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Abstract 1	

Accurate distinction between self- and other-representations is fundamental to a range of social 2	

cognitive capacities, and understanding individual differences in this capacity is an important 3	

aim for psychological research. This demands accurate measures of self-other distinction 4	

(SOD). The present study examined an experimental paradigm employed frequently to measure 5	

SOD in the action domain; specifically, we evaluated the rotated finger-action stimuli used 6	

increasingly to measure automatic imitation (AI). To assess the suitability of these stimuli, we 7	

compared AI elicited by different action stimuli to performance on a perspective-taking task 8	

believed to measure SOD in the perception domain. In two separate experiments we reveal 9	

three important findings: Firstly, we demonstrate a strong confounding influence of 10	

orthogonal-compatibility effects on AI elicited by certain rotated stimuli. Second, we 11	

demonstrate the potential for this confounding influence to mask important relationships 12	

between AI and other measures of SOD; we observed a relationship between AI and 13	

perspective-taking performance only when the former is measured in isolation of orthogonality 14	

compatibility. Thirdly, we observed a relationship between these two performance measures 15	

only in a sub-group of individuals exhibiting the pure form of AI. Furthermore, this relationship 16	

revealed a self-bias in SOD – reduced AI was associated with increased egocentric 17	

misattributions in perspective taking. Together our findings identify an important 18	

methodological consideration for measures of AI, and extend previous research by showing an 19	

egocentric style of SOD across action and perception domains. 20	

 21	

Keywords: Self-other distinction; automatic imitation; perspective taking; egocentrism; 22	

individual differences. 23	
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1. Introduction 1	

Self-other distinction (SOD) is the process through which we treat independently and 2	

distinguish flexibly between representations of the self and others. This provides an important 3	

foundation for various social cognitive faculties; inefficient SOD will result in egocentric 4	

misattributions of our own cognitive and affective states onto others, leading us to respond 5	

inappropriately during social interactions (for related discussions see Decety & Lamm, 2007; 6	

Lamm, Bukowski & Silani, 2016; Steinbeis, 2016). As such, understanding individual 7	

differences in this fundamental capacity presents an important challenge for psychological 8	

research. This demands accurate measures of SOD, however, with stimuli capable of eliciting 9	

this process independently of other unrelated cognitive mechanisms. The present study 10	

evaluated the suitability of stimuli employed increasingly in this endeavour.  11	

The finger-lifting stimulus-response compatibility (SRC) procedure (Brass, Bekkering, 12	

Wohlschläger, & Prinz, 2000; 2001) is employed frequently by studies of SOD (e.g., Guzman, 13	

Bird, Banissy & Catmur, 2016; Hogeveen et al., 2014; Santiesteban et al., 2012; Tomova et al., 14	

2014). On this task, participants are faster and more accurate at executing right-hand finger-15	

lifting movements signalled by an imperative stimulus when they observe simultaneously a 16	

task-irrelevant compatible (matching) compared with an incompatible (opposing) finger 17	

movement performed by a model’s left hand. This compatibility effect is referred to as 18	

automatic imitation (AI), and is considered an experimental measure of spontaneous mimicry 19	

(for a review see Heyes, 2011). Studies have revealed that AI elicited on this SRC task results 20	

from a common neural coding of self- and other-action: Observing passively another’s finger-21	

lifting actions engages cortical motor systems involved in their execution (e.g., Iacoboni et al., 22	

1999), thereby priming or interfering in the performance of, respectively, compatible or 23	

incompatible finger movements. Furthermore, AI elicited by finger-action stimuli is altered by 24	

modulating neural activity within these motor systems (e.g., Catmur, Walsh & Heyes, 2009; 25	
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Catmur, Mars, Rushworth & Heyes, 2011). This demonstrates that our own and others’ actions 1	

share a common representational space in the brain, and controlling imitative tendencies 2	

requires a mechanism capable of distinguishing between these overlapping self- and other-3	

action representations (for theoretical papers see Brass, Ruby & Spengler, 2009; Guzman et 4	

al., 2016; Lamm et al., 2016; Steinbeis, 2016). For this reason, the magnitude of AI elicited on 5	

the finger-lifting SRC task is employed increasingly as a measure of SOD, with several studies 6	

reporting relationships between performance on this task and other indices of SOD (e.g., 7	

perspective taking [Santiesteban et al., 2012, Spengler, Bird & Brass, 2009; 2010], empathy 8	

[Guzman et al., 2016; Tomova et al., 2014]).  9	

Importantly, however, the finger-lifting stimuli often employed on this task confound 10	

two sources of AI, throwing into question whether performance reflects SOD mechanisms 11	

specifically or other domain-general cognitive processes. By presenting a model’s left hand 12	

horizontally, the stimulus comprises a mirror image of the horizontal right response hand; 13	

index- and middle-finger movements are both executed and observed towards the left and right 14	

of the stimulus display, respectively. As such, AI likely results from both the imitative and 15	

spatial compatibility between observed and executed actions (Boyer, Longo, & Bertenthal, 16	

2012; Boyer, Scheutz, & Bertenthal, 2009). This spatial confound was demonstrated by 17	

Bertenthal, Longo and Kosobud (2006), who report a partial reversal of AI in response to a 18	

right stimulus hand for which imitative- and spatial-compatibility effects oppose one another. 19	

In response to mirror-like actions, then, AI is driven by both sources of compatibility, making 20	

it impossible to dissociate between SOD involved in the control of imitative tendencies and 21	

more general response-inhibition mechanisms required to overcome (unspecific) stimulus-22	

response mappings (mapping stimuli onto responses of effectors in corresponding spatial 23	

locations; see Marsh, Bird & Catmur, 2016; Snowden & Catmur, 2013). While some 24	

researchers have questioned the distinction between spatial- and imitative-compatibility effects 25	
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(Catmur & Heyes, 2011; Cooper, Catmur, & Heyes, 2013), empirical studies suggest it is 1	

reflected at the neural level; neuroscientific experiments employing the SRC procedure with 2	

finger-action stimuli report greater brain function within mirroring systems during the 3	

observation of actions that are imitatively compatible with executed actions, relative to those 4	

that are spatially compatible (Bien et al., 2009; Cross et al., 2013; Mengotti et al., 2012; 5	

Snowden & Catmur, 2013). This implies the degree of overlap between neural self- and other-6	

action representations – and the need for SOD to withhold resulting imitative tendencies – is 7	

modulated by imitative rather than spatial compatibility. 8	

Motivated by an increasing awareness of the need to isolate imitative- from spatial-9	

compatibility effects, recent studies employ a counter-clockwise rotation of these left-hand 10	

finger-action stimuli that places observed and executed finger movements orthogonal to one-11	

another (e.g. Cook & Bird, 2011; 2012; Guzman et al., 2016; Hogeveen et al., 2014; Hogeveen 12	

& Obhi, 2013; Obhi et al. 2014; Santiesteban et al., 2012; Santiesteban, Banissy, Catmur & 13	

Bird, 2012). Yet research shows that when a horizontal response set is mapped to a vertical 14	

stimulus display, an up-right/down-left advantage emerges (for reviews see Cho & Proctor, 15	

2003; Proctor & Vu, 2012). This orthogonal-compatibility effect introduces an alternative 16	

spatial confound to measures of AI; in response to this rotation of a left stimulus hand, right-17	

hand finger movements might be facilitated by their orthogonal rather than imitative 18	

compatibility with the observed actions. Although Jiménez et al. (2012) observed little 19	

influence of orthogonal-compatibility effects on AI elicited with clockwise-rotated action 20	

stimuli, Cross et al. (2013) report that neural responses differentiate between spatial and 21	

imitative compatibility even when behaviour does not. It remains possible, then, that this 22	

potentially confounding influence reduces the degree to which AI indexes SOD processes, 23	

instead reflecting unspecific and domain-general response-inhibition mechanisms. 24	
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One way to assess this is to examine the relationship between AI elicited by these 1	

rotated stimuli and other indices of SOD. The Director Task (DT; Keysar, Barr, Balin & 2	

Brauner, 2000) provides an experimental measure of SOD with which to perform such an 3	

assessment. The DT requires participants to move objects around a grid of shelves according 4	

to instructions given by a ‘director’. The grid affords two competing perspectives; the 5	

participants’ viewpoint from the front differs from the director’s viewpoints from the rear. To 6	

follow the instructions correctly, participants must detach themselves from their own self-7	

perspective and act according to their representation of the director’s perspective. While it 8	

remains contentious whether the DT demands mentalising (representing what the director can 9	

see [e.g., Apperly et al., 2010; Dumontheil et al, 2010; Keysar, Lin, & Barr, 2003]) or sub-10	

mentalising processes (constructing an alternative spatial representation [Heyes, 2014; 11	

Santiesteban et al. 2015]), avoiding egocentric errors requires flexible distinction between 12	

competing self- and other-representations. In this light, AI and DT performance reflect a 13	

unitary SOD process (Steinbeis et al., 2016), and should converge to reveal individual 14	

differences. The relationship between these measures should, however, be more evident when 15	

AI is driven by imitative rather than spatial compatibility.  16	

The present study evaluated the potential influence of orthogonal-compatibility effects 17	

on AI elicited by rotated finger-action stimuli. First, we compared directly AI elicited by a left 18	

or a right stimulus hand at clockwise or counter-clockwise rotations. At a given rotation, only 19	

one stimulus hand affords both imitative and orthogonal compatibility between observed and 20	

executed finger-actions. We expected greater AI in response to that confounded stimulus. We 21	

then compared AI in response to these different stimuli with DT performance, assessing the 22	

potential for orthogonal compatibility to mask relationships between these two measures of 23	

SOD. We predicted that AI would relate to DT performance more when the former was elicited 24	

by the stimulus affording only imitative compatibility. 25	
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2. Experiment 1. 1	

2.1. Methods 2	

2.1.1. Subjects 3	

We recruited 100 students (38 males) from Farmingdale State College, New York. Due to 4	

separate exclusion criteria applied to SRC and DT data (see below), the data from 87 of these 5	

individuals (30 males) were analysed. The mean age of this final sample was 21.89 years 6	

(standard deviation [SD]=4.98, range=18-52). All participants were right handed with normal 7	

or corrected-to-normal vision. The experimental procedure was approved by the Ethical 8	

Review Board of Farmingdale State College, and informed consent was obtained beforehand. 9	

 10	

2.1.2. Procedure 11	

The experimental procedure was programmed and executed in Cogent (v1.31; 12	

www.vislab.ucl.ac.uk/cogent), a MATLAB toolbox (vR2015b; The MathWorks Inc., Natick, 13	

MA). Participants performed the finger-lifting SRC and DT procedures in immediate 14	

succession, but the order of the two tasks was counterbalanced. 15	

 16	

2.1.3. Stimulus-Response Compatibility Procedure 17	

Each trial began with a warning stimulus comprising a model’s pronated left or right hand with 18	

all fingers resting on a flat surface, but rotated 90° counter-clockwise (-90°) from the 19	

participants’ perspective. Upon presentation of this warning stimulus, participants depressed 20	

the left and right directional arrows on a standard keyboard with the index and middle finger 21	

of their right hand, respectively. After a variable period (800, 1600, or 2400 msec, selected 22	

randomly) the stimulus changed to the end-point of either an index- or middle-finger extension 23	

performed by the same hand, and a dot was presented between the index and middle finger. 24	

The colour of the dot served as an imperative stimulus, signalling whether the participant 25	
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should extend their own index or middle finger. The colour-finger pairing was counterbalanced 1	

across participants. In response to the imperative stimulus, participants lifted the corresponding 2	

finger as quickly as possible, thereby releasing a key. A blank screen was then presented for 3	

1000 msec, after which the warning stimuli re-appeared to signal the next trial. Intermixed 4	

among 148 of these experimental trials were 12 catch trials, on which the warning stimulus 5	

changed to the end-point of an index- or middle-finger movement but no imperative stimulus 6	

was presented.  7	

The two stimulus elements defined the experimental conditions: Firstly, the change 8	

from the warning to end-point stimulus produced apparent motion, resulting in the observation 9	

of a finger movement either imitatively compatible (COM) or incompatible (INCOM) with the 10	

response signalled by the imperative stimulus; second, the stimulus display presented either a 11	

model’s left (LEFT-90°) or right hand (RIGHT-90°). At a -90° rotation, an orthogonal left-12	

down/up-right relationship existed between executed and observed finger movements only in 13	

response to the LEFT-90° stimulus (see Figure 1A). The procedure comprised two blocks of 80 14	

trials, each consisting of one stimulus hand. The block order was counterbalanced. Five 15	

practice trials were completed before the first block. 16	

 17	

2.1.4. Director Task 18	

The stimulus on each trial of the Director Task (DT) consisted of a grid of shelves forming 16 19	

boxes. Objects were placed within eight of these boxes, and on each trial the participant 20	

received a recorded verbal instruction from a female “director” to move one of the objects to a 21	

different box. In three of four conditions, the director sat behind the shelves, a location from 22	

which she could not see the contents of five boxes; with opaque backs, the contents of these 23	

boxes were visible only from the participant’s (front) perspective. On Exp trials, the instruction 24	

referred to an object that created a discrepancy between the director and participantsʼ 25	
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perspectives (e.g., “move the smallest apple”, when the director could see only the medium-1	

sized apple). To follow the instruction correctly, the participant had to discount any “distractor” 2	

objects not visible to the director (e.g., move the medium-sized apple rather than the smallest). 3	

In the first and second control conditions (Cont.1 and Cont.2) the director was positioned 4	

behind the shelves but there was no conflicting object to discount: In Cont.1 the distractor was 5	

replaced, and in Cont.2 the directorʼs instruction changed so as to render the distractor 6	

irrelevant. In the third control condition (Cont.3), the director was not present in the scene and 7	

participants were told to follow the instruction from their own perspective. This is illustrated 8	

in Figure 1B. 9	

Each condition comprised 20 trials presented randomly. The audio recordings of 10	

instructions were equivalent across all 80 trials (mean=3.26 [SD=.22] sec). Participants 11	

responded by indicating with the mouse into which box the object should be moved. Errors 12	

involved selection of the wrong object or wrong location, the latter including omission of left-13	

right switching. Any potential difference in perspectives was emphasised on practice trials that 14	

included a front and rear view of the shelves. 15	

 16	

2.2. Results 17	

For each participant we removed trials on both the SRC and DT procedure with response times 18	

(RT) beyond three standard deviations of the subjects’ overall mean. We then excluded data 19	

from six individuals achieving zero accuracy (Acc) on any two DT conditions (suggesting a 20	

misunderstanding of task instructions), and seven participants with aggregate performance 21	

measures (see below) beyond three standard deviations of the sample mean. The analyses of 22	

the remaining 87 individuals were performed with SPSS (version 22). Unless stated otherwise, 23	

values below represent means (± standard error [SE]) and all probabilities are given after 24	

Bonferroni correction for multiple comparisons. 25	
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 1	

2.2.1. Automatic Imitation 2	

Figure 2A illustrates greater RT and lower Acc on INCOM relative to COM trials for both 3	

stimulus displays. A Spearman test revealed that RT and Acc were correlated when collapsing 4	

across these conditions for both stimuli (ρ>.19, p<.040), so we first calculated inverted 5	

efficiency scores (IE; RT/[Acc/100]; see Bruyer & Brysbaert, 2011) on each condition and for 6	

both displays separately. This accounted for any speed-accuracy trade-off. Applying a 7	

repeated-measures 2x2 ANOVA to these IE scores, with the factors Hand (LEFT-90° and 8	

RIGHT-90°) and Compatibility (COM and INCOM), we observed no main effect of stimulus 9	

hand (609.07 [±10.73] vs. 602.20 [±8.58] msec, respectively; F[1,86]=1.61, p=.208) but a strong 10	

Compatibility effect (588.74 [±9.49] vs. 622.53 [±9.77] msec; F[1,86]=49.66, p<.001; η2=.	37). 11	

Moreover, a significant interaction term revealed that the compatibility effect was greater in 12	

response to the LEFT-90° (575.37 [±8.73] vs. 629.02 [±9.43] msec) compared with the RIGHT-13	

90° stimulus (602.12 [±11.36] vs. 616.03 [±11.11] msec; F[1,86]=21.11, p<.001; η2=.21). We then 14	

subtracted the IE scores on each COM condition from the corresponding INCOM condition to 15	

produce aggregate performance measures – AILEFT-90 and AIRIGHT-90, with positive values 16	

representing AI in response to the respective stimulus display. A paired-samples t-test 17	

confirmed greater AILEFT-90° compared with AIRIGHT-90° (53.66 [±5.96] vs. 13.91 [±6.68] msec; 18	

t[86]=4.81, p<.001; η2=.	67).  19	

Interestingly, paired-sample t-tests revealed that individuals expressing AI in response 20	

to LEFT-90 (n=74; AILEFT-90=67.61 [±5.40]) showed significantly less AI to RIGHT-90 (AIRIGHT-21	

90=14.87 [±6.92]; t[73]=6.28, pcorr<.001). In contrast, those expressing AI in response to RIGHT-22	

90 (n=52; AIRIGHT-90=53.52 [±5.65]) showed equivalent AI to LEFT-90 (AILEFT-90=58.23 [±7.13]; 23	

t[51]=.56, pcorr=.581). This is presented in Figure 3. 24	

 25	
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2.2.2. Director Task 1	

Since RT and Acc were uncorrelated in some conditions, we examined RT and Acc separately. 2	

A Friedman test revealed differences between the conditions in both RT (χ2
[3]=116.03, p<.001) 3	

and Acc (χ2
[3]=18.26, p<.001), and Wilcoxon follow-up comparisons confirmed RT was higher 4	

and Acc lower on the Exp trials (5.75 [±.14] sec and 72.64 [±2.43] %, respectively) relative to 5	

Cont.2 (5.41 sec [±.14] and 75.69 [±2.22] %) and Cont.3 (4.73 [±.11] sec and 79.25 [±2.55] %; 6	

Z>2.30, p<.021); Acc was also significantly higher in Cont.1 (77.30 [±2.35] %; Z=4.29, 7	

p<.001), while RT was equivalent  (5.73 [±.15] sec; Z=.46, p=.324). This is illustrated in Figure 8	

2A. To achieve a single measure of DT performance, we collapsed across Cont.1, Cont.2 and 9	

Cont.3 and regressed average RT in these conditions against that measured on the Exp. 10	

condition. Greater residuals represent greater RT on the experimental relative to control trials 11	

– that is, greater egocentric responding. Distributed normally (D[87]=.09, p=.062), this measure 12	

of DT performance (DTRT) was entered into subsequent regression models. 13	

 14	

2.2.3. AI-DT Association 15	

We explored the AI-DT relationship with linear mixed models (LMMs) applied separately to 16	

AILEFT-90° and AIRIGHT-90°. Each model was defined independently in a step-up manner, whereby 17	

potential fixed effects were added sequentially and retained only if they resulted in a significant 18	

decrease in log-likelihood (West et al., 2007). Mean choice RT appears to influence the 19	

Compatibility effect (Butler, Ward & Ramsey, 2015), and may determine the relative 20	

contribution of spatial- and imitative-compatibility (Catmur et al., 2011). For this reason we 21	

considered mean RT collapsed over COM and INCOM trials (RTmean) for model inclusion, 22	

allowing us to assess the AI-DT relationship independently of this potential covariate. We also 23	

included a random Subject effect, allowing for high variability in AI. Finally, given this high 24	

variability we applied the optimal model separately to individuals who did and did not express 25	
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AI to each stimulus display – that is, individuals with positive and negative aggregate values, 1	

respectively. 2	

For both AILEFT-90 and AIRIGHT-90, the optimal model included the fixed effects of RTmean 3	

and DTRT. For AILEFT-90, there was no effect of RTmean or DTRT when applied to the entire sample 4	

(F[1,87]=.33, p=.566; F[1,87]=.17, p=.683) or separately to individuals who did express AI in 5	

response to LEFT-90 (F[1,74]=1.06, p=.306; F[1,74]=.49, p=.489) and those who did not 6	

(F[1,13]=.88, p=.364; F[1,13]=.10, p=.761). A different pattern was observed for AIRIGHT-90. While 7	

there was no significant effect of RTmean or DTRT when applied to the whole sample (F[1,87]=.05, 8	

p=.822; F[1,87]=.97, p=.328) or individuals expressing no AI in response to RIGHT-90 9	

(F[1,35]=.92, p=.343; F[1,35]=2.41, p=.130), those who did show AI to this stimulus display 10	

showed a significant effect of RTmean (F[1,52]=6.78, p=.012) and a strong trend towards the DTRT 11	

effect (F[1,52]=3.90, p=.054). In this relationship, lower AIRIGHT-90 was associated with slower 12	

responding on experimental relative to control trials on the DT – that is, greater egocentrism. 13	

Coefficients are presented in Table 1 and plotted in Figure 2B. 14	

 15	

3. Experiment 2. 16	

In Experiment 1 we measured significantly greater AI elicited by the LEFT-90 compared with 17	

the RIGHT-90 stimulus. Since orthogonal compatibility between observed and executed finger 18	

actions can exist only in response to the former stimulus, this confounding influence appears 19	

to inflate AI. We also revealed that individuals expressing AI to LEFT-90 showed a decrease in 20	

response to RIGHT-90, while those exhibiting AI to RIGHT-90 showed no such change in 21	

response to LEFT-90. These behavioural patterns identified two sub-groups: The first express 22	

sensitivity to the confounding influence of orthogonal-compatibility effects; the combination 23	

of imitative and spatial compatibility afforded by LEFT-90 exert an additive influence on their 24	

compatibility effect. This results in greater AI when compared with the compatibility effect 25	
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measured in response to RIGHT-90 – a stimulus for which these two sources of compatibility 1	

oppose one another. In contrast, AI exhibited in the second group is driven by isolated 2	

imitative-compatibility effects; when elicited by RIGHT-90, their compatibility effect appears 3	

relatively insensitive to the additive influence of orthogonal compatibility introduced by LEFT-4	

90. Moreover, only for individuals expressing AI in response to RIGHT-90 showed evidence of 5	

a relationship between AI and DT performance – the  additive influence of orthogonal 6	

compatibility appears to mask any AI-DT relationship. 7	

These stimuli differ not only in the orthogonal relationship between observed and 8	

executed finger actions, however, but also the anatomical correspondence between the stimulus 9	

and response hand. We performed a second experiment to disentangle the relative influence of 10	

anatomical correspondence and orthogonal compatibility. Specifically, by rotating the same 11	

left and right stimulus hands 90° clockwise, we swapped the hand for which orthogonal 12	

compatibility exists between observed and executed finger movements. If anatomical 13	

correspondence is the influencing factor, the positive association between AI and DT 14	

performance revealed in Experiment 1 would still be present when the former is elicited by a 15	

right stimulus hand. Alternatively, if orthogonal compatibility is the confounding influence, 16	

the AI-DT relationship should now be observed only in response to the left hand.  17	

 18	

3.1. Methods 19	

3.1.1. Subjects 20	

An additional 100 students (36 males) were recruited from Farmingdale State College, New 21	

York. After applying the same exclusion criteria used in Experiment 1, the data from 86 of 22	

these individuals (30 males) were analysed. The mean age of this final sample was 23.05 23	

(standard deviation=3.14, range=18-37) years. All participants were right handed with normal 24	

or corrected-to-normal vision. 25	
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 1	

3.1.2. Procedure 2	

The same SRC and DT procedures were used, and the task order was counterbalanced between 3	

participants. The only difference was the stimuli used for the SRC task; the exact same images 4	

of a model’s left and right hand were rotated 90° clockwise (+90°) from the participants’ 5	

perspective (LEFT+90° and RIGHT+90°, respectively). In this opposing rotation, orthogonal 6	

compatibility exists only in response to the RIGHT+90° stimulus (see Figure 1). 7	

 8	

3.2. Results 9	

We applied the same within- and between-subject exclusion criteria used in Experiment 1, 10	

resulting in the removal of data from eight subjects on the SRC task and six from the DT. The 11	

analyses presented below were performed on the remaining 86 participants. 12	

 13	

3.2.1. Automatic Imitation 14	

Figure 2A illustrates greater RT and lower Acc on INCOM relative to COM trials for both 15	

stimulus displays. A Spearman correlation confirmed that RT and Acc were correlated for both 16	

stimulus hands when collapsing across conditions (ρ=.54, p<.001), so we followed the exact 17	

same approach as in Experiment 1 and calculated IE scores for each condition. Applying the 18	

same 2x2 repeated-measures ANOVA to these scores, we again observed a strong 19	

compatibility effect with faster responding on COM relative to INCOM trials (539.01 [±8.68] 20	

vs. 552.89 [±8.40], respectively; F[1,85]=15.63, p<.001) but no difference between the LEFT+90 21	

or RIGHT+90 stimulus (547.34 [±7.99] vs. 544.55 [±9.21] msec; F[1,85]=.58, p=.447) and no 22	

interaction (F[1,85]=2.15, p=.146). Next we subtracted the COM from the INCOM scores to 23	

arrive at AILEFT+90 and AIRIGHT+90. Comparing these aggregated performance measures directly 24	
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with a paired-samples t-test revealed that AILEFT+90° and AIRIGHT+90° did not differ significantly 1	

from one another (7.58 [±5.07] vs. 20.19 [±5.99] msec, respectively; t[85]=1.466, p=.146).  2	

In opposition of Experiment 1, paired-samples t-tests showed that individuals 3	

expressing AI in response to LEFT+90 (n=47; AILEFT+90=19.25 [±7.78]) showed only a non-4	

significant increase in response to RIGHT+90 (AIRIGHT+90=40.83 [±4.64]; t[46]=2.046, 5	

pcorr=.092). In contrast, those expressing AI in response to RIGHT+90 (n=55; AIRIGHT+90=51.79 6	

[±4.83]) showed a significant decrease in AI when elicited by LEFT+90 (AILEFT+90=.66 [±5.33]; 7	

t[54]=7.01, pcorr<.001). This is illustrated in Figure 3. 8	

 9	

3.2.2. Director Task 10	

Following the same approach used in Experiment 1, a Friedman test revealed differences 11	

between the conditions in both RT (χ2
[3]=62.67, p<.001) and Acc (χ2

[3]=19.64, p<.001). 12	

Wilcoxon follow-up comparisons confirmed RT was higher and Acc lower on the Exp. trials 13	

(5.22 [±.17] sec, 77.27 [±2.48] %) compared with Cont.1 (5.09 [±.15] sec, 83.26 [±2.34] %) 14	

and Cont.2 (5.02 [±.15] sec, 82.79 [±2.17] %; Z>3.14, p<.012). RT was also greater on Exp. 15	

compared with Cont.3 trials (4.65 [±.13] sec; Z=6.80, p=.006), but Acc was not significantly 16	

different (75.35 [±3.32] %; Z=.23, p=.816). No differences existed between the control 17	

conditions in Acc (Z<2.02, p>.258), but Cont.3 did differ from Cont.1 and Cont.2 on RT 18	

(Z>5.24, p<.006). This pattern is illustrated in Figure 2A. We then computed DTRT by 19	

regressing RT averaged across the three collapsed control conditions against RT on Exp. 20	

 21	

3.2.3. AI-DT Association 22	

The same model specified in Experiment 1 outperformed any other models applied to both 23	

AILEFT+90 and AIRIGHT+90, but these clockwise-rotated stimuli elicited AI with opposing 24	

relationships to DT performance. For AILEFT+90 there was no significant effect of RTmean or  25	
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DTRT when applied to the entire sample (F[1,86]=.06, p=.802; F[1,86]=.08, p=.785), and no effect 1	

of DTRT in those showing no AI in response LEFT+90 (F[1,39]=1.31, p=.259); only the effect of 2	

RTmean was significant for these individuals (F[1,39]=5.99, p=.019). In those showing positive 3	

AILEFT+90, however, both RTmean and DTRT effects were significant (F[1,47]=4.99, p=.030; 4	

F[1,47]=5.41, p=.024). Conversely, for AIRIGHT+90 there was no effect of RTmean or DTRT in the 5	

whole sample (F[1,86]=1.61, p=.207; F[1,86]=1.74, p=.191) or for those showing no AI to 6	

RIGHT+90 (F[1,31]=.01, p=.914; F[1,31]=2.23, p=.146). Furthermore, only the RTmean effect was 7	

significant in those showing positive AIRIGHT+90 (F[1,55]=5.37, p=.024); there was no effect of 8	

DTRT for individuals showing AI to this stimulus display (F[1,55]=.39, p=.531). 9	

 10	

3.2.4. Influence of Orthogonal Compatibility 11	

Together our experiments converge to indicate a AI-DT relationship only in individuals 12	

exhibiting AI in response to stimuli for which no confounding orthogonal-compatibility effects 13	

exist, regardless of anatomical correspondence. To assess this directly we combined the data 14	

from both experiments to compare AI elicited by these RIGHT-90 and LEFT+90 stimuli (AInon-15	

orth) with AI measured in response to the LEFT-90 and RIGHT+90 stimuli affording orthogonal 16	

compatibility (AIorth). A paired-samples t-test confirmed that AInon-orth was significantly lower 17	

than AIorth (10.76 [±4.19] vs. 37.02 [±4.40] msec, respectively; t[172]=4.35, p<.001; η2=.464). 18	

Applying Bonferroni-corrected paired-samples t-tests to the AI data combined over both 19	

experiments, we found that individuals exhibiting AI in response to stimuli for which 20	

orthogonal compatibility exists (LEFT+90 and RIGHT-90; n=129; AIorth=60.87 [±3.78]) showed 21	

less in response to stimuli for which no such confounding influence is present (LEFT-90 and 22	

RIGHT+90; AInon-orth=8.81 [±4.60]; t[128]=9.106, pcorr<.001). In contrast, those expressing AI in 23	

response to the stimuli affording no orthogonal-compatibility effects (n=99; AInon-orth=47.50 24	

[±3.73]) showed no difference in AI elicited by stimuli for which this confound exists 25	
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(AIorth=39.75 [±5.59]; t[128]=1.14, pcorr=.580). This confirms that the corresponding results from 1	

each experiment reflect a differential sensitivity among this sample to orthogonal-compatibility 2	

effects. 3	

Furthermore, applying the same LMMs to these collapsed data confirmed pattern of 4	

results shown in Experiments 1 and 2. For AIorth., there was no effect of RTmean or DTRT when 5	

applied to the entire sample (F[1,173]=1.41, p=.237; F[1,173]=.01, p=.942), or for those expressing 6	

no AI in response to LEFT-90 or RIGHT+90 (F[1,44]=.63, p=.433; F[1,44]=.72, p=.400). Further, 7	

only the effect of RTmean was significant in those expressing AIorth (F[1,129]=8.44, p=.004); there 8	

was no effect of DTRT (F[1,129]=.62, p=.434). For AInon-orth., however, a different pattern was 9	

observed. There was no effect of RTmean or DTRT for the whole sample (F[1,173]=.16, p=.694; 10	

F[1,173]=1.29, p=.257), and those expressing no AI in response to LEFT+90 and RIGHT-90 11	

showed an effect of RTmean (F[1,74]=8.34, p=.005) but no DTRT effect (F[1,74]=3.21, p=.077). Yet 12	

individuals expressing AInon-orth showed strong effects of both RTmean and DTRT (F[1,99]=14.06, 13	

p<.001; F[1,99]=8.28, p=.004). In these individuals, less AI was associated with greater 14	

egocentrism on the DT. Coefficients are presented in Table 1, and plotted in Figure 2B.  15	

Finally, by examining AI measured across both stimulus hands and rotations we were 16	

able to consider the effects of other potentially confounding influences; namely, anatomical- 17	

and spatial-compatibility effects. In Supplementary Figure 1 we illustrate how each of these 18	

factors might influence AI in response to the different stimulus displays, and Table 2 presents 19	

the pattern of AI measured across each stimulus together with the compatibility effect(s) they 20	

afford. If anatomical compatibility contributed to our measures of AI we would expect one of 21	

the stimulus hands to elicit greater AI on both experiments. This was not the case, however, 22	

with AI differing significantly between stimulus hands only in Experiment 1. Anatomical 23	

compatibility, then, exerted no systematic influence on AI. In isolation of other potential 24	

compatibility factors, both mirror and 1st-person spatial-compatibility effects also exerted no 25	
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systematic influence on AI. The selective increase in AI for the LEFT-90 stimulus appears to 1	

reflect an additive influence of orthogonal- and mirror-compatibility effects, however, which 2	

we discuss below.  3	

 4	

4. Discussion 5	

In this study we conducted two experiments to evaluate an experimental paradigm used 6	

increasingly to measure self-other distinction (SOD) in the action domain; namely, the finger-7	

lifting stimulus-response compatibility procedure (SRC; Brass et al., 2000; 2001). First we 8	

compared AI measured in response to two types of action stimuli – those for which observed 9	

and executed finger movements are both imitatively and orthogonally compatible, and stimuli 10	

affording only imitative compatibility. We then assessed the degree to which AI measured in 11	

response to these different stimuli are related to a measure of SOD in the perception domain; 12	

specifically, perspective-taking performance on the Director Task (DT). Three important 13	

results emerged: Firstly, orthogonal-compatibility effects present a strong confounding 14	

influence on measures of AI. Second, this confounding influence has the potential to mask 15	

important relationships between AI and DT performance. Third, for the sub-group of 16	

individuals expressing AI in isolation of confounding orthogonal-compatibility effects, a 17	

possible self-bias in SOD processing is observed. 18	

Our observation of a behavioural dissociation between these types of action stimuli is 19	

consistent with neuroimaging studies. Brain responses within mirroring systems differentiate 20	

between observed actions according to their imitative compatibility with executed actions (e.g., 21	

Bien et al., 2009; Cross et al., 2013), and similar differentiations are reported in brain systems 22	

implicated in SOD processes (e.g., temporo-parietal junction; e.g., Sowden & Catmur, 2013). 23	

On this basis we question whether AI confounded by orthogonal-compatibility truly indexes 24	

SOD, or other unspecific cognitive mechanisms involved in stimulus-response mapping. Some 25	
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researchers argue against such a distinction, contending that both sources are mediated by 1	

domain-general associative-learning processes (Catmur & Heyes, 2011; Cooper, Catmur, & 2	

Heyes, 2013). In support of this proposition, studies have modified AI after brief periods of 3	

stimulus-response training (e.g. Gillmeister, Catmur, Liepelt, Brass, & Heyes, 2008; Heyes, 4	

Bird, Johnson, & Haggard, 2005; Press, Gillmeister, & Heyes, 2007; but for a critical review 5	

see Shaw & Czekóová, 2013). By demonstrating the specificity of the AI-DT relationship to 6	

actions that isolate imitative from orthogonal compatibility, however, the present study 7	

suggests that imitative compatibility engages SOD processes more than its spatial counterpart. 8	

Importantly, we observed AI even when orthogonal-compatibility effects are not 9	

possible. This argues against the notion that AI is simply an artefact of spatial compatibility 10	

(Jansson, Wilson, Willliams & Mon-Williams, 2007), and converges with the findings of 11	

previous studies: By comparing finger movements with various control stimuli, studies have 12	

shown that the congruency effect cannot be reduced to spatial compatibility alone (Brass et al., 13	

2001; Bertenthal et al., 2006; Cook & Bird, 2011; 2012). Our observation of AI in response to 14	

both anatomically congruent and incongruent actions that isolate imitative- from spatial-15	

compatibility are also in line with studies that employ action stimuli less susceptible to 16	

confounding influences (for a review see Heyes, 2011); some experiments examine hand-17	

opening/-closing movements for which spatial- and orthogonal-compatibility effects can be 18	

eliminated (e.g., Heyes, Bird, Johnson & Haggard, 2005; Leighton, Bird, Orsini, & Heyes, 19	

2010; Press, Bird, Flach, & Heyes, 2005; Press et al., 2007; Press, Bird, Walsh & Heyes, 2008; 20	

Shaw et al., 2013; Wang & Hamilton, 2013). Such strong convergence across different SRC 21	

paradigms indicates that our results are unlikely to be influenced by subtle differences in 22	

protocol (e.g., apparent motion produced by two rather than three frames, or the use of catch 23	

[no execution] rather than baseline trials [no observation]). Nevertheless, future studies 24	
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employing the finger-lifting SRC task should consider the potential influence of these 1	

methodological differences.  2	

The clockwise rotation of our action stimuli was relatively unaffected by orthogonal 3	

compatibility – AI did not differ between left and right stimulus hands at this rotation. It is 4	

possible that this pattern of results reflects differences in the direction of finger-lifting 5	

movements between rotations – right to left for clockwise-rotated stimuli, and left to right for 6	

a counter-clockwise rotation. Importantly, however, our findings replicate those of Jiménez et 7	

al. (2012), rendering this explanation unlikely; these authors employed clockwise rotations of 8	

finger-tapping movements, such that apparent motion occurred left to right. Instead, the end-9	

state hypothesis proposed by Lippa and Adam (2001) may go some way in explaining this 10	

difference between clockwise and counter-clockwise rotations. These authors suggest that 11	

orthogonal-compatibility effects emerge because the spatial codes of responses are transformed 12	

to match those of the stimulus set, but this remapping is determined by end-state comfort; 13	

actions performed towards the body midline are more comfortable than those directed away 14	

from the body. In this light, rotating our right wrist inwards (counter-clockwise) is much more 15	

comfortable than an outward (clockwise) rotation. If participants mentally rotate their right 16	

response hand counter-clockwise to match the stimulus, a left stimulus hand at the same 17	

rotation becomes a mirror image. In this situation, mirror spatial compatibility between the 18	

observed and executed action will confound imitative compatibility, as demonstrated by 19	

Bertenthal et al. (2006). This hypothesis provides a potential explanation for the selective 20	

increase in AI for the LEFT-90 stimulus, since this confounding mirror-compatibility effect 21	

could not exist between a counter-clockwise rotated response hand and a clockwise-rotated left 22	

or right stimulus hand. Furthermore, this would account for the additive influence of 23	

orthogonal- and mirror-compatibility effects suggested by our findings; for mirror 24	
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compatibility to exist with the LEFT-90 stimulus, it must be rotated clockwise or the response 1	

hand rotated counter-clockwise so that they become mirror images of one another. 2	

It is entirely conceivable that the action observation-execution mapping believed to 3	

underlie AI is facilitated when the observed action is a mirror image of the observer’s 4	

corresponding effector, thereby minimising the correspondence problem (see Brass & Heyes, 5	

2005). With such a mirror image, however, it is impossible to distinguish between action-6	

specific matching and other domain-general cognitive processes involved in (unspecific) 7	

stimulus-response mapping (Marsh et al., 2016; see also Sowden & Catmur, 2013). In this 8	

sense, when AI is measured in response to mirror-image actions it is impossible to dissociate 9	

between SOD mechanisms necessary to control imitative tendencies and more general 10	

response-inhibition mechanisms. For this reason, we isolated imitative-compatibility effects by 11	

rotating anatomically compatible and incompatible finger-action stimuli. By complicating the 12	

observation-execution mapping process, however, these stimuli may recruit additional 13	

cognitive mechanisms involved in mental rotation. Since these same cognitive mechanisms 14	

might also be involved in perspective taking, further studies are needed before we can be sure 15	

that AI-DT relationship revealed in the present study truly reflects unitary a SOD mechanism. 16	

This could be explored by comparing the relationship when AI is elicited by stimuli that vary 17	

in the degree of spatial- and/or orthogonal-compatibility between observed and executed 18	

actions (e.g., see Press et al., 2008).  19	

We found that AI was related to DT performance only when the former was elicited by 20	

action stimuli for which imitative compatibility is isolated from other spatial influences. This 21	

relationship took the form of an inverse association: reduced sensitivity to imitative-22	

compatibility effects was related to slower responding on DT trials requiring a switch from 23	

self- to other-representations. This is consistent with the notion that unitary SOD processes 24	

underline both AI and DT performance (e.g., Santiesteban et al., 2012). Imitative-compatibility 25	
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effects are driven by the activation of overlapping neural motor representations of self- and 1	

other-action (Catmur, Walsh & Heyes, 2009), and overcoming imitative tendencies requires 2	

SOD to disentangle these competing representations. Conversely, experimental DT trials 3	

require us to detach from our own self-perspective and act according to an opposing 4	

representation. As such, we interpret this finding as evidence for a self-bias in SOD that serves 5	

to discount any competing other-representations – that is, an egocentric style of SOD.  6	

This interpretation is congruent with the findings of Obhi et al. (2014; see also 7	

Hogeveen et al., 2013), who report that individuals scoring high on narcissism exhibit less 8	

interference than controls on the SRC task. Narcissists have also been shown to express lower 9	

affective empathy (Wai & Tiliopoulos, 2012) – a socio-emotional process requiring distinction 10	

between simultaneous representations of self and other affective states (Lamm et al., 2016). 11	

The nature of the AI-DT relationship we have observed might also point towards a potential 12	

mechanism behind the results of other studies. Recently it has been demonstrated that training 13	

individuals to inhibit imitative tendencies on the SRC task improves their DT performance 14	

(Santiesteban et al., 2012) and empathic expression (Guzman et al., 2016). Our data suggest 15	

that such training may help individuals to overcome self-biases in SOD processing by 16	

encouraging more flexible distinction (“tagging”; Lamm et al., 2016) between competing self-17	

other representations. Importantly, however, these studies elicited AI with rotated action 18	

stimuli affording orthogonal compatibility. We wonder if training to inhibit imitative 19	

tendencies has a bigger effect on other socio-cognitive tasks when it focuses specifically on the 20	

inhibition of imitative-compatibility effects. 21	

Our homogeneous student sample prevented us from exploring individual differences 22	

that might underlie the sub-groups we observed on the basis of AI, but several studies suggest 23	

that a more person-centred focus is necessary. Individual differences have been demonstrated 24	

in the responsiveness of neural mirroring systems believed to drive AI (e.g., Gazzola, Aziz-25	
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Zadeh & Keysers, 2006), and both choice reaction-time (Der & Deary, 2006) and measures of 1	

SOD have been found to vary with age (e.g., Riva et al., 2016). Although  Butler, Ward and 2	

Ramsey (2015) suggest that AI is not related to personality, these authors employed the non-3	

rotated (horizontal) left stimulus hand for which strong spatial-compatibility effects have been 4	

demonstrated (Bertenthal et al., 2006). The present study indicates that these spatial influences 5	

have the potential to overshadow such relationships, and egocentrically biased SOD processing 6	

manifests only when observed actions are imitatively – not spatially – compatible with 7	

executed actions. Future studies should examine these two sub-groups more closely, 8	

investigating potential differences between individual members.  9	
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 Absent (35) -37.91 (±11.01)** -.06 (±.07) 7.50 (±4.83) 

Present (52) 29.07 (±10.69)** .19 (±.07)** -8.78 (±4.45)T 
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-9
0 Absent (13) -39.46 (±16.66)* .09 (±.10) -2.83 (±9.10) 

Present (74) 58.78 (±10.32)** .07 (±.07) -2.99 (±4.30) 
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Absent (31) -34.19 (±11.11)** -.01 (±.09) 15.89 (±10.65) 

Present (55) 40.75 (±6.88)** .19 (±.08)* -5.06 (±8.02) 
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+
90

 Absent (39) -20.95 (±6.29)** -.14 (±.06)* 8.45 (±7.38) 

Present (47) 28.70 (±6.74)** .15 (±.07)* -15.84 (±6.81)* 
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Absent (44) -38.74 (±9.22)** .05 (±.06) 6.30 (±7.42) 

Present (129) 48.00 (±5.73)** .13 (±.04)** -2.81 (±3.57) 
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Absent (74) -26.66 (±5.42)** -.11 (±.04)** 6.71 (±3.74) 

Present (99) 29.59 (±5.81)** .17 (±.05)** -10.65 (±3.58)** 
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Table 1. Regression coefficients. Values present estimated coefficients (±SE) emerging from 

the linear mixed-model regression analyses applied to data from Experiment 1 (top) and 2 

(middle) separately, and the data combined across both experiments (bottom). For the 

combined data, coefficients represent relationships with AI elicited by the LEFT-90 and 

RIGHT+90 (Orthogonal) or LEFT+90 and RIGHT-90 (Non-orthogonal) stimuli. The coefficients 

represent the main effect and interactions defining the optimal models applied separately to 

individuals who did and those who did not express AI to the respective stimulus (Presence and 

Absence, respectively; see text for details). Subscripts indicate the number of participants 

comprising each sub-group. The significant coefficients for the Presence-by-DTRT interaction 

are plotted in Figure 2B.  T = p<.055, * = p<.05, ** = p<.01. 

 

Table 2. Potentially confounding influences on AI. This presents the pattern of AI measured 

across each stimulus (expressed as INCOM-COM, in msec) together with the compatibility 

effects afforded by that stimulus. Only orthogonal compatibility exerts a systematic influence 

on AI across stimuli, with a potentially additive effect of orthogonal- and mirror-compatibility 

effects. See Supplementary Figure 1 for an illustration of how each source of compatibility can 

emerge with the different stimulus displays, and the distinction between “mirror” and “1st-

person” spatial-compatibility effects. 

 

Figure 1. Experimental stimuli. A: Example stimuli (top) used to elicit AI in both experiments, 

for one colour-finger pairing (green dot signals the index-finger lift response; bottom). In a 

given block of trials, either a left or right stimulus hand was presented at a 90° counter-

clockwise (LEFT-90° and RIGHT-90°) or clockwise rotation (LEFT+90° and RIGHT+90°). Whether 

the observed finger extension was the same or different to the response signalled by the 

imperative stimulus (coloured dot) defined compatible (COM) or incompatible (INCOM) trials, 
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respectively. Stimuli affording an orthogonal relationship between observed (top) and executed 

actions (bottom) are highlighted in red dashed lines. B: Example stimulus set used in the 

Director Task. On the Exp, Cont.1 and Cont.3 trials, the instruction is to “Move the smallest 

apple down one box”; on the Cont.2 trial, the instruction is to “Move the biggest apple down 

one box”. On Cont.1 trials the potential distractor object (smallest apple) is replaced, but all 

other objects remain unchanged across the remaining stimulus set. On Cont.3 the director is 

removed (see text for detail). 

 

Figure 2. Results of analyses applied to AI and DT performance. A: Histograms present mean 

(±SE) response time (RT) and accuracy (Acc) measured in each condition of the SRC 

procedure (top) and DT (bottom), in Experiment 1 (left) and 2 (right). These values were used 

to create single aggregate performance measures on each task, which were then entered into 

mixed-model regression analyses (see text). B: The figure plots the significant coefficients 

emerging from the regression analyses for the AI-DTRT relationship, as presented in Table 1. 

Lower AI was associated with more egocentric responding on the DT, but only in individuals 

showing AI to the respective stimuli. 

 

Figure 3. Pairwise comparisons of AI across different stimuli. Comparisons were performed 

in individuals expressing AI (positive aggregate values) in response to either left or right 

stimulus hands rotated counter-clockwise (Experiment 1; top) or clockwise (Experiment 2; 

bottom). Mean responses (black lines) revealed that individuals expressing AI (positive 

aggregate values) in response to LEFT-90, for which imitative- and orthogonal-compatibility 

effects exist, showed a significant reduction in response to RIGHT-90 where these two 

influences oppose one another. No such change is observed in individuals expressing AI in 

response to RIGHT-90. Likewise, subjects exhibiting AI in response to RIGHT+90, the stimulus 
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affording both imitative and spatial effects, showed less in response to LEFT+90. No such 

change was observed for subjects expressing AI to LEFT+90. As such, these pairwise 

comparisons identify two sub-groups according to AI: one influenced by the confounding 

influence of orthogonal compatibility, and another driven primarily by isolated imitative-

compatibility effects and relatively insensitive to orthogonal compatibility. * = p<.001. 

 


