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Quasiparticle recombination in hotspots in superconducting current-carrying nanowires
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We describe a kinetic model of recombination of nonequilibrium quasiparticles generated by single photon
absorption in superconducting current-carrying nanowires. The model is developed to interpret two-photon
detection experiments in which a single photon does not possess sufficient energy for breaking superconductivity
at a fixed low bias current. We show that quasiparticle self-recombination in relaxing hotspots dominates diffusion
expansion effects and explains the observed strong bias current, wavelength, and temperature dependencies of
hotspot relaxation in tungsten silicide superconducting nanowire single-photon detectors.
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I. INTRODUCTION

The detection mechanism of a superconducting nanowire
single-photon detector (SNSPD) relies on the local photon-
induced suppression of superconductivity [1]. This region
of suppressed superconductivity is usually referred to as a
hotspot (HS). Hotspot dynamics are crucially important for
the operation of SNSPDs because they determine the spectral
sensitivity [2] and limit the reset time of the detectors [3]. The
formation and subsequent dynamics of hotspots play central
roles in the detection mechanism. Despite significant progress
in the development of SNSPDs, many fundamental questions
remain open. These relate both to formation and evolution
of a hotspot following the absorption of a photon and to
the detection mechanism. Here we introduce a model that
describes relaxation of strongly nonequilibrium distributions
of interacting quasiparticles (QPs) and phonons inside a gener-
ated hotspot. We show that this model provides interpretation
of recent two-photon experiments [4] describing in detail the
evolution of relaxing hotspots. It quantitatively reproduces the
measured current, wavelength, and temperature dependence of
the hotspot relaxation time.

A recent experimental study of photodetection mechanisms
in a superconducting nanowire single-photon detector [5] con-
siders the four detection scenarios. The first is the normal-core
hotspot model (a), where the photon energy creates a normal
domain inside the superconductor, which the supercurrent
must bypass. The second (b) is the diffusion-based hotspot
model, where the nonequilibrium quasiparticles (QPs) diffuse
outward from the point of absorption, creating a band of
depleted (broken) superconductivity. The third (c) is the vortex
nucleation model, where a vortex-antivortex pair is formed in
the hotspot. This is a modification of model (a). Finally, in the
vortex crossing model (d), either a vortex or a vortex-antivortex
pair uses an area of weakened superconductivity to cross the
wire and annihilate. This is a modification of the diffusion
model (b), where superconductivity is not broken, while
the detection mechanism is through photon-enhanced vortex
unbinding. The main conclusion [5] is that the single photon
detection experiment is consistent with a detection model (d)

that relies on the vortex unbinding in the region of suppressed
superconductivity [6–9].

By contrast, the characteristics and time evolution of the
region of suppressed superconductivity in the hotspot forms
the focus of this work. This important question was not
addressed in detail earlier primarily because of the difficulty
of separating the role of different factors in single photon
experiments. In our recent work [4] the relaxation dynamics
of hotspots were studied in the two-photon detection regime.
This technique ideally suits the objective to study weakened
superconductivity in the hotspot. In this situation the energy
of a single photon is not sufficient to create a response
pulse, and single photon detection efficiency is negligible. In
the two-photon detection regime, the response pulse can be
efficiently triggered only if two incident photons generate two
hotspots overlapping spatially and temporally. Nonetheless
following photon absorption a strongly nonequilibrium hotspot
is formed. This exactly corresponds to the situation of
scenario (b) above, where hotspot represents the volume where
superconductivity is suppressed but not broken. Arrival of
the second photon of the same energy but with variable time
delay, tD , relative to the first photon results in a detection click
only provided that there is a significant spatial and temporal
overlap of the two hotspots. The exact mechanism leading
to a detection click is not important for understanding the
dynamics of hotspot relaxation. The experiment is essentially
a modification of the well-known pump-and-probe technique
where the probe photon merely registers the state of relaxation
of the hotspot, which was generated by the pump photon.
Interpreting this experiment we therefore may concentrate
on specific aspects of cooling dynamics of nonequilibrium
distribution of QPs within the hotspot region in the current-
carrying superconducting nanowire.

In Sec. II we give a description of the model, defining
important stages of relaxing hotspots and introducing the main
assumptions. Section III contains the results of a theoretical
simulation of relaxation dynamics of hotspots in current-
carrying superconducting nanowires. In Sec. IV, a comparison
between theory and experiment is given, followed by a general
discussion.
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II. HOTSPOT IN A CURRENT-CARRYING
SUPERCONDUCTING NANOWIRE

In typical SNSPDs, the electron diffusivity in nanowires
in the normal state, D, is below 1 cm2/s, and the parameter
kF l � 1, where kF is the Fermi wave vector and l is the electron
mean free path. Nanowires are strongly disordered, sometimes
even being on the edge of a superconductor-insulator transi-
tion. Spectral and transport properties of strongly disordered
superconductors on the edge of a superconductor-insulator
transition are currently a topic of great interest both from
experimental and theoretical points of view [10–12]. The
transition is driven by the increase in the number of incoherent
pairs at the expense of the ones that participate in the
condensate. We assume that an SNSPD, in spite of being close
to the transition, has its global superconductivity preserved.
Under these circumstances the order parameter � in an
SNSPD may exhibit strong local fluctuations on the scale
of the order parameter, indicating a spontaneously formed
inhomogeneity [10]. In a typical hotspot, LHS � ξ0, where
LHS is the linear size of the hotspot and ξ0 is the coherence
length. For this reason we will consider nonequilibrium
dynamics and transport in an SNSPD in the model of a
dirty BCS superconductor, neglecting local fluctuations. The
rough estimates based on the measured diffusion coefficients
show that for typical SNSPD’s kF l falls in the interval
1 � kF l < 10. Thus nanowire materials are on a metallic side
of metal-insulator transition, and the use of the disordered
superconductor model is at least qualitatively justified. While
a priori justification of the model validity in view of the
system being far from the asymptotic limit kF l � 1 may be
difficult, the convincing qualitative and quantitative agreement
that we will demonstrate in this work provides strong a
posteriori justification. The role of specific features of strong
disorder beyond the validity of the model may be discussed
on a qualitative level. For example, random local fluctuations
of the order parameter, may significantly influence thermal
diffusivity of quasiparticles through local Andreev reflections.

We start by discussing the density of states (DOS) in a
superconductor carrying supercurrent. In the dirty limit the
expression for DOS can be derived from the Usadel equation,
which becomes [13]

ε + i� cos θ = i�
cos θ

sin θ
, (1)

where ε is the energy, � is the order parameter, and θ is the
pairing angle in the trigonometric representation of Green’s
functions. The depairing energy due to the supercurrent
flow is � = �D/2(∇�)2 = 4πTC(psξ0/�)2, where ∇� is
the phase gradient, ps is the condensate momentum, and
ξ0 = √

�D/2πTC is the coherence length for the disordered
superconductor. More generally, we may write � = �0 +
�D/2(∇�)2 adding the current independent component, �0.
The latter may be due to the presence of a magnetic field,
spin-flip scattering, or introduced phenomenologically for
a strongly disordered superconductor. The order parameter,
the depairing energy, and the pairing angle θ depend on
temperature, T , and the magnitude of the supercurrent. θ is
also a function of ε. The dimensionless density of states in
units of 2N (0), where N (0) is the normal state DOS per spin at

FIG. 1. (Color online) Normalized density of states in a disor-
dered current-carrying superconductor for different depairing ener-
gies �/� = 0.05 (red), 0.1 (blue), 0.2 (green), and 0.3 (cyan). The
black arrow indicates the direction of increasing pair breaking energy.

the Fermi level, is ρ(ε,�,�) = Re[cos θ (ε/�,�/�)]. Figure 1
shows DOS in a disordered current-carrying superconductor
for a range of normalized pair-breaking energies. When
�/� �= 0 the gap in the spectrum of elementary excitations
differs from the order parameter. A change in supercurrent
affects both the depairing energy � and the order parameter,
�, as well as their ratio.

Another implication of strong disorder is the enhanced
electron-electron scattering leading to fast thermalisation.
In typical NbN SNSPD wires, the inelastic scattering time,
which may be attributed to electron-electron interaction, is
τee ∼ 7 ps [1]. This is considerably shorter than all other
relevant times describing hotspot dynamics. Since NbN and
WSi thin films have similar transport properties, we assumed
that WSi films also have strong electron-electron scattering.
In what follows we will use the concept of quasiequilibrium
distribution, which may be characterized by a slowly varying
temperature, both spatially and temporarily. The relaxing
distribution of QPs in the current-carrying superconductor is
a particularly interesting example. If the magnitude of the
supercurrent is fixed, then with the temperature of excitations
slowly changing, both the depairing energy and the order
parameter must change accordingly, defining the QP relaxation
path, which must be consistent with the constant magnitude of
supercurrent.

The relation between current, order parameter, and temper-
ature for a dirty superconductor can be found from Usadel
equations. This can be done from the general solution of
Kupriyanov and Lukichev [14] for a 1D nanowire numerically,
or following Romijn et al. [15], who derived an approximate
analytical result coinciding with the exact solution for the
dirty limit l << ξ0 (l is the electron elastic mean free path)
and the arbitrary temperature interval within 1% accuracy. For
consistency we must consider the case �0 = 0, because both
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FIG. 2. (Color online) (a) Dependence of a current in a superconducting nanowire on square order parameter in the interval of temperatures
from 0.3TC to 0.8TC with 0.1TC increment from top to bottom. (b) Order parameter as a function of QP temperature in a dirty superconducting
nanowire carrying a current. Arrow shows the direction of current increase from 0.22 to 0.76IC with an increment of 0.09IC .

spin-flip scattering and magnetic field were disregarded in the
derivation [14,15]. In strongly disordered thin superconducting
nanowire films, the rounding off of the density of states that
is seen in experiments [16,17] is attributed to extra depairing
energy due to disorder rather than any specific pair-breaking
mechanism. Correspondingly, when evaluating the density of
states we will keep the parameter �0 nonzero.

Below we will use the approach by Romijn et al. [15]. We
have

jB

jC(0)
= 21

√
3ζ (3)

4π3/2
T̄ ϕ1/2

[ ∞∑
n=0

�̄2

�̄2 + (2n + 1)2T̄ 2

− 2

π
ϕ

∞∑
n=0

�̄2(2n + 1)2T̄ 2

(�̄2 + (2n + 1)2T̄ 2)5/2

]
, (2)

where

ϕ = π

[ ∞∑
n=0

(
T̄√

�̄2 + (2n + 1)2T̄ 2
− 1

2n + 1

)
− 1

2
ln T̄

]

×
[ ∞∑

n=0

(2n + 1)2T̄ 3

(�̄2 + (2n + 1)2T̄ 2)2

]−1

, (3)

where jB is bias current density. The normalization coefficient,
jc(0), enters the Ginzburg-Landau expression for critical
current density, jc = jc(0)(1 − T/Tc)3/2. Here T̄ = T/TC is
temperature in units of TC and �̄ = �/πTC is the order
parameter in units πTC . ϕ is a dimensionless (in units of
critical temperature) part of the depairing energy associated
with supercurrent [15], ϕ = (�D/2TC)(∇�)2.

Figure 2(a) shows the dependence of current on the square
order parameter at different temperatures calculated using
Eq. (2). Setting the current to a specific value in Eq. (2), we
calculate the temperature dependence of the order parameter at
that bias current. This is equivalent to intersecting the curves in
Fig. 2(a) with horizontal lines (only the solution corresponding
to higher order parameter is stable). This dependence is shown
in Fig. 2(b). The temperature in Fig. 2(b) is in units of TC ,

the order parameter is in units �(0) (which is its value at
zero temperature and zero current), and the set of curves is for
dimensionless bias current I/Ic = 0.22, 0.31, 0.40, 0.49, 0.58,
0.67, and 0.76 (increasing in the direction of the arrow). The
temperature and the order parameter at the lower end of each
curve are the critical temperature and the order parameter at
the edge of the transition from superconducting to normal state
at a particular current. Finally, Fig. 3(a) shows the calculated
temperature at the critical (end) point, TCB , for the set of
relaxation curves in Fig. 2(a), Fig. 3(a) for the temperature, and
Fig. 3(b) for the order parameter. The data in Figs. 3(a) and 3(b)
if plotted as �C,IB

/�(0) vs TCB/TC will form the solid curve
“supporting” the set of curves in Fig. 2(b) from the bottom.

Figure 4 introduces definitions which we will use in the
paper. For illustration purposes we have chosen the top curve
from Fig. 2(b), which corresponds to the relaxation path at
bias current IB = 0.22IC . We will assume that in a disordered
wire, the QP system comes to a quasiequilibrium at an elevated
temperature, T , instantaneously due to intense electron-
electron collisions. Subsequent relaxation in which excess
energy is dissipated due to phonon emission and escape into a
substrate is characterized by much slower rates. Therefore, at
any instance of time the relaxation process is fully described
by the varying temperature of the nonequilibrium electronic
distribution. Phonons, that are emitted during the relaxation
process, are assumed to escape from the film. This simplest
version is the one-temperature model. The justification for
this model is that the nanowire is very thin, typically only a
few nanometers thick, so that phonons are likely to escape
from the film before they are reabsorbed by QPs or scatter
in anharmonic processes. A more sophisticated model would
include phonon reabsorption and phonon-phonon interactions.
For strong phonon-phonon interactions this more sophisticated
model would evolve into the two-temperature model, where
the phonon distribution is described as a quasiequilibrium
Planck distribution with the transient phonon temperature
TB < Tph(t) < T (t) differing from both the bath and the QPs
temperature and relaxing with the relaxing hotspot.
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FIG. 3. (Color online) Dimensionless temperature, TCB/TC (a), and order parameter, �CB/�(0) (b), at critical (end) points of relaxation
curves in Fig. 2(b) as a function of dimensionless bias current, IB/IC .

Before photon absorption at a site where a hotspot is
created, a segment of the wire is at equilibrium (bath)
temperature TB . The corresponding state of this segment on
the curve in Fig. 4 is shown by a solid circle. When a photon
of energy Eλ is absorbed, part of its energy χEλ is deposited
into electronic system and the latter is heated to excitation
temperature Tex . The amount of energy, that is deposited
into the QP system following the photon absorption event
determines the initial state of the excited hotspot. There are
the two scenarios where a large fraction of photon energy
may be lost before the detection event occurs. On a shorter
time scale τε < t < L2/D, where τε is the energy relaxation
time, superconductivity may be broken in a small volume
hotspot, with a lateral size which is less than the wire width,
W , and hence does not significantly disrupt the supercurrent
flow. Rapid thermalization inside the small size normal hotspot
contributes to energy loss into the substrate due to escaping
phonons. As a result, the expanding normal spot cools down

FIG. 4. (Color online) Different states of a nanowire and relax-
ation path of the hotspot.

and becomes superconducting before it reaches the edges. In
the second case energy loss may occur during the primary
energy down-conversion process. It is known that energy
leakage from a thin film due to athermal phonons emitted
in this process can be substantial [18–21], exceeding 60% in
experiments with 40 nm thick W film on Si substrate [18].
For a few nanometer thick films in typical SNSPDs, even with
disorder-enhanced phonon reabsorption, χ may be a few tenths
due to escape of athermal phonons.

Temperature Tex characterizes the initial temperature of an
excited hotspot at an internal quasiequilibrium after photon
absorption. The hotspot starts cooling in a relaxation process
which proceeds along the path indicated by an arrow in the
direction of what we call the “relaxation edge.” At any point
of the relaxation process, the temperature and order parameter
lie on the curve shown in Fig. 4, which marks the relaxation
path of the superconducting nanowire in the � vs T plane.
By definition, when the relaxing system of QPs cools down
to the relaxation edge at cutoff temperature, Tco, absorption
of another Eλ photon can heat the segment only up to TCB ,
thus taking the segment exactly to the edge of superconductor
to normal metal transition. This is indicated in Fig. 4 by a
transition to the lower end (“end” point) of the relaxation
curve. The question of whether vortices play a crucial role
in the detection mechanism of SNSPDs has received great
interest recently [5–7,22–24]. Vortex generation can be easily
incorporated into our model by slightly modifying the end
points of relaxation. However, whether or not vortex genera-
tion is important, its inclusion should not radically modify our
description of hotspot dynamics. The cutoff temperature, Tco,
is an important characteristic of the relaxing hotspot. Once the
hotspot cools below Tco, the absorption of a second photon with
overlapping hotspot will not trigger a superconductor-normal
metal transition, and hence will not be observed in the
experiment. Correspondingly, the time it takes for a hotspot
to cool down from the excited state at Tex to the relaxation
edge state at Tco has a meaning of its relaxation time. Hotspot
relaxation is nonexponential, depending on the positions of
Tex and Tco on a chosen relaxation curve.
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FIG. 5. (Color online) Ratio of pair-breaking energy to order parameter as a function of temperature in a dirty superconducting nanowire
carrying a current. The current increases from 0.22 to 0.83IC with an increment of 0.06IC in the direction of the arrows: (a) �0 = 0;
(b) �0 = 0.2�(0). Variations along the relaxation paths are shown for IB = 2 μA (continuous curves).

Variation of depairing energy along the relaxation path is
given by � = �0 + ϕTC , with ϕ changing according to (3).
In Fig. 5 the temperature dependence of the ratio of depairing
energy to order parameter is shown at different currents. These
curves show relaxation paths at different currents in the �/�

vs T plane. Along the vertical axis the dimensionless depairing
energy in units of ambient order parameter is shown, and
temperature is in units of TC . The solid section of the lowest
curve, corresponding to a bias current of 0.22Ic, connects the
excited state and the relaxation edge for the same conditions
as in Fig. 4.

The expression for the QPs energy of a wire segment of
volume VHS has the form

EHS(T ,IB) = 2N (0)VHS

∫ ∞

0
dε ρ(ε,�,�)

ε

exp (ε/T ) + 1
.

(4)

The dependence of EHS on T and IB comes through the
Fermi distribution function and indirectly via corresponding
functional dependencies of depairing energy � and order
parameter �. Using the expression for EHS(T ,IB) we may
determine the excitation temperature Tex from the balance
equation

EHS(Tex,IB) = EHS(TB,IB ) + χEλ. (5)

This balance reflects that after photon absorption the energy
of a hotspot is the sum of the thermal energy at TB and
the deposited energy χEλ bringing the temperature of the
internally equilibrated electronic system to Tex . Similarly, the
balance for the relaxation edge is

EHS(TCB,IB) = EHS(Tco,IB) + χEλ (6)

assuming that χ is independent of temperature, bias current,
and photon wavelength. From (5) and (6) it follows that
Tex = Tex(IB,TB,Eλ) and Tco = Tco(IB,Eλ) > TB . Finally we
define cutoff current Ico as the current above which the detector
operates in the single-photon regime.

EHS(TCB,Ico) = EHS(TB,Ico) + χEλ. (7)

The cutoff current is a function of bath temperature and
wavelength, Ico = Ico(TB,λ).

Combining (5), (6), and (7) we arrive at the criteria
determining the boundaries of the parameter space for the
two-photon detection regime

TB < Tco(IB,Eλ) < Tex(IB,TB,Eλ) < TCB. (8)

These criteria are easy to fulfill in WSi making this material
especially suitable for studies of the two-photon detection
regime.

III. DYNAMICS OF HOTSPOT RELAXATION
IN SUPERCONDUCTING NANOWIRES

The physics underlying the formation of a normal region
and its recovery in a superconducting nanowire following the
absorption of a photon or other sources of energy deposition,
for example due to impact with a particle or a molecule, is
not fully understood. One of the most common descriptions
[scenario (a) in Sec. I] assumes the initial formation of a
normal (nonsuperconducting) region with a diameter less than
the width of a nanowire. The supercurrent then is deflected,
flowing around the normal spot so that its density on the sides
increases above the critical current density, creating a normal
region spanning across the wire. This scenario is realistic when
the bias current is close to the critical current. However, the
formation of the normal core hotspot after absorption of the
first photon in a two-photon experiment at significantly lower
bias currents will certainly not cause the current density on the
sides of the normal core to exceed the critical value. In a recent
experiment in NbN wires, the normal core hotspot model was
found unlikely to be responsible for single photon detection of
IR, visible, or UV photons [5].

In a two-photon experiment, a small normal core hotspot
may potentially exist during the first few picoseconds after
photon absorption. However, it cannot disrupt supercurrent
flow because the bias current is small relative to the critical
current of the wire. Because of the relatively small photon
energy, the normal core, which cools as it expands, becomes
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superconducting before it spans across the width of the
nanowire. There is no photon detection event recorded after
arrival of the first photon. In this situation we may disregard
the evolution of the normal hotspot over the very short period
of time before its conversion back to the superconducting state.
Correspondingly, it does not matter whether the hotspot in two-
photon experiments is initially normal. The nonequilibrium QP
distribution can thus be characterized by a transient tempera-
ture below the critical value, T , and volume, VHS , spanning
across the nanowire. It is important that the second pulse only
probes the state of relaxation of the nonequilibrium hotspot,
providing information on whether the cutoff temperature has
been reached. Therefore, the dynamics of a relaxing hotspot
differ from the mechanisms leading to recovery of an SNSPD
after a photodetection event. In a photodetection event, a
normal region is created in the device, and the subsequent
Joule heating [25] leads to much more energy being deposited
into the device than the photon energy. The device recovers as
it cools. Most of this recovery is via different processes than
we discuss here. But once superconductivity is restored in the
device, the remainder of the recovery should follow similar
physics to those we outline here.

The dynamics of a nonequilibrium hotspot in a super-
conducting nanowire can be accurately described within the
kinetic equation formalism [26–28]. The main simplifying
assumptions of our model are (i) dirty superconductor limit and
(ii) strong electron-electron scattering. The state of the phonon
system is important for relaxation process. Therefore, we will
consider the two limiting cases. In the first we assume weak

anharmonic interactions, so that τph−ph � max{τesc,τph−e},
where τph−ph is the characteristic inelastic phonon-phonon
relaxation time, τesc is the phonon escape time from the
film, and τph−e is the characteristic phonon reabsorption time
by electronic system, either via breaking Cooper pairs or
absorption by QPs. As a result, the nonequilibrium phonon
distribution in the film is determined by phonon escape and
reabsorption rates. For fast phonon escape, τesc → 0, and the
distribution remains in equilibrium at the bath temperature.
Thus this approach is the one-temperature (QPs) model. Within
this model at any point with position x along the wire and time t

we may characterize QPs system by the transient temperature
T (x,t). In the second limiting case, τph−ph 	 {τesc,τph−e},
and phonons are at quasiequilibrium characterized by their
own transient temperature TB < Tph(t) < T (t). This is the
two-temperature model.

To discuss the dynamics of a cooling hotspot we write down
the kinetic equation for the electron distribution function in a
dirty superconductor. The distribution function can be written
in the form [26]

f̂ = f 1̂ + f1σ̂z,

where 1̂ is identity matrix and σ̂z is the Pauli matrix. For
a strongly disordered nanowire with strong electron-electron
scattering we may disregard f1 and look for a solution of
the form f = 1 − 2n(ε,T ), modeling the electronic system
as being at quasiequilibrium described by the Fermi function
n(ε,T ) with T = T (x,t) > TB . Under this assumption, the
kinetic equation can be written in the form

−D
∂

∂x

[
ε

T

∂n

∂ε
Tr(1̂ − ĝRĝA)

∂T

∂x

]
+ ε

T

∂n

∂ε
Tr(ĝRσ̂z − σ̂zĝ

A)
∂T

∂t
+ ∂n

∂ε
Tr

(
∂�̂

∂t
(ĝR − ĝA)

)
= −2I1

ph(n), (9)

where

ĝR(A) =
(

gR(A) f R(A)

−f +R(A) −gR(A)

)
, �̂ =

(
0 −�

�∗ 0

)
,

(10)

σ̂z =
(

1 0

0 −1

)
,

and I1
ph(n) is the collision integral describing all quasiparticle-phonon interactions in a superconductor, phonon emission,

absorption, pair-breaking, and quasiparticle recombination. gR(A) and f R(A) are the quasiclassical retarded and advanced Green
functions of a superconductor. Calculating traces we arrive at

−D
∂

∂x

{
ε

T

∂n

∂ε
[(gR − gA)2 − (f R − f A)(f +R − f +A)]

∂T

∂x

}
+ 2ε

T

∂n

∂ε
(gR − gA)

∂T

∂t

+ ∂n

∂ε

[
∂�

∂t
(f +R − f +A) + ∂�∗

∂t
(f R − f A)

]
= −2I1

ph(n). (11)

The expression for the collision integral I
ph

1 is

I
ph

1 = − πλep

16�(vspF )2

∫
dε′(ε − ε′)2[2(

gR
ε′ − gA

ε′
)(

gR
ε − gA

ε

) − (
f R

ε′ − f A
ε′

)(
f +R

ε − f +A
ε

) − (
f R

ε − f A
ε

)(
f +R

ε′ − f +A
ε′

)]
× [(1 + 2Nε′−ε)(fε − fε′) − fεfε′ + 1], (12)

where λep is the electron-phonon coupling constant, vs is the mean sound velocity, and pF is the Fermi momentum.
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It is convenient to rewrite the kinetic equation using trigonometric parametrization of Green functions ĝR(A) =
( cos θR(A) eiϕ sin θR(A)

e−iϕ sin θR(A) − cos θR(A) ) arriving finally at

−D
∂

∂x

{
ε

T

∂n

∂ε

[(
Re cos θR

ε

)2 − (
Im sin θR

ε

)2]∂T

∂x

}
+ ∂n

∂ε

[
ε

T
Re

(
cos θR

ε

) − ∂|�|
∂T

Im
(
sin θR

ε

)]∂T

∂t

= 1

τ0

∫ ∞

0
dε′ (ε + ε′)2

T 3
C

[
Re

(
cos θR

ε

)
Re

(
cos θR

ε′
)
Im

(
sin θR

ε

)
Im

(
sin θR

ε′
)]

[nεnε′ − Nε+ε′(1 − nε − nε′)] − I1,a
ph(n) − I1,e

ph(n),

(13)

where we introduced a characteristic relaxation time τ0 according to 1/τ0 = λepT 3
C/�(vspF )2. The two collision integrals I1,a

ph(n)
and I1,e

ph(n) describe quasiparticle scattering with absorption and emission of a phonon, respectively, while the explicitly written
collision integral accounts for recombination. The “angle” θR defining the retarded Green function is the solution of the Usadel
equation (1).

In what follows we consider the case D → 0. This assumption is consistent with experimental data in WSi SNSPDs [4].
Neglecting spatial gradients, integrating the kinetic equation (13) over ε and taking into account conservation of quasiparticle
numbers in phonon absorption and emission processes, i.e.,

∫
dε I1,a,e

ph(n) = 0, we obtain

∂T̄

∂t̄
= T̄ 4

∫ ∞

0

∫ ∞

0

dz dz′(z + z′)2

(ez + 1)(ez′ + 1)

[
1 − N

(
(z + z′)T̄ /T̄B

)
N0(z + z′)

]

×
{
�1

(
zT̄

α(T̄ )
,β(T̄ )

)
�1

(
z′T̄
α(T̄ )

,β(T̄ )

)
+ �2

(
zT̄

α(T̄ )
,β(T̄ )

)
�2

(
z′T̄
α(T̄ )

,β(T̄ )

)}

×
{∫ ∞

0

dz ez

(ez + 1)2

[
z�1

(
zT̄

α(T̄ )
,β(T̄ )

)
− ∂|�|

∂T
�2

(
zT̄

α(T̄ )
,β(T̄ )

)]}−1

. (14)

Here N (ε) is the nonequilibrium phonon distribution function, N0(z) = 1/(ez − 1) is the Planck distribution function, and t̄ is the
normalized time in units of τ0. We also use the notations �1(ε/�(T ),�(T )/�(T )) = Re(cos θR

ε ) and �2(ε/�(T ),�(T )/�(T )) =
Im(sin θR

ε ) explicitly taking into account the dependence of the solution θR
ε of the Usadel equation (1) on ε/�(T ) and �(T )/�(T ).

Correspondingly we introduce functions α and β as α(T̄ ) = �(T )/TC and β(T̄ ) = �(T )/�(T ) to impose a constraint on
relaxation, which must proceed along the specific path as described above. Equation (14) is an integrodifferential equation
describing recombination of quasiparticles within the hotspot. In its derivation we replaced nn′(1 + N ) − N (1 − n)(1 − n′) by
nn′(1 − N/N0(T )), which is true for locally equilibrated QPs. The initial condition for Eq. (14) is given by (5). It can be solved
numerically both to find the temperature evolution while the hotspot cools down and to determine the moment of time when the
relaxation edge is reached so that T (tHS) = Tco.

To derive the expression for phonon distribution N , we write down the kinetic equation for phonons, neglecting terms with
spatial gradients due to slow phonon diffusion:

∂N

∂t
= −Iesc{N} − Iph−ph{N} − Iph−e{N} = −N − N0(TB)

τesc

− N − N0(Tph)

τph−ph

− N − N0(T )

τph−e

. (15)

The escape time for a phonon from the film into the substrate for thicker film can be estimated using the familiar expression
τesc = 4d/ηtvs , where d is the film thickness and ηt is the phonon transmission coefficient into a substrate. For thin films with
dominant phonon wavelengths exceeding the film thickness this expression cannot be justified and can only be used for rough
estimates. In this situation the ratio γ = τesc/τph−e determining phonon bottleneck must be considered as a fitting parameter.
The expression for phonon-electron time is

1

τph−e(ε,t)
= 1

τB

∫ ∞

0

dε′

�
[1 − n(ε′,t) − n(ε − ε′,t)]

[
Re

(
cos θR

ε′
)
Re

(
cos θR

ε−ε′
) + Im

(
sin θR

ε′
)
Im

(
sin θR

ε−ε′
)]

+ 2

τB

∫ ∞

0

dε′

�

[
n(ε′,t) − n(ε + ε′,t)

][
Re

(
cos θR

ε′
)
Re

(
cos θR

ε+ε′
)
Im

(
sin θR

ε′
)
Im

(
sin θR

ε+ε′
)] = 0 (16)

and τB is characteristic pair-breaking time [29]. The first and second terms in (16) describe phonon reabsorption by condensate
and electronic excitations, respectively. Because electron distribution is evolving on a slow time scale, τph−e contains the
corresponding time dependence. We use relaxation time approximation for the phonon-phonon collision integral and introduce
τph−ph as an extra parameter of the two-temperature model.

The time derivative in Eq. (15) can be disregarded because we are interested in the slow variation of phonon distribution relative
to both phonon escape and reabsorption by electronic excitations. Neglecting this derivative and taking the limit τph−ph −→ ∞
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we solve Eq. (15) and obtain for the one-temperature model

N (ε,t) =
[
N0(ε,TB) + N0(ε,T (t))

τesc

τph−e(ε,t)

][
1 + τesc

τph−e(ε,t)

]−1

. (17)

For the two-temperature model taking τph−ph → 0 we obtain

N (ε,t) = N0(ε,Tph). (18)

In this case we need to determine phonon temperature, Tph. The latter is to be found from the balance between the energy
dissipated into a phonon system by QPs and the energy transferred by escaping phonons into a substrate. In the quasistationary
conditions the rate of energy loss from QPs to phonons in electron-phonon interactions is equal to the energy gain by phonons
in phonon-electron interactions Correspondingly we obtain∑

k,j

�ωk,j Iesc{N} =
∑
k,j

�ωk,j Iph−e{N}
∫ ∞

0
dω ω3τ−1

esc [N0(ω,Tph) − N0(ω,TB)]

=
∫ ∞

0
dω ω3τ−1

ph−e(ω,T )[N0(ω,Tph) − N0(ω,T )]. (19)

A simple solution of (19) can be found by neglecting the dependence of the phonon’s characteristic time on its energy and
electron temperature, replacing τph−e(ε,T ) by some average number, τ̄ph−e. The solution is then

Tph =
[

T 4
B

1 + γ
+ γ T 4

1 + γ

]1/4

=
[
T 4

B + γ

1 + γ

(
T 4 − T 4

B

)]1/4

=
[
T 4 − 1

1 + γ

(
T 4 − T 4

B

)]1/4

. (20)

As it follows from (20) phonon temperature lies in the interval [TB,T ]. We will consider γ as a constant, although this
approximation is not entirely accurate, because γ slightly changes along the relaxation path. Substituting (17) instead of N into
the expression (14) yields for the one temperature model

∂T̄

∂t̄
= T̄ 4

∫ ∞

0

∫ ∞

0

dz dz′(z + z′)2

(ez + 1)
(
ez′ + 1

)[
1 + τesc

τph−e((z + z′)T̄ ,t̄)

]−1
[

1 − N0
(
(z + z′)T̄ /T̄b

)
N0(z + z′)

]

×
{
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(
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α(T̄ )
,β(T̄ )
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,β(T̄ )

)
+ �2
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α(T̄ )
,β(T̄ )

)
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(
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α(T̄ )

,β(T̄ )

)}

×
{∫ ∞

0
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[
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(
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α(T̄ )
,β(T̄ )

)
− ∂|�|

∂T
�2

(
zT̄

α(T̄ )
,β(T̄ )

)]}−1

. (21)

The expression (21) contains the well-known phonon bot-
tleneck factor [1 + τesc/τph−e((z + z′)T̄ ,t̄)]−1 accounting for
the effect of phonon escape from the film relative to phonon
reabsorption. In the two-temperature model, slow escape of
phonons from the film also results in a progressively slowing
recombination rate. This effect is seen as a substantial decrease
of the term [1 − N0((z+z′)T̄ /T̄ph)

N0(z+z′) ] with γ → ∞ because the
temperature of slowly escaping phonons Tph → T .

IV. COMPARISON WITH EXPERIMENT

The full description of the experiment and the complete set
of data is presented in our original work [4]. In the two photon
experiment a photon count rate (PCR) as a function of delay
time tD was studied for a variety of different bias currents
and bath temperatures. In our experiment we biased the
superconducting nanowire single photon detector in a regime
where it is sensitive to photon pairs. Therefore, the detector
clicks only when two photons create two spatially overlapping
hotspots. If the two hotspots are created at different times, then
the second hotspot must be created before the first hotspot
relaxes.

The experimentally observed Lorenzian line shapes
of Pclick(tD) curves can be derived within a model that
accounts for spatial and temporal profiles of temperature
inside the hotspot, and in particular its expansion due
to out-diffusion. With a nonhomogeneous temperature
distribution in the hotspot, the concept of cutoff temperature
must be reexamined, because energy density is different in
different parts of the hotspot. Correspondingly, breaking
superconductivity in the part of the initial (pump) hotspot
depends on the details of spatial overlap of hotspots created
by the first and the second photons. This is a complicated
situation to model. Within our current model, which neglects
diffusion, the QP temperature is homogeneous throughout the
hotspot, and the detector clicks as long as the two hotspots
have nonzero spatial overlap. If temperature is homogeneous
throughout the hotspot then the normalized photon count rate is
PCR = 1/2LHS

∫ LHS/2
−LHS/2 dx �[T (tD) − Tco]�[LHS − |x|] =

�[T (tD) − Tco], where �(x) is the Heaviside function, that
implies that PCR has a rectangular, not a Lorentzian, profile
as a function of time delay tD . The dependence of PCR
on tD can be correlated to the hotspot relaxation dynamics.
Indeed, it drops by a factor 2 at t = tHS determined from
T (tHS) = Tco, defining �(0) = 1/2. In our experiment,
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tHS was determined from the half width at half maximum
(HWHM) of the Pclick(tD) curves. Thus the measured HWHM
of the Pclick(tD) curve relative to a level of Pclick(∞) can be
interpreted as the hotspot relaxation time. The rectangular
shape of the theoretical PCR versus tD curve is a consequence
of our idealized model, which also assumes an unrealistic
steplike shape of the PCR versus bias current curve. We
anticipate that a model correctly accounting for the sigmoidal
shape of PCR versus IB observed in real devices would also
predict bell-shaped PCR versus tD curves that resemble the
experimental data. In the near future, we plan to improve
our model by accounting for the nonideal shapes of PCR
as a function of both IB and tD , hopefully leading to a
better understanding of detection mechanisms and hotspot
dynamics.

The material parameters for tungsten silicide films depend
on growth, stoichiometry, and annealing, and many of them
are not known. If we take the mean sound velocity in W, vs =
3.2 × 105 cm/s, which is also close to the measured values for
the transverse acoustic waves in tungsten silicide films [30],
and the transmission coefficient for WSi/Si interface, ηt �
0.5, we obtain for a rough estimate τesc � 10.0 ps. The
pair-breaking time in WSi is also unknown. The range of
variation of pair-breaking time in elemental superconductors
with similar magnitudes of the order parameter is from
4.2 ps in Nb and 22 ps for Ta to 169 ps in In and 205
ps in Tl on the other end [29]. It is unlikely that γ � 1.
According to Osofsky et al, [31] the strong increase in
TC in WSi alloy when Si content is increased occurs as
a result of weakening in screening leading to a substantial
enhancement of an attractive potential and corresponding
increase of Eliashberg function. Using the McMillan empirical
formula [32] for electron-phonon coupling constant λ̃ep from
the experimentally determined transition temperature TC , and
Debye temperature, we estimate that λ̃WSi

ep /λ̃W
ep ≈ 2.0 for a

tungsten silicide alloy with TC = 4.5 K. Calculation of Fermi
surfaces of tungsten silicide alloys [33] reveals that for a
tungsten-rich simple cubic W3Si (i.e., a composition with high
critical temperature) the density of states at the Fermi level
is N (0) � 23.5 × 1021 cm−3 eV−1. In order to express the
Eliashberg function of an alloy in terms of its electron-phonon
coupling constant we also use the Debye model for the
phonon spectrum. We finally arrive at the rough estimate
τWSi
ph−e � 2.7τT a

ph−e ≈ 60 ps and hence the expected interval
0.1 � γ � 1. The one-temperature model is justified in the
limit γ 	 1 as seen from (20). Using the expression (20) for
γ � 1 is an approximation assuming equilibration of phonons.

A. Hotspot relaxation depending on photon wavelength

The experimental data exhibit a strong dependence of
hotspot relaxation on the wavelength of incident photons.
In Fig. 6 we plot the excitation and cutoff temperatures
of quasiparticles as a function of bias current for hotspot
excitation by photons of different wavelengths. The vertical
arrows close to the vertical dotted line, corresponding to
a specific bias current, connect the excitation and cutoff
temperatures. The lengths of these arrows indicate the lengths
of relaxation paths for different photons. It is seen that the

FIG. 6. (Color online) Hotspot excitation, Tex (solid lines), and
cutoff, Tco (dashed lines), temperatures as a function of bias current
for photons of different wavelengths, λ = 1200, 1350, 1450, 1550,
and 1650 nm (solid lines - from top to bottom, dashed lines - in the
reversed order). Bath temperature is TB = 250 mK.

lengths of the relaxation paths are strong functions of photon
wavelength and bias current.

The initial and final conditions for a relaxing hotspot are
set by the initial excitation temperature, relaxation edge, and
relaxation path. These are determined by the energy deposition
parameter, δ, which we define as the ratio of the fraction
of photon energy, that is deposited in the electronic system
of the hotspot, to the unperturbed condensate energy within
its volume, δ = χ/2N (0)VHSk

2
BT 2

C . It is expressed in terms
of a combination of three parameters, χ , N (0), and VHS .
The density of states N (0) can be independently evaluated,
for example in electronic heat capacity measurements at
low temperatures. This data however is not available. It can
be roughly estimated using the Einstein relation and the
measured diffusion coefficient. The diffusion coefficient in
our WSi film is D ≈ 0.75 cm2/s as determined from the
measured temperature derivative of the second critical field.
The square resistance of our film is 476�. Thus N (0) = 20.3 ×
1021 eV−1 cm−3, which is consistent with the reported values
for electronic heat capacity coefficient of tungsten [34] and
is close to calculation [33]. Estimating the minimum hotspot
area to be W × LHS = 130 × 100 nm [4], where LHS is the
length of hotspot, we may finally relate δ to energy loss, χ ,
due to escaping athermal phonons. The latter may also be
evaluated [21], providing further support for consistency of
the model.

The energy deposition parameter δ determines the proper-
ties of the depleted superconductivity region in energy-current
tomography experiments [5]. At first sight it is surprising that
at as high photon energy as 3 eV in a single- and 8 eV in
a multiphoton experiment, superconductivity in their NbN
wire is not broken. Indeed, if energy E is homogeneously
deposited into the electronic system within volume VHS , the
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temperature of this volume after thermalization is determined
from the balance equation, E = 2N (0)VHS

∫
dε ερ(ε)n(ε).

At T → TC and ρ → 1 this determines the condition for
the volume of hotspot, which is still in superconducting
state, VHS � E(π2/6N (0)k2

BT 2
C ). This estimate is correct for

zero bias current. In current-carrying superconducting wire,
the critical temperature depends on bias current, IB , and
is smaller than the zero-current critical temperature, TCB <

TC . Correspondingly, the volume of the hotspot still in the
superconducting state must exceed the estimate above. Taking
the material parameters for NbN film from [35] we obtain
VHS � 3.0 × 10−4 μ m3. For 4 nm thick and 100 nm wide
nanowire the length of hotspot, capable of accommodating the
whole of photon energy, must reach L � 0.75 μm. The time
it takes for the expanding QP cloud to fill this volume in 1D
diffusion with D = 0.4 cm2/s is L2/2D = 7.0 ns. This time is
more than two orders of magnitude larger than the relaxation
time of optically induced hotspots in NbN superconducting
nanowires (∼20 ps) [35–37]. The hotspot lateral size, LHS ,
derived from the statistical weight of two photon detection
events [4], is much smaller than ∼1 μm. Consequently, in
order to have superconductivity suppressed, but not broken,
only a fraction of photon energy must be deposited in the
electronic system in WSi SNSPD. It can be estimated that in
experiments [5] with W = 220 nm wide section of NbN wire
in order to have depleted superconductivity in the hot spot of
∼W 2 area at bias currents IB ∼ 0.5–0.6Ic and E � 3–5 eV, the
fraction of photon energy deposited into electronic excitations
also must not exceed 10%–20%.

An example of the calculated evolution of temperature (in
units TC) in the hotspot along the relaxation path for λ =
1200 nm, TB = 250 mK, and IB = 2.6 μA is shown in Fig. 7.
Using our model, we quantitatively reproduced the wavelength
dependence of tHS with only three fitting parameters. The
agreement between theory and experiment is good [4]. For
all wavelengths we used the same set of three parameters, the

FIG. 7. (Color online) Temperature evolution in the relaxing
hotspot.

FIG. 8. (Color online) Hotspot lifetime as a function of bath
temperature at fixed bias current IB = 2.0 μA for γ = 0 top curve,
γ = 0.3 middle curve, and γ = 3 bottom curve.

energy deposition factor δ, the phonon bottleneck parameter
γ , and τ0. The two latter parameters in combination only fix
the matching of the data along the vertical axis, and do not
affect the shapes of the curves. To check the effect of different
γ ’s we calculate tHS as a function of temperature for a fixed
current for different γ ’s. The simulated curves are shown in
Fig. 8. It is seen from Fig. 8 that changing γ from 0 to 3
results in � 15% difference between the curves relative to
γ = 0.3 over the whole interval. The variations of tHS over
the whole temperature range are 3.6, 3.3, and 2.8 for γ= 3,
0.3, 0, respectively. Thus not knowing the exact value of γ

results in ∼15% uncertainty in determining τ0. At the same
time a strong (∼3) variation of tHS over the whole range of
temperatures seen in Fig. 8 is altered by no more than 15%.
Thus the factor γ is not important in determining the shapes
of the tHS curves.

The interpretation of the strong increase in relaxation
time with the increase of bias current is straightforward.
Indeed, the main result of the model is to show that hotspot
relaxation occurs due to self-recombination. The relaxing
hotspot is strongly nonlinear. Nonlinearity is inevitable for
the process of self-recombination. Moreover, a hotspot in
an SNSPD is an exceptional example of a nonequilibrium
nonlinear superconducting system, where all properties of
the system (including spectrum of elementary excitations)
continuously change along the relaxation path. A strong
increase of relaxation time for larger bias currents is related to
the increase of the difference between the initial temperature
and the relaxation edge as seen from Fig. 7, where the
slopes of the relaxation edge curves greatly exceed those
for the initial temperature for all photon wavelengths. A
dramatic slowdown (as seen in Fig. 7) occurs at the latest
stages of the self-recombination process. The initial rate of
self-recombination is so high for all bias currents that small
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variations in the initial hotspot temperature have no significant
impact on its relaxation time.

Complete relaxation depends on bath temperature. In the
example in Fig. 7 bath temperature is 250 mK � 0.056TC and
complete relaxation will take time, which may exceed τ0 by
several orders of magnitude. At low bath temperatures, the
bottleneck term in expression (14) is negligible, because in
all situations the ratio N((z+z′)T̄b)

N0(z+z′) is very small and can be
neglected. This is seen from Fig. 7 where Tco remains well
above TB . Under these circumstances the one-temperature
model works very well.

B. Hotspot relaxation depending on bath temperature

When the bath temperature increases it may come closer
and closer to the cutoff temperature defining the relaxation
edge. The cutoff temperature itself does not depend on the bath
temperature. In this situation the second term in the bottleneck
expression, N((z+z′)T̄ /T̄B )

N0(z+z′) , becomes more and more important
when T → Tco affecting self-recombination rate and further
slowing it down. Raising the bath temperature therefore results
in an increase of tHS . In this situation neglecting this term (as
at low bath temperatures) can no longer be justified and a
more realistic model of the phonon distribution function is
necessary.

In Fig. 9 the black curve is TCB , i.e., critical temperature
at which the nanowire with current breaks normal. Above this
curve we enter the single-photon regime, so that absorption
of photon energy Eλ heats the section of nanowire above TCB

thus resulting in a photon count. The three lower curves give
the initial temperature Tex(IB) as a function of bias current for
bath temperatures 2.0, 1.75, and 0.25 K from top to bottom.
It is seen that the two-photon counting regime corresponds
to bias currents not exceeding the value of cutoff current, Ico,
determined by Tex(Ico) = TC(Ico). Thus with bath temperature

FIG. 9. (Color online) TCB , Tex(IB ) for TB = 2.0 K (blue),
1.75 K (green), and 0.25 K (orange) and Tco as a function of bias
current for λ = 1550 nm.

increasing the two-photon regime can be realized at lower
currents. This is exactly what was observed in the experiment.

Theoretical simulations of tHS vs bias current at different
temperatures of the bath, based on the developed model and
the same set of three fitting parameters, δ, γ , and τ0 as used
for wavelength dependence, show good agreement with ex-
periments at lower bath temperatures. However, it deteriorates
at higher temperatures. Despite theory correctly predicting
higher bath temperature behavior quantitatively the agreement
is not as good as that at low TB . This is a natural reflection of the
importance of the detailed description of phonon distribution.
The latter is likely to be better characterized by an elevated
quasistationary temperature T ′

B > TB . One of the possible
reasons for this is the relatively high laser power required to
improve counting statistics in two-photon detection, resulting
in a “dark” background temperature of the wire exceeding the
bath temperature. In order to test the effect of elevated “bath
temperature” we use as the fourth fitting parameter the bath
temperature offset, �T , so that T ′

B = TB + �T . The use of
this extra fitting parameter results in excellent agreement with
experiment [4].

C. Cutoff current fitting

In this subsection we discuss the cutoff current for single
photon detection for the two reasons. The concept of cutoff
current plays a central role in any physical model of an
SNSPD. The main two families of curves from the two-photon
detection experiments are (i) the functional dependencies of
hotspot relaxation time versus bias current obtained for the
range of photon wavelengths (1200–1650 nm) at a fixed bath
temperature (250 mK) and (ii) the functional dependencies of
hotspot relaxation time versus bias current obtained for the
range of bath temperatures (0.25–2.5 K) at a fixed wavelength
(1500 nm). As was demonstrated in our work [4], using the
experimental data sets and plotting relaxation time tHS as a
function of bias current normalized to cutoff current results
in all the curves exhibiting the same universal trend. It is
also true for theoretical curves when they are replotted as a
function of the normalized bias current. However, to prove
that the four families of curves (the two for experiment, and
the two for theory) follow the universal trend we must account
for the differences between definitions of the cutoff currents
in experiment and theory. Another reason is that experimental
measurements of Ico versus bath temperature for a fixed photon
wavelength and versus photon wavelength at a fixed bath
temperature form a supplementary and independent set of
data that can be analyzed to obtain further support for the
introduction of temperature offset.

Figure 10 shows single photon system detection efficiency
(a) and PCR (b) as a function of temperature and wavelength,
respectively. Cutoff current was determined as the inflection
point of each curve, following the procedure reported in the
Supplemental Material of Ref. [38]. The theoretical definition
in expression (7) refers to the onset of single photon sensitivity,
corresponding to ideal signal detection efficiency SDE or PCR
curves in the form of step functions. Assuming that both
definitions result in the same functional dependencies, they
can be compared after normalisation to the value of cutoff
currents at TB = 0.25 K for Ico(TB) and cutoff current at
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FIG. 10. (Color online) Single photon system detection effi-
ciency (a) and PCR (b) as a function of temperature and wavelength,
respectively.

λ = 1200 nm for Ico(λ), respectively. The results of such a
comparison are shown in Fig. 11. In Fig. 11(a) the experimental
results (dotted line) for Ico(TB) differ from simulation, but
practically coincide if the data are plotted as a function of
T ′

B = TB + 0.5 K. Comparison of simulated and measured
cutoff currents provides extra support to the argument that the
effective phonon background temperature in the wire differs
from the bath temperature. Temperature offset is not important
in Fig. 11(b) as it was not important for low bath temperatures
in Ref. [4].

The simulated cutoff current dependence on photon wave-
length depicted in Fig. 11 can be compared to current-photon
energy tomography experiments [5]. Linear dependence was
observed in the measured combinations of bias current IB

and photon energy Eλ = nhc/λ, for which the detection
probability equals 1% after the absorption of n photons
over broad energy range 0.8–8 eV. The role of suppressed
superconductivity was emphasized on the basis of current-
carrying capacity of the wire being linearly dependent on
the number of remaining Cooper pairs in the region of de-
pleted superconductivity, and therefore on the photon energy.
However, the legitimacy of the extrapolation of the observed
linear dependence towards the lower photon energy limit Eλ

could not be supported by any of the intuitive arguments. The
nonlinearity of IB(Eλ) curve a priori cannot be excluded.

Theoretical simulation of cutoff current as a function of
photon energy over the extended range beyond the experimen-
tal range of wavelengths in Fig. 11(b) is given in Fig. 12. As
seen from this figure, linear extrapolation of the experimental
data for Eλ → 0 is not consistent with predictions of the
kinetic model. The obvious reason is the strong change in
the density of states, and therefore density of condensate,
due to the increase of depairing energy �/� as bias current
approaches the critical value. This results in the development of
a substantially nonlinear response. Thus the reference current,
I0, obtained within the kinetic scenario as a linear intercept
with the bias current axis, has no physical meaning. Such
a reference current as seen from Fig. 12 is smaller than
IC . Moreover, the difference in temperature dependencies of
“artificial” reference and critical currents is expected within

FIG. 11. (Color online) Normalized cutoff current as a function
of bath temperature for λ = 1550 nm (a) and wavelength for TB =
250 mK (b).

the detailed theory of hotspot dynamics. Linear bias current–
photon energy dependence appears to be an approximation,
which is justified for a limited photon energy range and
bias currents outside the range 1 − IB/IC 	 1. Nonlinearity
becomes more and more pronounced in the limit Eλ → 0
and IB → IC . Thus discrimination between mechanisms of
single photon detection [5] requires more experimental and
theoretical efforts.

So far in fitting theory to experiment we have used four
parameters; energy deposition parameter δ, phonon bottleneck
parameter γ , characteristic relaxation time, τ0, and tempera-
ture offset, �T . We have shown that temperature offset is
not important at low bath temperature; thus a good fit of
tHS(IB) for photons of different wavelengths was achieved
with the use of only three fitting parameters. Fitting of tHS(IB)
for different bath temperature required the use of a fourth
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FIG. 12. (Color online) Cutoff current as a function of photon
energy. Solid line: theory; solid boxes: experiment; dashed line: linear
extrapolation.

parameter, �T . All simulations were done for the “intrinsic”
material under the assumption of zero extra depairing energy,
�0 = 0. If extra depairing energy is of nonzero value, it can
obviously affect the theoretical results. In order to understand
the effect of finite �0 we repeated all simulations for a large
extra depairing energy. We chose �0 = 0.2�(0). Figure 13
shows the comparison of simulations for �0 = 0, solid curves,
and �0 = 0.2�(0), dash-dotted curves. It is seen from Fig. 13
that the sets of dash-dot curves describing the situation with
extra depairing energy closely fits the set of solid curves for
�0 = 0. To achieve this we changed only two parameters—τ0

by a factor of 0.75 relative to the case �0 = 0, and temperature
offset �T = 250 mK compared to 500 mK for �0 = 0. It is not
surprising that with an extra depairing energy due to disorder
a good fit is provided with the reduced temperature offset,
keeping the overall depairing intensity similar for both cases.
An extra depairing energy also induces shifts of excitation
and cutoff temperatures, Tex and Tco, resulting in appropriate
adjustment in time scale, controlled by the value of the
parameter τ0.

Summarizing, variation of parameters γ , τ0, �0 over a broad
phase space do affect the dynamics of a relaxing hotspot.
However, the role of these parameters is largely in determining
the time scale for the hotspot relaxation. The most profound
effect is connected with the energy deposition parameter, δ,
which directly determines the dynamical path and causes the
hotspot relaxation time to vary by more than one order of
magnitude.

D. Diffusion enigma

Our theoretical model explains our experimental data com-
pletely ignoring QP diffusion. In fact, the model was developed
under the evidence drawn from the data that diffusion effects
are not important, at least over time scales of the order of one
nanosecond. This behavior presents an enigma, which deserves

FIG. 13. (Color online) Hotspot relaxation time, tHS , dependence
on depairing energy �0. (a) tHS as a function of bias current for
different bath temperatures from 0.25 to 2.0 K with an increment
0.25 K. An arrow indicates increasing bath temperature. Solid
curves: �0 = 0, δ = 325 meV−1, γ = 0.3, τ0 = 496 ps, and �T =
500 mK; dash-dot curves: �0 = 0.2�(0), δ = 325 meV−1, γ = 0.3,
τ0 = 375 ps, and �T = 250 mK. (b) tHS as a function of bias current
for different wavelengths: 1200, 1350, 1450, 1550, and 1650 nm;
TB = 250 mK. An arrow indicates increasing wavelength. Solid
curves: �0 = 0, γ = 0.3, τ0 = 439 ps, and δ = 325 meV−1; dash-dot
curves: �0 = 0.2�(0), γ = 0.3, τ0 = 330 ps, and δ = 325 meV−1.

special discussion. While experiment strongly indicates that
diffusion effects surprisingly contribute a little to the hotspot
relaxation this on its own is not an evidence of model
limitations originating from finite values of the parameter kF l.
In this section, we discuss possible physical explanations for
this behavior within the framework of our model.

The simplest estimate can be arrived at assuming constant
thermal diffusivity of QPs; hence using a linear heat diffusion
model. If at t = 0 the hotspot occupies the volume ∼W 2d and
its temperature is Tex , then due to 1D diffusion and expansion
of hotspot volume it rapidly decreases, so that at t = 0.2W 2/D̃

and t = 0.4W 2/D̃ its maximum is at �0.57 and 0.42 Tex ,
respectively. Here D̃ is the thermal diffusivity coefficient.
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Assuming D̃ ∼ 0.5D, which is a reasonable estimate for T �
Tco, we evaluate 0.2W 2/D̃ ∼ 90 ps. If we take for example λ =
1550 nm and IB = 3.4 μA, then Tco/TC = 0.44. Thus, after
∼180 ps the maximum temperature in the center of the hotspot
would be below the relaxation edge Tco, which would result in
the full recovery of the hotspot. Even the shortest relaxation
time at IB = 3.44 μA, which was measured at the lowest bath
temperature TB = 0.25 K and is ≈ 500 ps, is considerably
longer. This means that linear diffusion alone, without any
self-recombination, would be capable of rapid cooling of the
hotspot. Moreover, if diffusion dominates, the dependence
tHS(TB) must be absent, because in all situations Tco > TB ,
and neither thermal diffusivity, D̃, nor cutoff temperature,
Tco, depend on bath temperature. At the lowest bias currents,
diffusion expansion predictions for cooling of the hotspot
below the cutoff temperature are comparable to the measured
relaxation time. However, the observed strong dependence
of hotspot dynamics on bath temperature contradicts the
predictions of the linear thermal diffusion model and thus
rules it out from playing a significant role.

In photon detection experiments the order parameter is
suppressed inside the hotspot. Some of the excited QPs will be
trapped because of Andreev reflections at the boundaries. It is
seen from Figs. 2(b), 3, and 8 that the suppression of the order
parameter close to Tco relative to its zero temperature value
is not strong, being in the range of 10%–15% for small bias
currents and decreasing to approximately 5% for higher bias
currents. Trapping of QPs slows down the overall diffusion.
However, because of relatively high cutoff temperatures (in the
range 0.4–0.6 TC) the fraction of QPs experiencing Andreev
reflection is not large, and the majority of QPs having energies
above the edge of the gap outside the hotspot can freely diffuse
out of the hotspot. Therefore, within the dirty superconductor
model, which we used in this paper, and the linear expansion
model this diffusion enigma cannot be fully resolved.

The factors that are likely to be important, either on their
own or acting together, are strong disorder and nonlinear
character of diffusion. There are indications of a high density
of subgap states in strongly disordered superconductors near
the metal-insulator transition [16]. Observations in strongly
disordered TiN and NbTiN films were shown to be consistent
with a model using strong pair breaking, dependent on the level
of disorder. While pair-breaking energy results in a non-BCS
density of states, this approach does not describe any changes
in transport properties of QPs, which are necessary to address
the diffusion problem; thus pair breaking cannot resolve
this diffusion problem. Near the superconductor-insulator
transition, a strongly fluctuating local order parameter [10]
may be the missing link which is responsible for the dramatic
change in transport. This may be due to hopping of QPs in the
subgap region, or Andreev reflections from strong, random
fluctuations in the local order parameter (random Andreev
reflections) greatly reducing QP diffusivity and trapping them
within the stable volume of the hotspot.

Finally, it turns out that for a typical hotspot the linear
heat transport model itself cannot be justified. Indeed, in the
divergence term in Eq. (13) the effective diffusion coefficient
itself is a strong function of coordinate through the spatial
dependencies of both the temperature and the order parameter.
After differentiation there appear the terms proportional to

∂2T/∂x2 and 1/T (∂T /∂x)2 with coefficients depending on
T and �. The term with the first derivative is zero at
the center of the hotspot. Away from the center it greatly
increases and has opposite sign to the term with the second
derivative, thus weakening its contribution, which makes it
appear that diffusivity in the center of the hotspot is suppressed.
Nonlinearity becomes especially strong close to the edges
of the hotspot, where it must influence both the spatial and
temporal profiles of the temperature and the order parameter.

The nonlinear diffusion problem is mathematically very
complicated. A simplified nonlinear thermal diffusion equa-
tion can be derived from Eq. (13) under a local approximation
for Green functions or from the Larkin and Ovchinnikov
kinetic equation [27]. Numerical solution of this problem
confirms the effect of a slowdown of thermal expansion of
the hotspot, so that the nonlinearity in thermal transport can
account for the lesser role of diffusion in a relaxing hotspot.
Despite the experimental evidence of the dominant role of
self-recombination in relaxation of the hotspot, QP diffusion
is nonetheless important. Even if relatively slow, it inevitably
results in a slight spatial expansion of the hotspot and hence
the spatial profile of the temperature. The most important
variations for the two-photon experiment are those near the
cutoff temperature. Depending on the spatial overlap of the
two photon pulses the second photon’s ability to cause a click
for a fixed time delay is determined by whether the local
temperature, T (x,t), in the profile created by the two photons
is larger or smaller than Tco. With time delay tD increasing, the
overlap area where T (x,t) � Tco shrinks. Therefore, the shape
of tHS(tD) curves is likely to be directly linked to diffusive
properties. The numerical analysis of nonlinear diffusion
in hotspots is therefore an important problem and will be
published elsewhere.

E. Two-photon detection in NbN SNSPD

The first two-photon detection experiments in NbN
SNSPDs [1,36,37] revealed the hotspot relaxation time tHS ∼
20 ps, which is a factor of 4 shorter than the shortest relaxation
time that was measured in our WSi SNSPD [4]. Furthermore,
tHS was measured at a single [37] or very limited range of bias
currents (0.48 to 0.55IC) [36], at a higher bias currents relative
to the critical current than in WSi. In this range, according
to predictions of our model, tHS must rapidly increase with
the current, so the detection of such a short time might
look surprising. An interesting question is whether this is an
indication of different hotspot dynamics in NbN, or if it is due
to a significant difference in material properties, which was
not well understood and not predicted.

In this situation it becomes worthwhile to analyze the
results [36,37] applying our model. We first note that the
energy deposition factor δ for NbN is likely to be smaller than
in WSi. Comparing NbN to WSi we see that the mean value for
N(0) of typical NbN SNSPD thin film is close to what we used
for WSi. Diffusion coefficients in both materials are also close,
and it is reasonable to assume the same rate of establishing
local equilibrium in the hotspots in both materials. Thus, the
diffusing clouds of nonequilibrium QPs fill nearly the same
volumes in nanowires with the same width and thickness for
both materials. The energy loss factor χ for WSi was estimated
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FIG. 14. (Color online) Hotspot relaxation paths for NbN
nanowires at different currents.

from the best fit value of δ. In the absence of the appropriate
data on two-photon detection in NbN, we cannot establish the
best fit δ for the SNSPDs in Refs. [36,37]. Instead we may
exploit some indirect data. The strongest material dependence
comes through the inverse proportionality of δ to a square of the
critical temperature; this alone is responsible for a factor ∼5
reduction. On the other hand, in the experiment [37] on NbN
SNSPD on sapphire, a rough estimate of phonon escape time
from the wire indicates a smaller athermal phonon loss, and
correspondingly, a bigger fraction χ . In an experiment of Il’in
et al. [39] the phonon bottleneck parameter was found to be
γ = 0.6, twice the value that we used for WSi SNSPD (which
is better acoustically matched to the Si substrate). Taking
the ratio χNbN/χWSi ∼ 2 and TC = 10 K for NbN we arrive
at δ ≈ 129 meV−1. The smaller value of energy deposition
factor means that even using more energetic photons [36,37],
the biasing of an SNSPD at a considerably higher currents is
required in NbN.

Like we did for WSi [see Fig. 2(b)], we calculated the
relaxation paths for a NbN SNSPD operating in the two-photon
regime at different bias currents. Figure 14 shows hotspot
relaxation paths for bias currents of 0.22, 0.47, 0.51, and 0.55
of IC . The bath temperature in the experiments was 4 K. As
is seen for the lowest bias current Tex < Tco. Even with ideal
temporal and spatial overlap of hotspots the absorption of two
photons will not result in a click, because the deposited energy

is not sufficient for breaking superconductivity. In order for a
click to occur for this bias current, the bath temperature must
exceed the abscissa of the diagonal cross on the relaxation path.
It is clear that the bias currents are limited on low side, i.e.,
the bias current must be sufficiently large so that Tex > Tco.
Tex and Tco in Fig. 14 were calculated for δ = 129 meV−1. At
the highest bias current IB/IC = 0.55, the SNSPD operates in
the single-photon regime, because Tex > TCB . Thus to operate
in the two-photon detection regime, the NbN SNSPD must
be biased at IB/IC < 0.55. Comparing the relaxation paths at
the two intermediate currents IB/IC = 0.51 and 0.47 we see
that the length of relaxation path (distance from Tex to Tco)
rapidly decreases with only a small (∼10%) decrease in bias
current from 0.51 to 0.47 of IC . This results in substantial
shortening of tHS , similar to our results for the WSi SNSPD.
Calculating Te transients for both curves, we find that tHS

at IB = 0.55IC is a factor of 1.9 shorter than tHS at IB =
0.47IC . Finally, fitting tHS = 20 ps requires τ0|NbN � 52 ps.
According to Kaplan [29] we have τ−1

0 ∼ T 3
C . Thus, assuming

a similar electron-phonon coupling constant for both materials,
we expect τ0 in NbN to scale down by a factor of �10 yielding
the number close to 50 ps, which is consistent with the estimate
above. Although in the absence of detailed experimental data
for NbN this estimate cannot serve as proof of the same hotspot
dynamics, nonetheless it is reassuring for its consistency with
the model.

V. SUMMARY

In summary we developed a theoretical model of relaxation
of the hotspots in superconducting current-carrying nanowires.
We have shown that in tungsten silicide SNSPDs the hotspot
generated by a photon below the threshold for single-photon
detection relaxes in a self-recombination of nonequilibrium
QPs. Strong dependencies of hotspot relaxation time on bias
current, bath temperature, and photon wavelength are ex-
plained by specific dynamics of the hotspot, and are dominated
by self-recombination, rather than diffusive expansion. The
model satisfactorily explains all major experimental results.
The reasons for the greatly suppressed role of quasiparticle
diffusion are likely to be related to strongly nonlinear heat
transport in a disordered superconducting nanowire close to a
metal-insulator transition.
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