o (P9)

Others emphasised the importance of negotiation with stakeholders on what security was

put in the product:

[When | starteda projectt 6d go back and hewséur¢ my cust
do youwant it to b& {P1)

Figure10shows these differences in emphasis.

48

Whole systemf

< >
Attacker Stakeholder
profiling negotiation

Checklistv

Figure 10: Preferred approach to app sectity

57Summary and | mplications

This chapter examined findings from our interviewees related to the research questions

RQ2What motivated the experts themselves to learn software security; how
did they do so; and how do they continue to I8arn

and

RQ4 How should we effectively introduce security to app development

teams?

Related toRQ2 we observed in sectidn3 a variety of different motivations for the

experts to learn and continu@taing software security. RelatedR@4, we observeth

sectionb.6a lack of consistent emphasis on different secure app development techniques,

and we observed in sectidn3 notable differences of opinion on how to motivate
programmers to security, as highlighted by the spread of the poifigime8. Section

55s howed even stronger contr asftigueb,ande x per t

their approachestapp security ifrigure10.

The authors had experienced a similar lack of consistency in the early days of both the
object oriented design paradigm (OOD) and thdeAdevelopment paradigm, each of
which in due course converged into well accepted approaches: around UML and Scrum

respectively. In the early days of each there were many good ideas and many experts

49

championing different aspects of those ideas; the cusiumation in secure app
development has a similar character. This suggests that the discipline of app development

security is still at an early stage.

The convergence around UML and Scrum led to greatly increased programmer
acceptance and knowledge of O@i Agile development respectively. We suggest that
similar convergence in app development security will lead to greatly improved
programmer knowledge in that area. Looking at the history of object oriented design and
agile development we believe two stepre likely to lead to this convergence. Firstis the
codification of the main principles by welkspected experts in a popular form: a book,
online resource or even video. Second is the championing of that codification by one or
more large commercial ganisations. Microsoft and Google are likely contenders, but
both are tainted by their commitments to specific mobile platforms so it remains to be

seen which organisation may champion a global approach.

50

6l ntroducti on t

Security

This chapter introduces our findings from the interviews on good strategies for
programmers to produce secure app code. It discusses the method used, and theorises that
eachstrategy represents a form of dialectical interaction. To explore these, it introduces
three personas representing different types of programmer, and outlines the strategies

themselves as a set of named techniques.

6.1l ntroducing Dialectic

This chapter exameés findings from our interviews related to the research question
RQ3 What are the most effective techniques to deliver app security?

Grounded Theory emphasises the creation of theory from data; the theory generated
should cover the greatest variation in the data. Our initial GT analysis ofribertbed
interviews suggest ed tbhoaxtd osuerc uerxipteyr ti smpcloine
like EMV to be insufficient and were proposing an approach to programming security

that affects the full development lifecycle:

So implicit in [conventionahinking] is the notion that programmers decide
what they are doing in code, which, to a degree,iyiess how you might

implement an algorithnin but the single biggest fault around that is, not

51

around that qguestion, but aor poitu n d prog
something in place without them understanding the greater implication. (P9)

Our initial analysis therefore suggested that the experts were providing taxonomy of
owhole system securityd technigques suita
inspecton we found that the interviews contained little mention of important parts of this

taxonomy: for example devising mitigations or using checklists of possible errors.

|l nstead we observed that the core thheme w
external parties. The word oOdialecticd he
review, penetration testing, and automated tool review aspects of good security practice
[107]. 6Di al ecticd means the finding out of
through one person questioning another. The dialectical approach is best known as the
technique used ke Greek philosopher Socrates in his dialogs; the reader may explore

it in more detail from the extensive Wikipedia page on the suljj26t. It became clear

that the friendly adversarial approach suggested by this tererscmost of the other

aspects stressed by our interviewees, and this led to us categorising the relevant

techniques as d4Dialectical Securityo

It was not hard to work out why dialectic is valuable. Programmers have to think what
approaches an attackeigmt use to gain benefit from the system they are producing, and

then to decide what to do to thwart those approaches.

Yes, the question is 'who is the attacker, who is the bad guy, who is the threat

model you are dealing with?' (P3)

This is very different from 6normal progr
a good way to achieve a given set of functionality (as suggested by, say, Jackson et al.
[57]). Thereis very little in normal programming about dealing with the attacks of

unpleasant and possibly unwashed crooks.

They are very devious; there are exploits that they have realised which are,
well, you wouldn't really think like that if you were an engin@)

®This has no connection WwiitsinéMamwhioste @Divalr esatriyc d I

history.

52

The people who seem to be good at it (P9, P11) take a delight in the battle. Most
programmers do not enjoy battles, being typically introverted and preferring cooperation
[99]. Dialectical Security, however, gvides techniques to take developers (whether
developers, testers or other team members) and challenge them to make them think in

ways that make for efficient security.

6.2Documenting Good Practice

Since we are documenting good development practice, weaiseat derived from the

most effective way so far discovered to document programming and design practices: the
Opatterndé fod42nat Thee a weiparerncda usiogwatterns for

teaching and learning has led to modification to that format. He has given a number of
seminars based on §78mhitially heviesed ahe goaventicendl t e r n
pattern approach, in which he described an abstract problesniext and forces, and an
abstract solution, and then moved on fr
implementation notes. He found that this approach was difficult for programmers to relate

to, and correspondingly saw little engagement. So he trikifieaent approach, which

was to start with a specific example of a problem with a very specific solution; that is

easy and concrete for programmers and technical teams to understand, and seems to be
what they enjoy. Following that it was straightforwtraviden the scope into something

more | i ke the pattern form: fAwhen you t hi
wi der probleméd Then, grounded with the wu

the audience would follow the more abstracsoeang very happily.

We deduce that adopting a similar approach in writing will also lead to better
understanding. Accordingly, to make the learning in this section easy to follow each
description here starts with a concrete example of the full techniglienaves out to
explore wider implications. Each therefore starts with a particular illustration of both the
problem and how it was solved, then generalises it to a more general problem. It then
discusses a recommended solution to that problem, and eéhdkseussion of aspects of

the technique. The context is the same for all these techniques: a development team or
solo developer working to produce and support a softlvased system.

53

6.3 Types of Programmer Discussed

To bring the discussion to lifehis chapteru s e s t h r e eompgogtemasaadensa s 0 :
who illustrate the issues being described in the interviéivs.use of personas is well
established in software interaction design, as discussed by Pruit and @6[din
Microsoft has also used personas of software engini@dis Faily and Flechai$43]
introduced their use in security researcteating the CAIRIS tool to create personas

representing the security attitudes of software users.

The personas described hare not real people, nor composite representations of the
interviewees. Rather, they are typical of people described in gwwigws,the people
with whom the interviewees work. The personas are Jane Solo, Rob Youngcorporate and

Jo Socialnetwork.

6.3.1Jane Solo

Jane Solo is an example of an isolated programmer. Two of our interviewees (P1, P12)
were themselves isolated programniettsough unusually securidgware ones and this
persona is based on their narratives and those who have worked with people m simila
positions (P5, P9). Such programmers tend to be highly motivated to improve their skills,
as found by Enelgl0], but unaware of the issues around security and privacy.

Al't's not that [programmers] have passe

that it is unimportant they justdotr eal i se t hatP5i t i s i mpo

Personai Jane Solo

Jane Solo is an experienced app programmer. She works on a contract basis,
sometimes on her own doing eperson projects for customers, sometimes wor
with teams of other app developérsither remotely from home or in their offices. H
projects tend to be technologically quite interesting: combining beacons with
media, for example, or creating NFC hand scanners for baggage operators. W
does nothave contract work, she wk& on improvements to a game app ths

produced and sells via the App Stores.

Janedoes nothink much about app security in her projects. Her clidatsotworry

much about privacy or app misuse; they tend to be inexperienced in the app wq

54

rely on experts like Jane talvise them. Jamreads about issues like the Oice of
Personnel Managemelatss of personal details and the Edwand\®den affair, but
knows they are the result of security leaks from large servers; she is not writi
serve code, so they are not close enough to home for her to be concerned abo
She is, though, highlgnotivated to improve her skjlher career requires her to fif
new work often, and every relevant skill she can develop increases her salea

new employers.

Jane is unaware that her lack of interest ingigocould come with any costsh&does
notknow that her reuse of credentials in her game allows hackers to see all the
along with sensitive information related to the8he does ndinowthat the app she
producing for her employer collects credit card information in a way that can b
by malware on the phonéndeed it is unlikely either issue will cause her or
employer any embarrassment any time soon: eveedit@arddetails are stolen it Wi
take the card networks a long time to work out it was her app that allowisthviever
Jane does care very much about her customers and about thefpeagiom she
produces the appsshe is proud to be doing the best for thamd wouldnotwant to

cause them any harm.

6.3.2Rob Youngcorporate

Our second persona, Rob Youngcorporate, represents programmers working for
companies with a significant software development capacity. Such companies may be
aware of security issues arounditim®emmercial software generally, but will generally be
unaware of the specific implications for app development.

P6, P8, P9 and to some extent P10 were all discussing programmers in this kind of
organisation. While the interviewees themselves havergstrederstanding of security
issues, many of the programmers they will have worked with and continue to work with
are less well experienced, and may not have the resources and infrastructure to find out

about security issues.

Personal Rob Youngcorporate

Robert (6Robd) Youngcorporate worKk

service: insurance. The company has looked at what the competition are doi

55

concluded they need an app. Robert is two years out of university and confider
abilitesand heds happily taken on the |

app.

To get started, & produced a list of topics he wdulave to learn up to get started
the app. Naturally learning about mobile development languages and devel¢
envmnments came top of the | ist, ang
course on the subjedile ha also learned a great deal from his colleagues abo
compan s systems and wdllbe ifidgratimngHoweverdalsg
realisedthat for an app dealing in money there would be security implicat
Accordingly heread the mobile OS manufacturer websites, and looked into the
standards for apps. This second line of investigatidmotget him very far; EMV hac
notproduced stadards for apps at that time. So he read the OW#&Ppagesnthe
10 major app issuegd 20] instead

Rob believes he has 06cover edoésnskeow that
heds wusing one of t he payment pl u
informationt o a fil e on the phone, nor th
process would be open to a fairly simple brute force attack, allowing a phone t
|l earn card payment details from the
ceriainly wouldnotwant such problents become public knowledge; he wdallso be

concerned about the effect on the individual users.

6.3.3Jo Socialnetwork

Our third persona represents the minority of programmers working at organisations that

are well aware ofsecurity and privacy implications and consider if part of their

commercial offering. Both P3 and P11 work for companies similar to that described; P2

and P7 work for other kinds of companies that are also very experienced in software

security; and P5 builup a high level of security expertise in his organisation. The

discussion of these interviewees was mainly about the best practice approaches they and

their companies have developed.

Yes, so [my company] has a strong culture of code review, nothing gets
submitted without it being reviewed by at least another engineer. And there
are strong processes to protect that fact. And there have been a number of

56

times when either in code review or design review, designs have come in, and

| have beenabletogo'Hamgn a mi nut e, | ook at t

catching those things in code or design review before they go out, so we don't

reveal [damaging personal information] any more. It's the sort of thing that a

security mentality helps with. (P3)

Personai Jo Socialnetwork

Jo Socialnetwork works at a large sogiatworking company. The company has b
around ten years or so and has miiohusers, many of them paying. They have s
their competition stung by security and privacy breaches, and had ane afrthem
themselves. As a result, the company takes both software security and software
very seriously indeed. The company has a strong corporate culture, and
programmers know 6the way we do t s
through documents, and through reviews and project retrospectives. Jo has be
company over a year, and knows exactly what is expected by way of privaq

security.

Everyo n e oprojedsetdrts with a review of possible security and acly issues
and a discussion of possible exploits that might be undertaken against it. Thro
the development Jo knows that she can at any time request a security review or
concerns about security issues, and these will be taken seriouslyteshdipan. Shg¢
and her team are encouraged to think up potential problems, and rewarded for
security and privacy defects. Before Jo's code is released, it will be review
someone with experience of software security, to reduce the possibikyar§.
However, these rarely happen at release time, because Jo, like her colleagué
good understanding of security issues, and she regularly calls upon colleagues
in any doubt.

57

hi

S

64The Techniques of Dialectical

The followingsections describe six techniques of Dialectical Security. The techniques

are:

Brainstorming the Enemy Ideation sessions working with stakeholders
penetration testing expedad otherso derive possible

attackers and attacks on the system

Commercial negotiation Communicating security decisions in ways th
stakeholders can understand, to prisgithem agains

other requirements

Crossteam security Effective communication with other development tec
discussion to ensure security
Security challenge Using professional and 4team security experts fc

codereviews and penetration testing

Automated challenge Using automated tools to query possible sect

weaknesses

Responsive development Gathering continuous feedback from the use of
systemand responding with continuous upgrades

interactive defenses.

In mapping these techniques, we found that unlike many collections of software security
patterns, such as Schumacher efSdl], these do not break down as steps toarged

out as part of a process, nor do they form a hierarchy. Instead they characterise
themselves in terms of the source of the challenge to the programming team: other team
members; tools; other roles in the software development process; and erahdgbes
consequences of end use. In each case, the dialectic can continue throughout the
development cycle, and in each case it is alwaystay the increase in security comes

from the interaction with the challenger, not from a passive understanditige of

challenge.

Figurellshows how the techniques relate to different counterparties to the development

team. Ovals are the techniques; arrows show the most impateraction for each. The

58

illustration only identifies the key counterparties for each interaction; the other roles are

involved in most of them: for example Trading Security Requirements would normally

include project management and software architectgel. Note that in Brainstorming

the Enemy the major source of the 06di
is shown with a double arrow.
X Security experts &
Product management Pen testers
Negotiated Security
security challenge
o® @
Automated W Brainstorming
challenge the enemy
Dev and test tools Deve|opment team
) Crossteam
Deployed software in use Other development team

Figure 11: Techniques as dialectienteractions

Note that we do not have evidence to claim these techniques &esttezhniques for

achieving security; however the statements of our interviewees certainly provide a strong

indication that these agoodandeffectivetechniques.

59

a l

e C |

/Teches gaf DI al

Security

This chapter explores each of the six techniques of Dialectical Security as séctions
through7.6, discussing when each is suitable and how it is carried out, and illustrating
each with examples using the developer personas.

71Techni que 1: Brainstorming th

o2 0
XW Brainstorming
the enemy
Development team

A @e of the things | like to do withe [penetration testing] guys to, if you
sit down and say 'what are all the different ways you could subvert this
system'lt is quite common to come up with 20, 30, 40, 50 in five or ten

minutes of brainstormingd bet you, you wouldn't think of half of thém. (P 2)

7.1.1Example

Jo Socialnetwork recently started a new project with her team, implementi
enhancement to the payments collection functionality to support payments via R

As she started, she realised bBhae a problem: how can the team implement secur

60

they do not know against what they are protecting? So as they started the projeg
the first things they set up was a haify session with the team, penetration testers
product manager aral representative from PayPal to understand what the attg
might be, their motivations, what they might be after and how they might typical
it. Of course, they had the lists of similar considerations from earlier implement
of the payment c@édction functionality and they used them for reference. Base

these lists they brainstormed a new list of possible attacks on the new system

7.1.2Exploration

Any system can be broken with sufficient determination, ingenuity and resources.

Every securitgystem can be broken. Period. There are even ways of getting
the certificates off a phone, by freezing the phone and reading the memory.
There is nothing you can do to stop a truly determined person to getting in,
short of dropping it into a nuclear furca. The best you can do is make it
difficult enough for them, that they will lose intereshat it's not worth the
trouble. (P7)

| quickly realised that no system is ever unbreakable (P9)

Secure app development is therefore not a matter of making aatetyglecure system.
Instead it becomes a question of which defences to put in; where one should spend the
time and effort defending the system to deter the largest and most damaging potential

exploits. Making those choices requires an understanding pbteatial attackers:

| think it is actually very important to understand the motivations behind why
somebody is hacking the system. We try to address the motivations of the
attackers, versus the technical aspegtsst locking it down for the sake of
locking it down. (P11)

It also requires an understanding of what attacks they might make:

| think the things that are the most challenging around security really are
trying to understand the threat landscape and trying to understand how

threats are realisedP2).

61

Thinking about: where could this go wrong? That is the thing the people just
coming out of university don't understh don't think about iwhat are the
attack points of this particular code, what are the failure points, even more

than attackpoints, because anything is an attack pofR7)

Neither attacker profiles not attack descriptions, however, are conventional knowledge
for an app developer. So how do they best obtain them?

7.1.3Solution

Identify both attackers and possible exploits in twapst The first step is to create
profiles of likely attackers. This means querying experience with similar products,
discussing with others in the industry, and consulting experts. The attackers may not be
the obvious ones:

There are clear reasons why same would want to attack a bank, but
actually the real reasons for attacking a bank are very seldom to do with
trying to get financial rewards. It is much more around what information you
can get about people. Banks hold information about people. Safit]

a private investigator who is trying to track someone, or a hostage situation,
where people might have done things, or simply learning more about
behaviour. (P9)

The second step is to use brainstorming sessions for attack profiling.

| was involvé in a lot of conversations about trying to think about doing
really evil things, so | think in order to protect people from harm we have to
think about how harm can be done. So, bistiorming bad intent is part of
the life, really. (P5)

These brainstormg sessions include people with different roles, especially testers,
penetration testers, app security code reviewers and security specialists. An excellent
concise recipe for running them is in th
0Get tYen$dd],t onhose chapter Ol nvent Options f

by-step prescription for an effective brainstorming process.

62

Particularly with development teams using agile approaches, this ideation process
cortinues informally throughout the initial development project, and into the subsequent
deployment and later lifetime of the product. The most seecajpable teams included

attacks and motivations found in the course of deploying the app, or afterwards.

The other thing, is é& [to] reward proac
that: trying to think what could happen next, how could it go wrong, what am

| missing, but then the next level of reward, is rewarding people for research.

And thinking abouhow to do harm. Actively encourage them to think like a

hacker. (P5)

7.1.4Discussion

Even an apparently innocuous product may be under threat:

The only question is are you, as a tal
very much the entire world's permutatsoof life, because you might be

selling flowers, why would you be a hacking target. Well, if it is a spotty

faced teenager wanting to know whether his girlfriend has had flowers

delivered that he didn't send, then you have information, and now there is a

reason. (P9)
There are tools available which may help

Microsoft have a threat modelling tool, which they make freely available, and
it is actually a really nifty thing that you can draw a data flow diagram of
your system and it provides a framework wheregan think about what are

the security implications of this bit of flow and this interface and what are the
other security domains. (P6)

Of course the degree of formality and effort involved depends entirely on the context. A
solo app developer considagithe privacy implications for a new game need not
probably worry about a very formal approach; a development team producing a social
network extension for a banking application will need a formal documented record of the
threat motivations, personas invetl, identified potential exploits. Moreover, the latter
will need to be correlated in due course with the proposed risk analysis and mitigations

and extended throughout the lifetime of the product.

63

There has been some work studying the use of brainstpeaasions in software. Shih et

al. [95] looked at the use of brainstorming at Microsoft, and highlight some of the
problems to avoid. Dasht i g[@hdéscribessprotdgss p ap
of finding possible security exploits, which reads similarly to this Brainstormed Profiles

technique.

64

72Techni que 2: Negotiated Secur

o® 0 ®
XW Negotiated x
security
Development team Product management

For businesses it is a risk based approatil they need to understand and

neitherfmanagement nor programmersfould be caring about actual nitty
gritty detailsof coding which is just an artefact of the whole thi{iRf)

7.2.1Example

Once Jo Socialnetwork had the list of issues from her first Boaimgng the Enemy
workshop, she found the team could have enough work implementing mitigati
keep them working well past the planned product delivery date.

That clearly was not acceptable, so she and the team then used the profile
attackersath her teamds experience to est

the possible impact to the company of each. This required discussion with the
manager, security and risk specialists and occasionally more senior managem
as a resulthey decided to ignore some of the identified issues altogether. F
remainder, the development team then had sessions thinking up a variety of f
Omi tigationsd to i mplement for e a(

development cost farach.

Jo therdiscussedhe lst of attacks, impacts and possible mitigations with the pro
manager Basedon that, the product manager and senior management then
calculated riskbased deisions comparing he o6val ued of e
business against the value of other enhancements: functionality, performance
like. Since they use an agile development process, the implementation
Omitigationsd, where these were in
implementedn due priority order relative to worlAs the project continued, and t
team identified further possible attacks and mitigations based on feedback from

users and others, these too were prioritised based the associated risks.

65

7.2.2Exploration

Merely identifying the possible attackers and exploits does not of itself deliver app
software security. The need is to prevent them causing significant damage to users,
stakeholders or others. To achieve that, a development team takes the list of possible
attacls, and work out possible mitigations for each. These mitigations will each have
costs in development time, commitment, finance and sometimes usability. The team can
estimate financial and other costs for each. However the decision of what aspects of
securty to implement is a commercial one. Implied in every decision about software
security is a tradeff of the cost of the security against the benefit received. Every
security enhancement needs to be weighed against other uses of the investment (financial,

time, usability) required. For example,

[Costly devel op mesnitabledopeglat af startipseAnd ar en 6t]
the same goes for security. Youbre goin
upfront.(P1)

How, then, do the developers make the decisitnich security enhancements to

implement?

7.2.3Solution

Interpret the security risks and costs to stakeholders (project managers, senior
management, customers) in terms they can understand and use to prioritise security

concerns against other organisation arajget needs.

[When | started]a projectl 6d go back and awdo [t he cu
realise this [information)lca be seenad. | How spcueeslo f r om t h
youwantittobe ¥ ou have to show that o0thereos
(P1)

It is hard to oer-emphasise the value of such interpretation. Many of our interviewees
made the point t hat 0 sexwity isiwhay thei users ramdt an
stakeholders need for a particular situation at a particular time. For such stakeholders to
make a god decision on what they require requires particularly effective communication.

The stakeholders will be making cost benefit trafte comparing various business risks.

66

You've got to put a weighting on the threat. You've got a level of threat, and
you'vegot to put the appropriate level of security against t(fa4)

There are techniques available to give objective assessment of security risks, such as
work by ben Othmane et 480]. Vitally i and several interviewees stressed thise
costbenefit tradeoffs mean that perfect securigven if possible, would rarely be a good

business decision:

And actually the way this works, in practice is you have to do less than a
perfect job, in order to have a measureable degree of failure or fraud or
whatever, so that you can adjust your invesitrand sayd am managing
thistoan economi c a becayseifitisazerb, gowaheaenvestédo
too much. (P6)

For simpler projects and systems, there may not be sufficient engagement from
stakeholders to be able to do this kind of traffe in that case it becomes the
responsibility of the developer:

[Of t en i t i getsignofpoosscsirityin & kg company and so the
decision is usually down the developer
in a small company may jubethe samp Customero f t en dondét have
view. The important thing is making the decisi@)

Given that each mitigation now has a cost and benefit, the decision on whether to do it
becomes part of standard project management process. It is outside the scope of our
theoryi and indeed of the topic of software secuiitg explore how these decisions are
made; the balancing of risk cost and reward is a well understood aspect of business life.

And it has to be a bit of a fwottade off a
make the trade off as to whatoés good fo
having one available in a year6s ti me

everyoneods gone with one whi@®mR) doesnodt

There has to be a systéewvel thinking going on about where you do certain
things and might not do certain things but you ultimately have to think [like a
risk managelr (P5)

67

7.2.4Discussion

Interpreting a threat to a nggrogrammer involves putting it in terms that are meaningful

for them:

| think you normally phrase it along; you do realise this [information] can be

seen. It goes from there: how secure do you want it to be. You have to show

that thereds a problem first | think, t
ofdataat he moment, at the way itoés going t
of person would be able to see that. Are you happy with that? From there you

go to what other data is ther@?1)

It is important to use language that is appropriate to the problem; phrasei & é

insecur& can actually hinder, not help, c¢comml

Half the time you're going to be a bit careful about what you say because
obviously if you say something like 'the keys are inseicareaning insecure
from the point of view of sonk@PS attackeii then you are going to freak

out somebody who is just trying to install a lock on a bike shed. So | think you
have to get the right perspective there. The threat level and the information
level, and again, | don't really want to hide anythitige number of things

I've seen go pear shaped because somebody has said sgnsaibid like

'it's insecure'. (P4)

Estimating the probability of a threatan be surprisingly straightforward, in the
experience of the authff08. One esti mates as Ol owdé, O me
probability of each exploit, and also for its likely impact. Though crude, this gives
sufficient information to reason about the attacks. For example, if one is creating a game
app, it is unlikely that the hacking departments of major nation states are going to be
esecially interested (unless youbre buil di

sophisticated attacks is low.

Within simpler projects, the act of thinking through mitigations may itself be valuable

even without negotiation:

I certainlywswduwmlrdnabst sgaoyi ng t hat every

absolutelyfor even] sufficienth s ecur eé |1t 6s that for the

68

an idea of what the risks are so if there is something which starts to need
mitigating, | can think about mitigating rather thart [oeing an open
problem].(P12)

The discussion of the value of implementing a mitigation needs to take into account that
some are more effective than others are. Mitigations handling general problems are more
valuable than fixes for specific issues; Pldvmied an interesting overview of how his

team approaches the problem:

And basically our team has four primary godfier mitigations]: exploit
mediation: we try to make it so that even if there is a bug that you can't do
anything bad with the bugxploit containments, so we recognise that people
are going to get through our mitigations so let's try to make sure that that is
appropriately contained; attack surface reductions, so from a security point
of view, if you can't reach the code, well themld be a bug but it is
useless; and probably more relevaete to application developersafe by
default settingsso we make it that you have to go out of your way to

introduce a security holéP11)
P11 also pointed out that the solution to a securégkness need not be in software:

And the analogy | use all the time is: if you look at the world, you and | are

both vulnerable to Ebola; we are not immune to it. If you were exposed to

Ebola, you would get infected by it. So you have a security vuitigrafou

have a medical vulnerability; | have a medical vulnerability. Yet the medical
industry and the newspaper industry and
articles that say 100% of population is vulnerable to Ebdlad why?

Because the medicatdustry has concepts of quarantine and are able to

control populations, control the propagation of diseases. They have defence

in depth; they have for certain diseases like smallpox this concept of an
inoculation, a shot(P11)

Indeed many organisations@pach the subject of risk (of which security risk is one

aspect) as a discipline in its own right:

69

Have you eveworked with a risk manager, r@ally good corporate risk
manager ?se guys a&rk @art mathematician, part bookie, part

process/problem solvgP5).

One approach to expressing risk in a way that is useful and meaningful to stakeholders is
to express it in terms of whether the risk is increasing or decréaamgpproach used
by William Brandon currently CISO of the Bank of Englafit1]. One can speculate
that this works because stakeholders usually have a view of the current risk levels as
aaceptable or unacceptable, and can therefore reason about the results of them improving

or worsening.

It is important to remember that this is about the calculated estimate of risk. The fact that
an unlikely bad event subsequently happens would not int@laalecision not to
mitigate against it. The original decisio

information gathering or faulty thinking.

[Following the decision to ignore a riskihe important thing was that you
pointed out the risk firstso whenti happened you just go 'yes, it sva
commercial decision, move olt'is in your risk log, and it is agreed upon
it is understood(P8)

One aspect of Negotiated Security is that it may turn out to be appropriate sometimes
to pay for security; unsurprisingly the total need for security may turn out to be less than a
purist security expert would expect. Equally it is important to present the security budget

as a positive aspect:

There is a budget for security that every camp must have that budget

has to include resources that a hard core manager would say are stolen from
you, a more enlightened manager would say 'it's the tax on not being

attacked'. Giving those resources to your attackers and playing the game,
you havegot to keep them amused, you can't just give them tg themn

want a reward of some sort, they are after something, so you have to play the
game with them. But that is the cost, that is your budget, and there is an
element of network capacity, there i @ement of disc space, there is an

element of servers, there is an element of security specialists, there are the

70

managers and the monitors. All of that around, that is part of your budget for
security, if you don't have that, you are going to fall fafuhacking (P9)

Finally there are some perverse incentives against security, highlighted by P6, which
begin to give some idea why software security is often seen as less important than one

might expect:

George Akerlof is a Nobel Prize winning economist] ae wrote a paper in

1970 called The Market for Lemoj#§, and what he was talking about was
used cars in Americ&o, you buy a esl car and it could be a peatHittle

old lady drives it to church on Sundays, or it could be a lemon, which is
going to go wrong next week, and the consumer cannot tell the difference. So
the economic consequences of that, is that, as a vendor, youheeep
peaches, because you can tell the differed@nd you sell the lemons, and

over time, the consumer comes to expect more and more lemons, so they are
willing to spend less and less, so it ends up being a race to the b&tiaofm.

there is some produettribute that the consumer cannot measure, you tend

to get less of it over time because there is no economic incentive to keep
putting it in. And security, sadly, has a lot of that aspect. If | buy a product
of f the shelf, | woaganty saag fihhat oareba:c
just going to pay the value of the one that hasn't. And therefore there is no
economic incentive for the manufacture of that product to build in any extra

security, because it's not going to get them any more $BI&s.

Moreover the straightforward commercial incentives are not always as clear cut as some

security proponents might suggest:

| looked and again there is anecdotal received wisdom that lots of companies

have gone out of business because of security breacllasisgnst not true.

| found two, only two, ever, that | could find that had gone out of business

due to security breaches and one of them was DigiNotar who were in the

security business. They were a certificate authority, so they clearly did go out

of business when their fundamental offering was broken. And the other one

was €& an | SP in the USA, and é they wer

entirely based around Amazon web services and the attackers compromised

71

their keysi basically wiped everythindhéy had on Amazon web services,
and they had no other back up of their systesm it completely destroyed the
company. It was bad computer security yes, but the fundamental thing that

put them out of business was that they didn't have any ba¢R@)s.

73 Te hni g@QreoBsam Security Discuss

Development team Other development teams

Crossteam
security
discussion

And | think, €é [what was very successfu
issues and mitigationg] the working incredibly closely as a team, and just

having very open discussiow#th cards on the table and removing the fear

around discussing aspects of security which, | often find in project meetings,

people don't want to bring up because they feel they don't want to expose

their own domain. (P8)

7.3.1Example

Rob Youngcorporate hadedtified several security issues he knew his product w
need to handle. He knew he would need an authentication process for each use
using the app, and some form of O6qu
be a riskeoWMi @ddMaedi (@Mt hiM) attacks o

i nsurance companyods back end servigg

So he discussed the problems and the potential security attacks he had identif
the User Experience team, and worked with them to identify a siitayl to give the
user this Oquick authenticationdo [
example). He also talked a good deal with the implementers of the back end s
agreeingHTTP® ased secure protocol s aendd ahi

such as trying thousands of possible passwords for a given user.

72

7.3.2Exploration

Many security issues span a number of teams: development teams, operations and even
marketing or publicity. Thus there is a frequent danger that security problerasfcan! |
bet ween two stool so, remaining ignored b

responsible for the problem.
The problem is exacerbated if the development team are not natural communicators:

| had a core technology grouwp who worked for me, and the guys were
double firsts in maths from Cambridge. Incredibly bright guys: appalling

interpersonal skills(P5)
And sometimes by organisational politics:

You get teams of people who are perhaps very protective of their platforms,
because they own the syst and theyre master othe system, and they
want it to be seen as a golden systemQu i t the pedplée representing

the system are perhaps one step removed from the real-bartdshied

they are generally a manager, who ultimately becomes assdaiath this
platform and they feel that their role can be at risk if that platform was ever
to be undermined and another platform selected over it, so they wouldn't, by
default, become the owner of that system, so the silos beconegdeiting

but itis very difficult sometimes to know whether you have actually been
delivered all the factqP8)

And also if teams are effectively separated bytimeh ey 6r e not wor ki ng ¢

the same time:

[There is a big]difference betweethe operationabnd project approaches.
[And security is the one real thing that is not going to get handled by that
handove}. That is a real challenggP8)

7.3.3Solution

Ensure frequent and open communication on security problems in any way available.
Bringing members of #éndifferent teams together on a social basis encourages that kind

of communication:

73

| am a strong believer in the social aspect éf it think if you can bring
people together physically on a regular basis so that you can get to the stage
where people ardiscussing family, friends with each other and everything
else, it breaks down a lot of the artificial barriers that are théré.do think
co-location was key, and we would regularly come together, we would share
a whiteboard and we all had the same viefathe world. Openness and

transparency | think it makes a huge difference. | really @@8)
So does encouraging informal communication on technical issues:

[Of a successful project] guess we were working with a team who were
experienced but also erybody who was close to the project, lived through
the project life cycle to delivery, were very comfortable picking the phone up
to anybody else and discussing any aspect, and everyone reported b&ack quit

openly what they were seeimdpen we came togethg€P8)

An effective but very different form of communication is the more formal documentation

of responsibilities. One straightforward
identifies the security responsibilities of a given team. That lgghlt s wher e oOf
bet ween two stoolsd problems may happen,

development process introduced by the auth@8].
Where multiple organisations are involved, this may even be contractual:

We have got in our contract with [our development company] a definitive list
of things that they will have failed to do their job if they haven't protected
against these types of attacks. When we find a new one, we try to write a test

for it, we put it into the documeri?%)
74Techni que 4: Security Chall en:

Development team Security experts &
Pen testers

74

A Mthing gets submitted without it being reviewed by at least another
engineer And thereare strong processes to protect that fact he most
successful technique has to be revieatsecurity]experti you can't really
beat thali an actualconversational review by an expert, because someone

whois an expert inacurity might not be an expert in the domai(P3)

7.4.1Example

Jo Socialnetwork knows how to ensure good security with her code. It is built in

very processes and mentality she badcolleagues use in their development.

First, any time that she or any of her colleagues may have a concern about a se
privacy issue, she knows anyone can flag it to the project manager who must

immediately set up a review with the appriate people from the security team.

Secondly a | ot of her work is pairtr
each other questions, including questions about security; just as they help and

each other to handle all of the aspectsoafed especially security and privacy.

Finally there is a lot at stake for the company, so she knows that, as part of the
process, all of the changes she produces will be reviewed by a separate secu

before they are made live.

7.4.2Exploration

't i s notoriously diifcf.ifc.ulMe yteor ssop oRPtr ionnceiops!
Testing[73]. This is especially true when the errors are faults in complex reasoning, or
are due to misunderstandings. A programmer workingisdlkely to create avoidable

security problems, just because they can naturally have only one point of view.

So it is very easy when you are trying to deliver something yourself, as a

developer, to pass over the bit that you are not d{#tg

This problem extends to programming teams; a team, too, will always to some extent
suffer from é6groupthinkdé; the need to gen

danger that that understanding may include misunderstandings and blind spots.

75

7.4.3Solution

Setup the development so that each has another person or team with a different viewpoint
challenging the security and privacy aspect of assumptions, decisions and code.

There are several common ways of arranging this within a typical development process:

pair programming, security review, code review and penetration testing.

Although not normally cited as a security technique, Pair Programming gives the
developer the benefit of external questioning; it also enables a programmer to handle
more complexity duringhe programming process; two people can keep track of more

issues than one.
Two heads are better than one, more eyes on the pro(&mn.

A security review of the design, technologies and protocols of a system, by an
experienced secure software expepagicularly effective, and also helps developers to

learn more of their code bafg9].

There is a separate Security Review systnif you are doing codéat
impacts security in your judgement, it goes to people who are security
experts who will do the security review and they findf.sfu And anyone
involved can say, ' this needs a security review'might be the product
manager, who is representing the user, it might be one of the software
engineers who is writing the stuff, it might be one of the code reviewers who

is reviewing he software(P3)

Sophisticated organisations may even separate the security and privacy concerns

completely:

There are also Privacy Review ProceséesAnd again you go to Privacy
Review, and they say 'representing the user and their control of dat#j shou

we rel eé8e this?0

For a cloudbased system, the widely accepted way of ensuring security is Penetration
Testing, where an external oOwhite hatodé se
to attempt to gain access or disable the service.fTHee n f eed any O6succe

they have found back to the development and operations teams.

76

[Ensuring that the teams thdt 6 working with produce secure softwhre
tends to get handed off, in most companies I've worked with, to ahalite
hackingteam.[They] don't do itat a code level(P7)

At the operating system level, one can also penetration test a mobile device:

fil think theone [approach]that has been, arguably, most useful has been
using specialist external consultancy aroundwsy. Not for training, but

Ganyoujustcomeindn penetration test this devic

The widely used equivalent of penetration testing for an app is an external security code
review. Many companies now specialise in this kind of app security code revesw; th
gather lists of known security issues found in apps, with mitigations for each, and then
review the provided code to look for those security issues. Security code reviews are also

very effective when internal to a company:

Code review is what we do erdtly. We certainly do not let any form of
code out the door, without an independent review and that is eyeballs on the

code and that is discussion about the c(®E)

We do code reviews as much as possible. And | point out when | think

something may haws®me issues, things like théR7)

All of these approaches are expensive; there is a significant resource cost to providing the
challenge. In the case of pair programming, research suggests that the net cost is
relatively small[25]. The other three interventions all represent additioasts for an

organisation, however, which need to be traded against the corresponding benefits:

You call them out, but ultimate]lgest] is code level reviews but again it is
this balance between the ideal world and the timescale, versus the risk and

the consequences of the risk, or the consequences of an(&fack

Because of the need for the involvement of other people Security Clealleeg not
usually make sense for solo programmers, or those working in organisations that do not

take security seriously.

77

7.4.4Discussion

Penetration testing in particular has significant limitations:

| think what it struggles to address is the interpretatilbat comes about
between a design and an implementation on potentially on the back end side
of things. When you have got live systems that perhaps is already doing
something broadly similai maybe they will have the flow of request
reversingi one systemequests an address, then a phone number. Another
may already have a piece of code written that requests a phone number and
then an address. And it's a spurious example, but it shows how quite easily
you may have specified these things in this order¥ergagood reasond

as far as you are aware, they are g a design you have created, but
actually somebody there sees an opportunity there-tseesomething they
have had sitting there for 5 years, and so calls that syfech thereby
generatedd ecur ity problem that PdRYetrati on

Therefore itds not always very effective

You can do your penetration testing or your external testing as much as you
like but actually it doesn't really tell you the likelihoodtloé next breach.
(P6)

P6 even suggested that Penetration Testing is likely to go out of fashion as the main

approach:

There are waves of approach to defending the security of computer systems,
in fact antivirus was the 1990's wave. Today's wave is defynpenetration
testing and code inspection and all this kind of focusing on vulrigiedi
and | tskwaveandithvill hade to be superseded by something else
and in my view that something else has got to be about, essentially, about

developmet processeqP6)

78

P5 has an interesting approach to code security reviews, where two reviewers work
together relatively informally:

Every now and theoeand | will be looking at something in somebody's

code, and | can sdeandJoeloves his boy$ andl love them as well, and

girls, but his body languagi he should never play poker with anybady

he'll be going through the code and he just pauses on the down button, just
longenoughand 1 'l 1l go " what ar eatmea@and seei ng?
goes'Well, | was just thinking about thafP5)

There is a good deal of literature about code reviews generally. Recent studies include
Baum et al . o06s anal ys[l3 which stresges the impertanceeolv i n
making reviews a part of the nor mal softv
study [90] recommends in addition having two reviewers, making the reviews
constructive with an emphasis on fixing prefls, and doing the reviews as part of the

release process. The OWASP Code Review Guide, a [&Idk contains detailed

discussion and recommendations how to carry out a security review.

75Techni que 5: Automated Chall el

Development team

Automated
challenge

Dev and test tools

Al The most successful technique | have
checkerso (P7)

7.5.1Example

Jane Solo does not worry much about app security, but she does care a good d
the professionalism of her approach. One of tivegthshe has discovered is that
error messages she gets from the normal compilation process are not very hg
tracking down defects. She usually includes some additional checking tools

development process to point out further defectsrttzgt be present.

79

As these checking tools are improving, she notices that some of the defects t
highlighting are in fact security defects. These lead her to wonder if there are

aspects of security that she might need to consider.

7.5.2Exploration

Security Challenge can be very effective, but it is costly in human effort and impractical
in many situations. Few solo app developers, for example, will have the money to pay for
an external review of their code, or the social capital to persuade cetetgdo so.
Likewise many organisations do not see value in paying for penetration testing or external

reviewers, nor have skills to do eithefhinuse.

Equally, it is poor use of expensive resources to find problems that can be cheaply found

elsewhere.

How do we achieve this?

7.5.3Solution

Use software tools to create dialectical challenges to the programmers. There are two
areas where automation can help a great deal with the development of secure software.

These are automated code analysis, and automatadty testing.

Automated code analysis acts as an extension to the compilation process of the code, and
looks for possible security flaws in the written code. Tools to do this are sometimes called
6l intd checkers, aft er ngfollCN\Ncbd¥. There @rk noww h a t
many such tools, some produced by commercial companies, supporting different

languages and purposes:

We use something called Sor{@7] which is a code inspection tool we'd
written tenplates and guides for our coding standards and certain patterns
we are looking for in a code and we are looking for changes in the code that
are greater than a certain percentage and there are specific bits of the code

we are looking for any change thatsitdd never hapen. (P5)

They are excellent for looking for common errors:

80

One of the most commdimings, it is not as common dava or Android, but
anything using C or C++ look for potential buffer overruns. And anything
that has SQL Injectionsat dothe same sorts of thinganything that can go
outside of the expected bounds, that aren't being chegkddhere are a
numberof Lint checkers that will pick up on that sort of thing. Use them!
(P7)

Increasingly some of the reviewing features are beiiggated from independent tools

into the compilers and default build processes for mobile software:

So as tools get better, forot i nspect i onheythigsmightbe es, t o
a security flava as the compilers, as the development environment, whateve

the tools are. Because even developers that are experts can make mistakes.

And so the more the tools do like the code inspection review for you, for free,
constantly, all the time, so you can't skip it, then yes, that will be a huge win.

And | think thattan instantly be improved in the two year time [{({RS)

Though of course there is little value to such warnings if the programmer ignores them:

Pay attention to the warnings, pay attention to the Link errors. [So it is hot
just the automated checksidthe attitude towards those automated checks,
taking them really seriously] Use them, don't forget them. (P7)

The tools need to be carefully designed to make them easy to use; Johnson et al. have
researched a set of recommendations what is req&@@din particular the ability to

avoid repeated false positives and suppo
developer support tools for Android apgde security analysiXie et al.[111] were first;

Nguyen et al[77] support the more widelysed IntelliJ development environment..

Automated securitjesting comes in two forms. First is the automation of manual tests
that have or could find security defects as automated regression tests, to avoid the risk

that such defects may recur:

We added an entire section to [our automated testing suite] cadedrig/,
which is effectively hacking. We have built all form of vectored attacks
against our platforni we endlessly think about ways to attack our platform.

When we find a new one, we try to write a test for it. (P5)

81

However a second, recent, innovations t o us e randomi sati on

techniques to enable tests that would not necessarily occur to a human tester:

| actually find that our fuzzing efforts, which you could view as a form of
code analysis, have quite a bit more tangible resulte fLizzing effort
doesn't happen at code review time, but happens at check in time; we have
clusters of machines where we are doing attacks against the software that is

checked in, and we are able to find [exploits] very quickly. (P11)
This approach iskely to be enhanced as tools and techniques develop:

So a deep learning system that actually understands security state machines
that can look at code and not just see functionally what you are trying to do
but have a look at the redundancy state machiveesecurity state machine,

the parallelism and mass processsigte machines, all those things as well.

It can really help with actually saying ' you want a system to be like this but
you don't really, you actually want your system to do this. And give y
reasons why, as well. So that sort of guidance development, | think, is where

we will be in the next 1015 years. (P11)

To get the best value, it is important to include both automated checks and automated
testing as part of the fixed developmemobcess. Best practice, given that they are

automated, is to include them within the build cycle.

Yeah, what we do is, [we have] a continual build system, every time someone

checks in a change, we create a brand new version of [the system]. Once a

daywes napshot that version é into our tes:¢
entire day we are doing attacks against the code that is running on that
device. So next day a new version é, al

do that over and over again. (P11)

7.5.4Discussion

There is an art to using a code inspection tool effectively. Often developers are
intimidated by a large number of warnings, many of which turn out to be spurious, in that

what they are highlighting is not likely to cause a security issue.€Coermendation of

82

our i nterviewees was to work towards hav

problems show up.

There is another big one: when you compile something and it spits out a
whole bunch of warningsdon't ignore them! That is something | bdeen

really against for years, and watching the compilatiorjaohuge system]

and all the warnings that it spits outeally bugs the crap out of me. Itis a

big job because they have left it so long that there are so many of them, but if

they would jgt sit down and look through each and every warning, either say

itds okay so ignore it', or "oh shit!

warnings.(P7)

[And to do thatyou need something in the tools that makes it possible to
suppress a particular warningfn C or C++ you there is #pragma. In
Android Java you can have a link to an XMle that turns off certain lint

features and you can also supmegarnings inlinedr specific items(P7)

Others, however, amongst my interviewees took the view that such tools add little value

to a well written code base:

Traditionally, we haven't made strong use of Static Analysis tools. Static

analysis tools have a reputationforbey overly sensitive,

okay yes, | agree, Il tdéds a valid warni

ar

find issues. é | did an analysis of wha

able to find a real security vulnerabi

was either unreachable, or there was corruption but theugdion was such
that it wasnot attacker controlled. At théme | was actually somewhat pro
code analysis tools until [this analysis] forced it upon me, and then | became

very negative towards them. (P11)

The economics of building code inspection toslalso a little problematic. It is not in
human nature to want to be proved wrong, and programmers are typically unwilling to go

to the effort to find money for tools that do so:

83

And critically[the industry needdfee automated tools. Paid tools are very
hard to sell. How you get the economics right, so there is free automated

tools end up out there is a hard problgiR3)

In practice, companies like SonarSoU&# typically make their revenue from services,

rather than thé&ools themselves.

Caution is needed with automated test tools, too. There is even a danger that an

automated test suite, in the wrong hands, might itself become a threat:

You know, the guy who runs my security testing piece has said ‘do you realise

whatwe have built?déd | said "I absolutely
any execution of these is fully |l ogged!
7.6Techni que 6: Responsive Devel

Responsive
development

i

Deployed software in use

Development team

| think one of the problems with remote devices is that these dev&es
intended to be robust against all atk&es if you lose your deviceAnd that
makes it challenging from a foreagoint of view to look into [issues] (P11)

And the patches and updates basically what modern security is aBbout
mistakes will be madend when the mistakes are fouinidow do you get the
updates out? (P3)

7.6.1Example

Jane Solo is planning her own personal app for thetiemgy. She knows she will ne¢
to change it and improve it, and that she will have defects to fix which will only a
in dayto-day activity by real users. To get feedback about those defects and eng
to take action, she puts in a good deal of logging. This uses standard thirg
libraries and back end services from companies that specialises in this. Usi

84

library Jane instruments our code to give her feedback on which features are us
she will get crash reports with details of where and how the error occurred; and s
in a popup to users who have used her game for more than two weeks to agéirtk
feedback. Actually, the pepp is more sophisticated and positive feedback replies

the App Store; negative feedback goes to Jane as author!

The service itself ensures privacy, which will prevent Jane from getting some pi
information thaimay be useful for tracking down bugs; Jane accepts this limitati

return for the convenience of using a wmathde tool.

Jane also knows that the development of her product will not end so long as the
is live. She will continue to receifeedback of problemisincluding security issués
that have been identified, and she realises that as time goes on, the environmer
her product changes and attackers get more sophisticated, there will be new
that she will have to defeath&refore, she plans a lotgrm program of continue
product development, with releases at regular intervals. If ever she needs

supporting this program, then she will explicitly withdraw the product.

7.6.2Exploration

With servers and cloudasedsoftware the process of ensuring security is continuous;
typically operators and even management will be keeping a close eye on what is
happening from a security point of view to the system, and be prepared to take active

action as a result.

| get an OSSE{tan opensource monitoring systemgpmin alert the minute
anyone is trying to attack, and the great thing about OSSEC is it takes
remedial action, moves them off, and we've got some other clever ideas we
are thinking about(P5)

To keep apps secure alsgjuires continuous feedback, both to detect actual exploits and

to detect trends of use that may represent longer term threats. Getting such feedback is
much more difficult with mobile apps than with servers. Not only are they not always
connected, andngler the control of someone else, but the devices are designed to be as

impenetrable as possible:

85

[The OS designersjant to make sure that no matter whatever privileged
position you have, that these devices are impenetrable. That is the goal.
(P11)

Respading to such feedback is also a continuous process. New exploits, improved
processing power and wider publication of existing exploits all mean that what might

have been secure a year ago may not be now.

Projects look at the risk here in their lifetimedayou know the current risk

and the current attack vectors, but they are constantly chan@ay.

It still is interesting to see how effectively security has a built in
obsolescence. Even with SSL security, which is obviously almost the bottom
level.(P12)

The problem is not just increasing attack sophistication of attacks; changes to the
supporting environment often have security implications requiring changes to apps to

support them:

Obviously given the rate at which Apple and Google are changing Ahdroi
and I0S and all the other things, just keeping still is difficult. (P12)

However the nature of app devel opment d&éco

commerci al external contracts is often o6f

[Most companies developing appgdatthe creation of what they do akin to
building motorways or somethirigit's a project to deliver something, but
that something is then just passed off to the highway authority for them to sit
there and monitor the traffic flow on it, but aren't necessanlycerned that

the bridge structure may not be up to the ever increasing amount of traffic

that is passing over it right noP8)

On completion of the initial app development phase, the development team is normally

allocated to different projects.

86

Like many things that get delivered in a projdtie project ads and interest
dies with it. UnfortunatelyAnd | think you lead into a significant challenge

in securing things on an operational bagid8)
This makes it very hard to pull together anhadt tean to solve even serious issues:

Technology is constantly changing but to bring together the spotlight or the
focus on a live service, unless it has reached the stage that is it almost
headline news, is very difficult to do because the effort require@atiog a
project in the first instance, to bring together the bodies and the budget for
most businesses is enormous. So the day to day behdossn't allow for
the O6dippi.fP8) i nto things©o

Even given the development teams to analyse and fix softeasaring that updates

reach the users can also be a problem; many users do not enable automatic upgrades.

The moment you release something to an Android phone, you will, in general,
never get a 100% update rate, because loads of people update softesare on

and never updat€P3)

7.6.3Solution

Instigate a longerm development approach to support both security monitoring and
regular updating. To achieve this, developers must find specific ways both to monitor
feedback from the apps and to ensure the delivempdétes; and project stakeholders
need to ensure that projects have a continuous-temg support and monitoring

elements.
App feedback usually requires explicit functionality:

|l 6ve built quite a bit into the Apps w
because | dondét trust the Iliselwbas of Go 0¢
they give you because theydve got priv
Because we have more of a direct relationship with our users, we can get
more information and we have thedirect to our systems, so effectively

thereds a | ow | evel of 1l oggi @) | oggi ngc

87

Typically this is not limited to securilgased feedback, but can be enhanced to deliver
security based information.

| must admit, mst of tie logging | tend to do igging exceptions, well
excetions to the rule rather thadava exceptions something funny has

happeneher e, so you can say Osomethingos

Turning to the issue of acting upon the feedback, we identifieckimds of change a
team needs to handle: longer term strengthening, and emergencies. The first requires

regular releases of new software versions and a continuous resource to do so:

Part of my teambés job is to make sure
today, we eliminate them. There will be security issues that happen

tomorrow, but they will be a different set of security iss(igElL)

The second is an Oemergencyd, where a new

1

t

an upgrade before one ofthear ge number of unsophisticat

manages to use it on instances of the product:

What worries me more is script kiddiasd things like that, because when

you get a zero day exploit released and | must admit, that is the one time

when | jump as quickly as possible beca

an open SSL loophole or something, you can pretty much guarantee that

within 24 hours someone will be probing every system they can find on the

internet and theydhd beabbdeakibhgbecaus

after you personally(P12)

Getting the resource to do this requires a {tergn approach to product development,
since there will be costs long after the first release. Typically companies decide to

maintain for dimited time and then explicitly stop security updates:

It involves engineering resource to do thaupdates across every product.
What we have said is that the current, the products that arerwtlyrin this
three year windofare maintained]so not evig/thing [we have produced]

but the current produst we will keep them up to date. (P3)

88

Organisations taking thislotige r m at ti tude will wuse devel o]
contractsd) and system archit ectiaditionals t hat

ofire and forgetd approach.

7.6.4Discussion

Programmer feedback from live systems is an area where security and privacy needs can
conflict. From a security point of view, it is valuable to have as much informasion

possible delivered back to theogrammer However from a privacy point of view it is

not desirable to store personally identifiable information anywhere where it is not
essential for the userds needs. The si mpl
log entries, ensuringrivacy-sensitive information is never logged at all. However this

can conflict with debugging using test data: a programmer will want to see identifiable
aspects of the test data in the logs. Therefore, another approach the author has used is to
use struaired log messages that identify sensitive data within the log messages, and to

have the logging system remove the sensitive data only in the live system.

For mobile apps the upgrading process is usually straightforward for the developer; the

Oapp dtaoyr es/orped6 and similar support rel af

From my experience of being involved in both, not as a coder, but just being
around the technologyan advantage that apps have i$le fact that you
can distribute an application through a trestchannel, with a high degree

of confidence that is still going be there in its intended form. (P8)

However, as discussed above, there is a particular problem of ensuring that users upgrade
to the new version. For iOS users this is typically not a msgoie; anecdotal evidence
suggests that typically 80% of users have upgraded most apps within threg¢8vg¢eks
However Android upgrade rates astower; many users do not enable automatic
upgrading through ignorance, or because upgrading sometimes causes issues for apps.
App statistics on this are hard to come by, but Thomas et al. obtained figures on the
upgrades of the Android J%03], finding:

Within 30 days of the first observation of a new version on a device, half of
all devices of that model hattee n e w v imstalied, amd wiéhin 324

days 95% of devices have the nassion (Thomas et al.)

89

A common solution, implemented in several cases by the author, where the apps
communicate with a server cont rasedomdhd by t
app version number. This requires extra support in the app and server:-ap gtarapp
interrogates the server for the minimum v
version is less, it refuses to run, and instead directs théoube appropriate view in the
060stored app to make the upgrade.

Upgrading also carries with it its own security risks; the team will need to analyse these

along with other risks:

There is a whole notion of trusted distribution as well, which is stily ver
pertinent but which people have forgotten ab@R6)

So when you update the firmware in a phone, technically speaking, you are

attacking the phone. So there is a verification process involved Rk

Samsung had a massive problem with having thglate mechanism open.

So if you plugged a Samsung TV into your network and you are monitoring to
find out Samsung connections, you could quite happily hack Samsung TVs
globally. So that becomes a back door into your domestic network, an entry

point, and awy you go(P10)

If you do not have forced upgrades implemented, the need to support older versions of the

app can become a major security issue since the whole system is only as strong as its

weakest link:
|l must admit, that 0theridkioffddwngraddattacke e c au s e
with security, so if you have system wtl

using http and then you put https in,
on, because there mighte , it might not wgousek. And i f
base, the |l ast thing you want to find
user base. [So you need to be able to turn it on graduallyji&uproblem

with that is that, because I f youdbdve go
ability to turn it off and work around it, so you have to treat that as a

transitory thing: you get to a stage where you have got everyone running

secure and then youdve @) to disabl e t

90

There is also a range of architectural issues assowidgtedpgrading, especially related
to rollback and API versioning:

And also you cannot roll back perfectly. Because people don't take updates,
but also because there is a corruption of user data issue going on, in that if,
for example, someone instalfersion 10 of the app, and modifies the local
database to Version 10 formatf you try and roll back to Version §pu

might lose that data, and loose data protection, so rolling back is

significantly harder in the mobile worldP3)

| must admit | did éarn fairly quickly to make sure all your APIs are

versioned properly so that [the cokieows] when to fall back or reject them.

And so you catch those things rather than it just falling over in a heap,
because youbre tryi ng gaothalftdeparsmetene t hi ng w
andsimilar. (P12)

91

8Concl usi on anoct
Wo r Kk

This chaptesummarises the Dialectical Security techniques, explores parallels to existing
literature, and discusses the contrast with both the patterns literature and conventional
processhased approaches. It then reviews the experience of using Grounded Theory and
examines how the findings of the study address the research questions introduced in
Chapterl, then explores threats to validity and possible future work to adiiress

Finally it discusses two areas for future research: exploring the techniques of Dialectical
Security; and investigating a range of practical approaches to introduce them to

developers.

81l1Summary of Dialectical Secur i

Chapterre x pl ored the expertsé knowledge rel at
RQ3 What are the most effective techniques to deliver app security?

It introduced six techniques of Dialectical Security, introducing each one with a specific
exanple, then expanding it as a more general problem, offering a general solution, and
discussing related issues and practical approadrase 6 below summarises the

techniques.

92

Table 6: Summary of Dialectical Security Techniques

Technique Summary

1. Brainstorming the Useideation sessions with fellow programmers and ot

Enemy to identify both attackers and possible exploits in two s
2. Negotiated Interpret the security risks and costs to project stakehg
Security in terms they can understand and use to prioritisar$gc

concerns against other organisation and project need

3. CrossTeam Ensure frequent and open communication on sec
Security problems between development teams in any way avai
Discussion

4. Security Challenge Set up the development #wat each has another persor
team with a different viewpoint challenging the secu

and privacy aspect of assumptions, decisions and co(

5. Automated Use automated code analysis, and automated se

Challenge testing to create dialectical chaibges to the programmer

6. Responsive Instigate a longerm development approach to support i

Development security monitoring and regular updating of the apps.
82DiIi scussion of Dialectical Sec

The ordering of these six techniques is roughly chronological from the point of view of
the development team. While each is used repeatedly throughout the development cycle,
developers will encounter the need for Brainstorming the Enemy and NegotiatetySecu
earlier in each development cycle; and Responsive Development naturally comes rather

later.

8.2.1Relationship to Existing Work

We identified these techniques through the Grounded Theory process applied to our

interview data; afterwards we found paralii@l€xisting research, as follows.

93

Comparing the existing work on app developers and security, s&ctdadentified

valuable research on current practice by dgweis such as that by Balebako efH)];

this work goes further by identifyg approaches fobetter practice. Much of the
remaining literature we discussed is also valuable in the context of Dialectical Security as
providing solutions to the challenges identified through dialectic. Thus an Android app
programmer who is made awaoé security issues from Brainstorming the Enemy,
Security Challenge or Automatic would then be motivated to search for solutions on the
web[120jlor i n practitionerso6 | iter d38uwork such

by Acar et al. suggests that their best choice would be the litef2ture

Considering the Dialectical Security techniques themselves, we suggest traetwo
reasonably wellunderstood and researchiedvarious ways: 8curity Challengeand
AutomatedChallenge The techniques of Security Challenge of reviews and penetration
testing are explored in detail in literature; Responsive Development is novel in the app
development context, but the techniques of continuous response to security challenges are
well-knownwi t hi n the context of serve[68,foryst em
example, discusses all of these. For Automated Challenge, there is a considerable range
of automated validation tools available even if, as found bgskan et al[58], these are

currently not often used by developers.

The other three techniques, Brainstorming the Enemy, Negotiated Security and Cross
TeamSecurityDiscussiorare less well reflected in existing security literature; se&ion

proposes approaches to research them. However they do have pa@tesaspects of
software engineering. Brainstorming the E
[86]; Negotiated Security relates [14mandt 0 t he
Crossteam Security Discussion relates to the large amount of work available on

collaboration between distributed teajd8].

An important piece of related work, published after the main work of this thesis, is by
Ashenden and Lawreng@]. They used an Action Research approach to investigate and
improve the relationships between security professionals and software developers. The
Action Research approach has considerable potential, andrthswggests an important
further o0dialectical techniqued (surprisi

the interaction between programmers and security professionals themselves.

94

8.2.2From Processes to Dialectic Cultures

Sectionl.lidentified that existing literature contains little about the team interactions
required to achieve software security. The Dialectical Software techniques by contrast
constitute a \ay of working, almost an attitude to working, for developers who need to
deliver secure software. They are completely consistent with, and incorporate the thinking
of, much existing literature, but extend it to provide immediatetdalay help to

developes.

Where they differ from existing literature is in their implied approach to team
organi sation. Secur e Devel68 proveleaseriesob c e s s €
steps and deliverables for a teemearry out. Dialectical Software instead provides a set

of attitudes to development teamwork and approach, and therefore meshes more

effectively with selforganising teamfb3].

Because it is interactive, and an attitude of mind more than a formal method that needs to
be followed, we propose that Dialectical Security will also appead to@pp developers

than many of the existing approaches.

8.2.3Patterns of a Different Kind

As discussed in sectiof.2, the format used to describe the Dialecticatusiey
techniques is based on the Design Patterns fdadbat The format works particularly

well because of several aspects: the name makes each item easy to discuss and remember;
the repeated structure makes them easy to follow (chéphewed that this approach is

now used by many nepattern books); and the implied probl@ontextsolution format

helps readers to decide whether the technique is appropriate to particularly situations.

The main difference from the designteats format is that where patterns gain authority
from O6known useso, these techniques take
analysis, grounded in existing practice and substantiated by quotations; we believe this
makes them more compelling thao,f ex ampl e, Schumacher et
patterng94].

95

83Experience of Grounded Theory

The analysis followed the lines outlined in Sec2dsdGrounded Theory Stelpy-Sted .

As a newcomer to Grounded Theory, the author was surprised to find that the approach
worked opportunisticallyi in that eachnew step addressed a problem that he had
gradually identified in carrying out the earlier steps. So for example, the categorisation
phase addressed the problem 6how do we | c
many?6 Then as heupsfloreeofthe abnclasons] he entourseted avr i t
new problem 6the data points us to this <c
reject that conclusion?6 Core Categories
needed to create a compedjinarrative and to justify specific theories that arose from the

analysis; sorting addressed that problem.

84Revi si ting Objectives

In the introduction to this thesis we discussed the research question:

RQ1 What techniques and ideas will appeal to development teams and lead to them

developing more secure app software?

That led to three other questions, about how the experts themselves were motivated and
how they learned; about the most effective techniques to deliver app security; and about
ways of introducing those techniques to developedsteams. The rest of this section
looks at each question in turn.

RQ2 What motivated the experts themselves to learn software security; how did they

do so; and how do they continue to learn

Chaptelsconsdier ed this in some detail. We explo
motivation: knowledge, tasks, worry and enthusiasm. Our conclusion was that the
expertsé own motivations were mainly due
up their knowledgi and continued to leaiinon the job and through hobby work rather

than through any kind of formal instruction or learning. Our novel finding related to this

is that most app developers, by contrast with the experts, have little knowledge or even

interest related to app security.

RQ3 What are the most effective techniques to deliver app security?

96

Chapteout | i ned six techniques of O0Dialecti

good app security practice highlighted by the experts we interviewed. While we do not
have evideoe to state objectively that these time most effectiiechniques, we can be

sure that they areffectivetechniques, and that our interviewees considered them to be
amongst the most useful available to them. The novel finding is that these techniques
relate not to the artefacts produced, nor to formal Secure Development Processes, but
rather to a culture of encouraging challenges from a variety of counterjpaatcesture

of o6dialecticod.
RQ4 How should we effectively introduce security to app development teams?

Chapter5 outlines the opinions of the experts interviewed on appropriate ways to
motivate and teach development teams. These, though, varied very considerably, leading
usto conclude that the discipline of app development security is at an early stage. We
shall revisit this question in secti@8.1, outlining possible approachesdaways to

evaluate them.

85Research Validity and Veri fi

How certain can we be that this theory accurately reflects reality? We approach this

guestion by analysing threats to validity.

Considering first Conclusion Validity, do the research data yugié conclusions?
Grounded Theorybés rigorous process of I
generates theory that does reflect the interview data. The use of extensive quotations
ensures that this can be at least partially checked.

In terms & Construct Validity, does the Dialectical Security theory represent actual
practice? GT handles this primarily in t
interviews do not add substantially to the theory. Gk} suggests that a dozen
interviews are often sufficient for this; in thease as researchers we believe we have
reached theoretical saturation with regard to the list of techniques, but not with regard to
all the potential detail to be uncovered within each technique. There is also a risk of bias
in the choice of interviewegeand of questions; we addressed this with interviewees from

a wide range of industry roles, and completely open quegtioad

97

C

n

In terms of External Validity, can the results be generalised to awideo pe ? GT 06 s
conclusions are always limited to the specific scope sty@idd In this case since many

of the experts were familiar with and sometimes describiigmore general secure

software development, some conclusions will applydo-app development. We can

however make no claims of applicability to different development cultures other than UK

and USbased companies.

Finally we should qualify what validity we are discussing. The interview process has
determined industry understandin of best practice (communi
this may possibly not correspond to act
Testability discussion in secti@b5.1and the research suggested in se@idmaddress

this limitation.

8.5.1Verifiability

We propose two approaches to verify this theory:

Repeatability: First, aa independent researcher can join the team (hence
preserving confidentially) to reanalyse the existing transcriptions to validate or challenge
the Conclusion Validity. Second, we can return to those interviewees who consent, to
explore aspects of the teéhnes in more detail. Third, we, or a different research team,
may repeat the Gbased interviews with a different set of experts to explore if the theory
derived is consistent with Dialectical Secuiitgr if it extends to different development

cultures.

Testability: The theory implies that introducing Dialectical Security techniques will
i mprove app security. The aulOf explerés pape:i
approaches to introduce such techniques and evaluate whether this improvement does

happen.

86Proposals for Future Work

We have identified two further areas for future work, exploring the research questions
RQ3andRQ4respectively: research to expand knowledge of the DialecticalriBec
techniques; and research to discover ways of introducing them to app developers. The

next two sections examine them in detail.

98

87Researching Dialectical Secur

Section 8.1 identified that three of the techniques, Securityalenge Automated
Challengeand Responsive Development, are relatively wellerstood. Therefore we
propose that further research examine tinee less well understood techniques:
Brainstorming the Enemy, Negotiated Security @nolssteamSecurityDiscussion\We

suggest proposed research questions along the lines of

PRQ1 What are the most effective ways to ideate understanding of attackers and
potential exploits?

PRQ2 How best do we represent security questions in business terms?
PRQ3 What forms of cros¢eam interaction are most effective to ensure app security?

There are several possible approaches to this research. Experimental approaches might
trial avariety of representations of security questions with a number of product managers;
or set up different groups of Computer Science students with different ideation techniques
and compare their success at identifying attackers and exploits. An ethnographic
approach might follow the progress of a development team, identifying where the major
security mitigations were identified and how the negotiations took place in practice. A
survey approach, by contrast, might ask the questions of a variety of develngers

stakeholders to produce a possible consensus.

88Researching Teaching I nterven:

Section5.1 identified that few developers are knowledgeable or even maliate
improve app security. To improve the situation we need to reach out to a group of
individuals, without having direct access to them or direct influence on them. We need a
new paradigm; we need a new way to reach these people.

8.8.1A Different Approach

Diff erent programmers learn in different ways and are interested in different things, so we
believe a single form of intervention, however effective, is unlikely to reach all of our
target audience. In addition, since we are in effect teaching new attitedesf the

traditional mechanisms such as books are likely to work.

99

We propose instead dédengagingd interventio
own sake. We anticipate that these will be publicised via the web: expert blogs, and
security OS webtgs.

The following sections explore some possibilities for these interventions.

8.8.2Games That Teach

One popular approach is games. A great deal of work has been done on gamification,
with books [62leexhplasi Kiapg 6tshe techni ques 1 n\
Code Hun{104] teaches vast numbers of programmers through an online game. Code
Hunt 6s approach is to provide a unit tes
certaily demonstrates the dialectic aspect, but will not be very good for teaching the

other security techniques. Other researchers, including the authors, have had success with
group games to teach aspects of s @eAflt-t war e
Hack gamg34]. These work very well in a classroom or conference context, but do not

naturally extendd reach to an online audience.

Instead we suggest solo or multiplayer games suitable for distributed players. Picture
Angry Birds meeting Stack Overflow! Have players implement security aspects to defend
against attacks? Perhaps crowd source both attadidedences, where each player gets

to both take the role of attacker on ot he]
enchanting possibility; even if it risks taking too much time to engage the typical target

solo programmer.

8.8.3Story Telling

A different approach is stotglling. The British radio soap opera, The Archers, has been
running for 65 years, and has over 5 million regular listeners; its main purpose, at which
it is highly successful, is to teach farming knowledge to a community thiatéachable

by any other form of education. Taking a similar approach here would suggest a podcast

(and blog) narrating a plot that would cover and teach each of these aspects.

More ambitious would be a storylbione,i mnan
the UK6s 61T Crowdd come to mind), to be

100

A related approach might be through a comic strip already popular with programmers,
such as the XKCD seri¢88]; the back archives of such comic strips would give the
benefit of something permanent, easily accessible and shareable by developers. Zhang
Kennedy et al. used such an approach with success to teach security in the context of end
userg117].

8.8.4Adapting Business as Usual Approaches

More conventional is to tailor direct teaching and group learning approaches to the
distributed nature of the targatidience. This suggests implementing a massively open
online course (MOOC) on app security using audio, written text, and video along with
interactive discussion groups. Organisations such as edX and Futurelearn provide
frameworks to make this straightfoavd [122,123]

Another possibility is a short video along the lines of indeed actually a TED talk by

a suitable expert.

Both possibilities dkeivlelrsagegaitrhieng®dprmdteisw
programmers, which suggests promoting them via professional organisations too.

8.8.5Research Agenda

Whilst each of these interventions has promise, we do not know which are likely to be
effective, nor which techniques anariants of each will have the most impact. This leads

us to a set of proposed research questions:

PRQ4 How best to design and implement the interventions to convdyi#ectical
Security techniques?This is a complex problem, involving amongst other

aspectelements of design, gamification and measurement of impact.

PRQ5 Which interventions and dissemination techniquésare most effective at
conveying each techniquéo the largest population of programmers?
Implementing allthe interventions at scale will be stty; we shall need to

evaluate which ones offer the most value.

101

PRQ6 Which interventions provoke a wider interest in the programmers reatbed?
achieve a lasting effect we do not just need to engage programmers initially, but

need also to encourage further interest and learning in the subject.

This approach is very different from others in the field of programmer education, making
this an entiely new subdiscipline. The research will require a rdificiplinary team,
with varying skills, including at least the following:

Programming: To implement code based interventions such as games.

Psychology: To achieve t he 60at t rtato tstructere
measurement of the results;

programmers towards more effective security practices.

Creative For the storyline.

writing:

Narration: For an engaging verbal version of the storyline.

Marketing: To establish and develop the channels to bring the content to the
audience.

8.8.6Evaluating Techniques
The research will require objective measurement. In particular we can identify four

aspects to measure:

Success Usingthe interventions with a sample group of students or sin

and evaluating their learning based on the interveiB&Q4.

Reach The number oflownloads, accesses, or to the reso(PEEQ9H
Engagement Thenumber of accesses of later parts of the reso(PEQ5H
Coverage Attending exhibitions such agpfssWorld frequented by the targ:

solo programmer audience and askitga simple questionnair
of delegates which if any of the interventions they h
encountered and their impa&RQ5PRQ8G.

102

Ideally we shall want to extend our research to measure outcomes as well as these
out puts. Whilst we can argue that the con
6caoweged i mplies a positive Iimpact, better

the code produced by programmers in the target group.

To achieve that, we might collect app identifiers, where possible, from participants for a
Obefore anduasf teevrad uaantamyyhmof t heir rel ease
that by Enck et a[39]. Other possibilities would include extending the questionnaires in

the O0coveraged evaluation to estimate in

correlating that with exposure to the interventions.

89Concdnmnusi

To summarise, in this Grounded Theory study using interviews of experts in secure app
development, we encountered three particular surprises. First was a clear indication that

the discipline of app security is at a very early stage of development.Seesna

significant discrepancy between current industry understanding of the approach required

by app developers, and the expertsodé recom
that some of the best techniques for software security were not indeamsfacts and

reports, nor formal processes, but a culture in the developers themselves.

The study generated a theory of oDialecti
with different counterparties; chapt@explores six techniques within this theory. We
conclude that these techniques areseited for app development teams in the majority

of organisations. We can investigate the techniques furthesassded in sectidh7; we

can also look for ways to disseminate them more widely, and research interventions as

discussed in sectid8to introduce them into a range of existing development teams.

Using these techniques, we believe, will enhance the future security of apps, and lead to
better safety for all of those whoeuthem.

103

Ref erences

[1] Acar, Y., Backes, M., Bugiel, S=ahl, S., Mcdaniel, P.D., and Smith, M. SoK:
Lessons Learned from Android Security Research for Appified Software
Platforms.|EEE Symposium on Security and Privacy, SP 2016, San Jose, CA,
USA, May 2226, 2016 (2016), 438451.

[2] Acar, Y., Backes, M., Fahl, S., Kim, D., Mazurek, M.L., and Stransky, C. You
Get Wher e Yo u dBEE Symmosivmiomecufityand Privacy
(2016), 289305.

[3] Adolph, S., Hall, W., and Kruchten, P. Using Grounded Theory to Study the
Experience oSoftware DevelopmenEmpirical Software Engineering 18
(2011), 487513.

[4 Akerl of, G.A. The Mar ket for fALemonso:
MechanismQuarterly Journal of Economics 83 (1970), 488500.

[5] Alexander, CThe Timeless Way Blilding. New York: Oxford University
Press, 1979.

[6] Allan, G. A Critique of Using Grounded Theory as a Research Mefhuaal.
Electronic Journal of Business Research Methqds(2003), 110.

[7] Anderson, RSecurity Engineering: A Guide to Building jpendable
Distributed Systemsgohn Wiley & Sons, 2008.

104

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Apple. Introduction to Secure Coding Guide.

https://developer.apple.com/library/mac/documentation/Security/Conceptual/Se

cureCodingGuide/Introduction.html.

Ashenden, D. and Lawrence, D. Secubty al ogues

Bui

RelationshipslEEE Security & Privacy Magazindune (2016).

| di ng

Balebako, R., Marsh, A., Lin, J., Hong, J., and Cranor, L. The Privacy and

Security Behaviors of Smartphone App Developkrgrnet SocietyOctober

(2014).

Banks, A. and Edge, C.8earning iOS SecurityPackt Publishing,

Birmingham, UK, 2015.

Barua, A., Thomas, S.W., and Hassan, AMbat Are Developers Talking

about? An Analysis of Topics and Trends in Stack Overf20@d2.

Baum, T., Liskin, Q.Niklas, K., and Schneider, K. Factors Influencing Code

Review Processes in IndustBSE2016 (2016).

Beck, K. and Fowler, MPlanning Extreme ProgrammindddisonWesley

Professional, 2001.

Beecham, S., Baddoo, N., and Hall, T. MotivationinfSt wa r e

Systematic Literature Reviewnformation and Software Technology, 80

(2008), 860878.

Bejtlich, R. Reviews of Six Software Security Books. 2006.

http://taosecurity.blogspot.co.uk/2006/11/revievissix-softwaresecurity

books.html.

Blackwell, C. and Zhu, HCyberpatternsSpringer, Heidelberg New York

Dordrecht London, 2014.

Bluebox Security6 Ti s t he Season

Evaluation of Top Payment Ap015.

Bruce Schneier. Schneier on Segu Crypto-Gram.

t o

-Rn s k

Mo b i

105

Engineer

e

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

https://www.schneier.com/crypigram/.

Carmel, EGlobal Software Teams: Collaborating across Borders and Time

Zones Prentice Hall PTR, 1999.
Charmaz, KConstructing Grounded Thear8age, London, 2014.

Chell, D., Erasmus, T., Colley, S., and Whitehousel . Mobile Applic
Hac k er 0 s .Jdm Wwdep & $oks, Indianapolis, 2015.

ation

Chevalier, J. and Goolsbee, A. Measuring Prices and Price Competition Online:

Amazon.com and BarnesandNoble.c@poantitative Marketing and
Economics 12 (2003), 208222.

Clarke, S. What Is an End User Software Engin@ag@stuhl Seminar
Proceedings (07081End-User Software Engineering(2007), 12.

Cockburn, A. and Williams, L. The Costs and BenefitBailf Programm
Extreme Programming Examine20D01, 228243.

ing. In

Conradi, R. and Dyba, T. An Empirical Study on the Utility of Formal Routines

to Transfer Knowledge and Experienéé&CM SIGSOFT Software Engineering

Notes 265 (2001), 268276.

Cooperrider, D.L. and Whitney, D. Appreciative Inquiry: A Positive Revolution

in ChangeAppreciative Inquiry (2005), 30.

Cooperrider, D.L., Whitney, D.K., and Stavros, JAppreciative Inquiry
Handbook BerrettKoehler Publishers, 2003.

Cravens, A. A Demographic and
DeveloperGigaOM Pro, Septembg(2012).

Busi

ness

Creswell, J.WResearch Design: Qualitative, Quantitative, and Mixed Methods

ApproachesSage publications, 2013.

Dai Zovi, D.A. AppleiOS 4 Security EvaluatiorBlackHat USA2011.
http://media.blackhat.com/bis-
11/DaiZovi/BH_US 11 DaiZovi_iOS_Security WP.pdf.

106

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Dashti, M.T. and Basin, D. Security Testing Beyond Functional Tests.
Engineering Secure Software and Systedpsinger (206), 1 19.

DeMarco, T. and Lister, TReopleware: Productive Projects and Teams
AddisonWesley, NJ, 2013.

Denning, T., Lerner, A., Shostack, A., and Kohno, T. CoratblHack: The

Design and Evaluation of a Card Game for Computer Security Aesseand
EducatonCCS 613: Proceedings of the 2013 A
Computer & Communications Securif2013), 915928.

Drake, J.J., Lanier, Z., Mulliner, C., Fora, P.O., Ridley, S.A., and Wicherski, G.
Andr oi d Ha c k.dohdWiley& 8ong] Ihdeaakolis, 2014.

Dyba, T. An Empirical Investigation of the Key Factors for Success in Software
Process ImprovemenEEE Transactions on Software Engineering 31
(2005), 410424.

Egele, M., Brumley, D., Fratantonio, Y., and Krued@&lAn Empirical Study
of Cryptographic Misuse in Android ApplicatioriBroceedings of the 2013
ACM SIGSAC Conference on Computer & Communications Sec@@p

0 1 @013), 7384.

Elenkov, N.Android Security Internals: Anidept h Gui de t o Andr

Security ArchitectureNo Starch Press, San Francisco, 2014.

Enck, W., Octeau, D., McDaniel, P., and Chaudhuri, S. A Study of Android
Application SecurityProceedings of the 20th USENIX Conference on Security
(2011).

Enes, P. and Conradi, Rcquiring and Sharing Expert Knowledge. 2005.
http://www.idi.ntnu.no/grupper/su/fordypningsprosj05/aanes
fordypO05.pdf.

Enisa. Smartphone Secure Development Guidelines for App Devel&péss.
(2011), 17.

Fahl, S., Harbach, M., Muders, Bmith, M., Baumgartner, L., and Freisleben,

107

[43]

[44]

[45]

[46]

[47]

[48]
[49]

[50]

[51]

[52]

[53]

B. Why Eve and Mallory Love Androi d
Categories and Subject Descriptd?soceedings of the 2012 ACM Conference
on Computer and Communications Secwi®/C S , AAM2Presg2012).

Faily, S. and Flechais, I. Persona Cases: A Technique for Grounding Personas.
Chi 2011 (2011), 226172270.

Fisher, R., Ury, W.L., and Patton, 8etting to Yes: Negotiating Agreement
Without Giving In Penguin, 2011.

Furniss, D., Bladford, A.A., and Curzon, P. Confessions from a Grounded
Theory PhD: Experiences and Lesson Ledmceedings of the 2011 Annual
Conference on Human Factors in Computing Systetnsl |, @A11), 113.

Gamma, E., Helm, R., Johnson, R., and Vlissidd3esign Patterns: Elements
of Reusable Objeddriented SoftwarePearson Education, 1994.

Glaser, B.G. and Strauss, ALhe Di scovery of Ground

for Qualitative ResearclAldine Transaction, Chicago, 1973.
Glaser, B.GTheoretical SensitivitySociology Press, 1978.
Gollmann, D.Computer Security Chi chester : Wil ey,

Google. Android Security Tips.
http://developer.android.com/training/articles/sectig.html.

Guest, G., Bunce, A., and JohnsonHow Many Interviews Are Enough? An
Experiment with Data Saturation and Variabilifeld Methods 181 (2006),
591 82.

Hafiz, M., Adamczyk, P., and Johnson, R.E. Growing a Pattern Language (for
Security).Proceedings of the ACM International SymposamiNew ldeas,

New Paradigms, and Reflections on Programming and Softw@nsvard!

0 1, @012), 139.

Hoda, R., Noble, J., and Marshall, S. Organizing-Setfanizing Teams.
Proceedings of the 32nd ACM/IEEE International Conference on Software

108

ed

201

Enginee i ng (I|-@&uie H(2A000), 285294.

[54] Hoda, R., Noble, J., and Marshall, S. Grounded Theory for GEekderence
on Pattern Languages of Progray#sCM (2011), 117.

[55] Howard, M., LeBlanc, D., and Viega,24 Deadly Sins of Software Secwyrit
Programming Flaws and How to Fix TheMcGrawHill, Inc., 2009.

[56] ISO/IEC. ISO/IEC 21827:2008Systems Security Engineerin@apability
Maturity Model.2008 (2008), 144.

[57] Jackson, M., Crouch, S., and Baxter, R. Software Evaluation: Giitagad

AssessmenSof t ware Sustai@®b,iI13ity I nstitute

[58] Johnson, B., Song, Y., Murphyi | | , E. . and Bowdi dge, R .
Developers Use Static Analysis Tedb Find Bugs2013 35th International
Conference on Software Engineering (ICSEEE (2013), 672681.

[59] Johnson, M. and Senges, M. Learning to Be a Programmer in a Complex
OrganizationJournal of Workplace Learning 23 (2010), 180194.

[60] JudgeS. Android App Security. http://www.androidsecurity.guru.
[61] Judge, S. Private Communication. 2016.

[62] Kapp, K.M.The Gamification of Learning and Instruction: GaiBased
Methods and Strategies for Training and Educatibrhn Wiley & Sons, San

Francsco, 2012.

[63] Kienzle, D.M., Elder, M.C., Tyree, D., and Edwaidswitt, J. Security
Patterns Repository Version 1MARPA, Washington D2002).

[64] Komatineni, S. and MacLean, Bro Android 4 Apress, 2012.

[65] Lerch, J., Hermann, B., Bodden, Bnd Mezini, M. FlowTwist: Efficient
ContextSensitive Insideut Taint Analysis for Large CodebasPsoceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering2014), 98108.

109

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

LLVM Project. libFuzzerhttp://llvm.org/docs/LibFuzzer.html.

Makan, K. and AlexandeBown, S.Android Security Cookbookackt
Publishing Ltd, 2013.

McGraw, G.Software Security: Building Security. lAddisorWesley
Professional, 2006.

Microsoft. Microsoft Secure &elopment Lifecycle.

https://www.microsoft.com/ens/sdl/.

Microsoft. Learning SecurityMSDN. https://msdn.microsoft.com/en

us/security/aa570420.aspx.

Munawar Hafiz. Security Pattern Catalog.

http://www.munawarhafiz.com/securitypatterncataltodgx.php.

Murphy-Hill, E., Lee, D.Y., Murphy, G.C., and McGrenere, J. How Do Users
Discover New Tools in Software Development and Beydddmputer
Supported Cooperative Work (CSCW) 242015), 380422.

Myers, G.J., Sandler, C., and BadgettThe Art of Software Testingohn
Wiley & Sons, 2011.

Nadi, S., Kr¢ger, S.., Mezini, M., and
Why Do Java Developers St iCoELIE:88h Wit h C

IEEE International Conference on Software Engineer{@015).
Naqvi, S.A.A. The Grounded Incident Fault Theories (GIFTs) Method. 2014.

Near, J.P. and Jackson, D. Finding Security Bugs in Web Applications Using a
Catalog of Access Control PatterRsoceedings of the 38th International
Conferenceon Software EngineerindACM (2016), 947958.

Nguyen, D., Acar, Y., and Backes, Mev el opers Are Users Tc

Developers Write Privacy Preserving and Secure (Android) C2liS.

Noble, J. and Weir, CSmall Memory Software: Patterrs fSystems with
Limited Memory AddisonWesley Longman Publishing Co., Inc., Boston, MA,

110

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

USA, 2001.
Oates, B.JResearching Information Systems and Compu0g6.

Ben Othmane, L., Ranchal, R., Fernando, R., Bhargava, B., and Bodden, E.
Incorpomting Attacker Capabilities in Risk Estimation and Mitigation.
Computers & Security 512015), 4161.

OWASP FoundationrOWASP Code Review Guide BoGMWASP Foundation,
2008.

Pfleeger, C.P. and Pfleeger, SSecurity in Computing”rentice Hall

Professional Technical Reference, 2002.

Pirsig, R.M.Zen and the Art of Motorcycle Maintenance: An Inquiry into

Values Random House, 1999.
Ponemon InstituteThe State of Mobile Application Insecuri015.

Proksch, S., Bauer, V., and Murphy, G.C. How to Build a Recommendation
System for Software Engineering. $oftware Engineeringinternational
Summer Schools, LASER 214, Elba, Italy, Revised Tutorial Lectures
2014, 142.

Pruit, J. and Grudinl. Personas: Practice and The®oceedings of the 2003
Conference on Designing for User Experien@eSM (2003), 115.

Quora. How Frequently Do Users Actually Update Their iOS Apps?

https://www.quora.com/Hovfrequentlydo-usersactuallyupdatetheir-iOS-

apps.

Randall Munroe. XKCD: A Webcomic of Romance, Sarcasm, Math and

Language. http://xkcd.com/.
Reed, JAppreciative Inquiry: Research for Chandggage, 2006.

Rigby, P.C. and Bird, C. Convergent Contemporary Software Peer Review
Pradices.Proceedings of the 2013 9th Joint Meeting on Foundations of
Software EngineeringESEC/FSE 201,32013), 202.

111

[91] Romanosky, S. Security Design Patterns PdPrdceedings of PLaR2001),
17 19.
[92] SANS Institute. SANS Institute SecuriBesources.

https://www.sans.org/securitgsources/.

[93] Schneier, BSecrets and Lies: Digital Security in a Networked Walehn
Wiley & Sons, 2011.

[94] Schumacher, M., Fernandbmglioni, E., Hybertson, D., Buschmann, F., and
Sommerlad, PSecurity Ritterns: Integrating Security and Systems

Engineering John Wiley & Sons, 2005.

[95] Shih, Patrick C. and Venolia, Gina and Olson, G.M. Brainstorming Under
Constraints: Why Software Developers Brainstorm in Gro Bpsceedings of
the 25th BCS Conferencea BlumanComputer Interaction(2011), 7483.

[96] Six, J.Application Security for the Android Platform O6 Rei | | vy, Sebas
CA, 2011.

[97] SonarSource SA. Sonar Code Inspection. http://www.sonarqube.org.

[98] Steel, C., Nagappan, R., and Lai,Gdre Seurity Patterns Prentice Hall,
2006.

[99] Sterling, G.D. and Brinthaupt, T.M. Faculty and Industry Conceptions of
Successful Computer Programmelsurnal of Information Systems Education
14, 4 (2003), 417.

[100] Stol, K., Ralph, P., and Fitzgerald, B.danded Theory in Software

Engineering Research : AProCeedingsottlzel Revi
38th International Conference on Software Engineer&k@M (2015), 120
131.

[101] Strauss, A.L. and Corbin, J.asics of Qualitative ResearcBage Newbry
Park, CA, 1990.

[102) The Al l ium. Computer Programming To Be

112

Stackoverflow. o0 http://www.-theallium.c
programmingto-be-officially -renameegooglingstackoverflow/.

[103] Thomas, D., Beresford, A., anddg, A. Security Metrics for the Android
EcosystemProceedings of the 5th Annual ACM CCS Workshop on Security
and Privacy in Smartphones and Mobile Devj¢2615), 8798.

[104] Tillmann, N., de Halleux, J., Xie, T., and Bishop, J. Code Hunt: Gamifying
Teaching and Learning of Computer Science at S€aleceedings of the First
ACM Conference on Learning@ Scale ConfereAc&M (2014), 221222.

[105] Vidas, T., Cylab, E.C.E., Votipka, D., Cylab, I.N.I., and Christin, N. All Your
Droid Are Belong to Us: A Suey of Current Android Attack&vOOT, (2011),
811 90.

[106] Vision Mobile.Developer Economics Q3 2014: State of the Developer Nation
London, 2014.

[107] Weir, C., Rashid, A., and Noble, J. Reaching the Masses: A New Subdiscipline
of App Programmer Edudan.F SE616: 24nd ACM SI GSOFT
Symposium on the Foundations of Software Engineering Proceedings: Visions
and ReflectionsACM (2016).

[108) Wei r, C. Penrilliands Secure Devel opme
http://mwww.penrillian.com/sites/default/filesiduments/Secure_Development

Process.pdf.

[109] Weir, C. How to Improve the Security Skills of Mobile App Developers:
Comparing and Contrasting Expert Views. 2016.

[110] Wikipedia. Dialectic. https://en.wikipedia.org/wiki/Dialectic.

[111] Xie, J., Chu, B., Lipford, H.R., and Melton, J.T. ASIDE: IDE Support for Web
Application SecurityProceedings of the 27th Annual Computer Security
Applications Conference oA C S A C, (20111)1 267.

[112] Xie, J., Lipford, H.R., and Chu, B. Why Do Progmnaers Make Security

Errors?Proceedings 2011 IEEE Symposium on Visual Languages and Human

113

Centric Computing, VL/HCC 20112011), 161164.

[113] Yoder, J. and Barcalow, J. Architectural Patterns for Enabling Application
Security.Proceedings of PLoP 19971998), 31.

[114] Yskout, K., Heyman, T., Scandariato, R., and Joosem B§stem of Security
Patterns Heverlee, 2006.

[115] Yskout, K., Heyman, T., Scandariato, R., and Joosers&burity Patterns: 10

Years LaterHeverlee, 2008.

[116] Yskout, K., Sandariato, R., and Joosen, W. Do Security Patterns Really Help
Designers2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering IEEE (2015), 292302.

[117] ZhangKennedy, L., Chiasson, S., and Biddle, R. The Role of Instructional
Design in Persuasion: A Comics Approach for Improving Cybersecurity.

International Journal of Huma@omputer Interaction 323 (2016), 216257.

[118] Stack Overflow Developer Survép16 Results.

http://stackoverflow.com/research/developarvey2016#developeprofile.
[119] OWASP Developer Guide. https://github.com/OWASP/DevGuide.

[120] OWASP Mobile Security ProjeetTop Ten Mobile Risks.
https://www.owasp.org/index.php/Projects/@8P_Mobile_Security_Project_
- Top_Ten_Mobile_Risks.

[121] William Brandon- Private Communication. .
[122] edX. https://www.edx.org.

[123] Futurelearn. https://www.futurelearn.com.

114

Appendi ces

Codi ngs
The following diagram shows a subset of the GT codings from the interviews, arranged to

Key

Di agram of

frequency of ¢tmedgedhg. Th

| ati ve

e

r

he
andrecreated from the original coding. The full names of the codes are given in the

t

show

following section.

SHoEeD |

sapijadF nEatiiziv

TEIERIGA | TG RINAEE

fas UMNnEIoE mr_w_._.t.mh&

gablso Bagedais

A mﬁmﬂ&

:“

uauml nol

srssatziesvll MBI Es [dage]

EIMEINRH

(USRI JENEG [T IGHEGENR
3153 |Ele]

GG

H

TTINGEEG -
Ktindastxaoiann

FINGE URAR

ERIER _ﬂ mmﬁmmmﬂ_

FIRPEIA UGIEETIRA G0

S Aol ol IR R T

s, =l e =

FEINTSNEENU] EINSEFI]
SHgHEai iy

~rERaGIG G

mmﬁmﬂ.\m_ﬁmuam__mml DD

il 67 3fRGE

af prpmE | ishe AshEy

A% IGESEIRINT | iSRS UERANGES [IG-REE],

G SR T URASEIRTIT

BUHIdd plelzimsinsiiiealiaildo@gis

(T £ [3UTaRE -

EEREAT SHEARI

EF EIRIGEAE GV | SRARUE SRR BUE H[diE

GIUGIE SEREESY | IIAUE 5667 6 FRI6HG

[etineiad ks nontnios)

a:m.a.m 1_.10

Miinsasiidasista(a (g
s1dastion

116

Tabl e of Key Codes

The table below shows key Grounded Theory codes, along with the number of interviews
in which they were foond (Srcs) and the number of times each was referenced within

those interviews (Refs).

Codes Srcs NEI
Concepts 0 0
Active deterrence 4 18
Honeypots 2 5
Using redundancy 3 8
App implications 0 0
- Can spoof 2 2
App processing and storage benefit 4 6
App store vetting 3 4
Biometrics 2 2
Cryptography issues in offline apps 1 5
Difficult feedback 2 3
Insecure infrastructure 5 13
Internet of Things 2 4
Issues of battery life 1 1
OS Permission Models 4 11
Physical access to device 2 7

117

Codes Srcs Refs
Privacy 1 1
Secure install channel 3 5
Upgrading issues 6 9
Architecture policies 4 6
Automation 1 1
Awareness of security 3 10
Deep learning 1 1
Augmented analysis 1 2
Augmented attacks 1 3
Augmented code review 2 3
Augmented test generation 2 2
Development team structure and working 5 11
Agile 2 4
Analyse system and changes 6 9
Interaction with other teams 3 10
Interaction with product owners 7 24
Keeping list of discovered exploits 1 1
Mistakes and errors 1 1
Right to query 3 4

118

Codes Srcs Refs

Standard development environments 1 4
Trade-off between security and cost 9 17
Dialectic 1 1
Automatic code review tools 4 8
Interaction amongst development team 3 10
Penetration and other testing 8 20
Reviews 5 15
Verification 1 1
Fundamental principles ofsoftware security 3 4
Openness 2 9
- Defensiveness 1 5
- Silos 2 6
- Time pressures 1 3
Co-location 1 5
Curiosity 1 2
Informal communication 1 2
Open source 6 10
Shared understanding 1 1
Social interaction 1 4

119

