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Abstract:  

In this paper, we propose an approach to data analysis which is based entirely on the empirical observations 

of discrete data samples and the relative proximity of these points in the data space. At the core of the proposed 

new approach is the typicality - an empirically derived quantity which resembles probability. This non-

parametric measure is a normalised form of the square centrality (centrality is a measure of closeness used in 

graph theory). It is also closely linked to the cumulative proximity and eccentricity (a measure of the tail of the 

distributions that is very useful for anomaly detection and analysis of extreme values). In this paper, we 

introduce and study two types of typicality, namely local and global versions. The local typicality resembles the 

well-known probability density function (pdf), probability mass function and fuzzy set membership but differs 

from all of them. The global typicality, on the other hand, resembles well-known histograms but also differs 

from them. A distinctive feature of the proposed new approach, Empirical Data Analytics (EDA), is that it is not 

limited by restrictive impractical prior assumptions about the data generation model as the traditional probability 

theory and statistical learning approaches are. Moreover, it does not require an explicit and binary assumption of 

either randomness or determinism of the empirically observed data, their independence or even their number (it 

can be as low as couple of data samples). The typicality is considered as a fundamental quantity in the pattern 

analysis, which is derived directly from data and is stated in a discrete form in a contrast to the traditional 

approach where a continuous pdf is assumed a priori and estimated from data afterwards. The typicality 

introduced in this paper is free from the paradoxes of the pdf. Typicality is objectivist while the fuzzy sets and 

the belief-based branch of the probability theory are subjectivist. The local typicality is expressed in a closed 

analytical form and can be calculated recursively; thus, computationally very efficiently. The other non-

parametric ensemble properties of the data introduced and studied in this paper, namely, the square centrality, 

cumulative proximity and eccentricity can also be updated recursively for various types of distance metrics. 
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Finally, a new type of classifier called naïve Typicality-based EDA class is introduced which is based on the 

newly introduced global typicality. This is only one of the wide range of possible applications of EDA including, 

but not limited for anomaly detection, clustering, classification, control, prediction, control, rare events analysis, 

etc. which will be the subject of further research. 

Index terms — data mining and analytics, probability, statistics, pattern recognition, machine learning, local and 

global typicality, eccentricity, centrality. 

I. Introduction 

Data analysis can be described as a process which applies statistical and/or formal techniques to describe, 

illustrate and evaluate data. It became a hot topic recently in many different areas such as biology, econometrics, 

epidemiology, social science, social media, cyber-security, and so on. Nowadays, new scientific areas are 

becoming data-centric (if previously data rich were mostly the  engineering, natural sciences and, to some extent, 

economics, now biomedical, social and other sciences are also increasingly becoming data-centric). There is a 

growing demand for alternative new concepts for data analysis that are centred at the actual data collected from 

the real world rather than at theoretical prior assumptions which need then to be confronted for verification with 

the experimental data as is the case with the traditional statistical approach [1]-[4]. The traditional probability 

theory and statistics assume the actual data to be realizations of imaginary random variables and further assume 

the prior distributions of these variables. 

The general problem of probability theory was defined by Kolmogorov as follows: “Given a cdf F(x), 

describe outcomes of random experiments for a given theoretical model.” [5]. Vapnik and Izmailov define the 

general problem of statistics as follows: “Given iid observations of outcomes of the same random experiments, 

estimate the statistical model that defines these observations” [6]. Both, traditional probability theory and 

statistics have strong and often impractical requirements and assumptions (“Given a cdf …”; “Given iid, …same 

random experiments”, etc.). They also assume a random nature for the variables which is indeed the case for 

some problems, such as gambling, independent experts, etc. However, real processes of interest (such as climate, 

economic, social, mechanical, electronic, biological, etc.) are complex and not always display a clear 

(deterministic or stochastic) nature. Both, the traditional probability theory and statistics have strong and often 

impractical requirements and assumptions (“Given a cdf …”; “Given iid, …same random experiments”, etc.). 

They also assume random nature of the variables which is indeed the case for problems, such as gambling, 

games, independent experts, etc.  



  

However, real processes of interest (such as climate, economic, social, mechanical, electronic, biological, 

etc.) are complex and not always with a clear nature (deterministic or stochastic). A more recent alternative is to 

approximate the distributions using non-parametric, data-centered functions, such as particle filters [7], entropy-

based information-theoretic learning [8], etc. On the other hand, partially trying to address the same problems, in 

1965 L. Zadeh introduced fuzzy sets theory [9] which completely departed from objective observations and 

moved (similarly to the belief-based theory [10] introduced a bit later) to the subjectivist definition of the 

uncertainty. A later strand of fuzzy set theory (data driven approach) developed mainly in 1990s attempted to 

define the membership functions based on experimental data which stands in between probabilistic and fuzzy 

representations [11, 12], however, this approach requires assuming the type of membership function. 

Within the Empirical Data Analytics (EDA), we define the main problem as follows: “Given observations of 

outcomes of real processes/experiments alone, estimate the ensemble properties of the data, such as cumulative 

proximity, eccentricity, density and typicality of the data. Furthermore, estimate these for any feasible outcome”.  

In this paper, we introduce novel non-parametric estimators of ensemble statistical properties of the data 

derived entirely from the experimental discrete observations. These include the square centrality, eccentricity 

(), standardized eccentricity () as well as the local typicality, (). The newly proposed non-parametric 

estimators are defined for various distance metrics. Furthermore, in this paper we introduce the global typicality 

(τ
G
) which is similar (but different) to the histograms. The typicality looks very similar to the well-known pdf, it 

sums up to 1 and is always positive; however, it is discrete and is always less than 1 while the pdf can 

paradoxically be greater than 1. Additionally, the typicality is only defined for feasible values of the independent 

variable while pdf can, paradoxically, be positive even for infeasible values, e.g. negative height, distance, 

weight, absolute temperature, etc. 

The remainder of the paper is organized as follows. In section II, we introduce the basic elements of the 

Empirical Data Analysis (EDA). The concepts of the local and global typicality as well as estimation for 

hypothetical new points are described in section III. The properties of the EDA quantities are discussed in 

section IV. In section V an example of the newly proposed naïve EDA classifier is described and, finally, section 

VI concludes the paper outlining the future development. 

II. Basic Elements of the Empirical Data Analysis 

In this section, the basics of the Empirical Data Analytics approach are introduced, including:  



  

a) cumulative proximity, q and its inverse, called square centrality, S ; 

b) eccentricity, ξ and standardised eccentricity, ε; 

c) density, D; 

d) local and global typicality, τ, τ
G
. 

The global typicality, τ
G
 addresses the global properties of the data and will be introduced in the next 

section.  

First, let us define the data space, M with a distance  ,d   . Let us consider a finite multiset of data points 

 1 2, ,..., , , 1 ,k k i k i k    x x x x  where the index k denotes the amount of data samples/points/vectors. 

p is the dimensionality of the data.  

A. Centrality 

First, we will recall from the graph and network theory the so called measure of centrality, C [13,14]. 

Indeed, for every point i kx one may need to quantify how close or similar this point is to all other data 

points from k . In graph (networks) theory a measure of centrality [13] is defined as the inverse of the so called 

farness which itself is a sum of distances from a point to all other points:  
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Notice that in this and further notations, k denotes the amount of data samples at the moment of the analysis. 

For the offline cases this is usually denoted by N to represent the total amount of data available and is not 

changing throughout the analysis while in online cases the data is a stream rather than a set and k may or may be 

associated with the order of data samples which usually but nt necessarily always is the time instant.  

B. Cumulative proximity 

In our earlier works [15-16] we defined a measure called cumulative proximity,  k i i kq x x which can 

be seen as a square form of the farness, as follows:  
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The cumulative proximity, plays an important role in the definition of the other association measure derived 

empirically from the observed data without making any prior assumptions about their generation model, namely 

the typicality and eccentricity as we will see later. 

C. Square centrality 

It is convenient to consider the square centrality defined as inverse of the cumulative proximity: 
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D. Eccentricity 

The eccentricity,  k x  is defined within EDA as a normalized cumulative proximity [15,16]. It is a very 

important measure of the ensemble property related to the tail of the distribution and is empirically derived from 

the observed data only without making any prior assumptions about their generation model. It plays an 

important role in anomaly detection [16], analysis of rare events as well as for the estimation of the typicality as 

it will be detailed further. The eccentricity of a particular data sample ix ( i kx ) is calculated as follows: 
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where, the coefficient 2 is included to compensate distance duplication in the denominator which, at the same 

time, leads to the following bounds for the eccentricity value:  

 0 1; ; 1i i k kk     x x                                                    (5) 

The denominator must not be zero; from the metric definition it follows that at least two points within the 

dataset k  need to be distinctive. Another property of the eccentricity is that it sums over   to 2: 
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In EDA we further introduced [15,16] the standardized eccentricity,  k x  which normalises the 

cumulative proximity by half of the average cumulative proximity, where the coefficient 2 is used for the same 

reasons as mentioned above: 
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Standardised eccentricity is more convenient to use in the well-known Chebyshev inequality which within 

TEDA has a more elegant form. 

 

Fig.1 Standardized eccentricity, ε for real climate data (temperature and wind speed) measured in Manchester, 

UK for the period 2010-2015 [19].The data with higher standardized eccentricity,  are marked with red 

ellipsoids; these are days with stronger wind (stormy days). As it will be described in the next subsection, values 

of ε between 5 and 10 correspond to so called  2 ;  3    interval from the mean. 

E. Density 

 

Fig. 2 The density for the same real climate data as shown in Figure 1 [19]. The data with lower density D are 

marked with red ellipsoids. The data with high density are marked with a green dashed line ellipsoid. 



  

The density within the data space plays an important role in data analysis [15-17]. Within EDA it can be 

defined as the inverse of the standardised eccentricity: 

  1( ); ; 1k i k i i k kD k     x x x                         (8) 

F. Chebyshev inequality 

The Chebyshev inequality [18] is well known in the traditional probability theory and statistics. It describes 

the probability that certain data sample, x is more than n distance away from the mean where  denotes the 

standard deviation [1-3] and can be formulated as follows [18] if use Euclidean type of distance: 
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Respectively, the probability the point ix  to be an outlier is given by: 
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It can be proven that exactly the same result can be provided within EDA through the standardized 

eccentricity [16] for the Euclidean distance: 
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and, respectively,  
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Similarly, the Chebyshev inequality in the form of density are as follows. 
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The attractiveness of the equations (11)-(14) in comparison with the equations (9)-(10) is that no prior 

assumptions are required within EDA on the nature of the data (random or deterministic), the generation model, 

the amount of data and their independence. In addition, the result is more elegant and a similar result can be 

derived for Mahalanobis and other type distance metrics [16]. 



  

G. Recursive calculations 

One important aspect of the proposed EDA approach is that the operators defined within it can be calculated 

recursively for various Hilbert space metrics, e.g. Euclidean, Mahalanobis, even value Minkowski as well as for 

cosine similarity, which makes EDA suitable for live data streams processing. Consider the time instance the 

data point kx  arrives, it is easy to see that: 
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1) Euclidean type metric 

For example, for the Euclidean type distances we have [15-17]: 
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where 2 T
k k k kX    . And, respectively: 

 
    

    

T T

1
T T

1

1
; 1; ; 1

k i

i k i k k k k

i k i k k k k i k

S x
k X

X k i k
k




   

        

x x

x x x

   

   

                              (18) 

1 1 1

1 1
;k k k

k

k k



  x x                                                                               (19) 

T T
1 1 1 1

1 1
;k k k k

k
X X X

k k



  x x x x                                    (20) 

The total square centrality of the whole dataset and the total cumulative proximity, respectively, can also be 

updated recursively for each new data point, kx : 
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Similar equations can be written for the case of U . 



  

2) Mahalanobis distance 

For the case of Mahalanobis type distance recursive update is also possible [15-17]: 
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and, respectively: 
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where the covariance matrix k  is defined as follows: 
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which itself can be updated recursively [1]-[3]. However, the average scalar product kX is defined differently 

from the case when Euclidean distance is used, namely, 
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symmetricity [20], there is: 
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III. Typicality and Estimation for Hypothetical Data Points  

A. Local typicality 

In EDA we define the local typicality,  of a data point as normalized square centrality or, which is the 

same, normalized inverse cumulative proximity: 
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            (a) Local typicality,                                                                         (b) pdf 

Fig. 3 A comparison of the local typicality distribution, (x) and the traditional pdf based on the same real 

climate data [19] as in Fig. 1 and 2. The red oval indicates infeasible values of negative wind speed which have 

pdf>0 according to the pdf. τ is only defined for feasible values (in this case only for positive values of the wind 

speed). 

It is very interesting to stress that the local typicality resembles the well-known pdf, but is free from 

paradoxes that can be the case with the pdf. Figure 3 visualizes for the same real data [19] the paradox 1 that a 

Gaussian type pdf may have non-zero values for infeasible values (e.g. negative wind speed).  

Fig. 4 further demonstrates another paradox (paradox 2) that pdf values can be >1.    

 

                     (a) Local typicality,                                                                         (b) pdf  

Fig. 4 Examples of the paradox 2 regarding the temperature and wind speed. The red ellipsoid indicates the 

area exhibiting infeasible values of pdf that pdf >1. 

 

Paradox 1 

 

 

Paradox 2 



  

B. Global typicality 

It is well known that the traditional pdf expressed as Gaussian or Cauchy function are not perfect to cover 

real distributions. It is also a well-known technique to use mixtures of distributions [21]. Within EDA it is 

possible to use a mixture of local typicality distributions derived after clustering the data [22], however, it is also 

possible to derive a global typicality, G
 from data directly without clustering or any other pre-processing or 

prior assumptions. In this paper we define the global typicality, G
 as a weighted normalised square centrality 

where the weights are the frequency of occurence of a particular data sample, f.  

Let us first introduce couple of definitions. For each dataset k , one can construct a corresponding unique 

data points set as  1 2, ,..., ,...,k i lU u u u u  ( i ku ; where l is the number of the unique data samples) and the 

corresponding numbers of times of occurrence by  1 2, ,..., ,...,k i lf f f fF . We can also view if  as a frequency 

and optionally divide by k. if we prefer values that are 1 . Then the global typicality, G  can be defined within 

EDA on the domain of kU  as follows: 
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where   0u
k iS u  denotes the square centrality at a particular unique data sample iu  to all other unique data 

samples of the data space.   

Some illustrative examples of applying the global typicality are provided further. It is interesting to note that 

for small values of k, the global typicality is exactly the same as the frequentistic form of probability (see Fig. 3 

and 4), and with large k, the local typicality approximates the well-known Gaussian and Cauchy type pdf.  

Let us start with a trivial primer and consider a small data set  2;6;2;2;6 . It is also straightforward to 

determine  5 2;6U ; 2l  ; 5k  ; l k ;  5 3;2F . Let us consider Euclidean type distance. The global 

typicality is easy to calculate for this case using equation (3) for  1/16;1/16S   and equation (27) for 
G but 

taken only in regards to the unique data, U  instead of all data,  . The final result,  2 3 / 5 0.6G x     and 

 6 2 / 5 0.4G x     is exactly the same as the frequentistic probability expressed as a ratio of specific 

outcome to the total number of outcomes [1-4], see Fig. 5. 



  

 

Fig. 5 Global typicality, τ
G
 directly calculated from the data for the trivial primer 

Another example where the global typicality has exactly the same values as the frequentistic probability is if 

consider fair games which are clearly random. It has to be stressed that the encoding of the values is important. 

For example, if consider tossing a coin it is easy to encode the two possible outcomes by any number, but if 

consider a dice which has 6 possible outcomes these usually have an integer number of dots on them (1,2,3,4,5, 

and 6). Because within EDA the distance between different outcomes is also taken into account as well as the 

frequency, f the possible outcomes have to be first encoded in such a way that the distance between each pair of 

outcomes is exactly the same. For example, for 1 we can use 1;0;0;0;0;0 , for 2 we can use  0;1;0;0;0;0 , etc. 

Then if we have throwing a dice 100 times (or 100 people throwing a dice once) the possible outcomes may be 

as tabulated in Table 1. It is easy to check that  0.1;0.1;0.1;0.1;0.1;0.1S  and  17;14;15;15;21;18F  . 

 

Fig. 6 A simple illustrative example of a fair game of throwing dices (random data) 

 

 



  

Table 1. Throwing dices (a fair game, random data) 

Possible outcome Mapping Frequency of occurrence 

1  1,0,0,0,0,0   20 

2  0,1,0,0,0,0   14 

3  0,0,1,0,0,0   16 

4  0,0,0,1,0,0   15 

5  0,0,0,0,1,0   17 

6  0,0,0,0,0,1   18 

Total 100 

The global typicality of each possible outcome is depicted in Fig. 6. It is easy to see that the values of τ
G 

fluctuate around the value of 1/6 and they would have all have value of 1/6 if the frequencies of occurrence of 

each value were the same. The more times we throw the dice, the closer the values of the τ
G 

will be to the value 

of 1/6 exactly the same as the frequentistic probability. In this case, obviously the traditional pdf [1-4] will be 

misleading although paradoxically the infamous iid conditions are satisfied. 

So far, we have seen two simple examples where the global typicality has exactly the same values as the 

frequentistic probability. In general, as it is well known, the majority of real processes of interest such as climate, 

economic, social, biological, technical etc. are not clearly random or deterministic. Even more difficult is to pre-

determine the underlying distribution(s) from which samples are drawn. Therefore, a very attractive approach is 

to study the data pattern as it is observed and to develop techniques that do not require the user to pre-determine 

the randomness or determinism, the type of the distributions as well as other parameters. The aim of EDA is 

precisely to offer such an approach. In the next example, we will consider again the same real climate data [19] 

and will also consider another real data set taken from wearable wrist–worn sensors [23] (partially). It is very 

interesting and unique property of the global typicality, τ
G
 (Fig. 7 and 8) that for l k (when there are many 

different data points with the same value) different modes of the distribution starts to appear automatically and 

there is no need to pre-determine them or to apply clustering or optimization to identify them. It has to be 

stressed that although the result resembles histograms it is principally different. The values on the vertical axis 

are real values and the mutual proximity and centrality of the data is taken into account unlike the case of 

histograms. For example, if multiple (say, 10) times the same value is added to the data set it will not have the 



  

same effect if it is far from the mean (e.g. temperature 26
o
C) or close to the mean (e.g. 14

o
C). In the case of a 

traditional histogram the effect of adding multiple new samples will be the same regardless of the position. 

Moreover, the global typicality is describes by a closed analytical form equation (27).  

 

                  (a) Climate dataset (temperature)                           (b) Wearable sensors dataset (x-axis) 

Fig. 7 2D global typicality, τ
G 

(left plot: temperature [19]; right plot: horizontal acceleration for the wearable 

devices data [23]).
 

Notice that the modes (2 on the left plot of Fig. 7 and 5 on the right plot) appear automatically and are not 

pre-defined). 3D examples (τ
G
 vs 2 variables) for the same data are depicted in Fig. 8. 

 

                   (a) Climate dataset [19]                                                 (b) Wearable sensors dataset  [23]   

Fig. 8 3D-examples of the global typicality of two datasets described above 

 



  

 

                   (a) Gaussian mixture pdf                                                               (b) Histogram    

Fig. 9 An visual comparison for the same real dataset [19] as the one used in Fig. 1-4, 7a and 8a. (The left 

hand plot depicts the Gaussian mixture pdf derived by clustering; the right plot – the histogram)                

C. Estimating the global typicality of hypothetical points 

The mechanism described so far does represent the global typicality of data that have been facts (took place 

and is available). Often of interest is to estimate the global typicality (similar to the probability, likelihood) of 

hypothetical data points, 1kx . The approach we take within EDA is to consider such points (even if they are 

multiple) one by one to avoid accumulation of errors. In general, there are two options:  

i) either the new datum 
1  kx  belongs to the corresponding unique values set lU  and one can just 

increment the number of occurrence within lF , or  

ii) the datum does not belong to lU . In the latter case, one should append the unique data samples set 

from  1 2,l l U u u u  to  1 1 2 1, , , , , l l l  U u u u u  1 1 l k u x .  

After that, for Euclidean and Mahalanobis distances, one needs to update the mean value and the (co-

)variance taking into account this new datum. For example, for the Euclidean case, we can recursive calculate 

the squared centrality of the new data point/sample as 1lu  given 1 1:l l  U  

1 1 1 1

1
;

1 1
l l l

l

l l
   

 
u u                              (28) 
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 
u u u u                      (29) 



  

where l  denotes the mean value for the l unique locations in the data space; 

lU  denotes the scalar product of the l  unique locations in the data space. 
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u u u                                     (30) 

Further, we estimate the frequency of the hypothetical data sample based on the frequencies of the nearest 

actual data samples. If the hypothetical data point is surrounded by actual data points from both sides per 

dimension (interpolation case) then we estimate the frequency as the average of the frequencies of the 

neighbouring data points: 
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                                                                                 (31) 

where ,R iu  and ,L iu  are the i
th

 dimensional values of two existing unique locations that are the nearest to 1lu  in 

the i
th

 dimension and satisfy  , 1, ,L i l i R iu u u  .  

In case, if the estimation is for a hypothetical data point that is outside of the range of the actual data 

(extrapolation) the frequency is set to 1: 

1 1lf                                                                (32) 

Finally, the global typicality is estimated using (27) in regards to 1lu : 
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                                                                                                                            (33)    

To illustrate the estimation of the global typicality of hypothetical new data points, let us start again with a 

trivial primer and work it out step by step. Let us consider a trivial dataset that consists of a single variable, x 

with 2 experimentally observed values: 1 2x   and 2 6x  . It is easy to find that: 

     12 21 1 2 1 2 1 2 1 2  1,2 ;  4; 16;  1/16;  1; 1/ 2k d d p p S S f f t t             

x1 x2 



  

 

Fig. 10 Illustrative example of estimation of the global typicality for hypothetical data points (in red and 

green); a comparison with the traditional Gaussian pdf for our trivial primer. 

 

               (a) Climate dataset  (Temperature)                            (b) Wearable sensors dataset (x-axis) 

Fig.11 Examples of estimation (interpolations and extrapolation) of global typicality for the climate [19] and 

wearable sensors datasets [23] and for hypothetical data points (the blue points represents the actual points; the 

green points represent interpolation; red points – extrapolation) 



  

 

               (a) Climate dataset                                                        (b) Wearable sensors dataset   

Fig. 12 3D-examples of estimation of the global typicality for real climate dataset [19] and the wearable 

sensors dataset [23] (blue points –real data; red – estimations at hypothetical points) 

 

            (a) Climate dataset (temperature) [19]                   (b) Wearable sensors dataset (x-axis) [23] 

 

        (c) Wearable sensors dataset (y-axis) [23]                (d) Wearable sensors dataset (z-axis) [23] 



  

Fig.13 Examples of 2D global typicality graphs (blue points –real data; red – estimations at hypothetical 

points) 

Quite logical and trivial, but, importantly, we did not make any assumption about the amount of data, their 

(in)dependence and generation model. We only selected the distance metric (in this case, Euclidean). Moreover, 

in this case (because the amount of data is small and does not require recursive calculations) we did not even 

calculate the mean and standard deviation. The traditional approach will require a number of assumptions to be 

made and the pdf that can still be build will have non-zero values for many different values of the variable, x for 

which we do not know where the feasibility region is. If apply the proposed in this paper EDA approach, we will 

not make these paradoxical conclusions/generalisations, but will be firmly based on the observed experimental 

data plus the feasible hypothetical values of the variable, x at which we may decide to estimate the global 

typicality or other ensemble data properties as per EDA. It is also obvious that the results if use EDA will be 

identical to the well-known frequentistic probability [1-4], see Fig. 10.    

Some more interesting examples of estimation of the global typicality based on the climate [19] and 

wearable sensors datasets [23] that were considered earlier are shown in Fig. 11 (2D) and Fig. 12 (3D). 

It has to be stressed that the estimation is made for one hypothetical data point at a time to avoid 

accumulation of errors. However, if we repeat estimation many times (estimating the value of the global 

typicality for many hypothetical data points) we can get a global typicality graph that looks like continuous (it is 

not continuous because the total number of data points both existing and hypothetical is countable), see Fig.13. 

IV. Properties of the EDA Operators 

The typicality resembles the well-known traditional pdf and histograms and has itself the following 

additional properties:   

a) it sums up to 1; 

b) its value is within the range  0;1 ;   

c) is provided in a closed analytical form, equation (27). 

Fig.14 presents a visual comparison for the 2D case between the histogram, Gaussian mixture pdf and the 

proposed global typicality, τ
G
. The global typicality, contrary to histogram, in these examples, strengthens the 

most typical values. Moreover, by predefining the Gaussian mixture model, one can oversimplify the existing 



  

data distribution that results in inappropriate estimation. Besides, in order to use Gaussian mixture model, one 

needs to select somehow the number of components (fixed number of components as in ARD-EM [24], or 

nonparametric methods [25]); however, this problem does not exist in the proposed approach. 

One interesting property of the density, D is that for the case when Euclidean type of distance is used it takes 

a form of the well-known Cauchy type pdf , except for the fact that normalisation is needed to ensure integration 

to 1 [1-3]: 
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That is, for the case of Euclidean type distance:  
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where   is the well-known constant,    is the gamma function. 

Furthermore, if Mahalanobis type of distance is used it is also of Cauchy type, and a normalisation operation 

is needed to turn it into the well-known Cauchy type pdf: 
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That is, 
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        (a) Climate dataset (temperature) [19]                          (b) Wearable sensors dataset (x-axis) [23]

  

        (c) Wearable sensors dataset (y-axis) [23]                   (d) Wearable sensors dataset (z-axis) [23] 

Fig. 14 The comparison between histogram, Gaussian mixture pdf and global typicality for the same real 

climate dataset [19] and the wearable sensors dataset [23] (2D plots). 

Furthermore, and interesting property of the standardised eccentricity if one use Euclidean type distance is 

that the well-known pdf can be defined through the standardised eccentricity as follows: 
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Indeed, it can be shown that: 
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V. Naïve Typicality-based EDA Classifier 

Naïve Bayes classifiers are well known [1]-[3]. They perform classification based on the dominant per class 

likelihood expressed by a pre-defined (usually, Gaussian) pdf. In this paper, we borrow this concept and 

introduce naïve Typicality based EDA classifier (T-EDA) built on the basis of data distribution with their global 

typicality instead of a pre-defined smooth (but idealized) pdf.   

Assuming we have C classes at time instance k and let us have the global typicality per class, ,
G
k j (

1,2, ,j C  ), for data sample 1kx , its label is given according to the following equation: 

    1 , 1
1
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G
k k j k

j
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x x                                                                                                              (40) 

Here, the global typicality of the v
th 

class is calculated by the following equation: 
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where the index vl  indicates the number of unique points in the v
th

 class;  

    
1

, 1 , 1
u u
k v k k v kS 



 x x  and , 1vv lf  are calculated per class.  

 

Fig. 15 3D plot of the global typicality (wind speed, temperature and the value of G ) for the same data 

with the two classes (winter and summer) shown with different colour. 

That is, the class label for the data sample, x is the one that is most likely (has higher value of τv). This 

simple, but effective principle is the same as the one used in Naïve Bayes classifier.  



  

The performance of the proposed naïve T-EDA classifier is further tested on a well-known challenging 

problem called PIMA dataset [26]. The performance of the proposed naïve T-EDA classifier was compared 

against the naïve Bayes, SVM[27] ,  eClass0[28] and Simpl_eClass0[29] classifiers. First, 90% (691 points) of 

the data set were used for training. In this paper we use the following attributes:  

 

                  (a) Temperature                                                           (b) Windspeed 

Fig. 16 A 2D plot of τ vs the variable (temperature or the wind speed) for the same climate data [19]. The 

two classes (winter and summer) are shown with different colour. Left plot, (a): temperature, and right plot, (b): 

wind speed.    

1) number of times pregnant;  

2) plasma glucose concentration a 2 hours in an oral glucose tolerance test (mg/dl);  

3) diastolic blood pressure (mm Hg);  

4) triceps skin fold thickness (mm); 

5) body mass index (weight in kg/(height in m)
2
); 

6) diabetes pedigree function. 

The results are tabulated in Table 2 in the form of a confusion matrix. The proposed naïve T-EDA classifier 

provides 79.2%  accuracy compared with the 77.9% of the naïve Bayes classifier, 76.6% for the SVM classifier 

[27], 76.6% for the SVM classifier [27], 58.4% for the eClass0 classifier [28] and 63.6% for the Simpl_eClass0 

classifier [29], Fig. 17. The performance of the proposed naïve T-EDA classifier overcomes the alternative 

methods and it shows the capacity of solving complicated problems avoiding the need for unrealistic 

assumptions, restrictions, prior knowledge.   



  

Table 2 Confusion Matrix for the Validation Data 

Methods Actual\Classification Negative Positive 

Naïve T-EDA 

Classifier 

Negative 

76.1% 

(35 Samples) 

23.9% 

(11 Samples) 

Positive 
19.4% 

(5 samples) 

80.6% 

(26 samples) 

Naïve Bayes 

classifier 

Negative 

82.6% 

(38 samples) 

17.4% 

(8 samples) 

Positive 

29.0% 

(9 samples) 

71% 

(22 samples) 

SVM Classifier 

Negative 

73.9% 

(34 samples) 

26.1% 

(12 samples) 

Positive 
19.4% 

(6 samples) 

80.6% 

(25 samples) 

eClass0 Classifier 

Negative 

67.4% 

(31 samples) 

32.6% 

(15 samples) 

Positive 

54.8% 

(17 samples) 

45.2% 

(14 samples) 

Simpl_eClass0 

classifiers 

Negative 

73.9% 

(34 samples) 

26.1% 

(12 samples) 

Positive 

54.8% 

(17 samples) 

45.2% 

(14 samples) 

 



  

Fig. 17 Overall performances of the five classification approaches 

VI. Conclusion and Future Direction 

In this paper, we propose an approach to data analysis which is based entirely on the empirical observations 

of discrete data samples and the relative proximity of these points in the data space. At the core of the proposed 

new approach is the typicality - an empirically derived quantity which resembles probability. This non-

parametric measure is a normalised form of the square centrality. It is also closely linked to the cumulative 

proximity and eccentricity. In this paper, we introduce and study two types of typicality, namely local and global 

versions. The local typicality resembles the well-known pdf, probability mass function and fuzzy set 

membership but differs from all of them. The global typicality, one the other hand, resembles well-known 

histograms but also differs from them. A distinctive feature of the proposed new approach, EDA is that it is not 

limited by restrictive impractical prior assumptions about the data generation model as the traditional probability 

theory and statistical learning approaches are. Moreover, it does not require an explicit and binary assumption of 

randomness or determinism of the empirically observed data, their independence or even their number which can 

be as low as couple of data samples. The typicality is considered as a fundamental quantity in the pattern analysis 

and is derived from the data directly and in a discrete form in a contrast to the traditional approach where a 

continuous pdf is assumed a priori and estimated from data afterwards. The typicality introduced in this paper is 

free from the paradoxes of the pdf. Typicality is objectivist while the fuzzy sets and the belief-based branch of 

the probability theory are subjectivist. The local typicality is expressed in a closed analytical form and can be 

calculated recursively; thus, computationally very efficiently. The other non-parametric ensemble properties of 

the data introduced and studied in this paper, namely, the square centrality, cumulative proximity and 

eccentricity can also be updated recursively for various types of distance metrics. Indeed, different metrics can 

be used, not only the usually used ones.  

In short, the EDA operators as introduced in this paper, have the following properties: 

 They are entirely based on the empirically observed experimental data and their mutual distribution in 

the data space; 

 They do not require any user- or problem-specific thresholds and parameters to be pre-specified;  

 They do not require any model of data generation to be assumed (random or deterministic);  



  

 The individual data samples (observations) do not need to be independent or identically distributed; on 

the contrary, their mutual dependence is taken into account directly through the mutual distance 

between the data points/samples;  

 They also does not require infinite number of observations and can work with as little as 2 data samples; 

 They are free from some well-known paradoxes of the traditional probability theory; 

 They can be calculated recursively for many types of distance metrics; 

In addition, a new type of classifier called naïve Typicality-based EDA class is introduced which is based on 

the newly introduced global typicality. This is only one of the wide range of possible applications of EDA 

including, but not limited for anomaly detection, clustering, classification, control, prediction, control, rare 

events analysis, etc. which will be the subject of further research.  
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