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Abstract

Whilst there are many approaches to detecting changes in mean for a univariate time-

series, the problem of detecting multiple changes in slope has comparatively been

ignored. Part of the reason for this is that detecting changes in slope is much more

challenging: simple binary segmentation procedures do not work for this problem,

whilst existing dynamic programming methods that work for the change in mean

problem cannot be used for detecting changes in slope. We present a novel dynamic

programming approach, CPOP, for finding the “best” continuous piecewise-linear

fit to data under a criterion that measures fit to data using the residual sum of

squares, but penalises complexity based on an L0 penalty on changes in slope. We

prove that detecting changes in this manner can lead to consistent estimation of

the number of changepoints, and show empirically that using an L0 penalty is more

reliable at estimating changepoint locations than using an L1 penalty. Empirically

CPOP has good computational properties, and can analyse a time-series with 10, 000
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observations and 100 changes in a few minutes. Our method is used to analyse data

on the motion of bacteria, and provides better and more parsimonious fits than two

competing approaches.

Keywords: Breakpoints, Functional Pruning, Linear Spline Regression, Narrowest-

over-threshold, Trend-filtering

1 Introduction

Changepoint detection and modelling is currently one of the most active research

areas in statistics due to its importance across a wide range of applications, includ-

ing: finance (Fryzlewicz, 2014); bioinformatics (Futschik et al., 2014); environmental

science (Killick et al., 2010); target tracking (Nemeth et al., 2014) and fMRI (Aston

and Kirch, 2012). It appears to be increasingly important for analysing large scale

data streams, as a flexible way of modelling heterogeniety in these streams. This

paper focusses on detecting changes in slope: we consider data whose mean varies

over time, and we model this mean as a continuous piecewise-linear function of time.

To motivate this work consider the challenge of analysing data of the angular position

and velocity of a bacterium, see Figure 1. The movement of the bacterium is driven

by the bacterial flagella, a slender thread-like structure that enables it to swim. The

movement is circular, and thus the position of the bacterium at any time point can

be summarised by its angular position. The data we show comes from Sowa et al.

(2005), and consists of a time-series of the amount of rotation that the bacterium has

done from its initial position.

The interest in such data is in deriving understanding about the bacterial flagella

motor. In particular the angular motion is characterised by stationary periods inter-

spersed by periods of roughly constant angular velocity. The movement tends to be,
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Figure 1: Part of a time-series of angular position of a bacterium (Sowa et al., 2005);

best fitting piecewise constant mean (left-hand plot) and continuous piecewise-linear

mean (right-hand plot). The former fits data from periods of rotation with a number

of short stationary regimes.

though is not exclusively, in one direction.

Sowa et al. (2005) analyse this data using a changepoint model, where the mean is

piecewise constant. An example fit from such a model is shown in 1(a). This model is

not a natural model given the underlying physics of the application, and this can be

seen in how it tries to fit periods of rotation by a number of short stationary regimes. A

more natural model is one where we segment the data into periods of constant angular

velocity. Such a model is equivalent to fitting a continuous piecewise-linear mean

function to the data, with the slope of this function in each segment corresponding

to the angular velocity in the segment. Such a fit is shown in 1(b).

Whilst detecting changes in slope seems to be a similar statistical problem to de-

tecting changes in mean, it is fundamentally more challenging. For example, binary

segmentation approaches (Scott and Knott, 1974; Fryzlewicz, 2014), which are the

most popular generic approach to detecting multiple changepoints, do not work for

detecting changes in slope (as shown by Baranowski et al., 2016). Binary segmen-

3



tation iteratively applies a method for detecting a single changepoint. For change

in slope problems one can show that initial estimates of changepoint locations can

be midway between actual changepoint locations; binary segmentation is unable to

recover from such errors.

A standard approach to detecting changes in mean is to attempt to find the “best”

piecewise-constant mean function, where best is defined based on its fit to the data

penalised by a measure of complexity of the mean function (Yao, 1988; Lavielle and

Moulines, 2000). The most common measure of fit is through the residual sum of

squares, and the most natural measure of complexity is the number of changepoints.

The latter corresponds to imposing an L0 penalty on the change in the mean. Dy-

namic programming can be used to efficiently find the best segmentation of the data

under such a criterion for the change in mean problem (Jackson et al., 2005; Killick

et al., 2012; Maidstone et al., 2017).

Our statistical approach is to use the same framework to detect changes in slope.

We aim to find the best continuous piecewise-linear mean function, where best is

defined in terms of the residual sum of squares plus a penalty that depends on the

number of changepoints. We present asymptotic results that estimating changepoints

in this manner can give consistent estimates of the number of changepoints and can

accurately estimate their location.

However using this criteria introduces computational challenges, as standard algo-

rithms cannot be directly applied to minimise our criteria. The reason for this is that

the assumption of continuity introduces dependencies in the parameters associated

with each segment, and these in turn violate the conditional independence structure

that existing dynamic programming algorithms use. Detecting changes in slope under

this criterion lies within a class of NP-hard problems (Weinmann and Storath, 2015).

It is not clear to us whether our specific problem is NP-hard, but, as far as we are

aware, no polynomial-time algorithm has yet been found. Despite this, we present
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a dynamic programming algorithm that does find the best segmentation under this

criterion, and has practicable computational cost – of the order of minutes when

analysing 10, 000 data points with of the order of 100 changepoints.

There has been earlier work on detecting changes in slope using the same or similar

statistical criteria. These include Tomé and Miranda (2004) who use an exhaustive

search to find the best segmentation – an approach that is only feasible for very small

data sets, with perhaps at most 100 to 200 data points. Alternatively, approximate

solutions to the true optimal segmentation are found (Horner and Beauchamp, 1996;

Goldberg et al., 2014). As we show, our novel dynamic programming approach is

guaranteed to find the best segmentation under our criterion, and is still computa-

tionally feasible for large data sets.

2 A Penalised Cost Approach to Detecting Changes

in Slope

We assume that we have data, y = (y1, . . . , yn), ordered by time. We will use the

notation that, for t ≥ s, the set of observations from time s to time t is ys:t =

(ys, . . . , yt). If there are m changepoints in the data, this will correspond to the data

being split into m+1 distinct segments. We let the location of the jth changepoint be

τj for j = 1, . . . ,m, and set τ0 = 0 and τm+1 = n. The jth segment will consist of data

points yτj−1+1, . . . , yτj . We let τ = (τ0, . . . , τm+1) be the set of ordered changepoints.

We consider the case of fitting a continuous piecewise-linear function to the data. An

example of such a fit is given in the right-hand plot of Figure 1. For such a problem,

changepoints will correspond to points in time where the slope of the function changes.

There are a variety of ways of parameterising the linear function within each segment.

Due to the continuity constraint that we wish to enforce it is helpful to parameterise
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this linear function by its value at the start and its value at the end of the segment.

Our continuity constraint then requires the value for the end of one segment to be

equal to the value at the start of the next segment. For the changepoint τi we

will denote this common value by φτi . A continuous piecewise linear function is

then defined by the set of changepoints, and these values of the linear function at

the changes, φτi for i = 0, . . . ,m + 1. We will simplify notation by letting φ =

(φτ0 , . . . , φτm+1). In situations where we refer to a subset of this vector we will use

the notation φj:k = (φτj , . . . , φτk) for 0 ≤ j ≤ k ≤ m+ 1.

Under this parameterisation, we model the data as, for i = 0, . . . ,m,

Yt = φτi +
φτi+1−φτi
τi+1−τi (t− τi) + Zt, for t = τi + 1, . . . , τi+1, (1)

where Zt, for t = 1, . . . , n, are independent, zero-mean, random variables with com-

mon variance σ2.

We infer the set of changepoints with a penalised cost approach, using a squared-error

loss function to measure fit to the data. That is, we minimise over m, τ , and φ,

m∑
i=0

[
1

σ2

τi+1∑
t=τi+1

(
yt − φτi −

φτi+1
− φτi

τi+1 − τi
(t− τi)

)2

+ h(τi+1 − τi)

]
+ βm, (2)

for some suitable choice of penalty constant β > 0 and segment-length penalty func-

tion h(·). These penalties are needed to avoid over-fitting of the data. Perhaps the

most common choice of penalty is BIC (Schwarz, 1978), where β = 2 log(n) and

h(s) = 0 for all segment lengths s. However, it has been shown that allowing the

penalty to depend on segment length can improve the accuracy of penalised cost ap-

proaches, and such penalties have been suggested (Zhang and Siegmund, 2007; Davis

et al., 2006). The above cost function assumes knowledge of the noise variance, σ2. In

practice this is not known and needs to be estimated, for example using the Median

Absolute Deviation estimator (Hampel, 1974); see for example Fryzlewicz (2014).

We can simplify (2) through introducing segment costs. Define the segment cost for

fitting the mean of the data ys+1:t with a linear function that starts at φ at time s
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and ends at ψ at time t as

C(ys+1:t, φ, ψ) =
1

σ2

t∑
j=s+1

(
yj − φ−

ψ − φ
t− s

(j − s)
)2

.

We estimate the number and location of the changepoints, and the underlying contin-

uous piecewise-linear function, through solving the following minimisation problem:

min
τ ,m,φ

{
m∑
i=0

[
C(yτi+1:τi+1

, φτi , φτi+1
) + h(τi+1 − τi)

]
+ β(m+ 1)

}
. (3)

2.1 Asymptotic Properties of the Penalised Cost Approach

We now consider the asymptotic properties of estimating changepoints by minimising

(3). For this we will assume data is generated from the model (1) with Z1, Z2, . . . ,

being independent and identically distributed Gaussian random variables. Without

loss of generality, we will assume their variance is 1.

The properties of our estimates will depend on the choice of both penalties, h(·) and

β. To obtain consistency we will need the latter to depend on the number of data

points, n, and thus in this section denote its value by βn. We will further assume

that h(·) = γ log t for some constant γ. This covers the common choices of how the

penalty depends on segment length (e.g. Zhang and Siegmund, 2007; Davis et al.,

2006).

Theorem 2.1 Fix the true number of changepoints, and denote this as m. For a

given n, suppose Yt is defined by (1) with Z1, . . . , Zn being independent identically

distributed standard Gaussian random variables. Let δn = mini=1,...,m+1(τi − τi−1) be

the minimum segment length, let

∆i
n =

∣∣∣∣(φi − φi−1τi − τi−1

)
−
(
φi+1 − φi
τi+1 − τi

)∣∣∣∣ ,
be the change in slope at changepoint i, and let ∆n = mini ∆

i
n be the smallest change

in slope. Assume that δn → ∞ and δ3n∆2
n/ log n → ∞ as n → ∞. Let m̂n be the
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number of changepoints estimated by minimising (3) with h(t) = γ log t and β replaced

by βn, and let τ̂1, . . . , τ̂m̂n be the corresponding estimates of the changepoint locations.

There exists constants C1, C2 such that if βn > C1 log n and βn is also o(∆2
nδ

3
n) then

as n→∞,

Pr

(
m̂n = m, max

i=1,...,m

{
|τ̂i − τi| (∆i

n)2/3
}
≤ C2(log n)1/3

)
→ 1. (4)

The proof of the theorem is in the Supplementary Material. The result supports

the common choice of choosing a penalty, βn, proportional to log n, but does not

specify the constant of proportionality. The argument used in the proof suggests that

this constant should increase with the number of true changes – however we believe

this is due to the corresponding argument not being tight as it ignores correlation in

the fit we will obtain for different, but similar, putative changepoints. The result as

stated has strong similarity with those for the Narrowest-over-Threshold procedure

of Baranowski et al. (2016) for detecting changes in slope.

The assumption that Z1:n are independent Gaussian random variables is used to

bound the tail of the reduction in residual sum of squares that we would obtain by

adding a changepoint (see Lemmas B.1 and B.3 in the Supplementary Material).

Qualitatively similar tail bounds would be possible with sub-Gaussian noise, or noise

with short-range dependence (see Wang and Samworth, 2018, for similar arguments).

The impact of such changes would be to change requirements on the constant of

proportionality, C1, of the penalty βn.

The standard in-fill asymptotic regime, corresponding to sampling data at increasing

frequency, would have ∆n = O(1/n). In this case the bound on the error of estimates

of the changepoint locations is just a logarithmic factor worse than the minimax

rate of n2/3 (Raimondo, 1998). More generally, the condition that δ3n∆2
n/ log n→∞

means that (4) implies |τ̂i−τi| = op(δn) for all i = 1, . . . , n: the error in estimating the

changepoint locations are asymptotically negligible when compared to the minimum
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segment length.

3 Minimising the Penalised Cost

We present a pruned continuous-state dynamic programming approach to calculate

the exact solution to (3) efficiently. This approach is much more complicated than

other dynamic programming algorithms used in changepoint detection as neighbour-

ing segments share a common parameter: the end-point of the piecewise-linear func-

tion for one segment is the start-point for the next segment.

Dynamic programming requires a conditional separability property. We need to be

able to choose some information at time s such that, conditional on this information,

we can separately minimise the cost related to the data before and after s. For simpler

changepoint problems, this information is just the presence of a changepoint at s. For

our problem, because neighbouring segments share a parameter, we need to condition

on both the location of a changepoint at s and the value of the function at s. Given

both these pieces of information we can separately find the best segmentation of the

data before s and the best segmentation of the data after s.

3.1 Dynamic Programming Approach

Consider segmenting the data up to time t, y1:t, for t = 1, . . . , n. When segmenting

y1:t with k changepoints, τ1, . . . , τk, we use the notation τ0 = 0 and τk+1 = t. We define

the function f t(φ) to be the minimum penalised cost for segmenting y1:t conditional
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on the fitted value at time t being φ:

f t(φ) = min
τ ,k,φ0:k

{
k−1∑
i=0

[
C(yτi+1:τi+1

, φτi , φτi+1
) + h(τi+1 − τi)

]
+ [C(yτk+1:t, φτk , φ) + h(t− τk)] + β(k + 1)

}
.

Using the initial condition that f 0(φ) = 0, we can construct the following recursion:

f t(φ) = min
φ′,s

{
min

τ0:k−1,k,φ0:k−1

{
k−2∑
i=0

[
C(yτi+1:τi+1

, φτi , φτi+1
) + h(τi+1 − τi)

]
+

+ C(yτk−1+1:s, φτk−1
, φ′) + h(s− τk−1) + βk

}
+ C(ys+1:t, φ

′, φ) + h(t− s) + β

}
,

= min
φ′,s
{f s(φ′) + C(ys+1:t, φ

′, φ) + h(t− s) + β} .

The idea is that we split the minimisation into first minimising over the time of the

most recent changepoint and the fitted value at that changepoint, and then minimising

over the earlier changepoints and fitted values. We let s denote the time of the most

recent changepoint, and φ′ the fitted value at s. The inner minimisation is over the

number of changepoints, the locations of those changepoints prior to s, and the fitted

values at the changepoints prior to s. This inner minimisation gives the minimum

penalised cost for segmenting y1:s conditional on φs = φ′, which is f s(φ′). The

challenge with solving this recursion is that it is in terms of functions of a continuous

parameter, φ.

To store f t(φ) we will write it as the point-wise minimum of a set of cost functions of

φ, each of which corresponds to a different vector of changepoints, τ . We define each

of these functions f tτ (φ) as the minimum cost of segmenting y1:t with changepoints

at τ = τ1, . . . , τk and fitted value at time t being φ:

f tτ (φ) = min
φ0:k

{
k−1∑
i=0

[
C(yτi+1:τi+1

, φτi , φτi+1
) + h(τi+1 − τi)

]
+C(yτk+1:t, φτk , φ) + h(t− τk) + β(k + 1)

}
. (5)
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Then f t(φ) is the point-wise minimum of these functions, f t(φ) = minτ∈Tt f
t
τ (φ),

where Tt is the set of all possible changepoint vectors at time t.

Each of the above functions, f tτ (φ), is a quadratic in φ and thus can be represented

by a vector of length 3, with the terms in this vector denoting the co-efficients of the

quadratic. We can calculate the co-efficients recursively, see Appendix C, and thus

can iteratively compute these functions and calculate fn(φ).

We calculate the optimal segmentation of y1:n by minimising fn(φ) over φ. The

value of τ that achieves the minimum value will be the optimal segmentation. This

approach, however, is computationally expensive. To obtain a practicable algorithm

we have to use pruning ideas to reduce the number of changepoint vectors, and

corresponding functions f tτ (φ), that we need to store. There are two ways in which

this can be achieved: functional pruning and inequality based pruning (Rigaill, 2015;

Killick et al., 2012; Maidstone et al., 2017). In both cases they are able to remove

changepoint vectors whilst still maintaining the guarantee that the resulting algorithm

will find the true minimum of the optimisation problem (2).

3.2 Functional Pruning

We can prune candidate changepoint vectors from the minimisation problem if they

can be shown to be dominated by other vectors for any given value of φ.

Define the set
∗
T t as the set of changepoint vectors that are optimal for some φ at

time t

∗
T t =

{
τ ∈ Tt : f t(φ) = f tτ (φ), for some φ ∈ (−∞,∞)

}
, (6)

where Tt is the set of all possible changepoint vectors at time t. The following theorem

shows that if a candidate vector τ is not in this set at time s then the related candidate

vector (τ , s) is not in the set at time t. Thus at any time s we will need to store only
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the functions f sτ (φ) corresponding to segmentations in
∗
T s.

Theorem 3.1 If τ /∈
∗
T s then (τ , s) /∈

∗
T t for all t > s.

Proof: See Appendix D.

The key to an efficient algorithm will be a way of efficiently calculating
∗
T t. We can

use the above theorem to help us do this. From Theorem 3.1 we can define a set

T̂t =

{
(τ , s) : s ∈ {0, . . . , t− 1}, τ ∈

∗
T s
}
, (7)

and we will have that T̂t ⊇
∗
T t. So assume that we have calculated the sets

∗
T s for

s = 0, . . . , t− 1. We can calculate f tτ (φ) only for τ ∈ T̂t. When calculating f t(φ) we

can just minimise over the set of changepoint vectors in T̂t rather than the full set. To

find
∗
T t we use the fact that φ is one-dimensional and perform a line search where we

recursively find the quadratic function associated with τ ∈ T̂t for which f t(φ) = f tτ (φ)

as we increase φ from −∞ to ∞. This method is given in full in Algorithm 2 in the

Supplementary Material, and there is a detailed explanation in Appendix E.

3.3 Inequality Based Pruning

A further way pruning can be used to speed up the dynamic programming algorithm

is based on the following result.

Theorem 3.2 Define K = 2β + h(1) + h(n). If h(·) is non-negative, and non-

decreasing and if for some τ ,

min
φ
f tτ (φ) > min

φ′

[
f t(φ′)

]
+K, (8)

then at any future time T , τ can never be optimal for the data y1:T .
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Proof: See Appendix D.

This result states that for any candidate changepoint vector, if the best cost at time

t is worse than the best cost over all changepoint vectors plus K, then the candidate

is sub-optimal at all future times as well. Thus we can reduce the size of T̂t before

the cost functions are updated, discarding candidates from the set if (8) is true. Once

discarded, these will remain discarded for all future sets T̂T for T > t.

Both pruning steps can be used to restrict the set of candidate changepoint vectors

that the dynamic program is run over. We call the resulting algorithm CPOP, for

Continuous-piecewise-linear Pruned Optimal Partitioning. The pseudocode for the

full method with these pruning steps is outlined in Algorithm 1 in the Supplementary

Material.

The computational cost of CPOP is studied in detail in Section 4.4.1 of Maidstone

(2016). These empirical results suggest the algorithm’s computational cost is close to

quadratic in n in situations where there is a fixed number of changepoints, and close

to linear in n in situations where the number of changepoints increases linearly with

n.

4 Statistical Performance of CPOP

We now look empirically at the statistical performance of CPOP, and compare with

two other methods for fitting a continuous piecewise-linear mean function to data.

All computation was carried out using R (R Core Team, 2017). For simplicity we

look at minimising our criterion (2) with the BIC penalty, though see Chapter 5 of

Maidstone (2016) for results of CPOP when using the modified BIC penalty of Zhang

and Siegmund (2007).

The most common, general, approach for detecting changes is to use binary seg-
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mentation (Scott and Knott, 1974), but as mentioned in the introduction binary

segmentation does not work for this problem: there are examples where even if you

observed the underlying mean function without noise, binary segmentation would not

correctly identify the changepoints.

To overcome this, Baranowski et al. (2016), present the narrowest-over-threshold

(NOT) algorithm. The NOT algorithm proceeds by (i) taking a pre-specified num-

ber, M , of intervals of data, ysi:ti say; (ii) performing a generalised likelihood ratio

test for a change in slope on each ysi:ti ; (iii) keeping all intervals for which the test-

statistic is above some pre-specified threshold; (iv) ordering these intervals, with the

shortest interval first and the longest last; (v) running down this list in order, adding

changepoints at each of the inferred changepoint locations for an interval providing

that interval does not contain any previously inferred changepoints. The idea of the

algorithm is that by concentrating on the smallest intervals in (iv), these will be likely

to have at most one actual changepoint, and hence the inferred changepoint in step

(v) should be close in position to this actual changepoint.

In practice, NOT is run for a continuous range of thresholds in step (iii). This

will produce a set of different segmentations of the data. The segmentation that

is then chosen is the one that minimises the BIC for a model where the residuals

are independent Gaussian with unknown variance σ2. For a segmentation with m

changepoints at locations τ , the BIC corresponds to the minimum, over φ, of

n log

(
1

n

m∑
i=0

[
τi+1∑

t=τi+1

(
yt −

φτi+1
− φτi

τi+1 − τi
(t− τi)

)2
])

+ 2m log n. (9)

This is closely related to our criterion (2) with the BIC penalty, except for the as-

sumption of unknown variance, and the fact that this criterion is only minimised

over the set of segmentations found by the NOT algorithm. One advantage of this

approach is that it avoids the need to have an estimate of σ.

The other approach we compare to is the trend-filtering algorithm (Kim et al., 2009).
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Trend-filtering aims to minimise the residual sum of squares of the fitted continuous

piecewise-linear mean, but with an L1 penalty on how the slope changes. One impor-

tant difference between an L1 penalty and the L0 penalty is that the L1 penalty is the

same for multiple consecutive changes in slope of the same sign as it is for one larger

change in slope. We believe this means that trend-filtering will tend to over-estimate

the number of changepoints.

Trend-filtering requires a choice of penalty, in the same way that we need to choose

the penalty β in (2). To mimic the approach of NOT we use a BIC type approach

(other approaches to choosing this penalty are considered in Maidstone, 2016, and

give qualitatively similar results). This involves running the trend-filtering algorithm

for a discrete set of penalty values. For a given penalty value, trend-filtering will

output an estimate of the mean at each time point. From this we can infer the

changepoint locations as the points where the estimated mean has a change in slope.

We evaluate the output from each run of the trend-filtering algorithm using BIC. If

the estimated mean is φ̂1:n, and this has m changes in slope, then using the fact that

for trend-filtering a segmentation with m changes in slope has an effective degrees of

freedom that is m+ 2 (Tibshirani, 2014), the BIC value is

1

σ2

(
n∑
t=1

[yt − φ̂t]2
)

+ (m+ 2) log(n).

Other approaches, including fitting a change in mean to differenced data and ignoring

the continuity constraint when detecting changepoints, are considered in Maidstone

(2016). However these all perform much worse, across all measures of accuracy, than

the three approaches we compare here.

In the comparisons below we implement CPOP for minimising (2) with the BIC

penalty. We use the not R-package to implement NOT Baranowski et al. (2016), and

the code available from http://stanford.edu/~boyd/l1_tf to implement trend-

filtering. For NOT we set the number of intervals, M in step (i) of the algorithm

above, to 105. This is larger than recommended in Baranowski et al. (2016), but we
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Figure 2: Example data from the three simulation scenarios: wave1 and wave2 (top

row) have a fixed mean function. For the Random scenario (bottom row), the form of

the mean is random, and we give two example realisations.

found it gave slightly better results than the default choice of 104 intervals. For trend-

filtering and CPOP we need an estimate of the variance of the residuals. Within a

segment, the variance of the second differences of the data is easily shown to be 6

times the variance of the residuals. Thus we take second differences, and take one-

sixth of the median-absolute-deviation estimator of their variance. Of course, being

heuristic methods, both NOT and trend-filtering are much faster algorithms than

CPOP. Across all the scenarios we considered, trend-filtering and NOT ran in a few

seconds, whereas CPOP took between tens of seconds to a few minutes.

The three scenarios that we compared the methods on are shown in Figure 2. The first

two of these, wave1 and wave2, are taken from Baranowski et al. (2016). These two

scenarios have a fixed mean function. We consider extensions of these two scenarios

with higher-frequency observations for wave1, where we have twice or four times as
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many observations within each segment; and longer time-series for wave2, where we

have 20 or 40 segments, each of 150 observations, rather than just 10. In the third

scenario, which we call Random, we simulate the underlying mean for each data set.

This setting has segments of equal length, but the value of the mean function at the

start/end of each segment is simulated from a Gaussian distribution with variance

4. For this setting we will consider varying both the number of data points and the

number of changepoints. In all cases we add independent standard Gaussian noise to

the mean.

Following Baranowski et al. (2016), for wave1 and wave2 we compare methods using

the mean square error (MSE) of the estimates of the mean, and using a scaled Haus-

dorff distance, dH , to measure accuracy of the changepoint locations. This distance

is defined as

dH =
1

ns
max

{
max
j

min
k
|τj − τ̂k|,max

k
min
j
|τj − τ̂k|

}
,

where τ̂k are the estimated changepoint locations, τj the true changepoint locations,

and ns the length of the largest segment. The idea is that for each true change we find

the closest estimated changepoint, and for each estimated changepoint we find the

closest true changepoint. We then calculate the distance between each of these pairs

of changepoints, and dH is set to the largest of these distances divided by the length

of the longest segment. The smaller dH the better the estimates of the changespoints,

with dH = 0 meaning that all changepoints are detected without error, and no other

changepoints are estimated.

First we analyse data from the wave1 and wave2 scenarios. We consider different

lengths of data with either a fixed number of changepoints (wave1) or with the number

of changepoints increasing linearly with the number of data points (wave2). For

both wave1 and wave2 there is a substantial change in the slope of the mean at

each changepoint. As such, these represent relatively straightforward scenarios for

detecting changepoints, and both NOT and CPOP perform well at detecting the
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Figure 3: Results for CPOP (black solid line), NOT (blue dotted line) and trend-

filtering (red dashed line) for wave1 (top row) and wave2 (bottom row). We give

results for mean square error of the estimate of the mean (left-hand column) and for

the accuracy of the estimates of the changepoint locations, measured via dH (right-

hand column). For wave1 we had data sets of length n = 1408, n = 2816 and

n = 5632,. For wave2 we had data sets of length n = 1500, n = 3000 and n = 6000.

Results are averaged over 100 data sets for each scenario and each value of n.

number of changepoints: NOT correctly identifies the number of changepoints for all

600 simulated data sets, and CPOP correctly identifies the number of changepoints

in over 99% of these cases. By comparison trend-filtering substantially over-estimates

the number of changepoints in all cases. For wave1 the average number of changes

detected is 16 for n = 1408, rising to 29 for n = 5632, when the true number of changes

is 7. We have similar over-estimation for wave2. The reason for this is the use of the

L1 penalty, which is known to lead to algorithms that cannot consistently estimate

the number of changepoints for the simpler change in mean setting (Levy-leduc and
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Harchaoui, 2008). The L1 penalty is the same for multiple consecutive changes in

slope of the same sign as it is for one large change. As a result trend-filtering tends

to introduce multiple changepoints around each actual change.

This over-estimation of the number of changes results in the much larger value of dH

for this method than for NOT and CPOP: see the right-hand plots of Figure 3. Whilst

NOT and CPOP perform similarly in terms of accuracy when estimating changepoint

location, CPOP is more accurate in terms of estimating the underlying mean: see the

MSE results in the left-hand plots of Figure 3. Again both methods perform better

than trend-filtering. We believe the reason for this is that trend-filtering shrinks

the change in slope towards 0. For signals like wave1 and wave2 where all changes

in slope are substantial, this causes trend-filtering to under-estimate these changes.

This can introduce substantial error at estimating the mean in regions around each

changepoint.

We now compare the three methods on the Random simulation scenario. We consider

data sets of length varying from 1000 to 10000, with either a fixed number of 20

segments or with the segment length fixed to 100. This is a harder scenario, with the

change in slope being small in many cases (see the example data sets in the bottom

row of Figure 2). As a result there are many changepoints that are hard to detect. In

all cases CPOP and NOT underestimate the number of changes, while trend-filtering

still over estimates this number. These two different sources of error are masked in the

measure dH , and thus we summarise the accuracy of changepoint detection through

true-positive and false-positive proportions. To calculate these we say that an actual

change is detected if there is an estimated changepoint within a certain distance of

it. The results we show have set this distance to be a fifth of the segment length,

though qualitatively similar results are obtained with different choices. We calculate

the number of false positives as the number of changepoints detected less the number

of true positives. Our results are in terms of the true-positive proportion, which is
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Figure 4: Results for CPOP (black solid line), NOT (blue dotted line) and trend-

filtering (red dashed line) for the Random scenario with a fixed number of changepoints

(top row) and a fixed segment length (bottom row). We give results for mean square

error of the estimate of the mean (left-hand column) and for the accuracy of the

estimates of the changepoint locations, measured via the proportion of true-positives

(middle column) and of false-positives (right-hand column). Results are averaged

over 100 data sets for each case and each value of n.

the proportion of actual changepoints detected, and the false-positve proportion, the

proportion of detected the changepoints that are false-positive.

Results are shown in Figure 4. These are qualitatively different from the earlier

results. For this problem we see that trend-filtering is most accurate in terms of

estimating the underlying mean. We believe that trend-filtering is more suited to

this scenario as there are a range of values for how much the slope changes at each
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changepoint, including many cases where the change is small. Hence the shrinking

of the change in slope that trend-filtering induces is actually beneficial. As trend-

filtering estimates more changes, it detects a higher proportion of true changepoints,

but it has a high false-positive proportion: in all cases over 40% of the changepoints

it finds are false-positives. By comparison both NOT and CPOP have lower false

positive proportions, and encouragingly, this proportion decreases as the segment

length increases (see top right-hand plot in Figure 4). Whilst NOT is marginally

better in terms of accuracy of the detected changepoints, CPOP is substantially

more accurate in terms of its estimate of the underlying mean.

5 Bacterial Flagella Motor Data

We return to the bacterial flagella motor data we introduced in Section 1 and Figure

1. For more background on these biological systems see Sowa et al. (2005) and Sowa

and Berry (2008). Data similar to those we analyse has been collected by Ryu et al.

(2000), Chen and Berg (2000) and Sowa et al. (2003) among others. Here we look at

how well we can extract the angular motion by fitting change-in-slope models using

the CPOP algorithm. The data we analyse comes from Sowa et al. (2005) and is

shown in Figure 5. It consists of 11,912 observations.

The aim of our analysis is to fit the underlying angular position. We first compared

fitting a continuous piecewise-linear mean to both fitting a piecewise-constant mean

and a discontinuous piecewise-linear mean. We fit the latter two by minimising the

residual sum of squares plus a penalty times the number of changepoints, using the

PELT algorithm (Killick et al., 2012). In all cases we varied the penalty value using

the CROPS algorithm (Haynes et al., 2017). Different penalty values lead to optimal

segmentations with different numbers of changepoints. For each different segmenta-

tion we calculated the actual residual sum of squares of the fit we obtained. A plot
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Figure 5: Time-series of angular position (data from Sowa et al., 2005) and example

fits obtained by NOT (top); CPOP (middle) and trend-filtering (bottom). The fits

by NOT and CPOP are ones which give a similar fit to the data; the NOT fit has

784 changepoints and the fit from CPOP just 182. The fit from trend-filtering has

278 changepoints, though many correspond to very small changes in slope, and a

substantially worse fit to the data (see text for more details). For ease of presentation

we have plotted the angle of the bacteria, the model we fit assumes continuity of

angles of 360 degrees (top of each plot) and 0 degrees (bottom of each plot).

of this against the number of free parameters in the fitted mean is shown in Figure 6.

We can see that fitting a continuous piecewise-linear function, which is more natural

for this application, leads to a uniformly better fit to the data than the change in
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Figure 6: Accuracy of fits of data shown in Figure 5 by a piecewise-constant mean (red

dashed line), a continuous piecewise-linear mean (black full line) and a discontinuous

piecewise-linear mean (blue dotted line). For each type of line we found the best

segmentation, in terms of minimising the residual sum of squares (RSS) of the fit, for

a range of the number of changepoints. We plot the RSS against the number of free

parameters of the fitted mean function for each case.
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mean for any given number of parameters. The assumption of continuity also gives

improvements for fitted means with fewer than 400 parameters. While the differences

in residual sum of squares looks small, due to the large number of observations, the

reduction in log-likelihood, under a model where the residuals are iid Gaussian, is

still substantial. For example, for models with fewer than 350 parameters, the best

fitting continuous mean has a log-likelihood that is 32.4 units greater than the best

fitting discontinuous mean.

We also compared the accuracy of using CPOP to analyse this data to that of using

NOT and trend-filtering. A comparison of the fits obtained using NOT, CPOP and

trend-filtering are shown in Figure 5. We ran NOT with a total of 106 random

intervals, and have plotted the segmentation that minimised (9). This segmentation

has 794 changepoints, largely because it substantially overfits the latter part of the

data. For comparison, an example fit from CPOP is also shown. The segmentation

obtained using CPOP has 182 changepoints. Despite fewer changes, it has a smaller

residual sum of squares than the segmentation that NOT found: 1.72 as compared to

1.80.

We also ran trend-filtering for a range of penalty values. For all penalty values

that gave a reasonable fit to the data, the number of changes in slope was large:

with changes at more than half the time-points, but with the majority of changes in

slope being small. One example fit is shown in the bottom plot of Figure 6. This

has 10,850 changes in slope, though only 278 of these are non-zero if we round the

slopes, in degrees, to 3 decimal places. Despite the large number of changepoints,

the estimated mean we obtained appears to under-fit the data in a number of places

and has a higher residual sum of squares, 2.94, than the fitted mean shown for either

CPOP or NOT.
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6 Discussion

As with any approach to detecting changepoints, minimising the square error loss of

the fit to the data plus an L0 penalty requires specifying the penalty for adding a

changepoint. Whilst using a penalty of 2 log n worked well in simulations, there is

currently no theory to support this choice. Furthermore, this choice is only likely

to be appropriate for data where the residuals are independent Gaussian with a

known variance, or a variance that can accurately be estimated. In practice we would

recommend minimising the penalised cost over a range of penalties, using the CROPS

algorithm Haynes et al. (2017), as we did in Section 5, to investigate the robustness

of the segmentations that one obtains by varying the penalty. Furthermore there

are approaches to using the output across a range of penalties to help choose an

appropriate penalty (Arlot and Massart, 2009). Such an approach would also give

robustness to errors in the estimate of the variance of the residuals, as a change in the

estimate of the variance is equivalent to keeping the variance fixed and changing the

penalty. Alternatively comparing segmentations for different penalty choices on test

data, either simulated or real-life, can be used to help make an appropriate choice of

penalty (Hocking et al., 2013).

Our dynamic programming approach has the potential to be applied to a much wider

range of changepoint problems with dependence across segments. The key require-

ment is that we can construct a recursion for a set of functions, our f t(φ), that

are piecewise-quadratic in some univariate parameter φ. This requires that we mea-

sure fit to the data through the residual sum of squares, that the dependence of

the parameters in successive segments is through a univariate quantity φ, and that

any constraints on parameters in successive segments respect the piecewise-quadratic

nature of f t(φ). This would cover change in mean or slope under monotonicity con-

straints (Hocking et al., 2017; Jewell et al., 2018), our change in slope model with an

additional L1 or L2 penalty on the change in slope, or more general models for the
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mean that are piecewise-polynomial and continuous.

The requirement that dependence across segments is through a univariate quantity

comes from our functional pruning approach. Such pruning is important for reduc-

ing the computational complexity of the algorithm. It is unclear whether functional

pruning can be implemented for piecewise-quadratic functions, f t(φ), when φ is not

univariate as the line search approach we take does not generalise beyond the uni-

variate case. Even if not, it may be possible to develop efficient algorithms that

implement an approximate version of functional pruning.
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Supplementary Material for Detecting changes in slope with an L0

penalty

A Proof of Theorem 2.1

Throughout this section m will denote the true number of changepoints. When we

consider possible segmentations with a general number of changepoints, we will tend

to let d denote the number of changepoints. For data Y1:n denote the penalised cost

of segmenting the data with d changepoints τ̂1:d by

Q(Y1:n; τ̂1:d) = min
φ

[
d∑
i=0

{
C(Yτ̂i+1:τ̂i+1

, φτ̂i , φτ̂i+1
) + h(τ̂i+1 − τ̂i)

}
+ βn(d+ 1)

]
. (10)

Further, denote the unpenalised cost by

Q0(Y1:n; τ̂1:d) = min
φ

{
d∑
i=0

C(Yτ̂i+1:τ̂i+1
, φτ̂i , φτ̂i+1

)

}
. (11)

We will allow the second argument of both of these functions to be an unordered

vector of changepoints, in which case the penalised, or unpenalised, cost is calculated

in the obvious way: we remove any duplicate changepoints, order the changepoints

and use either (10) or (11) for the ordered changepoints. We also allow the vector of

changepoints to include times outside the time-interval for the data – in which case

those changepoints are ignored. We write Q0(Y1:n) for the unpenalised cost if we fit

a model with no changepoints.

We base our proof on related proofs for consistency of the number and location of

changepoints for change in mean (e.g. Yao, 1988). The extra complication comes

from the cost associated with a given segment depending on the location of the

other changepoints. To overcome this issue we will use the property of our model

that if we add two changepoints at consecutive time-points then the costs associated

with segmenting the data before and the data after the pair of changepoints can be
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calculated independently of each others. So given a set of d1 changepoints prior to t,

τ̂ττ 1:d1 and a set of d2 changepoints after t+ 1, τ̂ττ (d1+1):(d1+d2), then

Q0(YYY 1:n; τ̂ττ 1:(d1+d2), t, t+ 1) = Q0(YYY 1:t, τ̂ττ 1:d1) +Q0(YYY (t+1):n, τ̂ττ (d1+1):(d1+d2)). (12)

This can be shown by a simple reparameterisation between the change in slope model

fitted for the left-hand side of the equation and the two change in slope models fitted

on the right-hand side. As adding changepoints can only lead to a reduction in the

unpenalised cost, this gives the following way of bounding the residual sum of squares

associated with a given segmentation, which we repeatedly use. For any s = 1, . . . , n,

Q0(YYY 1:n; τ̂ττ 1:d)−
n∑
t=1

Z2
t ≥

{
Q0(YYY 1:s; τ̂ττ 1:d)−

s∑
t=1

Z2
t

}
+

{
Q0(YYY (s+1):n; τ̂ττ 1:d)−

n∑
t=s+1

Z2
t

}
,

(13)

where, as defined above, we interpret Q0(YYY 1:s, τ̂ττ 1:d), say, as the unpenalised cost for

segmenting YYY 1:s using just the subset of the changepoints τ̂ττ 1:d that lie between time

1 and time s− 1.

We define three events which depend on Y1:n. The first of these, which we call E1
n, is

the event that, for suitable constants α > 0 and α′ > 0,

max
i=0,...,m

[
max
d,τ̂ττ1:d

{
Q0(YYY (τi+1):τi+1

; τ̂ττ 1:d)−
τi+1∑

t=τi+1

Z2
t + dα log n+ α′

√
log n

}]
> 0.

This event states that if you consider any segment, then the unpenalised cost for fitting

just the data in that segment with changepoints τ̂ττ 1:d is less than dα log n+α′(log n)1/2

lower than the sum of the square of the true residuals for that segment. This holds

for all segments and all choices of changepoints.

The second event, E2
n, is that for ln = bδn/2c

min
i=1,...,m

{
Q0(YYY (τi−ln+1):(τi+ln))−Q0(YYY (τi−ln+1):(τi+ln); τi)

}
>

1

50
l3n∆2

n

This event states that if you consider the ln data points either side of any changepoint,

then the reduction in the unpenalised cost of fitting a model with the true change,

2



as compared to fitting a model with no change, to this data is greater than a term

proportional to l3n∆2
n. This holds for all m changepoints.

The final event, E3
n is similar to that for E2

n but with a different number of data points

associated with each changepoint. For i = 1, . . . ,m let lin = bC2(log n)1/3(∆i
n)−2/3c

with C2 as defined in the statement of Theorem 2.1. The event E3
n, is that

min
i=1,...,m

[{
Q0(YYY (τi−lin+1):(τi+lin)

)−Q0(YYY (τi−lin+1):(τi+lin)
; τi)
}
− 1

50
(lin)3(∆i

n)2
]
> 0.

Lemmas B.1 and B.3, which are stated and proved in Section B, show that each of

these three events occurs with probability tending to 1. Thus in the following we will

assume they hold, and show that if they do then, for sufficiently large n, the event in

the statement of Theorem 2.1 must also hold. We will do this in three stages.

First we show that, for sufficiently large n, m̂n ≥ m if E2
n occurs. To do this we

consider an arbitrary segmentation of the data τ̂ττ 1:d with d < m changepoints, and

show that the penalised cost for this segmentation must be higher than the cost of

another segmentation.

For such a segmentation, there must exist at least one true changepoint such that no

estimated changepoint lies within half the minimum segment length, ln = bδn/2c, of

it. Denoting such a changepoint by τi,

Q0(YYY 1:n; τ̂ττ 1:d) ≥ Q0(YYY 1:(τi−ln); τ̂ττ 1:d) +Q0(YYY (τi−ln+1):(τi+ln)) +Q0(YYY (τi+ln+1):n; τ̂ττ 1:d)

> Q0(YYY 1:(τi−ln); τ̂ττ 1:d) +Q0(YYY (τi−ln+1):(τi+ln); τi) +Q0(YYY (τi+ln+1):n; τ̂ττ 1:d) + l3n∆2
n/50

= Q0(YYY 1:n; τ̂ττ 1:d, τi − ln, τi − ln + 1, τi, τi + ln, τi + ln + 1) + l3n∆2
n/50

The first inequality comes from (13). We have then used (12) and the bound on the

change of unpenalised cost from adding a true changepoint that comes from event

E2
n. The penalised cost

Q(YYY 1:n; τ̂ττ 1:d)−Q(YYY 1:n; τ̂ττ 1:d, τi − ln, τi − ln + 1, τi, τi + ln, τi + ln + 1)

3



is thus bounded below by ∆2
nl

3
n/50 − 5|γ| log n − 5βn. By the assumptions on ∆n

and δn, log n = o(∆2
nl

3
n). If βn = o(∆2

nl
3
n) this will be positive for sufficiently large

n. This argument applies for any segmentation with fewer than m changepoints, and

hence for sufficiently large n, if E2
n occurs then no segmentation with fewer than m

changepoints can minimise the penalised cost.

Next we show that m̂n ≤ m if the event E1
n occurs. To do this we consider an arbitrary

segmentation of the data τ̂ττ 1:d with d > m changepoints, and show that the penalised

cost for this segmentation must be higher than the cost of the true segmentation.

First note that
n∑
t=1

Z2
t ≥ Q0(YYY 1:n;τττ 1:m).

Hence

Q(YYY 1:n; τ̂ττ 1:d)−Q(YYY ;τττ 1:m) ≥ Q0(YYY 1:n; τ̂ττ 1:d)−
n∑
t=1

Z2
t − d|γ| log n+ (d−m)βn,

where we have used a simple bound on the difference in the contribution of the h(·)

terms to the two penalised costs. We can bound the first part of the right-hand side

by repeated application of (13):

Q0(YYY 1:n; τ̂ττ 1:d)−
n∑
t=1

Z2
t ≥

m∑
i=0

{
Q0(YYY (τi+1):τi+1

; τ̂ττ 1:d)−
τi+1∑

t=τi+1

Z2
t

}
> −αd log n− α′(m+ 1)

√
log n.

The last inequality comes from using event E1
n to bound the contribution from each

term in the sum. If βn > C1 log n then

Q(YYY 1:n; τ̂ττ 1:d)−Q(YYY ;τττ 1:m) > {C1(d−m)− d|γ| − αd} log n− α′(m+ 1)
√

log n.

For C1 > m(|γ|+α) this is positive for all d > m for sufficiently large n. Hence there

exists a constant C1 such that if βn > C1 log n a segmentation with d > m will never

minimise the penalised cost.

Taken together, the results shown so far show that m̂n = m with probability tending

to 1. The final part of the proof is to show that there exists a constant, C2, such that

4



with probability tending to 1

max
i=1,...,m

{
|τ̂i − τi| (∆i

n)2/3
}
≤ C2(log n)1/3. (14)

We show that this is guaranteed, for sufficiently large n, if all events occur. Similar

to before, our proof will be to consider an arbitrary segmentation for which (14) does

not hold, and show that it cannot minimise the penalised cost. We will consider only

n large enough that lin is greater than δn for all i. This must be occur for large enough

n as ln increases at rate that is bounded above by a constant times (log n/∆n)1/3,

while by the assumptions of the Theorem δn increases at a strictly faster rate.

As m̂n = m with probability tending to 1, we need only consider segmentations with

m changes. Let τ̂ττ 1:m be such a segmentation for which (14) does not hold, and let τi

be a changepoint for which

|τ̂i − τi| (∆i
n)2/3 > C2(log n)1/3.

Define an event, E4
n, to be the event that both

max
τ̂ττ1:d

Q0(YYY (τi−1+1):(τi−lin); τ̂ττ 1:d)−
τi−lin∑

t=τi−1+1

Z2
t

+ dα log n+ α′
√

log n > 0,

and

max
τ̂ττ1:d

Q0(YYY (τi+lin+1):(τi+1); τ̂ττ 1:d)−
τi+1∑

t=τi+lin+1

Z2
t

+ dα log n+ α′
√

log n > 0,

occur for all i. This will occur with probability tending to 1 by Lemma B.1.

We have

Q(YYY 1:n; τ̂ττ 1:m)−Q(YYY 1:n;τττ 1:m) ≥ Q0(YYY 1:n; τ̂ττ 1:m)−
n∑
t=1

Z2
t −m|γ| log n.

5



Now using (13)

Q0(YYY 1:n; τ̂ττ 1:m)−
n∑
t=1

Z2
t ≥

i−2∑
j=0

Q0(YYY (τj+1):τj+1
; τ̂ττ 1:m)−

τj+1∑
t=τj+1

Z2
t

+

m∑
j=i+1

Q0(YYY (τj+1):τj+1
; τ̂ττ 1:m)−

τj+1∑
t=τj+1

Z2
t

+

Q0(YYY (τi−1+1):(τi−lin); τ̂ττ 1:m)−
τi−lin∑

t=τi−1+1

Z2
t

+

Q0(YYY (τi+lin+1):τi+1
; τ̂ττ 1:m)−

τi+1∑
t=τi+lin+1

Z2
t

+

Q0(YYY (τi+lin+1):(τi+lin)
)−

τi+l
i
n∑

t=τi−lin+1

Z2
t

 , (15)

where we interpret a sum from j = 0 to −1, or from j = m + 1 to m as having the

value 0. If E1
n and E4

n occur then we can lower bound the sum of all terms except the

final one by −mα log n− (m+ 1)α′
√

log n

The final term on the right-hand side of (15) can be written as

{
Q0(YYY (τi−lin+1):(τi+lin)

)−Q0(YYY (τi−lin+1):(τi+lin)
; τi)
}

+

Q0(YYY (τi−lin+1):(τi+lin)
; τi)−

τi+l
i
n∑

t=τi−lin+1

Z2
t .


Using events E3

n and E1
n, the two bracketed terms on the right-hand side can be

bounded below by 1
50

(lin)3(∆i
n)2 and −α log n− α′

√
log n respectively.

Thus

Q(YYY 1:n; τ̂ττ 1:m)−Q(YYY 1:n;τττm) >
1

50
(lin)3(∆i

n)2−(m+1)α log n−(m+2)α′
√

log n−|γ|m log n.

(16)

By the definition of lin,

(lin)3(∆i
n)2 = (C2)

3 log n+ o(log n),

and thus we can choose C2 such that (16) is positive for large enough n. �

B Lemmas for Proof of Theorem 2.1

Throughout this section Z1, Z2, . . . will denote an infinite set of independent, identi-

cally distributed standard Gaussian random variables.
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The following lemmas show that each of E1
n, E2

n and E3
n occur with probability tending

to 1.

Lemma B.1 Consider data from a segment of length l,

Yt = φ0 +
φ1 − φ0

l
t+ Zt, for t = 1, . . . , l.

where, without loss of generality, we have assumed this is the first segment. Fix

ε > 0 and choose any constant α > 2(1 + ε). For any set of d ≥ 1 changepoints τ1:d

with 0 < τ1 < · · · < τd < l, there exists a constant C independent of l, d and the

changepoint locations such that

Pr

(
l∑

t=1

Z2
t −Q0(Y1:l; τ1:d) > dα log l

)
≤ Cl−d(1+ε); (17)

and for any α′ > 0,

Pr

(
l∑

t=1

Z2
t −Q0(Y1:l) > α′

√
log l

)
→ 0 (18)

as l→∞.

Furthermore as l→∞,

Pr

{
max
d,τ1:d

(
ln∑
t=1

Z2
t −Q)(Y1:l; τ1:d)− dα log l − α′

√
log l

)
> 0

}
→ 0 (19)

Proof. For the first set of results τ1:d is a fixed set of d changepoints. Standard

results for the normal linear model give,

l∑
t=1

Z2
t −Q0(Y1:l; τ1:d) ∼ χ2

d+2,

as we are fitting a model with d+ 2 parameters. We can bound the upper tail of this

random variable using (see e.g. Lemma 8.1 of Birgé, 2001)

Pr
{
χ2
d+2 > (d+ 2) + 2

√
(d+ 2)x+ 2x

}
≤ exp(−x). (20)

7



For any α > 2(1 + ε), for large enough l and any integer d > 0

dα log l > (d+ 2) + 2
√

(d+ 2)d(1 + ε) log l + 2d(1 + ε) log l,

and hence there exists an L0 such that for l > L0, using (20) with x = d(1 + ε) log l,

Pr(χ2
d+2 > dα log l) ≤ exp{−d(1 + ε) log l} = l−d(1+ε).

As we can choose an L0 independent of d, this is sufficient to prove (17).

To show (18) we use (20) with d = 0. For any α′ > 0

α′
√

log l > 2 + 2
√

2x+ 2x,

where x = (α′/3)(log l)1/2, for large enough l. Hence for large enough l

Pr

(
l∑

t=1

Z2
t −Q0(Y1:l) > α′

√
log l

)
≤ exp

(
a
α′

3

√
log l

)
,

and the right-hand side tends to 0 as l→∞.

To show (19) holds it is sufficient to sum the probabilities in (17) over all segmenta-

tions of Y1:ln and show this sum tends to 0. To do this note that we can bound the

number of segmentations with d changepoints by ld. Thus

Pr

{
max
d,τ1:d

(
l∑

t=1

Z2
t −Q0(Y1 : l; τ1:d)− dα log l − α′

√
log l

)
> 0

}
≤

l−1∑
d=1

ldCl−d(1+ε) < C
∞∑
d=1

l−dε.

This is just Cl−ε/(1− l−ε) which, as ε > 0, tends to 0 as l→∞ as required. �

Corollary B.2 Event E
(1)
n occurs with probability tending to 1 as n→∞.

Proof. This follows immediately from using (19) for each of the m+ 1 segments. �

Lemma B.3 For a given l and any φ0, φ1 and φ2 with

∆ =

∣∣∣∣φ1 − φ0

l
− φ2 − φ1

l

∣∣∣∣
8



let

Yt = φ0 +
φ1 − φ0

l
t+ Zt, for t = 1, . . . , l, and

Yt = φ1 +
φ2 − φ1

l
(t− l) + Zt, for t = l + 1, . . . , 2l.

Then for l > 2

Pr

(
Q0(YYY 1:2l)−Q0(YYY 1:2l; l) <

1

50
∆2l3

)
≤ exp

{
− 1

800
∆2l3

}
.

Proof. Standard results for the normal linear model (e.g Theorem 15.8 of Muller

and Stewart, 2006) give that, for l > 2, Q0(YYY 1:2l) − Q0(YYY 1:2l; l) has a non-central

chi-squared distribution with 1 degree of freedom, and non-centrality parameter

ν = ∆2 l(l + 1)(l − 1)

24

{
4l2 + 2

4l2 − 1

}
.

For l > 2, ν > ∆2l3/25. We can bound the lower tail of such a random variable,

χ2
1(ν), using (see e.g. Lemma 8.1 of Birgé, 2001)

Pr
(
χ2
1(ν) < 1 + ν − 2

√
(1 + 2ν)x

)
≤ exp{−x}.

Taking x = (1 + 2ν)/64, and noting that for such an x, (ν+ 1)− 2
√

(1 + 2ν)x > ν/2,

we get

Pr

(
Q0(YYY 1:2l)−Q0(YYY 1:2l; l) <

1

50
∆2l3

)
≤ Pr (Q0(YYY 1:2l)−Q0(YYY 1:2l; l) < ν/2) ≤ exp{−ν/32}.

The result follows by noting that ν > l3∆2/25 for l > 2. �

Corollary B.4 Events E
(2)
n and E

(3)
n occur with probability tending to 1 as n→∞.

Proof. We can apply Lemma B.3 to each region around a changepoint as ln > 2 for

sufficiently large n. For event E2
n, as ∆2

nl
3
n →∞ the probability of

Q0(YYY τi−ln+1:τi+ln)−Q0(YYY τi−ln+1:τi+ln ; τi) >
1

50
l3n∆2

n

for a given changepoint, τi, tends to 1. As there are a fixed number of changepoints,

we get that this must hold for all changepoints with probability tending to 1, as

required. A similar argument holds for event E3
n. �
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C Updates for Quadratic Functions

In Section 3 (equation 5) we define a function, f tτ (φ), as the minimum cost of seg-

menting y1:t with changepoints at τ = τ1, . . . , τk and fitted value φt = φ at time t.

We then derived a recursion for these functions as follows

f tτ (φ) = min
φ′

{
f τkτ1,...,τk−1

(φ′) + C(yτk+1:t, φ
′, φ) + β + h(τi+1 − τi)

}
. (21)

The functions f tτ (φ) are quadratics in φ, and we denote f tτ (φ) as follows

f tτ (φ) = atτ + btτφ+ ctτφ
2, (22)

for some constants atτ , btτ and ctτ . We then wish to calculate these coeffcients by

updating the coefficients that make up f τkτ1,...,τk−1
(φ′) using (21). To do this we need

to write the cost for the segment from τk + 1 to t in quadratic form. Defining the

length of the segment as s = t− τk this cost can be written as

C(yτk+1:t, φ
′, φ) =

(s+ 1)(2s+ 1)

6sσ2
φ2 +

(
(s+ 1)

σ2
− (s+ 1)(2s+ 1)

3sσ2

)
φ′φ

−
(

2

sσ2

∑
yj(j − τk)

)
φ+

(
1

σ2

∑
y2i

)
+ 2

(
1

sσ2

∑
yj(j − τk)−

1

σ2

∑
yi

)
φ′ +

(s− 1)(2s− 1)

6sσ2
φ′2. (23)

Writing (23) as Aφ2 + Bφ′φ + Cφ + D + Eφ′ + Fφ′2 for constants A, B, C, D and

E, substituting (23) into (21) and minimising out φ′ we can get the formula for the

updating the coefficients of the quadratic f tτ (φ):

10



atτ = A− B2

4
(
aτk(τ1,...,τk−1)

+ F
) ,

btτ = C −

(
bτk(τ1,...,τk−1)

+ E
)
B

2
(
aτk(τ1,...,τk−1)

+ F
) ,

ctτ = cτk(τ1,...,τk−1)
+D −

(
bτk(τ1,...,τk−1)

+ E
)2

4
(
aτk(τ1,...,τk−1)

+ F
) + β + h(t− τk). (24)

D Proofs from Section 3

D.1 Proof of Theorem 3.1

The proof of Theorem 3.1 works by contrapositive. We show that if (τ , s) ∈
∗
T t then

a necessary condition of this is that τ ∈
∗
T s, taking the contrapositive of this gives

Theorem 3.1.

proof Assume (τ , s) ∈
∗
T t, then there exists φ such that

f t(φ) = f t(τ ,s)(φ),

Now for any φ∗,

f s(φ∗) + C(ys+1:t, φ
∗, φ) + β ≥ min

φ′,r
[f r(φ′) + C(yr+1:t, φ

′, φ) + β] ,

= f t(φ),

= f t(τ ,s)(φ),

= min
φ′′
{f sτ (φ′′) + C(ys+1:t, φ

′′, φ) + β} , (25)

= f sτ (φA) + C(ys+1:t, φ
A, φ) + β,

where φA is the value of φ′′ which minimises (25). As φ∗ can be chosen as any value,

we can choose it as φA. By cancelling terms we get f s(φA) ≥ f sτ (φA) and hence

11



f s(φA) = f sτ (φA) and therefore τ ∈
∗
T s. We have shown that if (τ , s) ∈

∗
T t then

τ ∈
∗
T s, by taking the contrapositive the theorem holds. �

D.2 Proof of Theorem 3.2

The proof for Theorem 3.2 follow a similar argument to the corresponding proof in

Killick et al. (2012). However we have to add a segment consisting of the single point

yt+1 to deal with the dependence between the segments.

Proof Let τ ∗ denote the optimal segmentation of y1:t. We will repeatedly use the

fact that

C(yt+1, φ
′, φ) =

1

σ2
(yt+1 − φ)2,

and this does not depend on φ′.

First consider T = t+1. As adding a changepoint without penalty will always reduce

the cost, it is straightforward to show

fTτ (φ) ≥ min
φ′

[
f tτ (φ′) + C(yt+1, φ

′, φ)
]
,

= min
φ′

[f tτ (φ′)] + min
φ′

[C(yt+1, φ
′, φ)],

> min
φ′

[
f t(φ′)

]
+K + min

φ′
[C(yt+1, φ

′, φ)],

≥ min
φ′

[
f t(φ′) + C(yt+1, φ

′, φ) + β + h(1)
]
.

Thus segmenting y1:T with changepoints τ always has a greater cost than segmenting

y1:T with changepoints (τ ∗, t).

Now we consider T > t+ 1. We start by noting that by adding changes, at any point,

without the penalty term and minimising over the corresponding φ values will also

decrease the cost. Therefore

fTτ (φ) ≥ min
φ′,φ′′

[
f tτ (φ′) + C(yt+1, φ

′, φ′′) + C(yt+2:T , φ
′′, φ)

]
. (26)

12



So from (26) and using (8),

fTτ (φ) ≥ min
φ′,φ′′

[
f tτ (φ′) + C(yt+1, φ

′, φ′′) + C(yt+2:T , φ
′′, φ)

]
,

≥ min
φ′

[f tτ (φ′)] + min
φ′,φ′′

[C(yt+1, φ
′, φ′′) + C(yt+2:T , φ

′′, φ)],

> min
φ′

[
f t(φ′)

]
+K + min

φ′,φ′′
[C(yt+1, φ

′, φ′′) + C(yt+2:T , φ
′′, φ)],

≥ min
φ′,φ′′

[
f t(φ′) + C(yt+1, φ

′, φ′′) + β + h(1) + C(yt+2:T , φ
′′, φ) + β + h(T − t+ 1)

]
.

Therefore the cost of segmenting y1:T with changepoints τ is always greater than

the cost of segmenting y1:T with changepoints (τ ∗, t, t + 1) (where τ ∗ is the optimal

segmentation of y1:t) and this holds for all T > t+ 1 and hence τ can be pruned. �

E Pseudo-Code for CPOP

The CPOP algorithm uses Algorithm 2 to calculate the intervals on which each

function is optimal. This then enables the functions that are not optimal for any

value of φ to be removed. The idea of this algorithm is as follows.

We initialise the algorithm by setting the current parameter value as φcurr = −∞

and comparing the cost functions in our current set of candidates (which we initialise

as Ttemp = T̂t) to get the optimal segmentation for this value, τcurr. This can be

optimisation can be done my noting that the quadratic with smallest cost will have

the smallest coefficient of the quadratic term. If more than one quadratic has the

smallest coefficient, we then choose the quadratic with the largest coefficient of the

linear term; and if necessary, then choose the quadratic with the smallest constant

term.

For each τ ∈ Tcurr we calculate where f tτ next intercepts with f tτcurr (smallest value of

φ for which f tτ (φ) = f tτcurr(φ) and φ > φcurr) and store this as xτ . If for a τ ∈ Ttemp

we have xτ = ∅ (i.e. f tτ doesn’t intercept with f tτcurr for any φ > φcurr) then we
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Algorithm 1: Algorithm for Continuous Piecewise-linear Optimal Partitioning

(CPOP)

Input : Set of data of the form y1:n = (y1, . . . , yn).

A positive penalty constant, β, and a non-negative, non-decreasing

penalty function h(·).

Let n = length of data;

set T̂1 = {0};

and set K = 2β + h(1) + h(n);

for t = 1, . . . , n do

for τ ∈ T̂t do

if τ = {0} then

f tτ (φ) = min
φ′
C(y1:t, φ

′, φ) + h(t);

else

f tτ (φ) = min
φ′

{
f τkτ1,...,τk−1

(φ′) + C(yτk+1:t, φ
′, φ) + h(t− τk) + β

}
;

for τ ∈ T̂t do

Inttτ =

{
φ : f tτ (φ) = min

τ ′∈T̂t
f tτ ′(φ)

}
;

∗
T t = {τ : Inttτ 6= ∅};

T̂t+1 = T̂t ∪
{

(τ , t) : τ ∈
∗
T t
}

;

T̂t+1 =

{
τ ∈ T̂t+1 : min

φ
f tτ (φ) ≤ min

φ′,τ ′

[
f tτ ′(φ

′)
]

+K

}
;

fopt = min
τ ,φ

fnτ (φ);

τopt = arg min
τ

[
min
φ
fnτ (φ)

]
;

Output: The optimal cost, fopt, and the corresponding changepoint vector, τopt.

remove τ from Ttemp. We take the minimum of xτ (the first of the intercepts) and

set it as our new φcurr and the corresponding changepoint vector that produces it as

τcurr. We repeat this procedure until the set Ttemp consists of only a single value τcurr

14



which is the optimal segmentation for all future φ > φcurr.

As written, our algorithm assumes there is a unique quadratic that is optimal for

each interval – which we believe will happen with probability 1. If this is not the

case, we can interpret the algorithm as choosing one of the optimal quadratics, and

outputing an optimal, as opposed to the unique optimal, segmentation. Obviously

the algorithm could be re-written to store and output multiple optimal segmentations

if they exist.

Algorithm 2: Algorithm for calculation of Inttτ at time t

Input : Set of changepoint candidate vectors T̂t for current timestep, t,

Optimal segmentation functions f tτ (φ) for current time step t and

τ ∈ T̂t.

Ttemp = T̂t;

Inttτ = ∅ for τ ∈ T̂t;

φcurr = −∞;

τcurr = arg min
τ∈Ttemp

[
f tτ (φcurr)

]
;

while Ttemp\{τcurr} 6= ∅ do

for τ ∈ Ttemp\{τcurr} do

xτ = min{φ : f tτ (φ)− f tτcurr(φ) = 0 & φ > φcurr};

if xτ = ∅ then
Ttemp = Ttemp\{τ}

τnew = arg min
τ

(xτ );

φnew = min
τ

(xτ );

Inttτcurr = [φcurr, φnew] ∪ Inttτcurr ;

τcurr = τnew;

φcurr = φnew;

Output: The intervals Inttτ for τ ∈ T̂t

15
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