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In this paper, we build upon the successes of the ultraviolet (UV) completion of the Starobinsky model of
inflation. This involves an extension of the Einstein-Hilbert term by an infinite covariant derivative theory
of gravity which is quadratic in curvature. It has been shown that such a theory can potentially resolve the
cosmological singularity for a flat, homogeneous and isotropic geometry, and now it can also provide a
successful cosmological inflation model, which in the infrared regime matches all the predictions of the
Starobinsky model of inflation. The aim of this paper is to show that the tensor-to-scalar ratio is modified by
the scale of nonlocality, and in general a wider range of tensor-to-scalar ratios can be obtained in this class
of model, which can put a lower bound on the scale of nonlocality for the first time as large as the
Oð1014Þ GeV.
DOI: 10.1103/PhysRevD.95.044004

I. INTRODUCTION

Einstein’s theory of general relativity (GR) has been
extremely successful in its predictions about the infrared
(IR) regime [1]. However, in the ultraviolet (UV) regime,
the theory exhibits pathologies, and at a quantum level the
theory becomes nonrenormalizable. Classically, GR allows
both black hole and cosmological type singularities. It has
been known for some time from a seminal paper by Stelle
[2] that quadratic curvature gravity is renormalizable,
but in general it suffers from the presence of a Weyl
ghost.1

In [4,5], it was demonstrated that one can tame the
problem of ghosts in a quadratic curvature gravity, provided
one invokes infinite covariant derivatives acting on the
curvature.2 In this case, the graviton propagator is modified
by these infinite derivatives, but it is still possible to retain
the original massless graviton degrees of freedom without
introducing any new poles in either the spin-0 or spin-2
component of the graviton propagator. This can be
achieved if the propagator is modified by an exponent of
an entire function, i.e. eγð□Þ, where γð□Þ is an entire
function of the d’Alembertian, □ ¼ gμν∇μ∇ν, where the
greek indices run from 0,1,2,3. The exponential of an entire
function contains no roots by construction. If γ > 0, and
□ → ∞, the propagator is even more convergent than a
polynomial of finite degree, thus improving upon the

UV properties [6–9]. In the IR, one recovers the original
graviton propagator [5,10].
The quantum UV aspects are also improved, due to the

fact that the vertex interactions in such infinite derivative
theories, with exponential modification of the propagator in
the UV, become nonlocal. The scale of these modifications
is governed by the scale of nonlocality M. This has been
illustrated in thermal aspects of string theory [11], and in an
improved higher derivative extension of the electroweak
Standard Model [12]. It has also been shown that ultrahigh
energy trans-Planckian scatterings in this case do not blow
up in the UV [9].
From the classical point of view, in the linear regime

the theory has resolved the Newtonian singularity, and the
black hole singularity for mini black holes [5],3 and also
the dynamical formation of such black holes, which have
no horizon and no Schwarzschild’s singularity [15].
The initial motivation of studying ghost-free infinite

derivative gravity (IDG) was to resolve the cosmological
big bang singularity problem in Einstein’s theory of gravity,
by supplanting it with a big bounce [4], and to study
cosmological perturbations around the big bounce [16]. In
[17,18], it was shown that sub- and super-Hubble pertur-
bations around the bouncing solution are stable. It was
already pointed out in [4,18–20] that such a quadratic
action of gravity would serve as an UV completion of the
original Starobinsky model of inflation [21]. In fact, [19]
already mentioned the possibility of explaining low multi-
poles observed in the temperature anisotropy of the cosmic
microwave background radiation (CMBR) [22,23], and its
connection with a bouncing cosmology in connection with

1This is a generic problem for any higher derivative theory,
i.e. more than 2 derivatives, where extra derivatives count for
extra poles in the propagator and extra degrees of freedom other
than the original degrees of freedom. The extra poles generically
harbor ghosts [3].

2In [5], the authors constructed the most generic quadratic
curvature gravity involving Ricci scalar and tensor, and the
Riemann/Weyl, which is ghost free and singularity free around
Minkowski background.

3See also [13,14], where infinite derivative corrections to
curvature have been proposed from string theory and string
theory. One would expect infinite higher derivative corrections in
the gravitational sector, due to α0 corrections.
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a UV-improved Starobinsky inflation. A rigorous proof of
avoiding singularity was provided in [24].
Indeed, the scale of nonlocality M is one of the

key parameters for any such ghost-free higher derivative
modification of gravity. It is important to constrain this
parameter from all possible observations. One of the best
constraints on M arises from the fact that at table-top
experiments it is possible to constrain the departure from
the 1=r fall of Newtonian gravity [25], which has been
tested up to 5 × 10−6 meters, and this places a constraint on
the scale of nonlocality of M > 0.004 eV [26]. This is a
very weak but useful constraint.
The main aim of this paper is to improve the

constraint on the scale of nonlocality, i.e. M, from cosmo-
logical observations, such as inflationary cosmological
perturbations [27].
Primordial inflation [28–30] is currently one of the

best paradigms to explain the temperature anisotropy in
the CMBR and large scale structures in the Universe.
It can occur in many different sectors, such as in the visible
sector [31–33], individually or simultaneously [34], and
for a review one can read [35]. However, inflation in the
gravitational sector is perhaps one of the most natural ways
to describe the Universe, first envisaged by Starobinsky
[21]. The original model was described by a quadratic
curvature action of gravity, and now that we have this
infinite derivative modification, which improves the UV
aspects of gravity, we should revisit its cosmological
properties.4

Recently, in [38,39] the authors constructed the most
general quadratic curvature, infinite derivative theory of
gravity which is free from ghosts and instability around de
Sitter and anti–de Sitter backgrounds.5 In order to under-
stand the stability of the action around de Sitter and anti–de
Sitter backgrounds, the authors of [39] expanded the action
up to second order in scalar, vector and tensor modes. It
was shown that the only propagating modes would be the
scalar and tensor modes.
With the help of these mathematical tools, in [40] and

in [41], the authors investigated the scalar and tensor
perturbations in an inflationary background for infinite
derivative theory of gravity. It was found that in the low
energy limit, the scalar and tensor perturbations evolve in
exactly the same way as in the Starobinsky model of
inflation, but in the UV regime there are some subtle
differences, which were highlighted in [41], and we will
briefly review them here. We will use the latest bounds on
tensor modes to constrain the value of nonlocality M. We
will also explicitly compute the spectral tilt for the scalar

perturbations for the IDG model of inflation for the
first time.

II. INFINITE DERIVATIVE GRAVITY

The most generic quadratic curvature gravity in
4 dimensions, which can be made ghost free can be
written in terms of the Ricci scalar, R, the symmetric
traceless tensor, Sμν ¼Rμν− 1

4
Rgμν, analog with the Einstein

tensor, Rμν (the Ricci tensor), and the Weyl tensor:
Cμναβ. The S tensor vanishes on maximally symmetric
backgrounds [38]6:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
Rþ λ

2
ðRF 1ð□ÞR

þSμνF 2ð□ÞSμν þ CμνλσF 3ð□ÞCμνλσÞ
�
; ð1Þ

where greek indices μ, ν etc. run from 0 to 3, M2
P is the

Planck mass, and λ is a dimensional coupling accounting
for the higher curvature modification, and the F i are
Taylor expandable (i.e. analytic) functions of the covariant
d’Alembertian [5], i.e.

F ið□Þ ¼
X∞
n¼0

cin□
n=M2n; ð2Þ

where M is the scale of nonlocality and cin are the
coefficients of the series. Using the fact that the 1=r
fall of the Newtonian potential continues until around
5 × 10−6 m [25], we can say that M > 10−2 eV [26], a
reasonably weak constraint. Previous work on nonlocal
theory, without the Weyl term in Eq. (3), used inflation data
to estimate M in that simplified version of the theory as
M ∼ 1015 GeV [19] and M > 108 GeV [42].
In fact, it was already shown in [5], that one can switch off

eitherF ið□Þ in Eq. (1)without loss of generality, i.e. without
introducing ghosts in the spectrum and without modifying
the graviton propagator in the IR. The full equations of
motion for the action have been derived in [43].
For the purpose of investigating inflation, one can

use the “redundant functions” method to set F2ð□Þ ¼ 0
and therefore study the following action without loss of
generality [24]:

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½M2
pRþ λðRF 1ð□ÞR

þ CμνρσF 3ð□ÞCμνρσÞ�: ð3Þ
In order to solve the infinite covariant derivatives, one can
consider a simple ansatz

4In fact, [36] highlights the robustness of Starobinsky
inflation from the quantum corrections point of view for physics
beyond the Standard model. [37] showed that under a suitable
truncation, infinite derivative gravity can give rise to Starobinsky
inflation.

5For parity invariant and torsion free gravity.

6The original action was written in terms of Rμν and Rμνλσ in
[5]. However there is no loss of generality in expressing the action
as Eq. (1) [38].
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□R ¼ r1R ð4Þ
where r1 is a constant, which produces the relation
F 1ð□ÞR ¼ F1R, where F1 is a constant.7

We can now perturb the action around a generic back-
ground ḡμν, i.e. gμν ¼ ḡμν þ hμν, where we can decompose
hμν as follows:

hμν ¼ h⊥μνþ ∇̄μAνþ ∇̄νAμþ
�
∇̄μ∇̄ν−

1

4
ḡμν□̄

�
Bþ 1

4
ḡμνh;

ð5Þ

where h⊥μν is the transverse and traceless spin-2 excitation,
Aμ is a transverse vector field, and ðB; hÞ are two scalar
degrees of freedom which mix [45]. One can show that
the vector mode and the double derivative scalar mode
vanish on constant curvature backgrounds [38].8 We are
left with two relevant modes, the tensor mode h⊥μν and
ϕ≡ h −□B, i.e.

hμν ¼ h⊥μν þ
1

4
gμνϕ: ð6Þ

III. SCALAR FLUCTUATIONS AROUND
INFLATIONARY BACKGROUND

By inserting Eq. (6) into the action Eq. (3), we find that
the scalar part of the quadratic variation of the action is [38]

δ2S0 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ϕ

64
ð3□þ R̄Þ½6λF1□ −M2

p�ϕ; ð7Þ

where R̄ is the background Ricci scalar. As we can see, the
Weyl tensor termF 3ð□Þ has no effect here and so the action
Eq. (3) should produce the same scalar perturbations as local
Starobinsky Rþ R2 inflation, as was shown in [41].
It was shown in [40,41] that then the scalar power

spectrum is given by

jδΦðk; τÞj2 ¼
k2

16π2a2
1

3λF1R̄

����
k¼aH

: ð8Þ

We can calculate the measured power spectrum of the
gauge-invariant comoving curvature perturbationR, where
in the regime _H ≪ H2, R ≈ − H2

_H
Φ, where dot is defined

as derivative with respect to physical time, t. Because the
Weyl term does not contribute, then at the crossing of the
Hubble radius, the scalar power spectrum is the same as in
[40,41]

Ps ¼ jδRj2 ≈
H6

k¼Ha

16π2 _H2
k¼Ha

1

3λF1R̄
; ð9Þ

evaluated at k ¼ aH. In the above we have multiplied by
H4= _H2 in order to transform from the variation of Φ to the
variation of R. We can now recast this in terms of number
of e-foldings, i.e. N, defined at the start of inflation to the
end of inflation [35],

N ¼ −
1

2

H2

_H
; ð10Þ

With the help of the above equation, and noting that
the background Ricci scalar during inflation is R̄ ≈ 12H2,
which gives us [41]

Ps ¼ jδRj2 ≈
N2

24π2
1

6λF1

; ð11Þ

which reduces to the value for Starobinsky inflation [46]
when we take the appropriate value for λF1, i.e
λF1 ¼ 1=ð6M2

sÞ, in which case our action reduces to that
of Starobinsky.
This is what we expected, because there is no contri-

bution here from theWeyl tensor term. Then using Eq. (11),
the scalar spectral tilt is given by9

ns ¼
1

Ps

dPs

dN
¼ 1 −

2

N
; ð12Þ

where N was defined in Eq. (10). This is the same result as
for Starobinsky inflation [27].

IV. TENSOR PERTURBATIONS AROUND
INFLATIONARY BACKGROUND

Tensor modes do not couple to the inflaton field in
standard inflation. The sub-Hubble tensor modes describe
free gravitational waves inside the Hubble patch, which
during inflation are carried outside the Hubble patch so that
on super-Hubble scales they are locked in. We will now
calculate the tensor perturbations for our action. While
the addition of the Weyl term does not affect the scalar
perturbations, it does affect the tensor perturbations. When
we insert Eq. (6) into the action Eq. (3), then the tensor
part of the quadratic variation of the action is [38]10

7The more general ansatz □R ¼ r1Rþ r2, where r1, r2 are
constants, was used originally in [4] and then [17,18,40,44].
Setting r2 ¼ 0 as we have done here is equivalent to requiring that
the cosmological constant Λ in the action vanishes.

8During inflation the Hubble parameter is nearly constant, so
taking the background curvature to be constant is a very good
approximation.

9Normally ns is given in terms of k as ns ¼ dðlnPsÞ
dðln kÞ , but we write

it in terms of N ¼ lnðaHÞ using dðlnPsÞ
dðln kÞ ¼ 1

Ps

dPs
dN

dN
dðln kÞ and then

noting that dN
dðln kÞ ¼ dðln aHÞ

dðln aHÞ ¼ 1.
10Note that compared to [38], we took F 2ð□Þ ¼ 0 and

f10 ¼ F1.
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δ2S⊥ ¼ λ

4

Z
d4x

ffiffiffiffiffiffi
−ḡ

p
h⊥μν

�
□ −

R̄
6

�
F1R̄

×

�
1þ 1

F1R̄

�
□ −

R̄
3

�
F 3

�
□þ R̄

3

��
h⊥μν: ð13Þ

The result Eq. (13) has the standard pole of the
propagator at □ ¼ R̄

6
. Eq. (13) is simply the result for an

action of type Rþ λF1R2, multiplied by the extra factor in
the square brackets. In order to not introduce any ghosts
into the propagator, we require that there are no extra poles
resulting from this term in square brackets. The obvious
choice is the exponential of an entire function, which by
definition has no roots. We therefore define [41]

Pð□Þ≡ 1þ 1

F1R̄

�
□ −

R̄
3

�
F 3

�
□þ R̄

3

�
; ð14Þ

where Pð□Þ is the exponential of an entire function. We
now look at the precise form of Pð□Þ. If we take the
simplest choice, Pð□Þ ¼ eωð□Þ, then we find that

F 3ð□Þ ¼ F1R̄
eωð□−R̄=3Þ − 1

□ − 2
3
R̄

: ð15Þ

However, this gives us a pole in F3ð□Þ at □ ¼ 2R̄=3.11

The simplest choice which avoids this pole is [41]

F 3ð□Þ ¼ F1R̄
eHð□−2

3
R̄Þ − 1

□ − 2
3
R̄

; ð16Þ

whereHð□Þ is an entire function. Then combining Eq. (14)
with this choice means that

Pð□Þ ¼ eHð□−R̄=3Þ: ð17Þ

The extra exponential factor is always positive and will
be very important when we look at the scalar-tensor ratio
and will allow us to put a constraint on the scale of
nonlocality. The tensor power spectrum for the action
Eq. (3) is therefore multiplied by Pð□Þ evaluated at
□ ¼ R̄=6, the root of Eq. (13). Therefore the power
spectrum becomes [41]

jδhj2 ¼
H2

2π2λF1R̄
eHð−R̄=6Þ ð18Þ

and the ratio between the tensor and scalar power spectrums
can be given by

r ¼ 2jδhj2
jδRj2

¼ 48H2eHð−R̄=6Þ _H2

H4
; ð19Þ

(where the factor of 2 accounts for the two polarizations of
the tensor modes). We can write this tensor-scalar ratio
using the definition of the number of e-foldings N
Eq. (10) as

r ¼ 12

N2
eHð−R̄=6Þ: ð20Þ

When we compare this to the ratio given by Starobinsky
inflation, where

r ¼ 12

N2
; ð21Þ

we see that there is an extra modulating exponential factor
eHð−R̄=6Þ, which was defined in Eq. (14), due to the addition
of nonlocal gravity.

V. SCALAR TO TENSOR RATIO, r,
AND CONSTRAINING THE SCALE

OF NONLOCALITY

From the 2015 Planck data given in [23], the bound on
tensor-to-scalar ratio is given by r < 0.07, and so from
Eq. (20), we find that

12

N2
eHð−R̄=6Þ < 0.07: ð22Þ

When we take the logarithm of Eq. (22), we obtain the
constraint

Hð−R̄=6Þ < 2 logðNÞ − 5.14; ð23Þ
and during inflation, we obtain

R̄ ≈ 12H2 ∼
9.02 × 1032

N2
GeV2: ð24Þ

Therefore Eq. (23) becomes

H

�
−
9.02 × 1032 GeV2

6M2N2

�
< 2 logðNÞ − 5.14: ð25Þ

Of course, as far as the form of Hð□ − R̄=3Þ in Eq. (17)
is concerned, it could be any entire function, as long as it
retains that in momentum space, Hð−k2 − R̄=3Þ → ∞,
when we take the UV limit k2 → ∞. This allows the
UV propagator to be exponentially suppressed. This
requirement implies that H must have terms of the form
ð−1Þnð□ − R̄=3Þn due to the fact that □ becomes −k2 in
momentum space. One can take some simple polynomial
functions to see what the effect will be on the scalar-tensor
ratio. Note that when we evaluate r at □ ¼ R̄=6,

11A pole in F3ð□Þ is not necessarily disastrous for the theory,
because the propagators are still well defined, but having a
function F3ð□Þ which is analytic shows that the theory is well
constructed.
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these terms become ð−1ÞnðR̄=6 − R̄=3Þn ¼ ðR̄=6Þn.
As this is strictly positive, this will gives us an increased
value of r compared to that given for Starobinsky
inflation in Eq. (21), which means we can then constrain
M using the upper bound on r from the Planck data. We
will now take

(i) Hð− R̄
6
Þ ¼ ð−1Þnð□− R̄=3ÞM2Þnj□¼R̄=6 ¼ ðR̄=6M2Þn

We wish to seek a bound on M, which translates
Eq. (25) into12

M >

ffiffi
3
2

q
N

½ð2 logðNÞ − 5.14Þ�−1=2n × 1016 GeV:

ð26Þ

If we take Hð−R̄=6Þ ¼ −ð□ − R̄=3Þ=M2j□¼R̄=6,
as well as r < 0.07 and N ¼ 60 e-foldings, then

M > 1.17 × 1014 GeV: ð27Þ

If we take Hð−R̄=6Þ ¼ ð□ − R̄=3Þ2=M4j
□¼R̄=6,

r < 0.07 and N ¼ 60 e-foldings, then

M > 1.55 × 1014 GeV: ð28Þ

If we take Hð−R̄=6Þ ¼ ð□ − R̄=3Þ2n=M2nj□¼R̄=6,
we obtain

M > 2.04 × ð0.573Þ1=n × 1014 GeV: ð29Þ

(ii) Hð−R̄
6
Þ¼−ð□−R̄

3
Þ=M2þð−1Þnð□−R̄

3
Þa=M2aj□¼R̄=6,

Let us illustrate the more general situation, when
Hð□Þ is a binomial. There is an extra degree of
freedom here because the coefficients in front of the
two terms could be different, but to keep things
simple we have assumed that they are the same.
In which case, using that r < 0.07 and N ¼ 60, our
constraint Eq. (23) becomes

9.02 × 1032 Gev
6M2602

þ
�
9.02 × 1032 Gev

6M2602

�
a

< 3.049:

ð30Þ

This gives us a lower bound on M of 1.78 ×
1014 GeV for a ¼ 2, rising to 1.96 × 1014 GeV
for a ¼ 16 and 2.03 × 1014 GeV for a ¼ 64.

(iii) Hð− R̄
6
Þ ¼ P∞

a¼1ð−1Það□ − R̄=3Þa=M2aj□¼R̄=6:
Finally we take the case where H is a sum of□ over
all orders, again assuming that the coefficients of the
terms are the same. Then our Eq. (23) becomes

X∞
a¼1

�
9.02 × 1032 Gev

6 × 602M2

�
2a

< 30.49: ð31Þ

Numerically, this gives us a constraint of
M > 2.35 × 1014 GeV.

(iv) So far we have taken only forms of Pð□Þwhich give
a value larger than 1 for Pð□ ¼ R̄=6Þ, but it is also
possible for us to choose a form of Pð□Þ such that
PðR̄=6Þ is less than 1.13 Using Eq. (20), a negative
value of for the argument of the exponential gives a
lower tensor-scalar ratio than Starobinsky inflation
in Eq. (21), and because we do not currently have a
lower bound on r, this does not provide us with any
constraint on M. If future data shows that r is lower
than that predicted by Starobinsky, then this could
prove a useful model.14

VI. r VS ns PLOT FOR UV COMPLETE
STAROBINSKY MODEL OF INFLATION

If we want to plot r against ns, then we should note using
Eq. (12), Eq. (20) that for nonlocal gravity

r ¼ 12

N2
eHðR̄=6Þ

¼ 3ð1 − nsÞ2eHð−R̄=6Þ: ð32Þ

We can plot this for different forms of Hð□Þ and compare
with the 2015 Planck data at the 68% and 95% confidence

FIG. 1. A plot of the tensor-scalar ratio r vs the spectral index
ns for different values of M where we have taken Hð−R̄=6Þ ¼
−ð□ − R̄=3Þ=M2j

□¼R̄=6 using Eq. (32). We have taken N ¼ 60

and also plotted the 2015 Planck data.

12Note that 50 < N < 60 and 2 logðNÞ ≥ 2 logð50Þ ¼ 7.9 so
therefore 2 logðNÞ − 5.14 ≥ 0.

13For example by taking Pð□Þ ¼ exp½□ð□ − R̄=3Þ�. This still
ensures that we have no pole in F3ð□Þ, but gives us a negative
value for the argument of the exponential when we evaluate Pð□Þ
at □ ¼ R̄=6.

14We could also take Pð□Þ ¼ eð□−R̄=6Þð□−R̄=3Þ. When we
evaluate this at □ ¼ R̄=6, then this gives us the same prediction
as Starobinsky.
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level from [23] for N ¼ 60. If we take Hð□Þ ¼ −□=M2,
then in Fig. [1] this gives us a constraint on M of

M > 1.18 × 1014 GeV: ð33Þ
Finally we calculate the tensor-scalar ratio for various
values of the scale of nonlocality M in [Table I].

VII. CONCLUSION

In recent years, an infinite derivative, ghost-free, quad-
ratic curvature action of gravity has been shown to solve
the singularity problem and give a universal prediction for
the Newtonian potential at large distances.

Using the scalar spectral index and the tensor-scalar ratio
together with the latest Planck data, we have found a
constraint on the value of the scale of nonlocality for
various cases of IDG.
Using the simplest case of IDG which avoids poles

throughout the theory, this provides us with a much
stronger constraint than before, of M > 1.18 × 1014 GeV
(around 10−4MP) using cosmological data whereas pre-
viously our best constraint from below using the full theory
was 10−2 eV using data from laboratory experiments.
Using a reduced version of the action, the constraints
M > 108 GeV [19] and M ∼ 1015 GeV [42] were found
using cosmological data by other authors, which is con-
sistent with our result.
We have also looked at different classes of the theory,

with different versions of the entire function, and obtained
modified constraints within these versions. In principle we
can take a different argument of the function, which will
give us different values of the tensor-scalar ratio.
Our result allows us to compare experimentally IDG

with Starobinsky inflation, and can provide an explanation
for possible differences between the predictions of
Starobinsky inflation and cosmological data. With further
data on the scalar-tensor ratio we will be able to constrain
the scale of nonlocality even further.
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