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Abstract 

An integral electro-catazone and electro-peroxone (E-cataperoxone) process was developed 

for quick and effective oxidation of Rhodamine B (RhB) as the model refractory organic 

pollutant in this study. A mesoflower-structured TiO2-coated porous Titanium gas diffuser 

(MFT-PTGD) acted as both the anode and the O3 gas diffuser, while carbon 

polytetrafluoroethylene was used as the cathode. During O3/O2 mixture flowing through the 

MFT-PTGD, O3 was electrochemically catalyzed simultaneously by the TiO2 mesoflower at 

the anode (via an electro-catazone reaction) and the in situ generated H2O2 at the cathode (via 

an electro-peroxone reaction) to achieve a high yield of ·OH. The individual processes show 

integral effects and significantly enhances the RhB degradation rate and efficacy. Additionally, 

owing to the unique three-dimensional porous structure and flow-through configuration of the 

MFT-PTGD anode, the O3 flow-through mode is superior to O3 flow-by mode for the 

E-cataperoxone oxidation of RhB. These results suggest that the E-cataperoxone process is an 

effective and promising means of degrading refractory organic pollutants in wastewater. 

 

Keywords: Electro-cataperoxone, Electro-catazone, Electro-peroxone, Refractory organic 

pollutant, Hydroxyl radical (·OH) 
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1. Introduction 

Electro-peroxone (E-peroxone) treatment [1-3], a new electrochemically driven process 

combining conventional electrolysis with ozonation processes, has attracted great attentions in 

recent years. In E-peroxone treatment, an O3/O2 mixture is sparged into a reactor, which is 

typically equipped with a Pt anode and a carbon polytetrafluoroethylene (carbon-PTFE) 

cathode [4, 5]. The cathode functions as an electrocatalyst for the in situ electrochemical 

reduction of O2 to H2O2 (Eq. (1)) [6]. The in situ generated H2O2 then reacts with the sparged 

O3 to yield aqueous ·OH (Eq. (2)) [7, 8], which is a much stronger oxidant than O3 or H2O2 

and can effectively oxidize organic pollutants to CO2 and H2O without any secondary 

pollution. Therefore, E-peroxone treatment has been considered an effective and 

environmentally friendly oxidation technology for wastewater purification. 

In E-peroxone treatment, ·OH is primarily generated by the cathode-induced reaction 

(Eqs. (1) and (2)) [7, 8], while the traditionally used Pt anode barely contributes to the ·OH 

yield attributing to its poor ability in ·OH generation. 

     -

2 2 2O 2 H 2 e H O                                   (1) 

2 2 3 2H O 2O 2 OH +3O                               (2) 

To increase the contribution of the anode, researchers have replaced the Pt anode with a 

boron-doped diamond (BDD) anode [9], which is effective in producing ·OH from water 

discharge (Eq. (3)) [10] during E-peroxone treatment. 

      -

2B D D  +  H O B D D O H H  e                           (3) 

Unfortunately, the total organic carbon (TOC) removal attained using the BDD anode is 

the same as those using other anodes (i.e., Ti/RuO2-IrO2, Pt) [9], indicating that this type of 

anode does not improve the efficacy of E-peroxone treatment. Specifically, the BDD anode 

does not improve treatment performance because the ·OH produced in the vicinity of the 

BDD anode tends to adsorb on the anode surface rather than diffusing into the bulk solution to 
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oxidize organic pollutants. Moreover, the anodes previously used in E-peroxone and other 

combined electrolysis-ozonation processes have low catalytic activities for converting O3 

to ·OH, termed heterogeneous catalytic ozonation (catazone) [11]. Finally, the anodes are 

generally planar in shape, consequently causing the relatively larger diffusion length (tens of 

μm) for O3 traveling from the bulk solution to the anode surface [12] and leading to 

insufficient utilization of the sparged O3 and low ·OH production. 

Recently, a novel anodic-induced electrocatalytic ozonation process called 

electro-catazone (E-catazone) was developed by combining heterogeneous catalytic ozonation 

and electrolysis [13]. In this process, a self-prepared mesoflower-structured TiO2-coated 

porous titanium gas diffuser (MFT-PTGD) multifunctional anode serves as the anode, O2/O3 

gas diffuser and highly efficient catalyst (in the case of the TiO2 mesoflowers) for the 

catazone reaction. When the current is applied to the MFT-PTGD under O3 flow, the positive 

holes on the surface of the TiO2 mesoflowers are electro-generated at anodic potentials (Eq. 

(4)). These holes can then absorb sparged O3 (Eq. (5)) and catalyze it to ·OH (Eq. (6)) both in 

the vicinity of the anode and in the bulk solution. 

          
-e+ -

2 2TiO h e TiO
                        (4) 

     2 3 2 3 2 2TiO O TiO O TiO O O
  
                   (5) 

   2 2 2TiO O H O TiO OH  OH(aq)
 
                    (6) 

Besides multi-catalytic capabilities on MFT-PTGD, TiO2 mesoflowers also provides 

unique three-dimensional porous structure, the novel morphology for MFT-PTGD [14], and 

thus achieve a short diffusion length of less than 1 μm and a great enhancement of O3 mass 

transfer to the porous interfaces of the anode [13]. Thus, the E-catazone process provides a 

higher catalytic activity (i.e., higher ·OH production) and organic degradation rate than that in 

the processes of its individual component, namely, electrolysis, ozonation and catazone. 

Nevertheless, unlike the carbon-PTFE cathode used in the E-peroxone reaction, the Pt cathode 
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used in the E-catazone reaction does not participate in the degradation of organic materials 

because of its poor ability to form H2O2 and thus ·OH via subsequent peroxone reactions. It is 

therefore very essential to enhance cathodic oxidation ability of E-catazone process. 

To achieve the oxidation of organics mediated simultaneously by both anodic- and 

cathodic-produced aqueous ·OH, a new process combining E-catazone and E-peroxone, 

called E-cataperoxone, is proposed in this study. Here, a self-prepared MFT-PTGD serves as 

an anode and gas diffuser, while carbon-PTFE serves as the cathode. First, O3 is sparged 

through the MFT-PTGD, where participating in the E-catazone reaction to form ·OH. Next, 

the sparged O3 mixes with O2 in the bulk solution and undergoes E-peroxone treatment to 

produce ·OH. In this way, E-cataperoxone achieves the integration of E-catazone and 

E-peroxone processes for better performance in organic pollution degradation. Such an 

integral E-catazone/E-peroxone system has not been reported to date. To test this hypothesis, 

E-cataperoxone was used to degrade Rhodamine B (RhB), which is often used as a model 

compound for refractory organic pollutants in wastewater. E-cataperoxone performance was 

compared with that in the processes of its individual component, and the effect of the O3 flow 

mode used in E-cataperoxone treatment was evaluated. 

 

2. Materials and Methods 

2.1 Materials 

A porous titanium gas diffuser (purity 99%, 20 mm length, 20 mm diameter, average 

pore size of 51 μm) was purchased from Yinggao Metal Materials Co., Ltd. (Baoji, China). 

Analytical grade ethanol, hydrofluoric acid (40 wt%), hydrochloric acid (37 wt%), sodium 

hydroxide, and Rhodamine B were obtained from Sinopharm (Shanghai, China). 

2.2 Preparation of the mesoflower-structured TiO2-coated porous titanium diffuser anode and 

carbon-PTFE cathode 

The MFT-PTGD anode was prepared via a series of procedures including degreasing, 
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etching, and hydrothermal treatment with annealing, as described in our previous study [13, 

14]. The carbon-PTFE electrode was prepared with Vulcan XC-72 carbon powder (Cabot 

Corp., USA), PTFE dispersion, and anhydrous ethanol [6]. 

2.3 E-catazone, E-peroxone, and E-cataperoxone treatment of RhB 

Treatments were conducted in a glass column reactor containing 300 mL RhB solution 

with the initial chemical oxygen demand (COD) of 1100 mg/L. Since most of the industrial 

dye wastewaters with RhB are acidic and pH ranging from 3.0 to 4.0 is the optimal condition 

commonly used in E-peroxone [3] and other advance oxidation processes (AOP) like 

electro-Fenton [6], the initial pH of the system was set as 3.5. In all the tests, an O3 generator 

(Tonglin Technology Co., China) was used to pass O3/O2 mixture through the reactor at a 

constant flow rate of 0.4 L/min and an O3 dosage of 9.0 mg/L, while a DC power supply 

(PS-305DM, Longwei Electric Co., Ltd, Dongguan, China) was used to provide a constant 

current of 235 mA. In the E-catazone process, MFT-PTGD functioned as the anode and gas 

diffuser, while a 0.1 cm
2
 Pt plate was used as the cathode. In the E-peroxone process, the Pt 

plate was used as the anode and a 25 cm
2 

carbon-PTFE slab as the cathode. Here, a pure 

PTGD, without catalyst coating, served as the gas diffuser and was placed near the anode and 

cathode. In the E-cataperoxone process, O3 was flowed through the MFT-PTGD diffuser 

anode, with carbon-PTFE as the cathode (Figure 1). The effect on COD removal of the O3 

sparging mode (flow-through or flow-by) in the E-cataperoxone process was also investigated 

via a comparison flow-by test in which O3 was flowed by the MFT-PTGD anode via a PTGD 

diffuser. 

2.4 Analytical methods 

The O3 concentration in the ozone generator influent was measured via potassium iodide 

absorption followed by sodium thiosulfate titration [15]. During RhB degradation, the 

samples of the reaction mixture were collected at various reaction times (up to 2 h) for 

analysis. COD was measured colorimetrically using a DR/5000 spectrophotometer (Hach Co., 
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Loveland, CO, USA). Ultraviolet–visible (UV–vis) absorption spectra were recorded using a 

SPECORD 200 spectrophotometer after diluting the samples forty-fold. The ·OH 

concentration was analyzed using the N,N-dimethyl-p-nitrosoaniline (RNO) trapping method 

[13]. The formation of ·OH radical intermediates in various oxidation processes was 

monitored by bleaching the RNO solution. To detect ·OH radicals, 0.1 mol/L phosphate 

buffer solution (PBS, pH 3.5) was used as the electrolyte. The 1 mL samples collected in 

different processes after 2 h reaction were immediately added to a 4 mL scavenger solution 

containing PBS and RNO, and were mixed well. Subsequently, the RNO absorbance at 350 

nm was measured and used to calculate the RNO absorbance decrement efficiency, which 

represents the ·OH concentration, using [(R0 - Rt)/ R0] × 100%. Here, R0 and Rt represent the 

RNO absorbance at reaction time t = 0 min and t = 2 h, respectively. 

 

3. Results and Discussion 

3.1 Integral effect of E-catazone and E-peroxone process for RhB degradation 

In the E-cataperoxone process integrating E-catazone and E-peroxone, a COD removal 

efficiency reached 94.2% after 2 h reaction (Figure 2(a)), indicating that RhB was effectively 

oxidized to CO2 and H2O. In contrast, the E-peroxone and E-catazone treatments only 

achieved 74.2% and 79.4% COD removal, respectively. These results indicated that 

E-cataperoxone achieved a strong integral effect between E-catazone and E-peroxone for RhB 

oxidation. Figure 2(b) also shows that the COD degradation curves fit well with the 

pseudo-first-order kinetic model. Moreover, the calculated rate constant (k) for 

E-cataperoxone (1.70 h
−1

) is 2.00 and 2.77 times higher than those for E-catazone (0.55 h
−1

) 

and E-peroxone (0.45 h
−1

), respectively, suggesting a faster oxidation of RhB in 

E-cataperoxone. In addition to COD removal, the UV–vis spectra of the RhB solution in the 

different processes (Figure 3) illustrated that the spectrum for the raw RhB solution exhibits 

peaks at 553 nm, 370–296 nm and 258 nm, attributed to azo compounds, anthraquinone 



  

 8 

groups [16] and aromatic compounds [16], respectively. After only 15 min reaction in 

E-cataperoxone, these peaks significantly declined and almost disappeared, demonstrating 

that the color was completely removed and the corresponding compounds were effectively 

decomposed. In comparison, after 15 min of E-catazone treatment, the peak at 553 nm 

disappeared, but not the peak at 258 nm (Figure 3 (inset)). The results indicated that although 

the complete decoloration was achieved, the intermediate compounds (e.g., aromatic 

compounds) were not fully degraded. Meanwhile, in the case of E-peroxone, none of the 

peaks disappeared after 15 min, suggesting incomplete decoloration and degradation of RhB. 

The superior performance of E-cataperoxone is due to its higher ·OH yield in bulk 

solution. As shown in Figure 4, the RNO decrement efficiency is higher in E-cataperoxone 

treatment than those in the processes of individual components (E-peroxone and E-catazone), 

indicating higher ·OH production. It is worth noting that a significantly positive correlation 

was observed between the COD removal and hydroxyl radical (Figure 2 and Figure 4), 

showing the obvious integral effect in the E-cataperoxone process. These results indicated that 

the combination of E-catazone and E-peroxone can effectively enhance anodic and cathodic 

oxidation ability via the simultaneous generation of ·OH at both MFT-PTGD anode and 

carbon-PTFE cathode. In details, during O3/O2 mixture flowing through the MFT-PTGD 

anode, O3 was electrochemically catalyzed by the TiO2 mesoflower via an E-catazone reaction 

(Eq. (4–6)) [13]. The subsequent E-peroxone reaction (Eqs. (1) and (2)) achieved O3 reacting 

with in situ electro-generated H2O2 at the carbon-PTFE cathode [2, 7, 8]. Both anodic 

E-catazone and cathodic E-peroxone reactions are effective in producing •OH, consequently 

leading to the high •OH yield (Figure 4) and the enhancement of RhB oxidation (Figure 2). 

Moreover, another advantage of E-cataperoxone process is the simplified oxidation system 

compared to conventional ozonation/electrolysis processes. Since MFT-PTGD anode used in 

E-cataperoxone system is multifunctional, simultaneously acting as the anode, O2/O3 gas 

diffuser and O3 catalyst, only MFT-PTGD and cathode are placed in the E-cataperoxone 
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reactor without using additional gas diffusers. 

3.2 Effect of O3 flow mode on RhB degradation 

The superior performance of E-cataperoxone is also explained by its excellent mass 

transfer property, as demonstrated by the difference between the COD removal, reaction 

kinetics, and RNO decrement efficiency achieved in flow-through mode vs. flow-by mode. 

Interestingly, when E-cataperoxone was operated in flow-by mode, which is typically used in 

E-peroxone and other reported electrolysis-ozone processes, dramatic decreases were 

observed in both COD removal (from 94.0% in flow-through mode to 84.0% at 1.5 h; Figure 

2a) and k (from 1.70 h
−1

 to 1.13 h
−1

; Figure 2b). This reduced performance under flow-by 

mode is attributed to the difference in mass transfer of reactants. In flow-through mode, 

sparging O3 through the MFT-PTGD anode triggers the forced convection of O3 through the 

highly porous structure of MFT-PTGD [13], enhancing mass transfer of the reactants (O3 and 

RhB) to the catalysts (i.e., TiO2-mesoflowers) on the MFT-PTGD surface, especially the inner 

pore surface. In contrast, in flow-by mode, the inner pore surface is barely accessible to the 

reactants, and mass transfer to the rest of the surface is less effective. Thus, flow-through 

significantly facilitates the O3-RhB solution-TiO2 three-phase reaction (i.e., E-catazone), 

increasing the ·OH yield. This effect is demonstrated by the greater RNO decrement 

efficiency obtained in flow-through mode compared to flow-by mode (Figure 4). 

 

4. Conclusions 

The proposed E-cataperoxone process successfully integrates E-catazone and 

E-peroxone processes to enhance the ·OH-mediated oxidation of RhB pollutants. By utilizing 

an MFT-PTGD anode and carbon-PTFE cathode, O3 can be electrochemically catalyzed 

simultaneously by TiO2 mesoflowers at the anode and in situ generated H2O2 at the cathode to 

achieve a high yield of ·OH. Such integral effect significantly enhances the rate and efficiency 

of COD removal. Thus, E-cataperoxone provides a significantly higher oxidation ability than 
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the processes of its individual component and is promising for the treatment of refractory 

organic pollutants. 
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Figure 1. Schematic of the reactor used for E-cataperoxone process  

Figure 2. COD removal efficiency (a) and pseudo-first order curves (b) for 

E-cataperoxone (flow-through), E-cataperoxone (flow-by), E-catazone and E-peroxone 

process.   

Figure 3. UV–vis spectra of RhB solution after 15 min of different oxidation treatment  

Figure 4. RNO decrement efficiency in different processes after 2 h of reaction  
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Highlights: 

 An E-cataperoxone process was developed for Rhodamine B oxidation 

 A mesoflower-like TiO2-coated porous Ti gas diffuser acted as anode and O3 diffuser 

 Carbon polytetrafluoroethylene was used as the cathode 

 Simultaneous oxidation of organics by both anodic- and cathodic-produced aqueous 

•OH 

 Excellent organics degradation performance by synergetic E-catazone and E-peroxone 

processes 

 


