Human action recognition from multiple views based on view-invariant feature descriptor using support vector machines

Bux, Allah and Angelov, Plamen Parvanov and Habib, Zulfiqar (2016) Human action recognition from multiple views based on view-invariant feature descriptor using support vector machines. Applied Sciences, 6 (10). ISSN 2076-3417

Full text not available from this repository.

Abstract

This paper presents a novel feature descriptor for multiview human action recognition. This descriptor employs the region-based features extracted from the human silhouette. To achieve this, the human silhouette is divided into regions in a radial fashion with the interval of a certain degree, and then region-based geometrical and Hu-moments features are obtained from each radial bin to articulate the feature descriptor. A multiclass support vector machine classifier is used for action classification. The proposed approach is quite simple and achieves state-of-the-art results without compromising the efficiency of the recognition process. Our contribution is two-fold. Firstly, our approach achieves high recognition accuracy with simple silhouette-based representation. Secondly, the average testing time for our approach is 34 frames per second, which is much higher than the existing methods and shows its suitability for real-time applications. The extensive experiments on a well-known multiview IXMAS (INRIA Xmas Motion Acquisition Sequences) dataset confirmed the superior performance of our method as compared to similar state-of-the-art methods

Item Type:
Journal Article
Journal or Publication Title:
Applied Sciences
Subjects:
ID Code:
84439
Deposited By:
Deposited On:
30 Jan 2017 09:28
Refereed?:
Yes
Published?:
Published
Last Modified:
01 Sep 2020 03:45