Palasz, Artur and Krzystanek, Marek and Worthington, John and Czajkowska, Beata and Kostro, Karol and Wiaderkiewicz, Ryszard and Bajor, Grzegorz (2012) Nesfatin-1, a unique regulatory neuropeptide of the brain. Neuropeptides, 46 (3). pp. 105-112. ISSN 0143-4179
Palasz_Revised2.pdf - Accepted Version
Available under License Creative Commons Attribution-NonCommercial.
Download (859kB)
Abstract
Nesfatin-1, a newly discovered NUCB2-derived satiety neuropeptide is expressed in several neurons of forebrain, hindbrain, brainstem and spinal cord. This novel anorexigenic substance seems to play an important role in hypothalamic pathways regulating food intake and energy homeostasis. Nesfatin-1 immunoreactive cells are detectable in arcuate (ARC), paraventricular (PVN) and supraoptic nuclei (SON), where the peptide is colocalized with POMC/CART, NPY, oxytocin and vasopressin. The nesfatin-1 molecule interacts with a G-protein coupled receptor and its cytophysiological effect depends on inhibitory hyperpolarization of NPY/AgRP neurons in ARC and melanocortin signaling in PVN. Administration of nesfatin-1 significantly inhibits consumatory behavior and decreases weight gain in experimental animals. These recent findings suggest the evidence for nesfatin-1 involvement in other important brain functions such as reproduction, sleep, cognition and anxiety- or stress-related responses. The neuroprotective and antiapoptotic properties of nesfatin-1 were also reported. From the clinical viewpoint it should be noteworthy, that the serum concentration of nesfatin-1 may be a sensitive marker of epileptic seizures. However, the details of nesfatin-1 physiology ought to be clarified, and it may be considered suitable in the future, as a potential drug in the pharmacotherapy of obesity, especially in patients treated with antipsychotics and antidepressants. On the other hand, some putative nesfatin-1 antagonists may improve eating disorders. (C) 2011 Elsevier Ltd. All rights reserved.