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“Everything is related to everything else, but near things are more related than

distant things.”

Waldo Rudolph Tobler
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Geostatistical design and analysis methods are increasingly used in disease map-

ping, particularly in resource-limited settings where uniformly precise mapping

may be unrealistically costly and the priority is often to identify critical areas

where interventions can have the most health impact. In this thesis, which is

based on four papers, we address the problem of geostatistical sampling design.

In the first paper, we consider the problem of sampling design for efficient spatial

prediction taking account of uncertain covariance structure, in the context of non-

adaptive designs. We propose two classes of designs, namely: simple inhibitory

and inhibitory plus close pairs. We evaluate the performance of these designs using

an average prediction variance criterion and show how the findings are applied to

the design of a rolling Malaria Indicator Survey (rMIS) in an ongoing large-scale,

five-year malaria transmission reduction project in Malawi. In the second paper,

we address the problem of efficient spatial prediction in the context of adaptive

geostatistical designs (AGD). We propose two classes of designs based on singleton

and batch sampling. We show how our findings inform an AGD of rMIS, in the

perimeter of Majete Wildlife Reserve (MWR) in Chikwawa, southern Malawi. The

third paper is a commentary on a paper by Ferreira and Gamerman (2015), which

addressed the effect of preferential sampling of the locations at which to measure

a spatial process. In the fourth paper, we present the first epidemiological field

application of AGD sampling in a malaria prevalence survey. We give an in-depth

description of the project, the study area and practical implementation of our ad-

aptive sampling strategy. We present prevalence maps for children 6–59 months in

MWR perimeter, showing high malaria transmission areas, often called “hotspots”,

that could be targeted with interventions.
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Chapter 1

Introduction.

1.1 Motivation.

The study of geostatistical designs is an important topic in spatial statistics. In

this thesis, we address the problem of geostatistical sampling design X = {xi, i =

1, . . . , n}, i.e., a set of locations xi from which data are collected to allow prediction

of the unobserved spatial phenomenon of interest S. Data {(xi, yi)} are realised

values of random variables Yi associated with locations xi ∈ D ⊂ IR2, where D is

a geographical region of interest. Typically, each Yi can be regarded as a noisy

version of S(xi).

To motivate the sampling design problem in practice, we give two examples. The

first is a malaria prevalence mapping from a cross-sectional household survey

in Majete Wildlife Reserve (MWR) perimeter, in Chikwawa district, southern

Malawi. The on-going Majete project is taking place in three administrative

1



Chapter 1. Introduction. 2

Figure 1.1: Map showing Majete Wildlife Reserve (brown) and borders of the
19 community-based organisations (CBOs) comprising the Majete perimeter.
Three focal areas (green), labelled as A, B, and C, mark the communities selected
for entomology/malaria indicator surveys and the trial. The rest of the CBOs
(grey) are outside the project’s catchment area.

units, referred to as focal areas, namely A, B and C, see Figure 1.1. This is a

resource-limited setting where there are limited registries for disease data. Fig-

ure 1.2 shows a zoomed in map with locations for all enumerated households in

focal area A. The geostatistical design problem here is to choose a finite number,

n, of households to sample in an affordable and efficient manner so as to give the

best possible prevalence predictions at unobserved households. The chosen design

should enable accurate area-wide prevalence mapping so that programme imple-

menters can identify sub-areas where targeted health interventions would have the

most impact. See Section 1.8 for further details on the Majete malaria project.
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Figure 1.2: The black dots are household locations within Majete Wildlife
Reserve perimeter - focal area A.

Our second example is a data-set containing lead pollution measurements taken

from samples of two moss species (Hypnum cupressiforme and Scleropodium purum)

collected in 2000 in Galicia, north-western Spain. These data and methods of

collection have been reported elsewhere, see, for example, Fernández, Rey and

Carballeira (2000), Fernández, Real et al. (2005) and Aboal et al. (2006). Briefly,

samples were collected from two species of moss so as to map different metal con-

centrations in the whole of Galicia. Lead concentrations were measured in µg/g

dry weight. Samples were taken on an almost regular lattice, as shown in Fig-

ure 1.3, with measurement locations recorded using a global positioning system
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(GPS). The data (xi, yi, zi), i = 1, . . . , n are represented by location x, y and a

corresponding measured value zi. Some of the locations on the map appear to lie

outside Galicia and others in the sea to the north. However, the shown bound-

ary is both approximate and imperfectly registered, and is included only to add

context to the map. In this example, policy makers would be interested in how

precisely they could estimate the highest levels of pollution in the whole of the

study region. Additionally, they would be interested in establishing patterns of

distribution of the elements and identifying contaminated areas, including sources

of contamination. The design problem here, unlike in the first example, would be

to choose sample locations anywhere in the study region, not just at a pre-specified

finite set of locations.

Suppose further, in both examples, that we have previously collected and analysed

some data for exploratory or other purposes. How do we use this information to

identify and collect additional data towards the analysis objective(s) over time?

Several questions of scientific interest arise from the above scenarios. One could be

interested in determining where to place the x ∈ D ⊂ IR2. One could also be inter-

ested in knowing how many design points need to be sampled to understand the

heterogeneity of phenomenon of interest in the entire study region. The methods

we have developed are generic in nature and widely applicable as demonstrated in

the above examples. In this thesis, we focused on geostatistical sampling designs

applied to the epidemiology of malaria transmission control and monitoring in a

given spatial area of interest.

In what follows, we give a review of each of the following themes in relation
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Figure 1.3: Map of lead concentrations in Galicia. Each circle centred at xi, yi
has a radius proportional to pollution measurement zi.

to the above-raised questions: the spatial model assumed for geostatistical data,

maximum likelihood (ML) parameter estimation, spatial prediction methods, pref-

erential sampling and the standard geostatistical model for prevalence data. We

also give a brief introduction to malaria epidemiology and mapping, followed by a

description of the Majete malaria project (MMP).

1.2 Geostatistical model.

Geostatistical models provide quantitative descriptions of phenomena distributed

in space (Isaaks and Srivastava, 1989; Chilès and Delfiner, 2012). In geostatistics,
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spatial data are considered to contain deterministic and stochastic components

(Müller, 2007). Data are measurements of the form (xi, yi) where i = 1, . . . , n, xi

is the spatial location and yi is a response associated with xi ∈ IR2. Each yi is a

realisation of a random variable Yi whose distribution is dependent on the value

at the location xi of an underlying spatially continuous stochastic process S(x)

which is not directly observable. The simplest example of a geostatistical model

is the linear Gaussian model. In its most basic form, the model can be written as:

Yi = S(xi) + Zi, i = 1, . . . , n (1.1)

where the Zi are mutually independent N(0, τ 2) random variables and S(x) is a

stationary Gaussian process, with mean µ, variance σ2 = Var{S(x)} and correl-

ation function ρ(u) = Corr{S(x), S(x′)}, where u = ‖x − x′‖ and ‖ · ‖ denotes

Euclidean distance. The model is easily extended to include spatially referenced

covariates, d(x) say, in which case

Yi = d(xi)
′β + S(xi) + Zi, i = 1, ..., n. (1.2)

where β’s come from a finite dimensional parameter space Ω ⊂ IRp. This allows for

the inclusion of a polynomial trend surface or, more generally, spatially referenced

covariates. Writing µ(x) = Xβ, a Gaussian model with a linear specification for

the trend µ(x) can be expressed as a multivariate Gaussian:
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Y ∼ N(Xβ, σ2R(φ) + τ 2I) (1.3)

where X is an n×p matrix of covariates, β is the corresponding vector of regression

parameters, and R depends on a scalar or vector-valued parameter φ, an n × n

matrix with entries ρ(uij) where uij = ||xi − xj||. An equivalent specification to

Equation (1.1) is that the Yi are mutually independent conditional on {S(x) : x ∈

IR2}, with

Yi|{S(x) : x ∈ D} ∼ N(S(x), τ 2), i = 1, . . . , n. (1.4)

This form extends more naturally to non-Gaussian models.

Other alternatives exist for non-Gaussian processes including process convolution

models for a moving average with a non-normal latent process S(x) (Higdon, 1998;

Higdon, 2002) or allowing S(x) to have non-stationary covariance structure (Plage-

mann, Kersting and Burgard, 2008). An example of a non-stationary Gaussian

process model is:

S(x) = S(x− u) + Z(x) : x = 0, 1, . . . (1.5)

for which

γ(x, u) = Cov{S(x), S(x− u)} = σ2||x− u|| (1.6)
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A process of this nature is called an intrinsic random function (Diggle and Ribeiro,

2007; Paciorek and Schervish, 2006). Paciorek (2003) defined a class of closed-form

non-stationary correlation functions, of which a special case is a non-stationary

form of the Matérn correlation, as follows.

ρ(u, φ, κ) =
σ2 |

∑
x |

1
4 |
∑

x′ |
1
4

2κ−1Γ(κ)

∣∣∣∣∑x +
∑

x′

2

∣∣∣∣− 1
2

(u/φ)κKκ(u/φ) (1.7)

where
∑

x and
∑

x′ are the covariance matrices of the Gaussian kernel at locations

x and x′. In Equation (1.7), φ is the range parameter, with dimensions of distance,

that determines the rate at which the correlation decays to 0, κ is the shape

parameter unique to this family of correlation, known as the order of the Matérn

model that determines the differentiability of the process S(x), i.e. κ controls

the smoothness of the spatial process. Larger values of κ correspond to smoother

processes. The process is m times mean square differentiable if and only if κ > m

(Stein, 1999). The function Kκ(·) is the modified Bessel function of second order

κ. Both φ and κ must be greater than zero.

For all the simulations and computations in this thesis, we assume that the process

S(x) is a zero-mean, stationary and isotropic Gaussian process, i.e. with invariant

distribution under translation and rotation. We work with the Matérn parametric

family of correlation functions (Matérn, 1986) that is flexible yet simple. The

Matérn correlation function for a stationary Gaussian process is given by the

following expression:
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ρ(u, φ, κ) = {2κ−1Γ(κ)}−1(u/φ)κKκ(u/φ) (1.8)

In Equation (1.8), the parameters φ and κ are as defined in Equation (1.7). The

Matérn correlation function equates to ρ(u) = exp(−u/φ) for κ = 1/2, the expo-

nential family of correlation, and to ρ(u) = exp{−(u/φ)2} as κ→∞, the limiting

case referred to as the Gaussian correlation function (Handcock and Stein, 1993;

Diggle and Ribeiro, 2007).

1.2.1 Parameter estimation.

For most geostatistical applications, the ultimate goal is that of prediction rather

than estimation of model parameters. However, reliable parameter estimates in

correlated random fields are very important for prediction of the underlying signal

process. Thus, in the initial phase of a geostatistical analysis, it is common to

investigate the structure of the model, for a number of important key features,

including the need for data transformation, the presence of anisotropy, the type

of correlation function to use, and so on (Christensen, 2004).

Sometimes the estimation of model parameters themselves becomes the primary

interest of analysis (Mardia and Marshall, 1984); in addition to estimation of

regression coefficients. A linear Gaussian model Equation (1.1) typically has three

covariance parameters that can be estimated, namely: nugget variance, τ 2; scale

sometimes referred to as the range, φ; the total sill, τ 2+σ2 = Var{Y (x)}. In case of

a Matérn correlation function, the smoothness parameter, κ is a fourth parameter.
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However, in practice, estimating κ is generally difficult, and the approach often

taken is to choose from a finite set of values, for example, κ = 0.5, 1.5 or 2.5.

Maximum likelihood estimation (MLE) is asymptotically efficient for parameter

estimation; it involves inference that is based on an explicit stochastic error model

for the data. Mardia and Marshall (1984) were the first to use MLE in clas-

sical geostatistics, whose applications have increased tremendously over the years,

mainly with the assistance of more powerful computers.

There are several advantages in using likelihood-based estimation of both covari-

ance and regression parameters. The covariance parameters are directly estimated

without having to calculate an experimental semi-variogram and then fit a model

to it. The method provides uncertainty measures of the semi-variogram paramet-

ers and thus, in addition to obtaining measures of the reliability of estimates, it

provides interval estimates and the ability to conduct statistical tests. Christensen

(2004) showed that maximum likelihood is a feasible and powerful tool for model

selection as well. In the current thesis, we restrict our attention to MLE methods.

MLE provides a general approach to simultaneously estimate θ and β in a model

of the form Y ∼ f(yi,θ,β), where θ and β represent covariance and regression

parameters respectively (Kitanidis, 1987). For the multivariate Gaussian model

Equation (1.3), the maximum likelihood estimates of the complete set of paramet-

ers θ = (β, τ 2, φ, σ2, κ) are the values that maximise the log-likelihood function:
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L(β, τ 2, φ, σ2, κ) = −0.5{n log(2π) + log{|(σ2R(φ) + τ 2I)|}

+ (y −Xβ)T (σ2R(φ) + τ 2I)−1(y −Xβ)}
(1.9)

Parameterising ν2 = τ 2/σ2 and V = R(φ) + ν2I, the log-likelihood is maximised

at the following:

β̂(V ) = (XTV −1X)−1XTV −1y (1.10)

and

σ̂2(V ) =
1

n
{y −Xβ̂(V )}TV −1{y −Xβ̂(V )} (1.11)

By substituting these into Equation (1.9), the log-likelihood can be written as a

function of parameters ν2 and φ only,

L(ν2, φ) = −0.5{n log(2π) + n log σ̂2(V ) + log |V |+ n}, (1.12)

where R is an n × n matrix with elements rij = ρ(||xi − xj||) and I the identity

matrix. It is this function (Equation (1.12)) that is then numerically maximised.

For the Matérn model, we maximise L(ν2, φ) separately for each individual value

of κ.
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1.2.2 Spatial prediction.

In some applications, the covariance function is assumed to be completely known,

in which case the ultimate emphasis of design and subsequent analysis becomes

prediction only. In practice, θ has to be estimated from observations and sub-

sequently used for making predictions at unsampled locations. In either case, the

“minimum mean square error” criterion that measures, in a probabilistic sense, the

error between a quantity of interest and its predictor is a reasonable criterion for

predictive performance. To see why, let X, Y be random variables, then we can

express y = E[y|x] + ε, where ε is a random variable satisfying the following con-

ditions. First, E[ε|x] = 0 and secondly, E[h(x)ε] = 0, where h(·) is any function

of x. If say, m(x) is any function of x, then the conditional expectation is the best

prediction, where “best” means minimum mean squared error (MMSE), which is

given by

E[y|x] = argmin
m(x)

E[(y −m(x))2] (1.13)

Minimisation of the MSE underlies numerous methods in the statistical sciences

(Guo et al., 2011). Simple kriging, the construction of a surface Ŝ(x) from the

observed data S(x) = (S(x1), . . . , S(xn))′, a core geostatistical method, is equi-

valent to MMSE under a linear Gaussian model (Equation (1.1)). In the kriging

method, estimates of all model parameters are plugged into the prediction equa-

tion as if they were the true parameter values, in a process referred to as “plug-in

prediction” (Diggle and Ribeiro, 2007). Inferences can be made, depending on the



Chapter 1. Introduction. 13

context, for a single point, say x0; prediction about the value of S(·) over an area

of interest or subsets thereof; the maximum or minimum value of S(x) or predic-

tion of the probability that S(x) is above or below a particular threshold c. The

MMSE prediction of S(x) at a location x0 as a function of data y = (y1, . . . , yn)

which minimises the quantity E[{Ŝ(x)− S(x)}2] is:

Ŝ(x) = µ+
n∑
i=1

wi(x)(yi − µ) (1.14)

where wi(x) are functions of the covariance parameters σ2, φ and τ 2. The µ in

Equation (1.14) is referred to as the constant stationary function or the global

mean and
n∑
i=1

wi(x)(yi − µ) is the spatially correlated stochastic part of variation.

The aim is to find the predictor T̂ = Ŝ(x) that minimises the MSE of prediction

(Schabenberger and Gotaway, 2005):

MSE(T̂ ) = E[(T − T̂ )2] (1.15)

The MMSE predictor of any random variable T from data Y is T̂ = E[T |Y ]. We

prove this in the following equations.

Write

E[(T − T̂ )2] = EY [ET [(T − T̂ )2|Y ]], (1.16)
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where the subscripts on the two expectation operators indicate that the expect-

ations are with respect to Y and T , respectively. Write the inner expectation in

Equation (1.16) as

ET [(T − T̂ )2|Y ] = VarT{(T − T̂ )|Y }+ {ET [(T − T̂ )|Y ]}2

Conditional on Y , any function of Y is a constant, so VarT{(T−T̂ )|Y } = VarT (T |Y )

and ET [T − T̂ |Y ] = ET [T |Y ]− T̂ . Hence,

ET [(T − T̂ )2|Y ] = VarT (T |Y ) + {ET (T |Y )− T̂}2. (1.17)

Taking the expectation of the expression on the right-hand side of Equation (1.17)

with respect to Y gives

E[(T − T̂ )2] = EY [VarT (T |Y )] + EY {[ET (T |Y )− T̂ ]2} (1.18)

The first term on the right-hand side of Equation (1.18) does not depend on the

choice of T̂ , whilst the second is non-negative, and equal to zero if and only if

T̂ = E[T |Y ]. This completes the proof.

The minimum mean square error predictor for T = S(x) is

T̂ = µ+ r′V −1(Y − µ1) (1.19)
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whose prediction variance is

Var(T |Y ) = σ2(1− r′V −1r) (1.20)

where r is an n×1 vector, V = R+ν2I with ν2 = τ 2/σ2, I the identity matrix and

R is the n×n matrix with elements rij = ρ(||xi−xj||). The value of the prediction

variance (Equation (1.20)) at the observed value of Y estimates the achieved MSE

of T̂ (Equation (1.15)) and when the conditional variance Var(T |Y ) does not

depend on Y , MSE is equal to prediction variance. This important characteristic

makes it attractive to use as a design criterion.

1.3 Preferential sampling.

Given the stochastic process S, the design X and the measurements Y , a standard

geostatistical analysis assumes that sampling is non-preferential if the joint distri-

bution [S,X , Y ] factorises as [S,X, Y ] = [S][X ][Y |S(X )], where [·] refers to “dis-

tribution of”. This is in line with existing knowledge in geostatistics, where models

for the data treat the sampling locations xi either as fixed by design or otherwise

stochastically independent of the process S(x) (Diggle, Menezes and Su, 2010).

The measurements are analysed and inferences made conditional on the design

X , where X is stochastically independent of S. On the other hand, preferential

sampling allows stochastic dependence between the measurements Y and locations

xi where measurements are made i.e. the design, which depends on the unobserved
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quantity S which we are trying to predict (Diggle, Menezes and Su, 2010). The

preferential sampling distribution is given as [S,X , Y ] = [S][X|S][Y |S,X ].

The inferences we make about a response surface are affected by the choice of

sampling sites (Müller, 2007; Gelfand, Banerjee and Finley, 2012; Shaddick and

Zidek, 2014); therefore a topical and important question in geostatistical designs is

whether sampling is done preferentially or not. If sampling sites are preferentially

chosen to capture larger (or smaller) than average values of a response, e.g., air

pollution in a city or biomass in large tract of a forest, then subsequent estimation

and prediction of the exposure surface using standard geostatistical methods may

be misleading due to the selective sampling (Diggle and Ribeiro, 2007; Diggle,

Menezes and Su, 2010; Gelfand, Banerjee and Finley, 2012). Practical needs or

deliberate actions often lead to preferential sampling. For example, in an air

quality monitoring network, Guttorp and Sampson (2010) state that air pollution

monitoring sites may be intentionally located for a number of reasons, including

to measure pollution levels: (i) outside of urban areas; (ii) in residential areas; and

(iii) near pollution sources.

An important issue, therefore, is the knowledge of any preferential sampling pro-

cess in order to avoid misleading inferences. Given this knowledge, then effects of

preferential sampling on parameter estimation and spatial prediction can be as-

sessed (Shaddick and Zidek, 2014; Zidek, Shaddick and Taylor, 2014). In a recent

paper, Ferreira and Gamerman (2015) address the effect of preferential sampling

in geostatistics when the choice of new sampling locations is the main interest
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of the researcher. We come back to this topic in Chapter 4, where we give the-

oretical remarks on what we call adaptive designs (see Chapter 3), including an

explanation of why this does not necessarily require consideration of preferential

sampling.

1.4 Geostatistical model for prevalence surveys.

A disease prevalence survey involves visiting communities at locations xi distrib-

uted over a region of interest where, in each community, field teams sample ni

individuals at risk and record whether each individual tests positive or negative

for the disease in question, for i = 1, . . . , n. Let Yi be the number of positive out-

comes out of ni individuals tested at location xi in a region of interest D ⊂ IR2, and

d(xi) ∈ IRp a vector of associated covariates. Then the standard model assumes

that Yi ∼ Binomial(ni, p(xi)) where p(x) is the prevalence of disease at location x.

Linkage of the p(xi) at different locations is usually desirable and is essential if we

wish to make inferences about p(x) at unsampled locations x (Diggle and Giorgi,

2015). The model further assumes that

log[p(x)/{1− p(x)}] = d(x)′β + S(x) (1.21)

where S(x) is a stationary Gaussian process with zero mean, variance σ2 and cor-

relation function ρ(u) = Corr{(S(x), S(x′)}, where u is the distance between x and

x′. Stanton and Diggle (2013) showed that provided the binomial denominators ni

are large (i.e., ni ≥ 100) and the underlying prevalence is not too close to zero (i.e.,
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|p(x) − 0.5| ≤ 0.4), reliable predictions can be obtained using a computationally

simpler non-hierarchical approximate trans-Gaussian model. Define the empirical

logit transform,

Y ∗i = log{(Yi + 0.5)/(ni − Yi + 0.5)}

and assume that

Y ∗i = d(xi)
′β + S(xi) + Zi, (1.22)

where the Zi are mutually independent zero-mean Gaussian random variables with

variance τ 2. In circumstances where ni is less than 100, the approximate trans-

Gaussian method continues to give reliable results provided the prevalence is cor-

respondingly closer to 0.5, for example, if ni ≈ 50 and |p(x)−0.5| ≤ 0.25. Stanton

and Diggle (2013) further state that for larger values of ni, the approximate trans-

Gaussian method can tolerate more extreme values of underlying prevalence. In

both exact and approximate trans-Gaussian methods, predictive inferences need

to be back-transformed from the logit to the prevalence scale.

1.5 Bayesian geostatistical analysis.

In the classical geostatistics inference framework in Sections 1.2.1 to 1.2.2, the cov-

ariance structure is estimated first, then the estimated covariance structure is used

for prediction. Estimates of all model parameters are plugged into the prediction

equation as if they were the true parameter values. It is common to ignore the
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effect of uncertainty in the covariance structure on subsequent predictions (Stein,

1999). Unlike this approach, a Bayesian inference approach to parameter estima-

tion and prediction of spatial processes provides a general methodology for taking

into account the uncertainty about parameters on subsequent predictions (Diggle,

Tawn and Moyeed, 1998). The Bayesian inferential framework enables inference

to use information from data via the likelihood function as well as from other

sources such as previous studies, expert judgement and researchers’ own subject-

ive judgement, which is formalised by placing prior distributions on the model

parameters.

Bayes’ theorem, whose statement is: for any two events, say A and B, with 0 <

Pr(A) < 1 and Pr(B) > 0, defined as:

Pr(A|B) =
Pr(B|A)Pr(A)

Pr(B)
, (1.23)

is fundamental to Bayesian inference. Given data, say Y = y, Bayes’ theorem

combines three key elements namely:

• the prior distribution of the parameters, p(θ), i.e. prior beliefs about the

values of θ;

• the likelihood function of the data given the parameters, f(y|θ);

• the posterior distribution of the parameters given the data, p(θ|y), i.e. a

combination of prior beliefs about the unknown parameter θ and information

from data y.



Chapter 1. Introduction. 20

The posterior distribution is then expressed as follows:

p(θ|y) ∝ f(y|θ)p(θ) (1.24)

Given the geostatistical model of Equation (1.2), the residual has two compon-

ents namely the correlated and uncorrelated terms. The correlated term, S(x),

introduces the partial sill, σ2, and the range, φ, and the uncorrelated term, Z,

introduces the nugget effect, τ 2. The nugget effect represents the measurement

error and/or micro-scale variability.

In order to construct a Bayesian model formulation for Equation (1.2), specification

of the prior distributions for β and θ is a necessary step. Where there is no prior

knowledge about the β, the pragmatic solution is to adopt a non-informative,

but improper prior distributions with bounds −∞ and ∞ which reflects lack of

prior knowledge other than that the regression coefficients can take any positive

or negative value. For the spatial parameters σ2, φ and τ 2, any distribution of θ

can be used (Giorgi and Diggle, 2015); gamma, inverse gamma and normal are

some of the distributions that have been used in literature.

In Chapter 5 we implement a geostatistical binary probit model within a Bayesian

framework. The model has a hierarchical two-level structure so as to include

individual- and household- level (or any other unit comprising a group of indi-

viduals, e.g. village or school) variables (Giorgi and Diggle, 2015).
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1.6 Malaria epidemiology.

Globally, an estimated 3.2 billion people are at risk of malaria (World Health

Organisation, 2015b). The World Health Organisation (2015b) indicates that 88

% of the cases of malaria occurred in sub-Saharan Africa (SSA) region. In 2015,

it was estimated that there were 429,000 deaths from malaria globally, 92 % of

which occurred in Africa and most of these were children under 5 years old (World

Health Organisation, 2016). The most at-risk populations are those that live in

stable transmission areas as shown in Figure 1.4. A smaller proportion of the

at-risk population lives in areas where the risk of malaria is more seasonal and less

predictable, because of either altitude or rainfall patterns.

In areas of stable malaria transmission, young children and pregnant women are

the population groups at highest risk for malaria morbidity and mortality (World

Health Organisation, 2012; Nansseu; et al., 2013). Most children experience their

first malaria infections during the first two years of life (Ouédraogo et al., 2013)

when they have not yet acquired adequate clinical immunity, which makes these

early years particularly dangerous. Adult women in areas of stable transmission

have a high level of immunity, but this is impaired especially in the first pregnancy,

resulting in a higher risk of infection increases (Steketee et al., 2001). Malaria in

pregnancy affects both mother and unborn child; it is associated with, among oth-

ers, anaemia, pre-term delivery, high risk of maternal death and low birth weight

(Huynh et al., 2011; De Beaudrap et al., 2013; Kalilani-Phiri et al., 2013). In

malaria endemic regions, malaria control, prevention and treatment take up large
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Figure 1.4: Distribution of malaria in sub-Saharan Africa. Source: World
health malaria report (2013).

proportions of national health budgets at the expense of other equally import-

ant developmental and economic activities (Kleinschmidt, 2001). Therefore, in

addition to the impact on health status, malaria also has economic consequences

inhibiting economic development in SSA and other endemic regions.

Malaria is a preventable and treatable disease, provided the recommended inter-

ventions are properly implemented (World Health Organisation, 2013). These

interventions include: (i) vector control through the use of insecticide-treated nets



Chapter 1. Introduction. 23

(ITNs), indoor residual spraying (IRS) and, in some specific settings, larval con-

trol; (ii) chemo-prevention for the most vulnerable populations, particularly preg-

nant women and infants; (iii) timely confirmation of malaria diagnosis through

microscopy or rapid diagnostic tests (RDTs) for every suspected case; and (iv)

timely treatment with appropriate antimalarial medicines with artemisinin-based

combination therapies (ACTs) (World Health Organisation, 2013; World Health

Organisation, 2015b).

A better understanding of vector distribution and malaria risk through geostat-

istical mapping is an important tool in its control and eventual elimination. With

more accurate local maps, it is possible to target interventions to areas and pop-

ulations where they are needed and could have the most health impact.

1.7 Malaria disease mapping.

Over the past decade, great progress has been achieved in malaria control globally,

thanks to unprecedented financial investments. As efficacious interventions such

as ITNs, IRS, and effective artemisinin-based antimalarials were scaled up success-

fully, this triggered a renewed global commitment and push towards transmission

reduction targets, and ultimately elimination (Bhatt et al., 2015; World Health

Organisation, 2015a). The 2016 – 2030 WHO global technical strategy for malaria

aims to reduce malaria case incidence to 10 % of 2015 levels by 2030 (World Health

Organisation, 2015a).
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To support control programmes and achieve such ambitious targets within resource-

limited settings requires timely and frequent identification of sub-national variation

and areas that lag behind in performance. At the same time, there is increasing

evidence to suggest that malaria control in countries with substantial heterogen-

eity of malaria transmission may be more effective if additional control efforts

are targeted towards so-called “hotspots” of transmission within districts (Wool-

house et al., 1997; Bousema, Griffin et al., 2012; Bousema, Stevenson et al., 2013).

It is important that resources are targeted effectively, and this requires accurate

and detailed information about which areas are worst affected, and where malaria

might conceivably be eliminated altogether (van der Hoek et al., 2003). This is

currently limited by the lack of user-friendly and affordable tools. Additionally, in

the resource-limited settings where malaria is endemic, there are typically limited

or no registries of disease burden.

Important aspects of malaria control include proper identification of vector dis-

tributions, vector survival conditions/environments, malaria distribution and risk

through mapping. In particular, maps could enable targeting control measures and

interventions at high-risk areas and greatly increase the cost efficiency of malaria

control programmes. Additionally, maps can be used for policy decision making

in development projects, especially settlement locations relative to vector habitats

environment in general.

The methodology developed in the current thesis permits designing of disease

prevalence studies, taking into account of spatial characteristics and statistics.

It enables generation of accurate fine-scale spatial risk maps using model-based
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geostatistical methods, adjusted for environmental, public health and climatic

covariates. These maps can subsequently inform posterior burden surveys with

sampling frames that are specifically designed to monitor disease burden hetero-

geneity. The methods, although specifically motivated by the problem of malaria

monitoring and evaluation in the Majete malaria project (MMP), are generic in

nature and could, therefore, prove useful for applications to other diseases, not

only in Malawi but also in other resource-limited settings in sub-Saharan Africa.

1.8 Majete malaria project.

The Majete Malaria Project (MMP) is an operational research collaboration com-

prising multidisciplinary researchers from College of Medicine and Malawi Liver-

pool Wellcome Trust (Malawi), Academic Medical Center – University of Ams-

terdam and Wageningen University (The Netherlands) and Lancaster University

(United Kingdom), with operational contribution from Malawi Ministry of Health,

Malawi National Malaria Control Programme (NMCP), African Parks-Majete and

The Hunger Project (THP). The main aim of the project is to reduce the burden

of malaria in the communities surrounding Majete Wildlife Reserve (MWR) in

Chikwawa and Mwanza districts of southern Malawi. To achieve this outcome,

the project is systematically implementing interventions in three focal areas in the

“Majete perimeter” (see Figure 1.1). The interventions are as follows:

• Community awareness and health promotion campaign on malaria symp-

toms, treatment, community impact, complications, and prevention. These
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campaigns teach communities about the health system structure and func-

tion from the highest level i.e. District Health Office (DHO) to the com-

munity level and links between the community systems and the formal health

system. The expected output is an increased knowledge of malaria and the

health system, and an increased commitment to participate in malaria pre-

vention and control.

• Scaling up of malaria control interventions based on the national malaria

control policy. This involves:

1. Universal coverage of insecticide-treated mosquito net ownership for

pregnant women and children below 5 years of age;

2. Household ownership of an insecticide-treated net (ITN) per 1.8 per-

sons;

3. Universal access to prompt diagnosis and appropriate treatment of mal-

aria;

4. Access to malaria prevention during pregnancy through intermittent

preventive therapy in pregnancy (IPTp).

The output will be an increased coverage and utilisation of these interven-

tions in the focal areas.

• An assessment of the health system within the Majete perimeter to identify

and address gaps in health service delivery.

• A cluster randomised trial comparing the effectiveness of the current national

control policy with other combinations of malaria transmission reduction
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methods. These non-routine interventions involve household improvement to

reduce the amount of mosquitoes entering houses and mosquito larviciding

using a toxic microbe, Bacillus thurengesis israelensis (BTI).

To measure the impact of these interventions, specific malaria indicators are mon-

itored in the community and health facilities through a rolling malaria indicator

survey (rMIS) (Roca-Feltrer et al., 2012), a house improvement trial and an en-

tomology survey, among other studies. These studies are being implemented us-

ing adaptive and/or inhibitory geostatistical design methodologies, developed and

demonstrated in later chapters of this thesis.

1.9 The structure of the thesis.

In Chapter 2 (Paper 1), we develop non-adaptive inhibitory geostatistical designs

in the context of malaria prevalence surveys. The methodology extends a simple in-

hibition point process (Diggle, 2013) to geostatistical designs for prevalence data to

allow the inclusion of close pairs in an otherwise spatially-regular but randomised

layout. We give an overview of non-adaptive geostatistical strategies, including

classes of the designs. We define and develop our class of inhibitory geostatistical

designs, assuming a stationary Matérn correlation structure. In our simulation

studies, we consider two model classes, namely the linear Gaussian and Binomial

geostatistical models. In both cases, the predictive target is S. In our application,

we use data from the Majete malaria project to demonstrate the implementation
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of the inhibitory geostatistical methodology to design a malaria prevalence study

in focal area A.

In Chapter 3 (Paper 2), we develop adaptive geostatistical designs in the context

of malaria prevalence surveys. We give an overview of geostatistical designs, then

define a class of adaptive designs. We again make an assumption of a stationary

Gaussian process with Matérn correlation structure. In our simulation studies,

we compare the predictive efficiency of adaptive and non-adaptive geostatistical

designs. We also analyse data from two sampling waves of rolling malaria indicator

survey (rMIS) sampling in Majete. We then demonstrate the implementation

of adaptive sampling in practice using the accumulating data to determine new

sampling locations for each subsequent sampling wave.

Chapter 4 (Paper 3) is an invited discussion of an article entitled: “Optimal Design

in Geostatistics under Preferential Sampling” by Gustavo da Silva Ferreira and

Dani Gamerman (2015). The paper analyses the effect of preferential sampling

in geostatistics when the choice of new sampling locations is the main interest of

the researcher. In the commentary, we address two issues. The first is a set of

theoretical remarks on adaptive design, including an explanation of why this does

not necessarily require consideration of preferential sampling. The second issue is

on practical constraints that may limit the scope for theoretically optimal designs

to be used in practice, especially in low-resource settings.

In Chapter 5 (Paper 4) we describe the first field epidemiological application of ad-

aptive geostatistical sampling design in continuous malaria prevalence surveys for
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a 12 month period (from April 2015 to April 2016). We conducted repeated cross-

sectional surveys guided by an adaptive sampling design to monitor the prevalence

of malaria parasitaemia in children aged 6–59 months and women aged 15–49 years

within the Majete Malaria Project. More specifically, in this paper we analyse and

present maps for malaria prevalence in children 6–59 months from Majete Wildlife

Reserve perimeter in Chikwawa district, southern Malawi. We also show how the

methodology can be used by programme managers and implementers to identify

and map “hotspots” as well as intervention coverage in practice.

Chapter 6 is a concluding general discussion where we present a summary of the

main contributions, the implications of our results in malaria transmission control

and briefly explore possible future extensions of the developed methodologies in

the previous chapters.
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Abstract

The problem of choosing spatial sampling designs for investigating an unobserved

spatial phenomenon S arises in many contexts, for example in identifying house-

holds to select for a prevalence survey to study disease burden and heterogeneity

in a study region D. We studied randomised inhibitory spatial sampling designs

to address the problem of spatial prediction whilst taking account of the need to

estimate covariance structure. Two specific classes of design are inhibitory designs

and inhibitory plus close pairs designs. In an inhibitory design, any pair of sample

locations must be separated by at least an inhibition distance δ. In an inhibit-

ory plus close pairs design, n − k sample locations in an inhibitory design with

inhibition distance δ are augmented by k locations each positioned close to one of

the randomly selected n− k locations in the inhibitory design, uniformly distrib-

uted within a disc of radius ζ. We present simulation results for the Matérn class

of covariance structures. When the nugget variance is non-negligible, inhibitory

plus close pairs designs demonstrate improved predictive efficiency over designs

without close pairs. We illustrate how these findings can be applied to the design

of a rolling Malaria Indicator Survey that forms part of an ongoing large-scale,

five-year malaria transmission reduction project in Malawi.

Keywords. Non-adaptive sampling strategies ; Spatial statistics ; Inhibitory designs ;

Prevalence mapping.
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2.1 Introduction.

Geostatistics is concerned with investigation of an unobserved spatial phenomenon

S = {S(x) : x ∈ D ⊂ IR2}, where D is a geographical region of interest. Its partic-

ular focus is on investigations in which the available data consist of measurements

yi at a finite set of locations xi ∈ D. Typically, each yi can be regarded as a

noisy version of S(xi). We write X = {x1, ..., xn} and call X the sampling design.

Geostatistical analysis mainly addresses two broad scientific objectives: estima-

tion of the parameters that define a stochastic model for the unobserved process

S and the observed data Y = {(yi, xi) : i = 1, ..., n}; prediction of the unobserved

realisation of S(x) throughout D, or particular characteristics of this realisation,

for example its average value. The fundamental geostatistical design problem is

the specification of X . A key consideration is that sampling designs that are ef-

ficient for parameter estimation may be inefficient for prediction, and vice versa

(Zimmerman, 2006). In practice, most geostatistical problems focus on spatial

prediction, but parameter estimation is an important means to this end. Hence,

there is a need to compromise between designing for efficient parameter estimation

and designing for efficient prediction given the values of relevant model paramet-

ers. In practice, selection of covariates (which must be known at all observed

locations) and estimating their effects are also important considerations for study

design. However, in this paper we focus on the design implications of the spatial

covariance structure of S, this being the distinguishing feature of geostatistical, as

opposed to general statistical, methodology.
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In a previous paper (Chipeta et al., 2016a), we have discussed adaptive geostatist-

ical designs, in which sampling locations are chosen sequentially, either singly or

in batches, and at any stage the analysis of already collected data can inform the

selection of the next batch of locations. In this paper, we consider non-adaptive

geostatistical designs, in which the complete design X must be chosen in advance

of any data-collection.

Two examples of non-adaptive designs are completely random and lattice designs.

In a completely random design, the locations xi are an independent random sample

from the uniform distribution on D. In a lattice design, the xi form a regular (typ-

ically square) lattice to cover D. A combination of theoretical and empirical work,

from Matérn (1960) onwards, has led to general acceptance that lattice designs

should lead to efficient spatial prediction provided model parameters are known.

If model parameters are unknown, a completely random design has the advantage

that it will include a wider range of inter-point distances, and in particular some

small inter-point distances, and so provides more information on the shape of the

covariance function of S. However, the resulting uneven spatial distribution of

the xi makes prediction less efficient, given the model parameters. Diggle and

Lophaven (2006) described and compared empirically some compromise designs.

In their simulations, a lattice design supplemented by some close pairs of points

performed well.

A limitation of lattice-based designs is that their absence of a probability sampling

frame leaves open the possibility of systematic bias. In the present paper, we,

therefore, propose a class of randomised inhibitory plus close pairs designs to
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address the problem of spatial prediction whilst taking account of the need to

estimate spatial covariance structure. We evaluate the performance of this class

of designs through simulation studies and describe an application to data from a

malaria transmission reduction monitoring and evaluation study in the Chikwawa

district of southern Malawi.

In Section 2.2 we review the existing literature on non-adaptive geostatistical

design strategies. In Section 2.3 we describe our proposed class of designs. In Sec-

tion 2.4 we describe a class of empirical kriging (EK) optimal designs. Section 2.5

reports on simulation studies of the predictive performance of the proposed design

class. We also compare the performance of our proposed designs with EK optimal

designs. Section 2.6 describes an application to the sampling design of an ongoing

malaria prevalence mapping exercise around the perimeter of the Majete Wild-

life Reserve, Chikwawa district, Malawi. Section 2.7 is a concluding discussion.

All computations for the paper were run on the High-End Computing Cluster at

Lancaster University, using the R software environment (R Core Team, 2015).

2.2 Non-adaptive geostatistical design strategies.

Different scientific goals and study settings require different geostatistical design

strategies. Ideally, a design X will be chosen to maximise or minimise a perform-

ance criterion that reflects the primary objective of the study (Jardim and Ribeiro,

2007; Nowak, 2010). For example, a possible design criterion when the objective
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is to predict the value of S(x) throughout the region D is the spatially averaged

mean squared prediction error,

MSPE =

∫
D

E[{Ŝ(x)− S(x)}2dx, (2.1)

where Ŝ(x) = E[S(x)|Y ;X ] is the minimum mean square error predictor of S(x)

and expectations are with respect to S. In practice, any such criterion needs to be

tempered by application-specific considerations of some kind, for example, different

costs and benefits of obtaining data and predictions, respectively, at particular

locations.

We review the following strategies for geostatistical designs: designing for efficient

parameter estimation; designing for efficient spatial prediction when the covariance

function is assumed completely known; and designing for efficient spatial prediction

when the covariance function is not known and has to be estimated from the same

data. Müller (2007, Chapters 5 – 7) is a relatively recent book-length account of

geostatistical design strategies.

Much of the work on spatial sampling design for estimating covariance structures

has focused on estimation procedures based on the empirical variogram (Russo,

1984; Warrick and Myers, 1987; Müller and Zimmerman, 1999). Lark (2002)

used likelihood estimation procedures under an assumed Gaussian process model.

Pettitt and McBratney (1993) studied several sampling designs for estimating

parameters using the restricted maximum likelihood (REML) method of parameter

estimation. A general consensus from this body of work is that completely random
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designs are efficient for parameter estimation. However, these designs have often

been criticised because they leave large unsampled swaths in the study region D

(Müller, 2007).

Studies of design for efficient spatial prediction with known covariance structure

include McBratney, Webster and Burgess (1981), McBratney and Webster (1981),

Yfantis, Flatman and Behar (1987), Ritter (1996) and Su and Cambanis (1993).

Spatially regular lattice designs, which achieve an even coverage of D, have been

shown to be optimal in this case. Other design constructions have also been

proposed, collectively known as spatially balanced designs, whose common feature

is that they result in a more even coverage of D than does the completely random

design. We provide definitions and an overview in Section 2.2.1.

The assumption of a known covariance function is in most cases unrealistic (Müller,

2007). Usually, we have to use the same data for estimation of covariance para-

meters and for spatial prediction, and effective prediction requires good estimates

of the second order characteristics (Guttorp and Sampson, 1994; Müller, Pronzato

et al., 2015). Recent work on construction of designs that focus on the goals

of efficient spatial prediction in conjunction with parameter estimation includes

Zhu (2002), Zhu and Stein (2006), Diggle and Lophaven (2006), Pilz and Spöck

(2006), Zimmerman (2006), Banerjee et al. (2008), Bijleveld et al. (2012), Müller,

Pronzato et al. (2015) and Chipeta et al. (2016a).
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2.2.1 Classes of non-adaptive geostatistical designs.

We now review several design classes that have been used for different analysis

objectives: parameter estimation; spatial prediction; and a combination of the two.

Design performance is largely influenced by sample pattern and sample density

(Olea, 1984). ‘Pattern’ here refers to the geometrical configuration of sample

points in a given region, D. ‘Density ’ refers to the number of sample points

per unit area. Both model-dependent and purely geometrical designs have been

proposed.

2.2.1.1 Completely randomised designs.

In a completely randomised design, locations xi, i = 1, . . . , n are chosen independ-

ently, each with a uniform distribution over D. This ensures that the design is

stochastically independent of the underlying spatial phenomenon of interest S(x),

which is a requirement for the validity of standard geostatistical inference meth-

ods (Diggle, Menezes and Su, 2010). However, the resulting uneven coverage of

D has a negative impact on spatial prediction. Variants of the completely ran-

dom design include stratified and cluster random sampling (Cressie, 1991). These

design strategies are well established in classical survey sampling; see, for example,

Cochran (1977).
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2.2.1.2 Completely regular lattice designs.

Design points in this class form a regular lattice pattern over the study region

D, thereby ensuring an even coverage. The origin of the lattice should strictly

be located at random (Diggle and Ribeiro, 2007), although in practice this is

often ignored. These designs are easy to implement and provide well defined

directional classes within which variograms can be computed. Regular designs

also have the potential of yielding computational savings over irregular designs

such as those resulting from random sampling (Cressie, 1991). Regular lattice

designs can use square, equilateral triangular or hexagonal grids. A comparison of

the three suggests that the equilateral triangular grid design is the most efficient

(McBratney, Webster and Burgess, 1981; McBratney and Webster, 1981; Olea,

1984; Yfantis, Flatman and Behar, 1987). However, square lattices are more

common in practice. Regular lattice-based designs are commonly applied in remote

sensing applications, see, for example, Atkinson (1991), Atkinson, Webster and

Curran (1992) and Curran and Atkinson (1998).

2.2.1.3 Other constructions for spatially balanced designs.

Generalised random-tessellation stratified designs (GRTS) are widely used in en-

vironmental monitoring surveys. They represent a flexible technique for selecting

a spatially balanced, probability sampling design (Stevens and Olsen, 2004; Graf-

ström, Lundström and Schelin, 2012; Brown, Robertson and McDonald, 2015) in

which each potential sampling location has a known, non-zero probability of being



Chapter 2. Inhibitory geostatistical designs for spatial prediction taking account
of uncertain covariance structure. 47

included in the sample. The design ensures that no points in the target population

are too far from a sampled point (i.e., points are spread evenly) (Brown, Robertson

and McDonald, 2015) and that few sampled points are close together.

A GRTS design is formulated using a restricted randomisation, referred to as hier-

archical randomisation (HR), which randomly orders the spatial addresses (Stevens

and Olsen, 2003). The construction proceeds in the following manner (Stevens and

Olsen, 2004). Firstly, randomly place a 2 × 2 square grid over the region and place

the cells in random order in a line. Secondly, for each cell, repeat the same pro-

cess, randomly ordering the sub-cells within each original cell. This second step

results in 16 cells in a line. Continue the process until at most one population

point occurs in a cell. The random order of the cells is then used to place the

points on the line. See Stevens and Olsen (1999), Stevens and Olsen (2003) and

Stevens and Olsen (2004) for details.

Grafström, Lundström and Schelin (2012) used a pivotal method to construct

designs with a high degree of spatial balance. The main purpose of the pivotal

method is to construct designs that restrict locations/units that are close in dis-

tance from appearing together in the sample, which in turn creates an evenly

spread sample. Brown, Robertson and McDonald (2015) extended the GRTS to

a balanced acceptance sampling (BAS) design, that allows surveys to be balanced

in more than two dimensions. BAS design uses acceptance/rejection sampling al-

gorithm (Flury, 1990), that is if a generated sample point is beyond the edge of

the sample space, the sample unit is rejected, otherwise, it is accepted.
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Diggle and Lophaven (2006) proposed and developed two different two-step aug-

mented lattice designs. These designs supplement a lattice with closely spaced

pairs of points which, as noted earlier, are important for estimating certain para-

meters of the underlying spatial covariance structure, especially when this includes

a nugget variance (Diggle and Ribeiro, 2007, Chapter 8) or a smoothness para-

meter such as the shape parameter of a Matérn correlation function (Zhu and

Stein, 2006). In particular, a lattice plus close pairs design consists of an initial

set of locations in D that form a k × k regular lattice at spacing ∆, augmented

by a further m locations, each distributed uniformly at random within a disc of

radius δ = α∆ centred on each of m ≤ k2 randomly selected lattice locations. A

lattice plus infill design class is again initialised with an even coverage of k × k

regular lattice at spacing ∆ but is augmented with further locations in a more

finely spaced lattice within m randomly selected primary lattice cells.

Royle and Nychka (1998) describe a purely geometric design criterion for spatial

prediction. This approach, commonly known as ‘space-filling’ design, identifies

sample locations by minimising a criterion that favours more regular geometrical

configurations of sample locations (Nychka and Saltzman, 1998).

2.2.1.4 Summary.

Some general conclusions are the following. Good spatial prediction favours designs

that are spatially more regular than a completely random design when model para-

meters are known. When the analysis objective is parameter estimation, designs

with a random configuration of design points are preferable. These two points
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suggest that some compromise is therefore needed when constructing designs for

spatial prediction when model parameters have to be estimated from the same

data.

A good geostatistical design strategy also needs to be able to deal with a range

of practical constraints. For example, potential sampling points may be limited

to a finite set. This holds, for example, in our application to malaria monitoring,

where data can only be collected from existing houses, within the study region.

2.3 Inhibitory geostatistical designs.

2.3.1 Design criterion.

We propose a class of inhibitory geostatistical designs for spatial prediction when

model parameters need to be estimated. We use [·] to mean “the distribution of”

and incorporate a stochastic process S = {S(x) : x ∈ D ⊂ IR2} into a statistical

model [S, Y ] = [S][Y |S], where Y = (Y1, . . . , Yn) are the measured data values at

the points of X and S = {S(x1), . . . , S(xn)}. The distribution for estimation infer-

ence is then the conditional distribution, [S|Y ], which follows from an application

of Bayes’ theorem as

[S|Y ] = [S][Y |S]/

∫
[S][Y |S]dS (2.2)

A typical spatial prediction problem involves making inferences about a functional
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T = T (S) given data (Yi, Xi), i = 1, . . . , n. We, therefore, extend the above

factorisation to [S, Y ] = [S|S][S][Y |S]. In what follows, we use as performance

criterion the average prediction variance,

APV =

∫
D

Var{S(x)|Y }dx (2.3)

2.3.2 Simple inhibitory designs.

An inhibitory design consists of n locations chosen at random in D but with

the constraint that no two locations are at a distance of less than some value δ.

Formally, the resulting design X is a realisation of a simple inhibitory point process

that is itself a special case of a pairwise interaction point process; see, for example,

Diggle (2013, Chapter 6). This construction respects the established principles of

random sampling theory while guaranteeing some degree of spatial regularity. All

designs X that meet the inhibitory constraint are equally likely to be picked. Also,

the construction can be applied whether or not the potential sampling locations

are confined to a finite set of points, although in either case, the value of δ will

limit the maximum achievable sample size.

We define the “packing density” of the design to be the proportion of the total

region covered by n non-overlapping discs of diameter δ, hence ρ = (nπδ2)/(4|D|).

We use the notation SI(n, δ) and compare the performance of designs with fixed

sample size n and varying δ. The formal construction of an SI(n, δ) design on a

region D proceeds as follows:
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1. Draw a sample of locations xi : i = 1, . . . , n completely at random in D;

2. Set i = 1;

3. Calculate the minimum, dmin, of the distances from xi to all other xj in the

current sample;

4. If dmin ≥ δ, increase i by 1 and return to step 3 if i ≤ n, otherwise stop;

5. If dmin < δ, replace xi by a new location drawn completely at random in D

and return to step 4.

2.3.3 Inhibitory design with close pairs.

This class is defined by four scalars, namely: n, the total number of points; δ, the

minimum distance between any two locations; k, the number of close pairs and ζ,

the radius of the disc from the primary point within which to add a paired point.

For a total of n points, this design consists of n− k points in an inhibitory design

with inhibition distance δ, augmented by k points each positioned relative to one

of the randomly selected n − k points in the inhibitory design according to the

uniform distribution over a disc of radius ζ. We use the notation ICP(n, k, δ, ζ).

The formal construction of an ICP(n, k, δ, ζ) design on a region D proceeds as

follows:

1. Construct a simple inhibitory design SI(n− k, δ);

2. Sample k from x1, . . . , xn−k without replacement and call this set of locations

x∗j , j = 1, . . . , k;
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3. For j = 1, . . . , k, xn−k+j is uniformly distributed on the disc with centre x∗j

and radius ζ.

Note that in the ICP(n, k, δ, ζ) design, k must be less than or equal to n/2. Also,

when comparing an SI(n, δ) design with one or more ICP(n, k, δ, ζ) designs, it is

appropriate to require all of the inhibitory components to have the same degree

of spatial regularity. This requires δ to become a function of k, namely

δ(k) = δ0
√
n/(n− k), (2.4)

with δ0 held fixed. For fixed n, the minimum spacing between any two inhibitory

points, therefore, increases with k. We also insist that ζ ≤ δ(k)/2. Finally, when

the potential sampling locations are restricted to a finite set of points {Xi, i =

1, . . . , N}, the above constructions are modified in an obvious way, with sampling

at random from the N potential locations replacing uniform random sampling

of points x ∈ D, with the proviso that it will be impossible to construct an

ICP(n, k, δ, ζ) design for some combinations of n, k, δ and ζ.

For fixed sample size n, region D and an assumed geostatistical model with a

specific numerical value for its vector of parameters θ, we numerically optimise

the above algorithms to determine the combination of k, δ and ζ that minimise

the design criterion in Equation (2.3), using a general-purpose numerical optim-

iser. Specifically, we use the controlled random search (CRS) procedure for global

optimisation (Price, 1976; Price, 1983). The procedure allows for box constraints
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that we impose on the design parameters of interest above.

2.4 Empirical kriging optimal designs.

In our simulation study (Section 2.5), we compare the performance of inhibitory

plus close pairs design with some of the optimal designs we have reviewed in

Section 2.1, such as empirical kriging (EK) designs implemented by Zimmerman

(2006) and Müller, Pronzato et al. (2015). These designs minimise the empirical

kriging criterion:

EK(X ) = max
x∈D
{Var[Ŷ (x)− Y (x)] + tr{Mθ Var[∂Ŷ (x)/∂θ]}}. (2.5)

This adds an explicit additive correction term to the normalised classical predic-

tion variance. In Equation (2.5), Ŷ (x) is the posterior mean of Y (x) given data at

X = {xi; i = 1, . . . , n} andMθ is the covariance matrix of the estimated covariance

parameters θ. The Estimation-Adjusted (EA) criterion implemented by Zhu and

Stein (2006) is similar in spirit to the EK criterion. Both of these obtain specific

designs by a spatial simulated annealing (SSA) search algorithm (van Groenigen

and Stein, 1998; van Groenigen, Siderius and Stein, 1999; Lark, 2002). These

methods are much more computationally expensive, and the resulting designs de-

pend on the spatial locations of a set of specified potential sampling points in a

more complicated way, than do our proposed ICP(n, k, δ, ζ) designs. In our sim-

ulation study in Section 2.5.3, we follow the SSA algorithm outlined in Müller,
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Pronzato et al. (2015).

2.5 Simulation studies.

We have carried out simulation studies of our proposed designs to illustrate the

gains in predictive efficiency that can be achieved using inhibitory designs when

covariance parameters have to be estimated. In our simulation studies, we evaluate

our performance criterion (Equation (2.3)) at the estimated parameter values using

the plug-in prediction method (Diggle and Ribeiro, 2007). We simulate data on the

unit square [0, 1]2, evaluate the integral in Equation (2.3) by numerical quadrature

over a 64 × 64 prediction grid, and approximate the expectation of the integral

by a Monte Carlo average over s = 1500 independent simulations of measurement

data Y . We consider two model classes for the data-generation process, namely

the linear Gaussian and logistic binomial geostatistical models. Both include an

unobserved stationary Gaussian process S(x) with mean zero, variance σ2 = 1 and

Matérn correlation (Matérn, 1960).

In the linear Gaussian model,

Y |S ∼ N(µ, τ 2) (2.6)

where µ = S(x), whilst in the logistic binomial model,

Y |S, U ∼ Bin(n, p), (2.7)
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where log(p/1− p) = S(x) + U and U is Gaussian white noise with variance τ 2.

In both cases, the predictive target is S.

We used a fixed value of the correlation shape parameter, κ = 1.5, but varied the

correlation range parameter φ and the nugget variance τ 2.

2.5.1 Linear Gaussian Model.

For each parameter combination, we generated data at n = 150 sampling loca-

tions. Figure 2.1a shows an inhibitory design without close pairs and δ = 0.06,

corresponding to packing density ρ ≈ 0.424, whilst Figure 2.1b shows a design

with k = 75 close pairs and δ(k) = 0.085 so that the n− k = 75 inhibitory design

points also have packing density 0.424. Note that a maximum δ = 0.06 is an

arbitrary choice to allow the construction of a more-regular-than-random design.

Figure 2.2 shows the design performance as δ varies between 0.01 and 0.06, φ =

0.15, 0.20, 0.25 and 0.30, and for noise-to-signal ratios τ 2 = 0 and 0.2. Results (not

shown) for τ 2 = 0.05, 0.1 and 0.4 show similar trends. These results indicate that

designs with larger δ perform better, i.e. spatial predictions become more precise

with increasing regularity of the design.

Our comparison of inhibitory designs with and without close pairs indicates that

designs with an intermediate number of close pairs give the best performance.

However, when τ 2 is close to zero the benefits of close pairs are negligible, see

Figure 2.3 panels A – B. In contrast, when τ 2 is larger, close pairs show substantial

benefit, see Figure 2.3 panels C – E.
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Figure 2.1: Simple inhibitory design, δ = 0.06 (a). Inhibitory design with
k = 75 close pairs, δ(k) = 0.085 for n − k inhibitory design points (b). The
inhibitory distance δ for (b) varies with the number of close pairs k. Sample size
n = 150 for each of the designs.
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Figure 2.2: Average prediction variance for varying simple inhibitory designs,
δ = 0.01 to 0.06, κ = 1.5, σ2 = 1 and n = 150. Panel (a) τ2 = 0 and panel (b)
τ2 = 0.2.
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Figure 2.3: Comparing the efficiencies of inhibitory designs: without close
pairs, with 15, 45 and 75 close pairs. The fixed total n = 150 for each of the
designs.

2.5.2 Binomial Model.

We simulated binomial datasets with 10 trials at each of n = 150 grid points,

and probabilities given by the anti-logit of the simulated values of the Gaussian

process. For each combination of parameters, we approximated the expectation in

Equation (2.3) by a Monte Carlo average over s = 1000 independent simulations

of Y. Figures 2.4a to 2.4b show that inhibitory designs with δ = 0.06 give the

best results, agreeing with the findings in Section 2.5.1, Figure 2.2. Similarly,

Figure 2.4c again shows that inhibitory designs with an intermediate number of

close pairs give the best performance when τ 2 is relatively large.
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Figure 2.4: Average prediction variance for varying simple inhibitory designs
- Binomial model, δ = 0.01 to 0.06, κ = 1.5, σ2 = 1 and n = 150. Panel (a)
τ2 = 0 and panel (b) τ2 = 0.4. Panel (c) compares the efficiencies of inhibitory
designs with 15, 45 and 75 close pairs. The fixed total n = 150 for each of the
designs.

2.5.3 ICP vs EK optimal designs.

We simulate data on the unit square [0, 1]2 and construct each of the designs using

their respective algorithms as described in Section 2.3.3 and Section 2.4, with a

fixed sample size n = 35. The ICP design has k = 5, δ(k) = 0.076 and ζ = 0.025.

We consider the linear Gaussian geostatistical model (Equation (2.6)) for the data-

generation process. This includes an unobserved stationary Gaussian process S(x)
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Figure 2.5: Inhibitory plus close pairs design vs Empirical kriging optimal
design.

with mean zero, variance σ2 = 1 and a Matérn correlation. We evaluate the

integral in Equation (2.3) by numerical quadrature over a 7 × 7 prediction grid

and approximate the expectation of the integral by a Monte Carlo average over s

= 10000 independent simulations of measurement data Y . Figure 2.5 shows results

for comparison between numerically optimised ICP and EK optimal designs for θ

with fixed variance σ2 = 1, fixed noise-to-signal ratio τ 2 = 0.2 and varying φ =

0.10, 0:15; 0:20; 0:25 and 0.30. In each case, the two optimised designs achieve

similar values of the average prediction variance. Here, we have only made a

limited set of comparisons due to computational limitations for the EK optimal

designs. We elaborate on this point later in the discussion.
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2.6 Application: sampling to predict spatial vari-

ation in malaria prevalence in the Majete peri-

meter.

In this section, we illustrate the use of our proposed inhibitory design strategy to

construct a survey sample for mapping malaria prevalence in an area surrounding

Majete Wildlife Reserve (MWR) within Chikwawa district, Malawi. The MWR

is situated in the lower Shire valley at the edge of the African Rift Valley in

the southern part of Malawi (15.97◦ S; 34.76◦ E). The reserve is crossed by two

perennial rivers, the Shire and Mkurumadzi Rivers. Mwanza River runs near the

western and southern boundaries of the park. In the wet season, there are also

seasonal pools and many seasonal streams. Most rainfall occurs during the wet

season, which lasts from November to April. Annually, the precipitation is 680

to 800 mm in the eastern lowlands and 700 to 1000 mm in the western highlands

(Wienand, 2013). With an average daily temperature of 28.4 ◦C, the wet season is

slightly warmer than the dry season (average daily temperature 23.3 ◦C), though

the hottest months are September to November, at the end of the dry season

(Staub, Binford and Stevens, 2013).

The Majete malaria project (MMP) is a five-year monitoring and evaluation study

of malaria prevalence, with an embedded randomised trial of community-level

interventions intended to reduce malaria transmission. The study takes place

in the “Majete Perimeter”, which is the zone surrounding the MWR. The whole
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Figure 2.6: Map showing Majete Wildlife Reserve (brown) and borders of the
19 community-based organisations (CBOs) comprising the Majete perimeter.
Three focal areas (green), labelled as A, B, and C, mark the communities selected
for malaria indicator surveys and the trial. The rest of the CBOs (grey) are
outside the project’s catchment area.

perimeter is home to a population of approximately 100,000. Figure 2.6 shows

the location of the study area, covering the unprotected zone surrounding the

game park. The perimeter is subdivided into 19 community-based organizations

(CBOs). In the MMP, three sets of these CBOs (CBOs – 1 & 2, CBOs –15 &

16 and CBOs – 6, 7 & 8) define focal areas A, B and C respectively. The first

stage in the geostatistical design was a complete enumeration of households in

the study region, including their geo-location collected using Global Positioning

System (GPS) devices on a Samsung Galaxy Tab 3 running Android 4.1 Jellybean

operating system. These devices are accurate to within 5 meters.

The sampling unit is a household. We first fit the Binomial model Equation (2.7),

with three parameters representing the two variance components and the rate of
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Table 2.1: Monte Carlo maximum likelihood estimates and 95 % confidence
intervals for the covariance model fitted to malaria prevalence data in Majete
focal area B.

Term Estimate 95 % confidence interval
Intercept -1.90986 (-2.19000, -1.62973)

σ2 0.53016 (0.31787, 0.88422)
τ 2 0.26328 (0.07426, 0.93341)
φ∗ 0.31913 (0.13320, 0.76459)

∗Distance is given in kilometres.

decay of spatial correlation with distance, to the “presence/absence” of malaria

data from focal area B, then use the resulting estimated covariance model to in-

form an optimal sampling design for focal area A, whilst allowing for re-estimation

of the model parameters. Table 2.1 shows the estimated covariance parameters.

With these estimates, we used a general numerical optimiser (controlled random

search) to determine the optimal design parameters that minimised the perform-

ance criterion in Equation (2.3). From a candidate set of 857 households we

sampled a total of 200, the optimal design was found with k = 24 close paired loc-

ations, δ(k) = 0.123 km and ζ = 0.08 km, see Figure 2.7. The blue dots represent

the 176 inhibitory sample locations, red dots represent the 24 close pair locations

and the black dots are the remaining 657 candidate locations. Note that the total

sample size of 200 locations we used here is an arbitrary choice, chosen for illus-

tration purposes only. The sampling locations provide a good spatial coverage of

the study area, which is advantageous for efficient spatial prediction, whilst the

inclusion of the close pairs is advantageous for parameter estimation.
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Candidate Locs

Sampled Locs

Close Pair Locs

0 2 4 km

NORTH

Figure 2.7: Inhibitory (blue dots) plus close pairs design locations (red dots)
and all potential sampling locations (black dots), in focal area A

2.7 Discussion.

Parameter values are usually unknown in practice. Designing for efficient spatial

prediction with estimated parameters involves a compromise. In this paper, we

have proposed and demonstrated a class of inhibitory sampling designs for ac-

curate spatial prediction with estimated covariance model parameters. The design

strategies described in Section 2.3 are specifically intended to deliver efficient map-

ping of the complete surface, S(x), over the region of interest. We considered

inhibitory designs with and without close pairs of sampling locations. Inhibitory

designs are random designs that generate spatially regular configurations of design
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points.

Our proposed designs incorporate the widely accepted concept that spatial predic-

tion is improved by using a more-regular-than-random configuration of sampling

locations (Olea, 1984). Our simulation studies show that when the same data are

used for both parameter estimation and spatial prediction, the optimum inhibitory

design includes a small proportion of close pairs (between 10 % and 30 % in our

examples). This is consistent with previously expressed views that in order to com-

promise between prediction accuracy and efficient parameter estimation, optimal

geostatistical designs should include close pairs in an otherwise spatially regular

design (Lark, 2002; Diggle and Lophaven, 2006; Müller, 2007). However, our res-

ults also show that with our proposed class of designs, clear benefits for including

close pairs are only realised when the nugget variance is relatively large. In our

case, we conjecture that this is a consequence of the fact that inhibitory designs

avoid the rigidity of lattice designs, resulting in a more varied set of inter-point

distances. This is consistent with findings of Zimmerman (2006). He found that

the EK-optimal design resembled the optimal design for prediction with known

covariance parameters (which is spatially very regular) when the nugget effect was

small and the spatial correlation is strong, whereas when the nugget effect is large

(50 % of total variance) the EK-optimal design consists of small clusters of sites

regularly dispersed throughout the study area, regardless of the strength of spatial

correlation.

Our comparison of ICP and EK optimal designs showed that they exhibit sim-

ilar performance in terms of prediction variance. This is consistent with previous
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findings that, for a fixed design X , the influence of the correction term in Equa-

tion (2.5) diminishes with increasing sample size n. Müller, Pronzato et al. (2015)

showed that for a design with n ≥ 10, maxx∈DVar[Ŷ (x)−Y (x)] and EK(Xn) yield

similar values, implying that the effect of the correction term in Equation (2.5)

becomes negligible as n increases. We suggest that, in the presence of a substan-

tial nugget effect, the essential feature of both ICP and EK designs that results

in their similar performance is their inclusion of small clusters of points in an oth-

erwise regularly spaced design. For a large n, designs that minimise the classical

prediction variance resemble the EK-optimal designs. However, as noted earlier

and also in Zhu and Stein (2006) and Müller, Pronzato et al. (2015), spatial sim-

ulated annealing based EK-/EA- optimal designs are computationally very costly

to construct, with each run taking at least 8 hours of central processor unit time.

ICP designs can, therefore, be found more easily, quickly and inexpensively, with

each run taking less than 30 minutes of central processor unit time. The com-

putations that were reported in the paper were run on the High-End Computing

Cluster at Lancaster University, using the R software environment (R Core Team

(2015); see also https://www.r-project.org/). ICP designs can be implemen-

ted by the average practitioner more easily than similarly performing EK-/EA-

optimal designs.

We have approached the sampling design problem assuming an underlying stochastic

process with a stationary covariance structure. This is a common assumption

in geostatistical applications. However, when explanatory variables are available

https://www.r-project.org/
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their spatial distribution will also affect design performance. Numerical optimisa-

tion of a performance criterion such as Equation (2.3) in the presence of explan-

atory variables involves no additional principles.
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Abstract

Non-adaptive geostatistical designs (NAGDs) offer standard ways of collecting and

analysing geostatistical data in which sampling locations are fixed in advance of

any data collection. In contrast, adaptive geostatistical designs (AGDs) allow col-

lection of geostatistical data over time to depend on information obtained from

previous information to optimise data collection towards the analysis objective.

AGDs are becoming more important in spatial mapping, particularly in poor re-

source settings where uniformly precise mapping may be unrealistically costly and

the priority is often to identify critical areas where interventions can have the most

health impact. Two constructions are: singleton and batch adaptive sampling. In

singleton sampling, locations xi are chosen sequentially and at each stage, xk+1

depends on data obtained at locations x1, . . . , xk. In batch sampling, locations are

chosen in batches of size b > 1, allowing each new batch, {x(k+1), . . . , x(k+b)}, to

depend on data obtained at locations x1, . . . , xkb. In most settings, batch sampling

is more realistic than singleton sampling. We propose specific batch AGDs and

assess their efficiency relative to their singleton adaptive and non-adaptive coun-

terparts using simulations. We then show how we are applying these findings to

inform an AGD of a rolling Malaria Indicator Survey, part of a large-scale, five-year

malaria transmission reduction project in Malawi.

Keywords. Adaptive sampling strategies ; Spatial statistics ; Geostatistics ; Mal-

aria; Prevalence mapping.
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3.1 Introduction.

Geostatistics has its origins in the South African mining industry (Krige, 1951),

and was subsequently developed by Georges Matheron and colleagues into a self-

contained methodology for solving prediction problems arising principally in min-

eral exploration; Chilès and Delfiner (2012) is a recent book-length account. Within

the general statistics research community, the term geostatistics more generally

refers to the branch of spatial statistics that is concerned with investigating an

unobserved spatial phenomenon S = {S(x) : x ∈ D ⊂ IR2} , where D is a geo-

graphical region of interest, using data in the form of measurements yi at locations

xi ∈ D. Typically, each yi can be regarded as a noisy version of S(xi). We write

X = {x1, . . . , xn} and call X the sampling design.

Geostatistical analysis can address either or both of two broad objectives: estim-

ation of the parameters that define a stochastic model for the unobserved process

S and the observed data {(yi, xi) : i = 1, ..., n}; prediction of the unobserved real-

isation of S(x) throughout D, or particular characteristics of this realisation, for

example its average value.

A key consideration for geostatistical design is that sampling designs that are

efficient for parameter estimation are generally inefficient for prediction, and vice

versa - see, for example, Diggle and Ribeiro (2007) and Müller (2007). Since

parameter values are usually unknown in practice, design for prediction, therefore,

involves a compromise. Furthermore, the diversity of potential predictive targets

requires design strategies to be context-specific. Another important distinction is
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between non-adaptive sampling designs that must be completely specified prior to

data-collection, and adaptive designs, for which data are collected over a period

of time and later sampling locations can depend on data collected from earlier

locations.

In this paper we formulate, and evaluate through simulation studies, a class of ad-

aptive design strategies that address two compromises: between efficient parameter

estimation and efficient prediction; and between theoretical advantages and prac-

tical constraints. The motivation for our work is the mapping of spatial variation

in malaria prevalence in rural communities through a series of “rolling malaria

indicator surveys,” henceforth rMIS (Roca-Feltrer et al., 2012). rMIS is a mal-

aria transmission monitoring and evaluation tool conducted on a monthly basis.

Adaptive design is especially relevant here because resource constraints make it

difficult to achieve uniformly precise predictions throughout the region of interest,

hence as data accrue over the study region D it becomes appropriate to focus pro-

gressively on sub-regions of D where precise prediction is needed to inform public

health action, for example, to prioritise sub-regions for early intervention.

In Section 3.2 we review the existing literature on adaptive geostatistical design

and set out the methodological framework within which we will specify and evalu-

ate adaptive design strategies. Section 3.3 describes our proposed class of adaptive

designs for efficient prediction. Section 3.4 gives the results of a simulation study

in which we compare the predictive efficiency of our proposed design strategy with

simpler, non-adaptive strategies. Section 3.5 is an application to the design of an
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ongoing prevalence mapping exercise around the perimeter of the Majete Wild-

life Reserve, Chikwawa district, southern Malawi through an rMIS that will be

conducted monthly over a two-year period. Section 3.6 is a concluding discussion.

3.2 Methodological framework.

3.2.1 Geostatistical models for prevalence data.

The standard geostatistical model for prevalence data can be formulated in a

hierarchical form as follows (Diggle, Tawn and Moyeed, 1998). For i = 1, ..., n, let

Yi be the number of positive outcomes out of ni individuals tested at location xi

in a region of interest D ⊂ IR2, and d(xi) ∈ IRp a vector of associated covariates.

The model assumes that Yi ∼ Binomial(ni, p(xi)) where p(x) is the prevalence of

disease at a location x. The model further assumes that

log[p(x)/{1− p(x)}] = d(x)′β + S(x) (3.1)

where S(x) is a stationary Gaussian process with zero mean, variance σ2 and

correlation function ρ(u) = Corr{(S(x), S(x′)}, where u is the distance between x

and x′.

Fitting the standard model involves computationally intensive Monte Carlo meth-

ods, but software implementations are available; we use the R package PrevMap

(Giorgi and Diggle, 2015). Stanton and Diggle (2013) show that provided the ni
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are at least 100 and |p(x)−0.5| is at most 0.4, reliable predictions can be obtained

using the following computationally simpler non-hierarchical approximate model.

Define the empirical logit transform,

Y ∗i = log{(Yi + 0.5)/(ni − Yi + 0.5)}

and assume that

Y ∗i = d(xi)
′β + S(xi) + Zi, (3.2)

where the Zi are mutually independent zero-mean Gaussian random variables with

variance τ 2. Using this approximate method, predictive inferences need to be back-

transformed from the logit to the prevalence scale.

In what follows, we will assume a Matérn (1960) correlation structure for S(x),

ρ(u;φ;κ) = {2κ−1Γ(κ)}−1(u/φ)κKκ(u/φ), (3.3)

where φ > 0 is a scale parameter that controls the rate at which correlation decays

with increasing distance, Kκ(·) is a modified Bessel function of order κ > 0, and

S(x) is m times mean-square differentiable if κ > m. In the simulation studies

reported in Section 3.4, we use the computationally simpler, approximate method

to compare different designs and do not include covariates. For the analyses of the

Majete data reported in Section 3.5, we use the standard model Equation (3.1).
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3.2.2 Likelihood-based inference under adaptive design.

Almost all geostatistical analyses are conducted under the assumption that the

sampling design, X , is stochastically independent of S. This justifies basing in-

ference on the likelihood function corresponding to the conditional distribution of

Y given X , which typically gives information on all quantities of interest. Diggle,

Menezes and Su (2010) discuss the inferential challenges that result when the inde-

pendence assumption does not hold, in which case the data (X , Y ) should strictly

be considered jointly as a realisation of a marked point process. Diggle, Menezes

and Su (2010) call this preferential sampling; see also Pati, Reich and Dunson

(2011), Gelfand, Sahu and Holland (2012), Shaddick and Zidek (2014), and Zidek,

Shaddick and Taylor (2014) .

In adaptive design, X and S are not independent but are conditionally independ-

ent given Y , which simplifies the form of the likelihood function. To see why, let

X0 denote an initial sampling design chosen independently of S, and Y0 the res-

ulting measurement data. Similarly denote by X1 the set of additional sampling

locations added as a result of analysing the initial dataset (X0, Y0), Y1 the resulting

additional measurement data, and so on. After k additions, the complete dataset

consists of X = X0 ∪ X1 ∪ ... ∪ Xk and Y = (Y0, Y1, ..., Yk). Using the notation [·]

to mean “the distribution of”, the associated likelihood for the complete dataset is

[X , Y ] =

∫
S

[X , Y, S]dS. (3.4)
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We consider first the case k = 1. The standard factorisation of any multivariate

distribution gives

[X , Y, S] = [S,X0, Y0,X1, Y1] = [S][X0|S][Y0|X0, S][X1|Y0,X0, S][Y1|X1, Y0,X0, S].

(3.5)

On the right-hand side of Equation (3.5), note that by construction, [X0|S] =

[X0] and [X1|Y0, X0, S] = [X1|Y0, X0]. It then follows from Equation (3.4) and

Equation (3.5) that

[X , Y ] = [X0][X1|X0, Y0]×
∫
S

[Y0|X0, S][Y1|X1, Y0,X0, S][S]dS (3.6)

The first term of the right-hand side of Equation (3.6) is the conditional distribu-

tion of X given Y0. The second term simplifies to

[Y0|X0][Y1|X1, Y0,X0] = [Y0, Y1|X0,X1] = [Y |X ].

It follows that

[X , Y ] = [X|Y0]× [Y |X ]. (3.7)

Equation (3.7) shows that the conditional likelihood, [Y |X ], can legitimately be

used for inference although, depending on how [X|Y0] is specified, it may be inef-

ficient. The argument leading to Equation (3.7) extends to k > 1 with essentially

only notational changes.
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3.3 An adaptive design strategy.

3.3.1 Performance criteria.

In practice, each geostatistical prediction exercise will have its own, context-

specific primary objective. We provide a framework for a general discussion here.

For clarity, we repeat some basic terminology and let S = {S(x) : x ∈ D} denote

the realisation of the process S(x) over D. Also, let Y denote the data obtained

from the sampling design X = {x1, ..., xn}, and Y = (Y1, ..., Yn) the corresponding

measurement data. Denote by T = T (S), called the predictive target, represent

the property of S that is of primary interest. A generic measure of the predictive

accuracy of a design X is its mean square error, MSE(X ) = E[(T − T̂ )2], where

T̂ = E[T |Y ;X ] is the minimum mean square error predictor of T for any given

design X . Note that in the expression forMSE(X ) the expectation is with respect

to both S and Y , whereas in the expression for T̂ it is with respect to S holding

Y fixed at its observed value.

One obvious predictive target is S(x) for arbitrary location x ∈ D. Another, which

may be more relevant when the practical goal is to decide whether or not to launch

a public health intervention, is a complete map T (x) = I(S(x) > c), where I(·)

is the indicator function and c is a policy-relevant threshold; see, for example,

Figure 3 of Zouré et al. (2014). Spatially neutral versions of these targets can be

defined by integration over D, hence

IMSE(X ) =

∫
D

E[(T (x)− T̂ (x))2]dx.
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We emphasise that in any particular application, other measures of performance

may be more appropriate. However, for a comparative evaluation of different

general design strategies, we adopt IMSE(X ) as a sensible generic measure.

3.3.2 Some non-adaptive geostatistical designs.

Two standard non-adaptive designs are a completely random design, in which the

sample locations xi form an independent random sample from the uniform dis-

tribution on D and a completely regular design in which the xi form a regular

square or, less commonly, triangular lattice. Geostatistical design problems can

be classified according to whether the primary objective is parameter estimation

or spatial prediction and, in the latter case, whether model parameters are as-

sumed known or unknown. Our focus is on design for efficient prediction when

model parameters are unknown, this being the ultimate goal of most geostatistical

analyses. Completely regular designs typically give efficient prediction when the

target is the spatial average of S(x), i.e. T =
∫
D S(x)dx, and model parameters

are known; see, for example, Matérn (1960, Chapter 5); Bellhouse and Herzberg

(1984), Fernández, Real et al. (2005), Marchant, Lark and Wheeler (2005), Müller

(2007) and Diggle and Ribeiro (2007). When parameters are unknown, less regular

designs have been shown to be preferable in particular settings see, for example,

Diggle and Lophaven (2006), although a general theory of optimal geostatistical

design is lacking.

Most of the previous research on design considerations for prediction assume a
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known covariance structure for the data, see, for example, Benhenni and Cambanis

(1992), Ritter (1996) and Müller (2005). Su and Cambanis (1993) address the

problem of estimating parameters from a random process with a finite number

of observations, and measure the design performance by integrated mean square

error. They show that random designs are asymptotically optimal. McBratney,

Webster and Burgess (1981) address the problem of choosing the spacing of a

regular rectangular or triangular lattice design to achieve an acceptable value

of the maximum of the prediction variance over the region of interest. Yfantis,

Flatman and Behar (1987) compare three regular sampling designs, namely the

square, equilateral triangle and regular hexagonal lattices. They conclude that

the hexagonal design is the best when the nugget effect is large and the sampling

density is sparse.

Royle and Nychka (1998) and Nychka and Saltzman (1998) use a geometrical

approach that does not depend on the covariance structure of the underlying

process S(x). In this approach, sample points are located in a way that minimises

a criterion that is a function of the distances between sampled and non-sampled

locations. Royle and Nychka (1998) show that the resulting space-filling designs

generally perform well.

In contrast to the spatial designs for efficient prediction reviewed above, Russo

(1984), Müller and Zimmerman (1999) and Bogaert and Russo (1999) consider

variogram-based parameter estimation. The variogram of S(x) is the function

γ(u) = 1
2
Var{S(x)− S(x′)} where u is the distance between x and x′. Müller and

Zimmerman (1999) regard a design as optimal if it minimises a suitable measure
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of the “size” of the covariance matrix of the resulting parameter estimates.

Typically, the same dataset is used for covariance structure estimation and predic-

tion of S(x) at unsampled locations, in which case it is desirable to use a design

that compromises between these two analysis objectives. Zhu and Stein (2006)

address the problem of spatial sampling design for prediction of stationary iso-

tropic Gaussian processes with estimated parameters of the covariance structure.

They employ a two-step algorithm that uses an initial set of locations X0 to find

the best design for prediction with known covariance parameters and then, condi-

tional on X0, uses the rest to find the best design for estimation of those covariance

parameters. Pilz and Spöck (2006) address a similar design problem but using a

model-based approach in choosing an optimal design for spatial prediction in the

presence of uncertainty in the covariance structure. Using a Bayesian approach,

Diggle and Lophaven (2006) consider designs that are efficient for spatial predic-

tion when parameters are unknown. They looked at two different design scenarios,

namely: retrospective design, using as performance criterion the average prediction

variance (APV),

APV =

∫
D

Var{S(x)|Y}dx, (3.8)

and prospective design, with performance criterion the expectation of APV, with

respect to the process S(x). They concluded that in either situation, the inclusion

of close pairs in an otherwise regular lattice design is generally a good choice.
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3.3.3 A class of adaptive designs.

Our proposed approach to adaptive geostatistical design is as follows.

1. Specify the finite set, X ∗ say, of n∗ potential sampling locations xi ∈ D. In

our motivating application, this consists of the locations of all households in

their respective villages in the Majete perimeter area. In other applications,

any point x ∈ D may be a potential sampling location, in which case we

take X ∗ to be a finely spaced regular lattice to cover D.

2. Use a non-adaptive design to choose an initial set of sample locations, X0 =

{xi ∈ D : i = 1, ..., n0}.

3. Use the corresponding data Y0 to estimate the parameters of an assumed

geostatistical model.

4. Specify a criterion for the addition of one or more new sample locations to

form an enlarged set X0 ∪ X1. A simple example would be for X1 to be the

elements of X ∗ with the largest values of the prediction variance amongst all

points not already included in X0.

5. Repeat steps 3 and 4 with augmented data Y1 at the points in X1.

6. Stop when the required number of points has been sampled, a required per-

formance criterion has been achieved or no more potential sampling points

are available.

Within this general approach, in addition to choosing a suitable addition criterion

in step 4, we need to choose the number and locations of points in the initial design,
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X0, and the number to be added at each subsequent stage called the batch size. A

batch size b = 1 must be optimal theoretically, but is often infeasible in practice.

For example, in our application to prevalence mapping in the Majete Wildlife

Reserve perimeter area, the associated sampling involves field work in challenging

terrain and remote villages to obtain the measurements Y . Restricting each field-

trip to collection of a single measurement would be a hopelessly inefficient use of

limited resources.

3.3.4 Types of adaptive designs.

We develop two main types of adaptive geostatistical designs namely: singleton

and batch adaptive designs.

In singleton adaptive sampling, b = 1, i.e. locations are chosen sequentially, al-

lowing xk+1 to depend on data obtained at all earlier locations x1, . . . , xk. In

singleton adaptive sampling, one possible addition criterion is to choose xk+1 to

be the location x with the largest prediction variance of S(x) given the data from

x1, . . . , xk.

In batch adaptive sampling, b > 1. A naive extension of the above addition cri-

terion, choosing (xk+1, ..., xk+b) to be the b available locations with the largest

prediction variances of S(x), is likely to fail because it does not penalise sampling

from multiple locations x at which the corresponding S(x) are highly correlated.
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3.3.5 Algorithm for adaptive geostatistical design.

For the predictive target T = S(x) at a particular location x, given an initial set

of sampling locations X0 = (x1, ..., xn0) the available set of additional sampling

locations is A0 = X ∗ \ X0. For each x ∈ A0, denote by PV (x) the prediction

variance, Var(T |Y0). For the Gaussian model Equation (3.2),

PV (x) = σ2(1− r′V −1r),

where r = (r1, . . . , rn0) with V = R + ν2I, R is the n by n matrix with elements

rij = ρ(||xi − xj||), ν2 = τ 2/σ2 and I is the identity matrix (Diggle and Ribeiro,

2007, p136).

We propose to incorporate a minimum distance addition criterion, whereby we

choose new locations xn0+1, xn0+2, ..., xn0+b with the b largest values of PV (x)

subject to the constraint that no two locations are separated by a distance of less

than δ.

For a formal specification, we use the following notation:

• X ∗ is the set of all potential sampling locations, with number of elements of

n∗;

• X0 is the initial sample, with number of elements n0;

• b is the batch size;
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• n = n0 + kb is the total sample size;

• Xj, j ≥ 1, is the set of locations added in the jth batch, with number of

elements b;

• Aj = X ∗ \ (X0 ∪ ...∪Xj) is the set of available locations after addition of the

jth batch.

The algorithm then proceeds as follows.

1. Use a non-adaptive design to determine X0.

2. Set j=0

3. For each x ∈ Aj, calculate PV (x):

(i) choose x∗ = arg maxAj
PV (x),

(ii) if ||x∗ − xi|| > δ, for all i = 1, ..., n0 + jb, add x∗ to the design,

(iii) otherwise, remove x∗ from Aj

4. Repeat step 3 until b locations have been added to form the set Xj+1.

5. Set Aj = Aj=1 \ Xj and we update j to j + 1.

6. Repeat steps 3 to 5 until the total number of sampled locations is n or

Aj = ∅.
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3.4 Simulation studies.

We conducted simulation studies of our proposed AGD method so as to com-

pare its performance with standard examples of non-adaptive geostatistical designs

(NAGDs). Sampling in non-adaptive designs is based on a priori information and

is fixed before the study is implemented (Thompson and Collins, 2002). Two ex-

amples of NAGD are: random and inhibitory design. Inhibitory designs use a

constrained form of simple random sampling (Diggle, 2013) whereby the distance

between any two sampled locations is required to be at least δ. In this way, we

retain the objective of a randomised design whilst guaranteeing a relatively even

spatial coverage of the study region.

In each case, data were generated as a realisation of Gaussian process S(x) on

a 64 by 64 grid covering the unit square, giving a total of n∗ = 4096 potential

sampling locations. We specified S(x) to have expectation µ = 0, variance σ2 = 1

and Matérn correlation function (Equation (3.3)), with φ = 0.05 and κ = 1.5, and

no measurement error, i.e. τ 2 = 0. In each run of the simulation, we used the

adaptive design algorithm outlined in Section 3.3.5 to sample a total of n = 100

locations. We varied the initial sample size n0 between 30 and 90 and considered

batch sizes b = 1 (singleton adaptive sampling), 5 and 10.

3.4.1 Adaptive vs non-adaptive sampling.

For the non-adaptive sampling of each realisation, and for the initial sample in

adaptive sampling, we used an inhibitory design with δ = 0.03. We evaluated
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Figure 3.1: Non-adaptive (NAGD) vs minimum distance batch adaptive
(AGD) sampling, with δ = 0.03 and AGD batch sizes b = 1, 5 and 10; Initial
size (n0) ranges from 30 to 90. See text for details of the simulation model.

each design by its spatially averaged prediction variance, i.e. APV as defined at

Equation (3.8), in turn, averaged over 100 replicate simulations. When the initial

sample size is n0 = 30, Figure 3.1 shows singleton adaptive sampling to have the

lowest APV, achieving a value APV = 0.24. As the size of the batch increases,

APV also increases but remains substantially lower than the value APV=0.33

achieved by non-adaptive sampling.

As the initial size n0 increases towards n = 100, the APV for any of the AGDs

necessarily approaches that of the NAGD. For example, Figure 3.1 shows the value

of APV ≈ 0.30 when n0 = 90 and b = 10. For b = 1 and 5, APV generally remains

low whilst steadily approaching that of NAGD when n0 increases towards n.
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3.5 Application: rolling malaria indicator surveys

for malaria prevalence in the Majete perimeter.

In this Section, we illustrate the use of our proposed sampling methodology to con-

struct a malaria prevalence map for part of an area of the community surrounding

Majete Wildlife Reserve within Chikwawa district (16◦ 1′ S; 34 ◦ 47′ E), in the

lower Shire valley, southern Malawi. The Shire river (the biggest river in Malawi)

runs throughout the length of Chikwawa district, causing perennial flooding in the

rainy season. Chikwawa is situated in a tropical climate zone with a mean annual

temperature of 26 ◦C, a single rainy season from November to April and an annual

rainfall of approximately 770 mm. The district has extensive rice and sugar-cane

irrigation schemes.

The area surrounding Majete Wildlife Reserve forms the region for a five-year mon-

itoring and evaluation study of malaria prevalence, with an embedded randomised

trial of community-level interventions intended to reduce malaria transmission.

The whole Majete perimeter is home to a population of ≈ 100,000. Within this

population, three distinct administrative units known as focal areas A, B and C

have been selected to form the study region. These are spread over 61 villages with

≈ 6,600 households and a population of ≈ 24,500. Here, we illustrate adaptive

sampling design methodology using data from focal area B, see Figure 3.2. Note

that the sampling unit in the Majete study is the household.

The first stage in the geostatistical design was a complete enumeration of house-

holds in the entire study region, including their geo-location collected using Global
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Positioning System (GPS) devices on a Samsung Galaxy Tab 3 running Android

4.1 Jellybean operating system. These devices are accurate to within 5 meters.

In the on-going rMIS, approximately 90 households are sampled per month per

focal area, so that each household will be visited twice over the two years of the

study. Malaria prevalence is highly seasonal. The adaptive design problem there-

fore consists of deciding which households to sample in each of the first 12 months

so as to optimise the precision of the resulting sequence of 12 prevalence maps. In

year 2, the sampling design will be re-visited to take account of both statistical

considerations and any practical obstacles encountered during the first year. Here,

to illustrate the methodology, we use data from the first wave of sampling.

Ethical approval for the study was obtained from Malawi’s College of Medicine Re-

search Ethics Committee (COMREC) and Liverpool School of Tropical Medicine

Research Ethics Committee (LSTM-REC). The informed consent process involves

two stages. The first stage is group-consent, whereby a group of potential par-

ticipants, for example, the inhabitants of a single village, receive an information

sheet and are given the opportunity to ask any questions that they may have re-

garding the objectives and procedures of the study. In the second stage individual

informed consent is obtained from each participant or (if they are aged < 15) from

one of their parents or a legal guardian. Two copies of a consent form are com-

pleted; one is kept confidentially and securely by the study team and the second

is kept by the participant.
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3.5.1 Data.

An initial malaria indicator survey was conducted over the period April to June

2015. The survey recruited children aged less than 5 years and women of child-

bearing age, 15 to 49 years, in 10 village communities in order to monitor the

burden of malaria. An inhibitory sampling design was used to sample an initial 100

households per focal area. Selection of the households was as follows. Households

were randomly selected within each village from a list of enumerated households,

whilst ensuring a good spatial coverage of the focal area by insisting that the

distance between any two sampled households is not less than 0.1 kilometres.

Figure 3.2 shows the sampled household locations (white dots) in their respective

villages, with black dots indicating all households in each village. Data collected

include the outcome of malaria rapid diagnostic test, age, gender of each individual

and socio-economic status of each household.

For predictive mapping, any covariates included in the model must be avail-

able at all prediction locations. We, therefore, used two digital elevation model

(DEM) derivatives, elevation and normalized difference vegetation index (NDVI),

which are readily available throughout the study region. Data for these covari-

ates were derived using the Advanced Space-borne Thermal Emission and Re-

flection Radiometer (ASTER) Global DEM version 2. ASTER GDEM V2 has

a spatial resolution of 30 meters. The data were downloaded from the United

States Geological Survey (USGS) through their ‘Global Data Explorer’ http:

//gdex.cr.usgs.gov/gdex/.

http://gdex.cr.usgs.gov/gdex/
http://gdex.cr.usgs.gov/gdex/
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Figure 3.2: Households within the Majete Wildlife Reserve perimeter in focal
area B (black dots) and sampled household locations (white dots) shown in their
respective villages.

3.5.2 Results.

We emphasise that at this early stage of the Majete study the data are too sparse

for a definitive prevalence analysis but are sufficient to illustrate the practical

implementation of our proposed AGD method. The response from each individual

in a sampled household is the binary outcome of a rapid diagnostic test (RDT)

for the presence/absence of malaria from a finger-prick blood sample. Out of the

100 households in the initial sample, 72 had at least one individual who met the



Chapter 3. Adaptive Geostatistical Design and Analysis for Prevalence
Surveys. 95

Table 3.1: Monte Carlo maximum likelihood estimates and 95 % confidence
intervals for the model fitted to the Majete malaria data.

Term Estimate 95 % Confidence Interval
Intercept -5.4827 (-7.6760, -3.2893)
Elevation 0.02651 (0.0162, 0.0368 )
NDVI 4.6130 (0.1581, 9.0680)
Elev.× NDVI -0.0405 (-0.0588, -0.0223)
σ2 0.6339 (0.4438, 0.9055)
φ∗ 0.2293 (0.1042, 0.5049)

∗Distance is given in kilometres.

inclusion criteria (see Section 3.5.1 above). The total number of eligible individuals

in these 72 households was 126, with household size ranging from 1 to 8 individuals.

For covariate selection we used ordinary logistic regression, retaining covariates

with nominal p-values less than 0.05. This resulted in the set of covariates shown in

Table 3.1, with terms for elevation, NDVI and the interaction between the two. We

then fitted the binomial logistic model (Equation (3.1)) to obtain the Monte Carlo

maximum likelihood estimates of the parameters and associated 95 % confidence

intervals, as also shown in Table 3.1. Each evaluation of the log-likelihood used

10,000 simulated values, obtained by conditional simulation of 110,000 values and

sampling every 10th realization after discarding a burn-in of 10,000 values.

From Table 3.1, elevation and NDVI show positive marginal associations with

malaria, with a negative interaction. Focal area B is divided through its length by

the Shire river. The north-east part has relatively high elevation and NDVI values.

Prevalence is generally low in the south-west of the region, whereas the north-

east has pockets of comparatively high malaria prevalence. This suggests that

heterogeneity in malaria prevalence over focal area B involves other risk factors

(social or environmental) that are not available in the current data.
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Figure 3.3: Predictions of d(x)′β + S(x) at observed locations in focal area B.
The blue lines show Shire and Matope rivers.

Figure 3.3 shows the predicted prevalence at each of the observed locations. House-

holds at high altitude and under dense vegetation cover have generally high mal-

aria prevalence. For this study, the elevation of households varied from 60 to 460

meters above sea level. Rivers and streams that are fast flowing in nature are not

generally favourable for mosquito larvae; the Shire river is a big and fast flowing

river. Sampling was done at the time of peak malaria transmission at the end of

the rainy season. This could potentially explain the low prevalence in the south-

ern part of the study region. Also, the high prevalence area in the north-east is

generally more remote with poorer access to health facilities.
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3.5.3 Adaptive sampling in practice.

We now use the minimum distance batch adaptive sampling approach explained

in Section 3.3.5 to determine new locations that can and should be added to the

existing sample in an adaptive manner. We first calculate the prediction variance

at each household using the data from the 72 initial sample locations, shown

as red dots in Figure 3.4. Prediction variances range between 0.0003 and 0.06,

and are relatively small at locations closer to the observed locations, although

this depends on the number of eligible individuals at each location. We then

choose a sample of 90 additional locations using random sampling as well as the

algorithm outlined in Section 3.3.5 above for comparison sake. The black dots

in Figure 3.6 show 90 new locations determined using random sampling. The

blue dots in Figure 3.8 show 90 new locations determined using the minimum

distance threshold δ = 0.15 kilometres. The new sampling locations are well

spread across the study region, which is beneficial for area-wide spatial prediction.

Also, although we have imposed a minimum distance of 0.15 kilometres between

any two sampled locations in order to penalise highly correlated multiple sample

locations, the new sample locations nevertheless include some pairs of old and new

locations in which the new location has been chosen to be relatively close to an

initial location with high prediction variance; recall that the number of eligible

individuals per household varied between 1 and 8, hence the prediction variance

at a sampled location is itself highly variable. Also, as noted earlier, closely spaced

pairs are helpful for effective spatial prediction when the true model parameters

are not known, which is the case in most geostatistical problems.
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In Figure 3.5 we show the prediction variance surface for the inset sub-region in

Figure 3.4. In Figure 3.7 and Figure 3.9 we show the same information after addi-

tion of 90 randomly and adaptively selected locations in Figure 3.6 and Figure 3.8,

respectively. The adaptive sampling design criterion ensures that data are collec-

ted only from locations that will deliver useful additional information in order to

understand the spatial heterogeneity throughout the study region. A comparison

of the two prediction variance surfaces after addition of the 90 locations shows the

extent to which the adaptive design out-performs non-adaptive random sampling.

Figure 3.4: Initial inhibitory sampling design locations (red dots) in focal area
B. The inset shows a subset of locations.
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Figure 3.5: Prediction variance surface for the inset sub-region from Figure 3.4.

Figure 3.6: Initial inhibitory sampling design locations (red dots) and random
sampling design locations (black dots) in focal area B. The inset shows a subset
of locations.
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Figure 3.7: Prediction variance surface for the inset sub-region from Figure 3.6.

Figure 3.8: Initial inhibitory sampling design locations (red dots) and adaptive
sampling design locations (blue dots) in focal area B. The Inset shows a subset
of locations.
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Figure 3.9: Prediction variance surface for the inset sub-region from Figure 3.8.

3.6 Discussion.

In any particular application, the objectives of the study can and should inform

the design strategy. We have developed an adaptive design strategy within a

model-based geostatistics (MBG) framework for survey-based disease mapping in

poor resource settings. The particular design strategy described in Section 3.3.5 is

intended to deliver efficient mapping of the complete surface, S(x), over the region

of interest. The same principles, but with a context-specific performance criterion

replacing the point-wise prediction variance, can be used in other settings. For

example, if the aim is to detect and subsequently evaluate sub-regions that appear

to meet a policy-determined intervention threshold so as to use scarce resources
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to best effect, accurate prediction in low-prevalence sub-regions is relatively un-

important and an adaptive design should result in the progressive concentration

of sampling into areas of relatively high prevalence.

In our application to malaria prevalence mapping, we used an initial set of rMIS

data to map disease prevalence in focal area B and analysed the resulting data

to define a follow-up sample of new locations with the aim of reducing as much

as possible the average prediction variance. We used a large batch size, b = 90

because of the high cost in staff and travel time of re-visiting the study region

more often than monthly. Smaller batch sizes, if feasible, would potentially lead

to greater gains in efficiency. The optimum choice of the minimum distance δ

between sampled locations should relate to the scale of the spatial correlation,

i.e. the parameter φ in the Matérn model (Equation (3.3)), as its purpose is to

prevent redundant duplication of highly correlated data points. The exact nature

of this relationship appears to be intractable although, in principle, simulations

could be used to find a near-optimum value of δ for any assumed spatial correlation

structure.

Our use of average prediction variance as a spatially neutral optimisation criterion

in the Majete application reflects our lack of prior knowledge about the spatial

variation in prevalence. It is possible that in the later stages of this five-year study,

the optimisation criterion will be changed, for example to more precisely delineate

areas of persistent high risk.

A fundamental feature of our approach is that we distinguish between a measured
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value Yi at a location xi and the corresponding value S(xi) of an underlying spatial

process S(x) which is the focus of scientific interest. The difference between Yi

and S(xi) is considered to be measurement error. In some versions of geostatistical

analysis, this difference is interpreted as short-range spatial variation and would

therefore be considered to form part of the predictive target. Note, however,

that with prevalence data of the kind considered in the Majete application, each

measurement necessarily includes binomial sampling variation.

The adaptive sampling design approach is of potentially wide application to disease

mapping in low-resource settings, where accurate registry data typically do not

exist. Mapping exercises are an important component of any control or elimination

programme. Collecting data adaptively allows for local identification and targeting

of areas with high transmission, incidence or prevalence, and an understanding

of which household-level and community-level factors influence these properties.

Knowledge of these properties can inform area-wide health policy making and

identify locations of greatest need where interventions that would be considered

too costly or complicated to implement across an entire population can be targeted

in order to optimise their public health impact.

The choice of the initial sampling design X0 is an important step for adaptive

sampling. The initial sample size, n0, needs to be large enough to allow the fitting

of a geostatistical model, whose estimate parameter values then drive the adaptive

sampling. In the Majete application, we prescribed n0 = 100 but, in the event,

found eligible study participants in 72 of the sampled households. We recommend

re-estimation of the model parameters after each batch of locations has been added.



Chapter 3. Adaptive Geostatistical Design and Analysis for Prevalence
Surveys. 104

In the Majete application, the irregular spatial distribution of households across

the study region meant that the initial set of 72 sampled locations achieved a

good compromise between even coverage of the study region and the inclusion of

close pairs, which is generally helpful for efficient parameter estimation. In other

contexts, and specifically where there is essentially no restriction of the placement

of sampling locations, it would be better to use an initial design that forces the

inclusion of some close pairs, as recommended in Diggle and Lophaven (2006).

As with classical survey sampling, in applications where there is good prior know-

ledge of large-scale heterogeneity pre-stratification of the study region into sub-

regions can bring substantial gains in efficiency (Wang, Haining and Cao, 2010; Hu

and Wang, 2011; Gao et al., 2015). In such cases, further benefits can be obtained

by using adaptive designs within each stratum. However, a detailed discussion of

stratified designs is beyond the scope of the present paper.

In conclusion, the proposed adaptive sampling design approach provides a system-

atic approach to the collection of exposure and outcome data over time so as to

optimise progress towards achievement of the analysis objective. Adaptive designs

are particularly well-suited to spatial mapping studies in low-resource settings

where uniformly precise mapping may be unrealistically costly and the priority

is often to identify critical areas where interventions can have the greatest health

impact. Development of adaptive geostatistical design methodology is, therefore,

timely for monitoring and evaluating interventions in tropical diseases with high

burden such as malaria, in areas where accurate disease registries do not exist and

resources are severely limited. Malaria, in particular, is a leading cause of death
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in most of sub-Saharan Africa, especially among children under 5 years of age.

Malaria monitoring and control programmes can benefit from the availability of

accurate prevalence maps. Geostatistical analysis in conjunction with adaptive

sampling is an effective, practical strategy for producing accurate local-scale maps

that can pick up short-term changes in disease burden and that are complementary

to the national-scale maps that have been produced, for example, by Hay, Guerra,

Tatem et al. (2004), Guerra et al. (2007), Hay, Guerra, Gething et al. (2009) and

Gething et al. (2012).
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4.1 Introduction.

This paper is a welcome addition to the growing literature on preferential sampling

in a geostatistical setting. Earlier papers cited by the authors have shown that

preferential sampling materially affects parameter estimation and prediction. The

authors now demonstrate that the same applies to design, or more specifically

to the optimal augmentation of an initial set of geostatistical data that has been

sampled preferentially. Almost in passing, the paper also sets out an algorithm

for Bayesian inference under preferential sampling that is a useful contribution in

its own right. Might we look forward to an R package implementation of this?

Our comments fall into two categories: theoretical remarks on what we call ad-

aptive design, including an explanation of why this does not necessarily require

consideration of preferential sampling issues; practical constraints that may limit

the scope for theoretically optimal designs to be used in practice, especially in

low-resource settings.

4.2 Adaptive geostatistical design and preferential

sampling.

The topic of geostatistical design is multi-faceted. One useful distinction is between

adaptive and non-adaptive designs. A non-adaptive design is one that is completely

determined before any data are collected. An adaptive design is one in which an

initial design is augmented in a way that depends on the analysis of interim data.
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We make two theoretical comments that follow from the definition of preferential

sampling given in Diggle, Menezes and Su (2010).

Firstly, an adaptive design need not be preferential. To see why, it is sufficient

to consider a two-stage adaptive design, X = (X0, X1) with associated measure-

ment data (Y0, Y1), where subscripts 0 and 1 identify initial and follow-up stages,

respectively. Similarly, write S = (S0, S1) for the corresponding decomposition of

the latent process S. Quite generally, we can factorise the joint distribution of

(X, Y, S) as

[X, Y, S] = [S,X0, Y0, X1, Y1] = [S][X0|S][Y0|X0, S][X1|Y0, X0, S][Y1|X1, Y0, X0, S].

(4.1)

On the right-hand side of Equation (4.1), if the initial design is non-preferential,

[X0|S] = [X0], whilst by construction [X1|Y0, X0, S] = [X1|Y0, X0]. It then follows

that

[X, Y ] = [X0][X1|X0, Y0]×
∫
S

[Y0|X0, S][Y1|X1, Y0, X0, S][S]dS

= [X|Y0]× [Y |X] (4.2)

and the log-likelihood is a sum of two components, log[X|Y0] + log[Y |X]. This
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shows that the conditional likelihood, [Y |X], can legitimately be used for infer-

ence although, depending on how [X|Y0] is specified, to do so may be inefficient.

The argument leading to Equation (4.2) is closely related to the proof that if

data are “missing at random” the missingness mechanism can be ignored when us-

ing likelihood-based inference (Rubin, 1976), and extends to multi-stage adaptive

designs with essentially only notational changes.

Secondly, shared dependence of a design X and the latent process S on observed

covariates does not necessarily render X preferential. Specifically, if Z denotes the

covariate process, then [X,S|Z] = [S|Z][X|S,Z]. The requirement for the design

to be non-preferential is that [X|S,Z] = [X|Z], which in general is a weaker

requirement than [X|S] = [X]. This illustrates, not for the first time, that spatial

statistical inference can be greatly simplified by judicious selection of spatially

referenced covariates.

4.3 Some practical constraints on geostatistical design.

The paper makes a number of explicit and implicit assumptions that together

provide a very reasonable framework for theoretical analysis, but it is worth bear-

ing in mind that in any particular application, the design problem may be con-

strained in various ways. These include the following.

1. Is the spatial integral of the predictive variance an appropriate measure of

predictive performance
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This would not be the case if, for example, S(x) represents pollution and the

main objective is to monitor compliance with environmental standards; see

Fanshawe and Diggle (2012).

2. Sampling may not be equally costly at every location

Put another way, should the design be constrained by the number of locations

to be sampled, or by the total sampling effort in the field? An obvious

example of this is when travel-time represents a non-negligible proportion

of field-effort; see, for example, Figures 2 and 4 of Diggle, Thomson et al.

(2007), where the sampled points follow the routes of field-trips, leading to a

highly aggregated pattern that is far from optimal from a purely theoretical

perspective.

3. Large-scale spatial heterogeneity

The latent process S may exhibit different patterns of small-scale and large-

scale spatial variation, in which case it may be desirable to compromise

between designs that are locally and globally optimal. A pragmatic strategy

might then be to pre-stratify the study region into relatively homogeneous

sub-regions and apply optimal design theory separately to each sub-region.

4. The number of potential sampling points may be finite

This applies to disease prevalence surveys when the sampling unit is either

a household or a well-defined community. We are currently working on the

adaptive design of an ongoing malaria prevalence mapping project around the

perimeter of the Majete national park, Malawi, where the first task has been
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to enumerate and geo-locate each household in each village within the study

region. In the course of the project, we expect to sample all households, but

the order in which they are sampled (in a sequence of monthly field-trips)

will be chosen adaptively with the aim of optimising the estimation of the

complete spatio-temporal variation in malaria prevalence, which is known to

include a strong seasonal component.

None of these comments are intended to detract from the value of the paper on its

own terms. Theoretical studies of this kind help to further our understanding of

important, and often subtle, methodological issues around modelling and inference

for preferentially sampled geostatistical data.
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Abstract

Background: In the context of malaria elimination, interventions will need to

target high-burden areas to further reduce transmission. Current tools to monitor

and report disease burden lack the capacity to continuously detect fine-scale spa-

tial and temporal variations of disease distribution exhibited by malaria. These

tools use random sampling techniques that are inefficient for capturing underlying

heterogeneity while health facility data in resource-limited settings are inaccur-

ate. Continuous community surveys of malaria burden provide real-time results

of local spatio-temporal variation. Adaptive sampling design improves predic-

tion of the outcome of interest compared to current random sampling technique.

We present findings of continuous malaria prevalence surveys using an adaptive

sampling design.

Methods: We conducted repeated cross-sectional surveys guided by an adaptive

sampling design to monitor the prevalence of malaria parasitaemia and anaemia

in children below five years old in the communities living around Majete Wildlife

Reserve in Chikwawa district, southern Malawi. We fitted a geostatistical model

to predict malaria prevalence in the area.

Findings: We conducted five rounds of sampling, and tested 876 children aged

6–59 months from 1,377 households over a 12-month period. Malaria prevalence

prediction maps showed spatial heterogeneity and presence of hotspots; predictors

of malaria include age, socio-economic status and ownership of insecticide-treated

mosquito nets.
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Interpretation: Continuous malaria prevalence surveys using adaptive sampling

increased malaria prevalence prediction accuracy. Results from the surveys were

readily available after data collection. The tool can assist local managers to target

malaria control interventions in areas with the greatest health impact and is ready

for assessment in other diseases.

Funding: The study was funded by Dioraphte Foundation, The Netherlands.
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5.1 Background.

In the context of malaria elimination, limited resources and significant decline in

malaria incidence and prevalence (Bhatt et al., 2015; World Health Organisation,

2015b), interventions will need to target high disease burden areas to further

reduce transmission (Bousema, Griffin et al., 2012; Alemu, Worku and Berhane,

2013; Walker et al., 2016). Current tools for monitoring or reporting malaria

burden lack the capacity to detect high malaria transmission areas, often called

“hotspots”, and to report continuous changes of disease burden over time (World

Health Organisation, 2015a). Malaria exhibits spatial and temporal heterogeneity

in both stable and endemic transmission settings (Alemu, Worku and Berhane,

2013; Baidjoe et al., 2016). National malaria control programmes (NMCP) rely

on national surveys such as Malaria Indicator Surveys (MIS) and Demographic and

Health Surveys (DHS) or use health facility malaria case reports and/or registers to

monitor malaria burden and the progress of malaria control. The surveys generally

are cross-sectional, use random population samples, do not report real-time results

and are repeated after long periods of time (at least two years). They lack spatial

and temporal heterogeneity information for malaria prevalence and only produce

data at a national and regional level rather than sub-district level. In resource-

limited settings, facility case registers, where available, provide unreliable data

(Snow et al., 1999; Chilundo, Sundby and Aanestad, 2004), under-represent the

burden of disease in the community, are incomplete, prone to errors, and may

misreport the number of cases due to lack of diagnostic capacity (Chilundo, Sundby

and Aanestad, 2004; Amexo et al., 2004; Rowe et al., 2009; Afrane et al., 2013).
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Continuous disease surveys allow continuous monitoring of changes in spatial and

temporal disease distribution at national, regional and district levels; the surveys

are potential tools to accurately monitor disease control progress in low-resource

settings where surveillance systems are weak (Rowe, 2009). Continuous malaria

prevalence surveys allow continuous analysis of data, mapping of malaria pre-

valence, and reporting short-term changes in disease prevalence and intervention

coverage (Giorgi, Sesay et al., 2015). Monthly cross-sectional prevalence surveys

report results within a short duration (Roca-Feltrer et al., 2012). Use of such sur-

veys would assist district managers to identify high disease transmission “hotspot”

areas for early targeted intervention (Bousema, Griffin et al., 2012).

Recent developments in geostatistical modelling offer opportunities to implement

more accurate predictive methods for disease burden (Reid et al., 2010; Patil et

al., 2011). Geostatistical modelling can be used to map disease risk and visu-

alise spatial and temporal changes of disease burden and intervention coverage.

The random sampling of clusters used currently in surveys lacks the accuracy

for detecting fine-scale heterogeneity of disease burden. These sampling meth-

ods may under-represent heterogeneously distributed and hard to reach popula-

tions in resource-limited settings (Kondo et al., 2014). An adaptive geostatistical

design (AGD) would allow gain in statistical sampling efficiency by focusing on

areas where prediction of the measure of interest is imprecise. Chipeta et al.

(2016a) previously demonstrated AGD on simulated data and reported potential

for improved prediction of malaria prevalence compared to non-adaptive (random)

sampling. Adaptive designs allow sampling to focus on sub-regions where precise
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prediction is needed to inform public health action.

We describe the first field application of adaptive sampling design in continuous

malaria prevalence surveys for a 12 month period, and we present malaria preval-

ence maps from the study site in Chikwawa district, Malawi.

5.2 Methods.

5.2.1 Study setting.

We conducted the study in villages surrounding Majete Wildlife Reserve (MWR)

in Chikwawa district, southern Malawi from April 2015 to April 2016. Malaria

transmission is intense and peaks from December to March during the rainy sea-

son (Mzilahowa et al., 2012). The study area is within the catchment area of

the Majete Malaria Project (MMP), a five-year, community-based malaria con-

trol project. We conducted the surveys in 61 villages with approximately 6,600

households and a total population of approximately 25,000. The area was divided

into three administrative units, which, for convenience purposes are referred to as

focal areas : A, B and C; see Figure 5.1 from which villages and households within

villages were sampled.
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Figure 5.1: Map showing Majete Wildlife Reserve (brown) and borders of the
19 community-based organisations (CBOs) comprising the Majete perimeter.
Three focal areas (green), labelled as A, B, and C, mark the communities selected
for malaria indicator surveys. The rest of the CBOs (grey) are outside the
project’s catchment area.

5.2.2 Study design.

The sampling unit in the study was the household. We used an adaptive repeated

cross-sectional Malaria Indicator Survey (rMIS) design (Roca-Feltrer et al., 2012;

Chipeta et al., 2016a) to collect data. In this design, on any sampling occasion,

the choice of sampling households was informed by prevalence results from an

analysis of the data collected on earlier occasions and a different set of households

was chosen on each occasion. The adaptive design problem consisted of deciding

which households to sample in each round of sampling to optimise the precision

of the resulting sequence of area-wide prevalence maps.

The first stage in the geostatistical design of the study was a complete enumeration
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of households in the study region from August to November 2014; Geo-location

data were collected using Global Positioning System (GPS) devices on Samsung

Galaxy Tab 3 running Android 4.1 Jellybean Operating System, accurate to within

5 meters on Open Data Kit (ODK) platform. We used the enumeration data to

sample the first 100 households in each of the three focal areas using a spatially

inhibitory random sampling design (Chipeta et al., 2016b), to achieve approxim-

ately uniform coverage of each of the focal areas in the study-area. The second

round of sampling also followed a spatially inhibitory sample. At the end of these

two initial and each subsequent sampling period, a standard operating procedure

was followed in checking data for consistency and completeness before uploading

them to an off-site database server. The accumulating data up to that period were

analysed immediately and the prevalence prediction results fed into an adaptive

sampling algorithm to inform the choice of new sampling locations in the next

sampling round. We sampled 90 households per two months per focal area in each

of the subsequent sampling rounds. Figure 5.2 shows a map of focal area B with

an inset to demonstrate adaptive sampling in practice. Adaptive geostatistical

designs are explained in more details in Chipeta et al. (2016a).
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Figure 5.2: Adaptive sampling in practice, initial spatially inhibitory design
samples augmented with adaptive design samples. The inset shows a zoomed-in
subset of locations.

5.2.3 Participants.

We invited children 6–59 months and women 15–49 years old who slept in the

sampled household the previous night to participate. If the head of household

consented we interviewed, tested for malaria and anaemia and recorded temper-

ature, weight, height and mid-upper arm circumference (MUAC) measurements.

Note that MUAC measurements were done for children only. Households that did

not have any eligible participants were only interviewed; no clinical assessment or
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blood tests were done.

5.2.4 Procedures.

We developed electronic forms and training material adapted from the global mal-

aria indicator survey tool-kit (Roll Back Malaria Partnership, 2016). Research

teams comprising a research nurse and 2 to 4 research assistants invited sampled

household members to central locations where consent was obtained from the head

of household. Teams followed up household members who did not present to the

central location to conduct the survey. Sampled households that were unoccupied,

or had been demolished, were replaced by the nearest household. The teams ad-

ministered a questionnaire and tested eligible participants for malaria and anaemia

using a rapid diagnostic test (RDT; SD Bioline Ag P.f (HRP)) and haemocue 301

(Haemocue, Angelholm, Sweden), respectively. Participants with RDT positive

results or low haemoglobin reading (less than 11g/dl) were managed according to

Malawi national treatment guidelines or referred to a health facility, respectively.

5.2.5 Statistical analysis.

The primary outcome from each individual was a binary indicator for a positive or

negative malaria test by malaria RDT in children aged 6–59 months. Age of each

individual, availability of at least one ITN and socio-economic status (SES) were

considered, as defined in Table 5.2. For SES, an indicator of household wealth

taking discrete values from 1 (poor) to 5 (wealthy), was derived by an application
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of principal component analysis as discussed in Vyas and Kumaranayake (2006).

Data for elevation were derived using the Advanced Space-borne Thermal Emission

and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM) ver-

sion 2, which has a spatial resolution of 30 meters. The data were downloaded from

the United States Geological Survey (USGS, http://gdex.cr.usgs.gov/gdex/).

Normalised difference vegetation index (NDVI) data were calculated based on

images from the Landsat 8 satellite, also downloaded from the USGS (http:

//earthexplorer.usgs.gov/). For NDVI measure, we calculated and used mean

values for the above sampling period.

We used the geostatistical binary probit model for binary response data in the

following manner. Let i and j denote the indices of the ith household and jth

individual within that household. The response variable Yij is a binary indicator

taking value 1 if the individual has been tested positive for malaria and 0 otherwise.

Conditionally on a zero-mean stationary Gaussian process S(xi), Yij are mutually

independent Bernoulli variables with probit link function Φ−1(·),

Yij|dij, S(xi)
ind∼ Bernoulli(pij)

Φ−1(pij) = d′ijβ + S(xi), (5.1)

where dij is a vector of covariates, both at individual- and household- level, with

associated regression coefficients. For details, see Beron and Vijverberg (2004),

http://gdex.cr.usgs.gov/gdex/
http://earthexplorer.usgs.gov/
http://earthexplorer.usgs.gov/
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Rue and Held (2005) and Berrett and Calder (2012). The Gaussian process S(x)

has isotropic Matérn covariance function (Matérn, 1986) with variance σ2, scale

parameter φ and shape parameter κ.

The target for predictive inference is T = T (S), i.e. malaria prevalence pre-

diction for unobserved locations in the study region. Additionally, we delineate

sub-regions of the study region where prevalence p(x) is likely to exceed a policy

intervention/national threshold, exceedance probability, in which case the target

becomes T = {x : p(x) > c} for pre-specified c. All analyses were done in R

statistical environment (R Core Team, 2015).

5.2.6 Ethical consideration.

Ethical clearance for the study was obtained from the College of Medicine re-

search ethics committee (COMREC) in Malawi (P.09/14/1631). Permissions were

obtained from the Ministry of Health (MoH) and the district health authorities

in Chikwawa district. Prior to the start of the study, a series of meetings were

held in participating communities to explain the nature and purpose of the study.

We obtained individual informed consent and in the case of children, from their

parents or legal guardians.
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5.2.7 The role of the funding source.

Dioraphte Foundation, the funder of the study, had no role in study design, data

collection, data analysis, data interpretation or writing of the report. The corres-

ponding author had full access to all the data in the study and had final respons-

ibility for the decision to submit for publication.

5.3 Results.

We conducted five sampling rounds within 12 months and completed data-collection

from 1,377 (87.8 %) of the 1,568 sampled households (Table 5.1). Consent was

refused from 41 (2.6 %) households. Data-collection was not completed in a fur-

ther 149 (9.5 %) households, mainly because the house was vacated between the

initial enumeration and the time of household sampling. From the total sampled

households, 1,044 (67.5 %) had either children 6–59 months, women 15–49 years or

both eligible children and women. A total of 876 children aged 6–59 months were

tested for malaria and anaemia; we excluded results from women of child-bearing

age in the analysis as malaria prevalence surveys are based on children. It took

an average of 4–8 weeks to complete data collection per sampling round; results

of each sampling round were available within 1–2 weeks after completion of data

collection and cleaning.

For covariate selection we used the ordinary probit regression model, retaining

covariates with nominal p-values less than 0.05; these ignore the effects of spatial
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Table 5.1: Characteristics of sampled households within the Majete Wildlife
Reserve perimeter.

N %
Total sampled households 1,568 -
Households completed 1,377 87.8
Refused consent 41 2.6
Children 6–59 months in sampled households 1,016 -
Children 6–59 months enrolled 876 86.2∗

Household wealth quintile
Lowest 390 28.3
Second 196 14.2
Middle 258 18.7
Fourth 267 19.4
Top 266 19.3

∗Percentage of eligible children from sampled households who actually took part
in the survey.

correlation and are likely to be anti-conservative, thereby avoiding false exclusion

of potentially important covariates. This resulted in the set of covariates shown

in Table 5.2, with terms for social economic status (SES), availability of at least

one ITN, NDVI and elevation. The σ2 and φ are variance of the Gaussian process

and scale of the spatial correlation respectively. We then fitted the geostatistical

binary probit model (Equation (5.1)) to obtain the Bayesian estimates of the

parameters and associated 95 % highest posterior density (HPD), as also shown in

Table 5.2. Each evaluation of the Markov chain Monte Carlo used 2,000 simulated

values, obtained by conditional simulation of 21,000 values and sampling every

10th realisation after discarding a burn-in of 1,000 values.

From Table 5.2, an increase in SES, age and ownership of at least one ITN are all

associated with a reduction in the probability of a positive RDT. Elevation was

negatively associated with the probability of a positive RDT whereas NDVI shows
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Table 5.2: Bayesian estimates and 95 % highest posterior density intervals
for the geostatistical binary probit model fitted to the Majete malaria data for
children 6–59 months.

Term Estimate 95 % HPD1

Intercept 0.6647 (0.1538, 1.0850)
SES2 -0.0737 (-0.1087, -0.0337)
ITN3 -0.1829 (-0.3166, -0.0337)
Age -0.4921 (-0.6045, -0.3903)
Elevation -0.0009 (-0.0015, -0.0004)
NDVI4 0.0524 (-1.1358, 0.9811)
σ2 0.4693 (0.2154, 0.8109)
φ∗ 2.3869 (0.7629, 4.9778)

∗Distance is given in kilometres.
1HPD = Highest Posterior Density; 2SES = Social Economic Status; 3ITN =
Insecticide-Treated Net (availability of at least one in household); 4NDVI = Nor-
malised Difference Vegetation Index.

a positive, but non-significant, association.

Here, we present maps of malaria prevalence in children aged 6–59 months in focal

area B. Prevalence maps for focal areas A and C are provided in the supplementary

material Section 5.6. Overall, prevalence is higher in focal area B compared to

focal areas A and C; however, Figure 5.3 (left panel) shows that prevalence is

generally low in the south-west of the region, whereas the north-east has pockets of

comparatively high malaria prevalence. Hotspots in focal areas A and C are mainly

localised. Figure 5.3 (right panel) shows the map of exceedance probabilities

that prevalence is over the national threshold of 30 %. Figure 5.4 shows the

contributions of the linear regression to the predicted log-odds of prevalence at

each of the observed locations in focal area B.
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Figure 5.3: Malaria prevalence in children 6–59 months in focal area B
(left panel). The right-hand panel shows the map of exceedance probabilities
P (x; 0.3) for the Bayesian prediction.
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Figure 5.4: Contributions of the linear regression and of the unexplained spatial
variation to the predicted log-odds of malaria prevalence in children 6–59 months
at each of the observed locations in focal area B.
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5.4 Discussion.

We have modelled malaria prevalence in children aged 6–59 months in a rural

area of southern Malawi using individual, household and environmental data as

covariates, and allowing for spatial correlation. Adaptive sampling prior to each

round of data collection was used to identify areas where increased sampling effort

should be focused to maximise the increase in overall predictive accuracy. Malaria

prevalence predictions at observed locations show disease burden at the finest scale

possible, and we detected multiple malaria hotspots across the study regions. To

our knowledge, this is the first time an adaptive sampling technique has been

implemented to monitor spatial distribution of malaria or any disease in a human

population.

Other studies map disease prevalence heterogeneity using national and community

surveys (conducted at different time points), expert opinion, facility data or a com-

bination of these data sources (Kazembe, Kleinschmidt and Sharp, 2006; Kazembe,

Kleinschmidt, Holtz et al., 2006; Burton et al., 2011; Gosoniu et al., 2012; Noor

et al., 2014). With an adaptive sampling technique, we avoided reporting res-

ults based on multiple data sources which differ in accuracies, collection times

and sampled areas. Health facility disease registers in resource-limited settings

contain low quality, incomplete and unreliable data (Chilundo, Sundby and Aan-

estad, 2004; Rowe et al., 2009; Afrane et al., 2013). These data are inadequate to

monitor fine changes in spatial and temporal malaria prevalence variations. Us-

ing continuous surveys based on AGD readily provides results of representative
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cross-sectional surveys soon after data collection. The continuous surveys monitor

short-term spatial and temporal changes of disease burden to enable managers

to detect and target areas requiring scaling up of interventions. The uptake and

impact of malaria control interventions can also be monitored.

Compared to the recommended national MIS, the continuous prevalence surveys

using AGD are not as logistically demanding. The surveys can potentially be

conducted by district personnel throughout a prolonged period to complement

the 2-yearly MIS. The actual data collection required small teams and took a

short period of time to complete. Cost-effectiveness of implementing continuous

surveys using AGD will be assessed and discussed in a separate paper, though a

previous study in the same geographic area reported continuous malaria surveys

using random sampling was affordable and logistically simple compared to national

MIS (Roca-Feltrer et al., 2012).

The current recommended 2-yearly national MIS are cross-sectional surveys using

a two-stage sample design based on geographical clusters known as enumeration

areas. The sampling process is: 1a) random probability sampling of clusters, 1b)

household enumeration of sampled clusters, 2) then random probability sampling

of households in the clusters. Cluster sampling under-represents disease burden

for heterogeneously distributed diseases and hard to reach populations (Kondo

et al., 2014). The national MIS reports univariate malaria prevalence at district

or regional level and without a confidence interval. Comparing disease prevalence

between surveys would be inaccurate as sampled points are different and the pro-

portions are crude (unadjusted without confidence intervals). Furthermore, the
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national MIS reports data from a single time point though malaria prevalence

exhibits spatial and temporal variations.

By combining AGD and continuous malaria prevalence surveys, we maximise the

precision of malaria prevalence predictions at the local level. Adaptive samples

add value to continuous prevalence surveys. Rather than continuously selecting

random samples, subsequent samples depend on previous prevalence results cal-

culated from contributions of individual, household and environmental predictors;

this allows for models to be refined as data becomes available. The subsequent

samples focus on areas of relatively high uncertainty to enable more precise delin-

eation of areas where disease prevalence is above or below a given threshold c; for

example, predictive probabilities of the exceedance of policy-relevant or national

thresholds. AGDs also provide a more complete picture of spatial variations (Chi-

peta et al., 2016a). This approach can potentially empower both local and national

programme managers to invest limited resources and efforts on high priority areas

for elimination (Bousema, Griffin et al., 2012; Roca-Feltrer et al., 2012; Alemu,

Worku and Berhane, 2013; Walker et al., 2016).

We demonstrate the first application of adaptive sampling for continuous spatial

diseases surveillance in this small study population. This approach can potentially

monitor temporal disease variations and will need to be implemented at a larger

scale for this assessment. For large scale implementation, technical personnel are

required to manage data collection, analysis and continuous sampling.
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Our innovative approach for the discovery of malaria hotspots can be further fine-

tuned by estimates of Plasmodium transmission intensities through monitoring of

mosquito populations. The combined result is instrumental for effective applica-

tion of malaria interventions (Bousema, Griffin et al., 2012).

Algorithms are being developed and will be available as an R package on the com-

prehensive R archive network (CRAN) website. The modules can be developed

for real-time monitoring of disease prevalence. For example, the Meningitis En-

vironmental Risk Information Technologies (MERIT) initiative developed such a

module for meningitis epidemics prediction (MERIT Initiative, 2012; Stanton,

Agier et al., 2014).

AGD enables more efficient estimation of spatial variation than traditional simple

random sampling strategies (Chipeta et al., 2016a), whilst retaining the objectivity

of probability-based sampling. In AGD the initial sample is a probability sample

(Chipeta et al., 2016a), albeit one that is restricted to induce a degree of spatial

regularity into sampled locations, and therefore achieves its increase in efficiency

without risk of introducing subjective bias.

The repeated cross-sectional AGD methods are generally versatile and may apply

to diseases with similar heterogeneity patterns (Schur et al., 2011; Grimes and

Templeton, 2016). For example, high disease burden for neglected tropical diseases

(NTDs) areas such as onchocerciasis, schistosomiasis etc. can be identified and

targeted for interventions such as mass drug administration (MDA).
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5.5 Conclusion.

AGD are automated algorithms that help in sampling optimisation decisions for

prevalence surveys. Applying AGD to continuous disease surveys provides fine-

scale disease prevalence prediction in resource-limited settings and can be a reliable

surveillance tool for both district and national level programme managers. AGD

results were readily available during the survey and identified several hotspots in

each of the focal areas. This disease monitoring approach is ready to be assessed

on a larger scale and for other diseases.
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5.6 Supplementary material.

5.6.1 Generalised linear modelling: non-spatial probit re-

gression model.

Probit regression modelling assuming no spatial dependence showed socio-economic

status, availability of at least 1 insecticide-treated bed net in the household, child’s

age, elevation and normalised difference vegetation index to be significant explan-

atory variables for malaria prevalence in children 6–59 months in Majete Wild-

life Reserve perimeter. This model (Equation (5.2)) is considered as “non-spatial

probit model for malaria prevalence”:

πi = Φ(XT
i β) (5.2)

where πi is the probability of a positive malaria RDT, Φ is the cumulative distri-

bution function, the X ′s are the linear predictors and β are coefficients. Socio-

economic status, bed nets, age and elevation are all negatively associated with

malaria prevalence whereas NDVI is positively associated with malaria prevalence,

see Table 5.3.
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Supplementary Table 5.3: Parameter estimates from non-spatial probit
model for malaria prevalence in children 6–59 months in Majete Wildlife Re-
serve perimeter.

Term Estimate Std Error Z value P-value
Intercept 0.19176 0.22873 0.84 0.40181
SES -0.09046 0.02203 -4.11 <0.001
ITN -0.25797 0.06732 -3.83 <0.001
Age -0.45688 0.06183 -7.39 <0.001
Elevation -0.00123 0.00018 -6.71 <0.001
NDVI 1.58551 0.51214 3.10 0.002

5.6.2 Geostatistical modelling of malaria prevalence: geos-

tatistical binary probit model.

Prevalence mapping and spatial predictions were obtained based on the geostat-

istical binary probit model for binary response data (Equation (5.1)). At location

xi, the response variable Yij is a binary indicator taking value 1 if the individual

has been tested positive for malaria and 0 otherwise. The index i represents the

household, and the index j represents an individual within the household. Yij are

mutually independent Bernoulli variables with probit link function Φ−1(·), con-

ditional on an unobserved spatial stochastic process S(x), hence the conditional

mean number of positive rapid diagnostic tests (RDT) at location xi depends on

explanatory variables (dij i.e. both at individual- and household- level) observed

at location xi and on S(xi), and pij is the probability that an individual j at loc-

ation xi will have a positive RDT. We modelled S(x) as a Gaussian process with

mean zero, variance σ2 and Matérrn correlation structure:
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Corr[S(x), S(x′)] = {2κ−1Γ(κ)}−1(u/φ)κKκ(u/φ) (5.3)

where u is the distance between x and x′, φ is the scale of spatial correlation and

κ is the smoothness parameter. The term S(x) in Equation (5.1) captures the

residual spatial variation after adjusting for the covariates.

5.6.3 Malaria prevalence in children 6–59 months in focal

area A.

Figure 5.5 (top panel) shows the prevalence of positive malaria RDT in children in

focal area A. The north-eastern and central parts of the area show localised malaria

hotspots. Overall, prevalence is generally low in focal area A, also in comparison

with focal areas B and C, focal area A has the lowest malaria prevalence. Figure 5.5

(bottom panel) shows the map of exceedance probabilities that prevalence is over

the national threshold of 30 %. The clear distinction in prevalence between the

upper and lower parts of north-east of focal area A is interesting. It shows an

example where increased sampling effort is needed to in order to look into and

understand other factors driving prevalence, i.e. social behaviour or environmental

factors.

Figure 5.6 shows the log odds of the predicted prevalence at each of the observed

locations in focal area A as explained by linear regression explanatory variables, see

Table 5.3 above, and the contribution of the stochastic process S(x). Households

in the north-west of the area show higher prevalence than the rest of the area.
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Supplementary Figure 5.5: Malaria prevalence in children 6–59 months in
focal area A (top panel). The bottom panel shows the map of exceedance prob-
abilities P (x; 0.3) for the Bayesian prediction.
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Supplementary Figure 5.6: Contributions of the linear regression and of the
unexplained spatial variation to the predicted log-odds of malaria prevalence in
children 6–59 months at each of the observed locations in focal area A.
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5.6.4 Malaria prevalence in children 6–59 months in focal

area C.

Figure 5.7 (top panel) shows the prevalence of positive malaria RDT in children

in focal area C. The area has several localised malaria hotspots throughout its

length. Overall, prevalence is relatively lower in focal area C, in comparison with

focal area B but higher than focal area A. Figure 5.7 (bottom panel) shows the

map of exceedance probabilities that prevalence is over 30 %. Similar to other

focal areas, focal area C has adjacent areas with largely antithetical prevalence.

Figure 5.8 shows the log odds of the predicted prevalence at each of the observed

locations in focal area C as explained by linear regression explanatory variables

and the contribution of the stochastic process S(x). Households at higher altitude

show lower prevalence as compared to households at a lower altitude. A large

proportion of the households shows a high prevalence in focal area C.
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Supplementary Figure 5.7: Malaria prevalence in children 6–59 months in
focal area C (top panel). The bottom panel shows the map of exceedance prob-
abilities P (x; 0.3) for the Bayesian prediction.



Chapter 5. Adaptive geostatistical sampling enables efficient identification of
malaria hotspots in rural Chikwawa, Malawi. 148

0 4 km

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Supplementary Figure 5.8: Contributions of the linear regression and of the
unexplained spatial variation to the predicted log-odds of malaria prevalence in
children 6–59 months at each of the observed locations in focal area C.
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Chapter 6

General discussion, conclusions and

future research.

This thesis has described methods for non-adaptive and adaptive geostatistical

designs. The need to develop user-friendly and affordable tools for monitoring

transmission and to control progress of malaria in resource-limited settings mo-

tivated the development of these design approaches. However, the methods are

generally applicable and therefore are relevant to other diseases and other scientific

areas. The methods focus on constructing designs for prevalence surveys that are

efficient for computing spatial predictions while taking the uncertainties of the

parameters in the Gaussian geostatistical model into account.

In the current chapter, we further discuss each of the papers presented in early

chapters. As each paper already contains its own discussion, we give only a short

summary of each, outlining the main contributions, the implications of our results
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in malaria transmission control and discussing possible future research aimed at

improving and broadening the range of applicability of the developed methodology.

Throughout the development of the methods in this thesis, we made stationary

Gaussian assumptions for the underlying random field for the geostatistical model

in Equation (1.1), one consequence of which is that a linear function of the data

that gives the best minimum mean square error (MMSE) prediction of the value

of the surface at an arbitrary location x0, say. The stationarity assumption im-

plies that the spatial correlation is a function of the distance between locations

and independent of locations themselves. These are reasonable and widely used

assumptions; see, for example, Journel and Huijbregts (1978), De Oliveira, Kedem

and Short (1997) and Diggle and Ribeiro (2002).

In Chapter 2, we proposed a class of inhibitory non-adaptive geostatistical designs.

We developed designs that compromise between efficient parameter estimation

and spatial prediction. The basic idea was to construct a design criterion based

on the variance of the predictive distribution, in which parameter uncertainties

are included. Through simulation studies, comparison to existing optimal designs

and an application to malaria prevalence data from the Majete malaria project in

Chikwawa district, southern Malawi, we showed that inhibitory designs with an

intermediate number of close pairs give the best performance.

ICP designs not only give the best performance, but they are also easy to im-

plement by an average practitioner as compared to other existing optimal design
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strategies. In terms of design computation time, ICP designs showed a 16 fold im-

provement (in computational speed) over the existing optimal simulated annealing-

based designs on a high end computing (HEC) cluster at Lancaster University.

During simulation studies, we were able to compute ICP designs on a Lenovo

Z70 laptop personal computer in under 30 minutes. Hence, we recommend that

where the same data are going to be used for parameter estimation and spatial

prediction, ICP designs should be used.

In Chapter 3, we proposed adaptive geostatistical designs for prevalence surveys.

These designs allow collection of geostatistical data over time to depend on inform-

ation obtained from previous information to optimise data collection towards the

analysis objective(s). Through simulation studies and an application to malaria

prevalence data from the Majete malaria project in Chikwawa district, southern

Malawi, we showed that using an adaptive design for fine-scale risk mapping can

lead to more accurate prevalence predictions. This approach finds wide applic-

ability in resource-limited settings, where accurate registry data typically are not

available.

One of the main contributions of this paper is that it develops a geostatistical

design methodology that allows probabilistic decision making in the identifica-

tion of sampling sites. Adaptive designs allow model fitting and refining as data

becomes available, with future sampling locations chosen accordingly. This is ad-

vantageous in the sense that a good choice of model may not be known in practice

until data collection has started. Furthermore, the paper demonstrates the prac-

tical implementation of the adaptive design methodology. It outlines algorithms
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that can easily be adapted for implementation in different software and scenarios,

ready for use.

We used the spatial integral of the predictive variance Equation (3.8) as an ap-

propriate measure of predictive performance. This holds for the application we

demonstrate in the paper. However, there are other criteria that can be used.

Maximum prediction variance,

MPV = max
x∈D

[Var(S(x))] (6.1)

is another criterion that has been used to measure the predictive performance of

a design, see, for example, Zimmerman (2006) and Fanshawe and Diggle (2012).

The criterion we use in this paper would not hold if, for example, we need to

delineate areas where disease prevalence is above or below a given threshold c or

if S(x) represents pollution (as in the case of the Galicia lead pollution example)

and the main objective is to monitor compliance with environmental standards.

Fanshawe and Diggle (2012) use as a criterion,

−
∫
D
{P (S(x) > c)− p0}2dx, (6.2)

where c and p0 are fixed values, to be specified in advance, the aim being to most

clearly delineate regions that lie above or below a policy-relevant threshold, c. In

our example, this criterion can be used to identify areas where disease prevalence or

pollution is above a certain threshold c that would trigger deployment of targeted
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interventions by programme implementers. This criterion can potentially be used

to further extend adaptive methods in constructing designs that allow focused

sampling effort in sub-areas with more interesting outcomes than other sub-areas.

Additionally, in environmental monitoring network design applications, a mobile

monitoring network can be used. This gives rise to a dynamic sampling design

problem, for which an adaptive design methodology would also be appropriate.

We develop and demonstrate the methodology in a malaria monitoring application.

The AGD sampling, as currently demonstrated, requires a complete enumeration

census of locations that must be geo-referenced in order to create a sampling frame,

from which samples can be drawn. This, for small scale studies (i.e. sub-district

level) is feasible and not an overly arduous process. However, when expanding

to regional or national level, the lack of such a sampling frame becomes a major

challenge to the implementation of such sampling design methods. One possible

solution to this challenge would be to employ a two-stage stratified sampling pro-

cedure, in which the study area is divided into strata then apply adaptivity at

either stratum level or within the stratum. We elaborate on this point later in

Section 6.1.

In Chapter 4, we presented a commentary on a paper by Ferreira and Gamer-

man (2015) which addressed a topical issue in geostatistics, namely the effect of

preferential sampling of the locations at which a spatial process is measured. It

has been widely shown and discussed that when the choice of spatial sampling

locations is consciously or unconsciously biased in some way, say by practical de-

mands (for example, in environmental monitoring network applications), this can
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lead to preferential sampling. This happens when the process that determines

the locations (for example, monitoring sites) and the process being modelled (for

example, pollution concentration) are stochastically dependent in particular ways

(Diggle and Giorgi, 2017). Recent studies include Diggle, Menezes and Su (2010),

Pati, Reich and Dunson (2011), Gelfand, Banerjee and Finley (2012), Shaddick

and Zidek (2014) and Zidek, Shaddick and Taylor (2014). The selective sampling

materially affects parameter estimation as well as prediction, both of which may

become biased. In our discussion, we introduced adaptive designs, which need not

be preferential. We also discussed practical considerations that may constrain the

geostatistical design problem in particular applications, including an application

in which we developed and applied adaptive geostatistical designs.

Chapter 5 presented the first field epidemiological application of AGD sampling,

involving a sequence of continuous malaria prevalence surveys to measure the dis-

ease’s spatial heterogeneity in declining transmission setting, in rural Malawi. The

geostatistical binary probit model in Section 5.2.5 incorporated spatial correla-

tion as well as individual-specific, household-specific and environmental covariates

to produce fine-scale spatial prediction for malaria prevalence in children 6–59

months. With this model, we were able to detect malaria hotspot areas and the

underlying malaria spatial heterogeneity over the study area.

With the current advances in geostatistical modelling, the growing need for ac-

curate high spatial resolution for fine scale mapping of disease burden in view of

decreasing malaria transmission, and the need for prudent allocation of resources,
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AGD sampling is a preferred option for continuous disease prevalence monitor-

ing. These novel methods can inform more efficient design and analysis of surveys

aimed at understanding geographical variations in intervention coverage and health

outcomes, especially at sub-district scales in low-resource settings.

This study provides researchers and programme implementers with a valuable al-

ternative for monitoring fine-scale disease prevalence needed to identify and target

high burden areas and hotspots. The approach outlined in this paper can be used

to complement periodical national disease surveys such as malaria indicator sur-

veys (MIS), demographic and health surveys (DHS) and Multiple Indicator Cluster

Surveys (MICS) to monitor malaria transmission and control progress both at sub-

national and sub-district levels. Most malaria spatial modelling is still carried out

in a research setting rather than in programme implementation. National control

programmes especially in resource-limited settings should incorporate these new

technologies to guide targeting of interventions. This Chapter contributes to cur-

rent advances in easy-to-use geostatistical modelling and its application in disease

transmission control and monitoring.

6.1 Future work

The stationarity assumption we make in the thesis is widely accepted. However, in

practice, local covariance may vary with spatial location, thus a stationary covari-

ance model may not be appropriate. For example, in our application, when mal-

ariological indices are modelled, local characteristics related to human activities,
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land use, environment and vector ecology influence spatial correlation differently

at the different locations. An extension of the methodology that would be of in-

terest, therefore, is to explore the effect of non-stationary covariance structure on

non-adaptive and adaptive sampling designs. Another extension would be to con-

struct designs that would be best for prediction of specified non-linear functionals

of S(·).

The above-mentioned characteristics (i.e. environmental, climate and human

activities) are also known to play an important role in determining how vector

distribution and vector-borne disease (e.g. malaria) epidemiology vary over time

(Machault et al., 2011). With our current implementation of the AGD technique

in Chapter 3, the algorithm identifies locations with high spatial prediction un-

certainty and uses this to allocate subsequent sampling at those locations. It does

not capture the impact of temporal variation in risk factors on health outcomes.

A possible extension of the methodology, therefore, is to take these temporal pro-

cesses into account, leading to further gains in efficiency of sampling and more

accurate risk maps. Malaria is known to be highly seasonal, therefore an import-

ant extension would be to allow the design to capture the temporal component in

predicting a moving target.

In this thesis, we demonstrate that the application of AGD in continuous malaria

prevalence monitoring is feasible for mapping malaria burden in resource-limited

settings, albeit on a small study region, namely an area surrounding Majete Wild-

life Reserve. An interesting future research question is to focus on national and/or
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regional scalability of these novel options to conduct fine-scale monitoring of mal-

aria burden and control progress. AGD disease monitoring methodology can offer

guidance to accelerate transmission reduction efforts at these levels, through tar-

geting interventions in the identified malaria transmission hotspots.

However, as highlighted earlier on, the lack of a sampling frame at these extended

scales limits the application of AGD strategy. This challenge begs for further

extension of methodology. An interesting area of research is therefore to explore

stratification techniques and apply “multiple phase” adaptive sampling at either

or both of two spatial scales namely “stratum” or “within stratum” level. One

strategy would be to fix the within strata sample sizes and adaptively select new

strata over time. Another strategy would be to fix the number of selected strata

and apply adaptivity within the strata over time. The third strategy would be to

apply adaptivity at both between and within strata, over time.

Additionally, a study on practicality and cost-effectiveness of the methodology in

field applications would be of interest to programme implementers and funders.

However, we have demonstrated that adaptive sampling can be easy to use and

affordable to implement; see, for example, Chipeta et al. (2016a). Specifically:

• samples are only collected from locations that will deliver useful, additional

information in order to understand the heterogeneity of phenomenon of in-

terest (i.e. disease) throughout the study region;

∗ adaptive sampling techniques can reduce both costs and time for car-

rying out surveys as well as improve the precision of the results for a
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given sample size;

• adaptive allocations require a smaller sample size than non-adaptive sampling

in achieving a specified level of predictive accuracy.

In the present thesis, we have developed methodology and implemented it in a

malaria setting. Another question of interest for future research is to implement

these methods to diseases with similar heterogeneity patterns. Neglected tropical

diseases such as soil-transmitted helminths (STH) and schistosomiasis exhibit high

burden especially in resource-limited areas (Hotez and Kamath, 2009; Schur et al.,

2011; Chipeta, Ngwira and Kazembe, 2013; Phiri, Ngwira and Kazembe, 2016).

Registries for such diseases in these areas typically do not exist, or where they exist,

they are usually incomplete or inaccurate. Adaptive sampling methods could be

applied to identify and increase accuracy in hotspots’ mapping in order to target

them with interventions such as mass drug administration (MDA). Adaptive and

non-adaptive geostatistical design methods can and should be used in various other

scientific areas and study fields such as crime mapping and environmental studies

like pollution level compliance or monitoring.
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Appendix A

Worked examples of inhibitory and

adaptive designs.

A.1 Hypothetical data.

In this Appendix, we show a worked example using the functions given in Ap-

pendix B. We simulate hypothetical Binomial data to illustrate the usage of the

functions to construct an “adaptive design”. We compare the predictive perform-

ance of the adaptive design with a completely random design. For these data, a

zero-mean Gaussian process is generated over a 64 by 64 grid covering the unit

square [0, 1]2, with parameters: σ2 = 1, φ = 0.1 and κ = 2; the nugget effect is

not included, hence τ 2 = 0. Binomial observations, with 7 trials at each grid point

and probabilities given by the anti-logit of the simulated values of the Gaussian

process, constitute the variable Y in the data. We use geoR function grf( ) to
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generate a simulation of a two-dimensional Gaussian process.

A.2 Design construction.

Using R code below, we now show how to construct an initial non-adaptive

simple inhibitory design, by sampling 70 locations, using inhibitory.design

function (see the algorithm in Section 2.3.2). We analyse these data and es-

timate model parameters by fitting a Binomial logistic regression model us-

ing binomial.logistic.MCML function. Spatial prediction is carried out using

spatial.pred.binomial.MCML function. Both functions are from PrevMap, an R

package for analysing spatially referenced prevalence data. Figure A.1 shows the

initial design with a minimum distance δ = 0.1.

inhibitory.sample <-

inhibitory.design(dataframe = myDF, coords.col = 1:2, k = 0,

data.col = c(3:5), size = 70, delta = 0.1,

zeta = 0)

sample.DF <- inhibitory.sample[[1]]

plot(inhibitory.sample[[1]][,1:2], pch = 19, col = "blue",

cex = 1, xlab = "Xcoord", ylab = "Ycoord", cex.lab = 1.5,

cex.axis=1)

We use data from the simple inhibitory design sample to fit a binomial logistic

model (see Equation (1.21)) with no covariates. Results from initial data analysis
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show an average prediction variance of 0.01049. Figures A.2a and A.2b show

prevalence predictions and their standard errors, respectively. Using results from

the initial analysis of data from the 70 sample locations, we now show how we

use adaptive.design function to construct a batch adaptive design by sampling a

further 30 locations in batches of 5 (see the algorithm in Section 3.3.5). Figure A.3

shows adaptively added sample locations (red dots) and initial locations (blue

dots). Note that in order to implement a singleton adaptive design, the batch size

in the R code below needs to be changed to 1.

counter <- 0

while(counter<100){

my.adapt.sample <-

adaptive.design(dataframe = myDF,coords.col = 1:2,

delta = 0.07, pred.var = pred.v, batch = 5,

mysample = my.adapt.sample[,1:5])

counter <- dim(my.adapt.sample)[1]

##' Fit the Binomial logistic model

adapt.LBGM.Fit <-

binomial.logistic.MCML(RDT ~ 1, units.m = ~Units.m,

coords = ~Longitude + Latitude,

data = my.adapt.sample, par0 = par0,

control.mcmc = c.mcmc,

method = "nlminb", kappa = 2,

fixed.rel.nugget = 0,
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start.cov.pars = par0[3],

messages = FALSE,

plot.correlogram = FALSE)

par0 <- c(adapt.LBGM.Fit$estimate[1],

exp(adapt.LBGM.Fit$estimate[2]),

exp(adapt.LBGM.Fit$estimate[3]))

##' Spatial predictions

adapt.Spat.Pred <-

spatial.pred.binomial.MCML(adapt.LBGM.Fit,grid.pred,

control.mcmc = c.mcmc,

type = "marginal",

standard.errors = TRUE,

scale.predictions = "prevalence",

messages = FALSE)

pred.v <- adapt.Spat.Pred$prevalence$standard.errors

adapt.apv <- (mean(pred.v))^2

}

plot(my.adapt.sample[,1:2], pch = 19, col = "red", cex = 1,

xlab = "Xcoord", ylab = "Ycoord", cex.lab = 1.5, cex.axis=1)

points(inhibitory.sample[[1]][,1:2], pch = 19, col = "blue",

cex = 1)
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Figures A.4a and A.4b show prevalence predictions and their standard errors,

respectively, from an adaptive design with 100 sample locations. The adaptive

design has an average prediction variance of 0.00793.

plot(adapt.Spat.Pred,type = "prevalence",

summary = "predictions", xlab = "Xcoord",

ylab = "Ycoord", cex.lab=1.5, cex.axis=1)

contour(adapt.Spat.Pred,type = "prevalence",

summary = "predictions",nlev = 3, add = TRUE)

plot(adapt.Spat.Pred,type = "prevalence",

summary = "standard.errors", maxpixels = 500000,

alpha = 1, xlab = "Xcoord", ylab = "Ycoord",

cex.lab = 1.5, cex.axis=1)

We compare the adaptive design’s predictive performance with a random design,

we sample with n = 100 using the R code below. Figure A.5 shows sample loca-

tions for the random design. Figures A.6a and A.6b show prevalence predictions

and their standard errors, respectively, from the random design. The average

prediction variance for the random design is 0.01933.

N <- dim(myDF)[1]

index <- 1:N

index.sample <- sample(index, 100, replace = FALSE)



Appendix A. Worked examples of inhibitory and adaptive designs. 173

random.sample <- myDF[index.sample,]

plot(random.sample[,1:2], pch = 19, col = "blue",

cex = 1, xlab = "Xcoord", ylab = "Ycoord", cex.lab = 1.5,

cex.axis=1)

plot(rand.Spat.Pred,type = "prevalence",

summary = "predictions", xlab = "Xcoord",

ylab = "Ycoord", cex.lab=1.5, cex.axis=1)

contour(rand.Spat.Pred,type = "prevalence",

summary = "predictions",

nlev = 3, add = TRUE)

plot(rand.Spat.Pred,type = "prevalence",

summary = "standard.errors",

maxpixels = 500000, alpha = 1, xlab = "Xcoord",

ylab = "Ycoord", cex.lab = 1.5, cex.axis=1)
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Figure A.1: Initial simple inhibitory design sample of 70 locations, δ = 0.1
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Figure A.2: Panel (a) prevalence prediction using data from initial simple
inhibitory design sample locations. Panel (b) standard errors for predictions in
panel (a).
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Figure A.3: Initial simple inhibitory samples (blue dots) augmented with ad-
aptive samples (red dots), n = 100.
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Figure A.4: Panel (a) prevalence prediction using data from adaptive design
sample locations. Panel (b) standard errors for predictions in panel (a).
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Figure A.5: Random design, n = 100 sample locations.
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Figure A.6: Panel (a) prevalence prediction using data from random design
sample locations. Panel (b) standard errors for predictions in panel (a).



Appendix B

R code for inhibitory and adaptive

geostatistical designs.

B.1 The random.design function.

Description.

This R function generates a completely random sample of locations from a popu-

lation of N locations, forming a grid of X - Y coordinates. The function generates

sample locations without replacement. A completely random sample has n loc-

ations xi, i = 1, . . . , n which are independently and uniformly distributed over

the region of interest, D. The function can be used retrospectively as well as

prospectively.
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Usage.

my.random.sample <- random.design(xycoords, n)

Arguments.

The required inputs for the function are:

• ‘xycoords’: A matrix containing X - Y coordinates of N potential sampling

locations.

• ‘n’: Number of locations to sample.

Value.

The resulting output is a matrix of X - Y coordinates for the sampled locations.

Implementation.

The function random.design is given by:

random.design <- function(xycoords, n)

{

res <- xycoords[sample(1:dim(xycoords)[1],

size = n, replace = FALSE), ]
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return(res)

}

B.2 The inhibitory.design function.

Description.

This R function generates non-adaptive inhibitory sample locations, with or

without close pairs, depending on the arguments (see below). The function can

be used retrospectively as well as prospectively.

Usage.

my.inhib.sample <-

inhibitory.design(dataframe, coords.col, data.col, delta, k,

size, zeta)

Arguments.

The required inputs for the function are:
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• ‘dataframe’: A data frame containing all potential sampling locations and

covariates (if any). If there are no covariates, this will be a matrix of X - Y

coordinates for all potential sampling locations.

• ‘coords.col’: A vector specifying X - Y coordinates’ columns in the data

frame.

• ‘data.col’: A vector specifying an n x m matrix containing covariates in the

data frame.

• ‘delta’: Inhibition distance or minimum distance between any two locations

in the preliminary sample.

• ‘k’: Number of close pairs locations (must be between 0 and n/2).

• ‘size’: The required total sample size n.

• ‘zeta’: Radius of a circle with centre x∗, one of the primary n − k points

within which close pairs are placed.

Value.

The function returns a list of two items namely:

• A data frame for sampled locations and their covariates (if any). Otherwise,

this will be an n x 2 matrix of X - Y coordinates for sampled locations.

• δ(k) value for the n− k simple inhibitory locations.
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Implementation.

inhibitory.design <- function(dataframe, coords.col = 1:2,

data.col = 3, delta, k, size, zeta)

{

if (!is.matrix(dataframe) & !is.data.frame(dataframe))

stop("object must be a matrix or data.frame.")

if (length(data.col) < 2)

stop("data.names allowed only if there is more than 1 column

of data.")

if (any(is.na(dataframe[, coords.col]))) {

warning("NA's not allowed in the coordinates.")

dataframe <- dataframe[complete.cases(dataframe), drop = FALSE]

warning("eliminating rows with NA's.")

}

if(any(k>size/2)){

stop("Close pairs must be between 0 and size/2.")

}

##' Inhibition distance varying with k

delta <- delta * sqrt(size/(size - k))

dsq <- delta*delta

dif <- size-k
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if(any(zeta>delta/2)){

zeta = delta/2

warning("Zeta > delta/2, zeta=delta/2 will be used.")

}

##' Random sample without replacement.

xy.all <- dataframe[, coords.col]

N <- dim(xy.all)[1]

index <- 1:N

index.sample <- sample(index, dif, replace = FALSE)

xy.sample <- xy.all[index.sample,]

##' Inhibition process for the n - k design points.

for (i in 2:dif){

dmin <- 0

while (dmin < dsq){

take <- sample(index, 1)

dvec <- (xy.all[take, 1] - xy.sample[, 1])^2 +

(xy.all[take, 2] - xy.sample[,2])^2;dvec

dmin <- min(dvec);dmin

}

xy.sample[i,] <- xy.all[take,]

}
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colnames(xy.sample) <- c("x", "y")

##' Close pairs sampling.

if (k>0) {

xy.cp <- matrix(NA, nrow = k, ncol = 2)

cp.mat<-matrix(sample(1:dif,k,replace=FALSE),k,2)

for (j in 1:k){

take1<-cp.mat[j,1]; take2<-cp.mat[j,2]

xy1<-c(xy.sample[take1,]); xy1 <- as.numeric(unlist(xy1))

angle<-2*pi*runif(1, min = 0, max = 1)

radius<-zeta*sqrt(runif(1, min = 0, max = 1))

if(any(radius<delta/4)){

radius = delta/4

}

xy.cp[j,] <-xy1+radius*c(cos(angle),sin(angle))

}

colnames(xy.cp) <- c("x", "y")

xy.sample <- rbind(xy.sample, xy.cp)

}

##' Subset dataframe for sampled locations.

ind.coords <- NULL

for(i in 1:nrow(xy.sample)) {
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ind.sel <- which(xy.sample[i,1]==

dataframe[,coords.col[1]] &

xy.sample[i,2]==

dataframe[,coords.col[2]])

ind.coords <- c(ind.coords,ind.sel)

}

inihib.DF <- dataframe[ind.coords,]

##' Return results.

return(list(inihib.DF = inihib.DF, delta = delta))

}

B.3 The adaptive.design function.

Description.

The adaptive.design function generates adaptive sample locations, given the

initial or existing sample locations (usually a simple inhibitory design) using the

prediction variance criterion. The function can be used retrospectively as well as

prospectively.

Usage.
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my.adaptive.sample <-

adaptive.design(dataframe, mysample, coords.col, pred.var, batch,

delta)

Arguments

The required inputs are:

• ‘dataframe’: A data frame containing all potential sample locations and

covariates at those locations (if any). If there are no covariates, this will be

a matrix of X - Y coordinates for all potential sampling locations.

• ‘mysample’: A data frame containing previously sampled locations (initial

or existing sample) and covariates (if any).

• ‘coords.col’: A vector specifying X - Y coordinates’ columns in the data

frame.

• ‘pred.var’: A vector containing prediction variances for all S(x).

• ‘batch’: Size of the adaptive sample location(s) to be added to the ini-

tial/existing sample points.

• ‘delta’: Minimum distance between any two locations in the new batch of

sample locations and also from existing sample locations.
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Value.

The function returns a data frame for sampled locations(existing and adaptive)

and their covariates (if any). Otherwise, it returns a matrix of X - Y coordinates

for sampled locations.

Implementation.

adaptive.design <- function(dataframe, mysample, coords.col,

pred.var, batch, delta)

{

#Order prediction variance

pred.v.sort <- order(pred.var, decreasing = T)

totalbatch = 1

counter = 1

rejected <- NULL

mylocations <- mysample[,c(coords.col)]

while(totalbatch <= batch){

#' Calculate distance from high prediction variance

# location to existing samples

distance <-pdist(mylocations,dataframe[,c(coords.col)]

[pred.v.sort[counter],])@dist
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min.dist <- min(distance)

#' If the location with highest variance is away from

#' existing samples, we add it to the sample;

#' Else, we reject it and check next high prediction

#' variance location

if(min.dist > delta){

mylocations <- rbind(mylocations,

dataframe[,c(coords.col)]

[pred.v.sort[counter],])

totalbatch <- totalbatch + 1

counter <- counter + 1

}

else{

rejected <- rbind(rejected,

dataframe[,c(coords.col)]

[pred.v.sort[counter],])

counter <- counter + 1

}

}

ind.coords <- NULL

for(i in 1:nrow(mylocations)) {
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ind.sel <- which(mylocations[i,1]==

dataframe[,coords.col[1]] &

mylocations[i,2]==

dataframe[,coords.col[2]])

ind.coords <- c(ind.coords,ind.sel)

}

adaptive.sample <- dataframe[ind.coords,]

return(adaptive.sample)

}
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