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Abstract

In a recent paper Kumbhakar and Lai (2016) proposed an output-oriented non-radial measure of technical
inefficiency derived from the revenue function. They proposed a closed skew-normal distribution for maximum
likelihood estimation but they did not apply the model to data and their technique depends on multiple evalua-
tions of multivariate normal integrals for each observation which can be very costly. In this paper we extend their
approach to the profit function and we propose both input- and output-oriented non-radial measures of technical
inefficiencies. Although the extension to the translog profit function is trivial many observations, in practice,
may contain negative profits. For this reason we provide a nontrivial extension to the Symmetric Generalized
McFadden (SGM) profit function. We propose and apply (to a large sample of US banks) Bayesian analysis
of the SGM model (augmented with latent technical inefficiencies resulting in a highly nonlinear mixed effects
model) using the integrated nested Laplace approximation.
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1 Introduction

In this paper we build on Kumbhakar and Lai (2016) who developed an output-specific (vector) efficiency measure
starting from the revenue function and using the envelope theorem to obtain the output shares. They have used the
translog revenue function and, under the assumption that latent output-specific inefficiencies follow a multivariate
half-normal distribution they obtained the likelihood function of the system of output shares (without the translog
revenue function) using a closed skew-normal distribution. Kumbhakar and Lai (2016) did not take the model to
the data. A difficulty that arises in their likelihood is that it requires multiple evaluations of multivariate normal
integrals for each observation which can be very costly.

In this study we extend Kumbhakar and Lai (2016) to the profit function case in order to derive both output-
specific and input-specific inefficiency measures. As the authors mention: “Although in the present model we
consider only output slacks, the formulation can be extended to accommodate both input and output slacks in a
profit maximizing model”. This is true but certain nontrivial problems arise. In order to get rid of the awkward
normalizing constants of the closed skew-normal distribution we propose a multivariate lognormal distribution for
the latent input and output inefficiencies. Second, the extension of revenue to profit functions requires that all
observations have positive profits which is rarely the case. Therefore, we adopt a Symmetric Generalized McFadden
(SGM) profit function. We propose and apply (to a large sample of US banks) Bayesian analysis of the SGM
model (augmented with latent technical inefficiencies resulting in a highly nonlinear mixed effects model) using the
integrated nested Laplace approximation. To our knowledge this is the first study that analyzes the SGM profit
function enforcing all regularity restrictions globally without calibrating certain parameters.

2 Model

We build on Kumbhakar and Lai (2016) to construct a profit system with both output- and input-oriented inef-
ficiency. The vector of netputs is z ∈ <N , assuming outputs are positive and inputs are negative. For simplicity
z1, ..., zM > 0 are outputs and zM+1, ..., zN < 0 are inputs. Prices are p ∈ <N

+ . The objective of the firm is profit
maximization:

max
z∈<N

: p>z, s.t. F (z∗) = 1, (1)

where z∗ = θ � z, θ ∈ <N with θ1, ..., θM ≥ 1 and θM+1, ..., θN ≤ 1. The problem is equivalent to:

Π(p∗) = max
z∈<N

: p>∗ z, s.t. F (z) = 1, (2)

where p∗ = [pn/θn, n = 1, ..., N ] in view of equations (2) in Kumbhakar and Lai (2016). Using the envelope theorem
we have the netput demands in the form: z = ∂Π(p∗)

∂p∗
. Alternatively we have the shares: ∂ log Π(p∗)

∂ log p∗
n

=
p∗
nzn

Π(p∗)
, n =

1, ..., N . Next we assume a translog profit function:

log Π(p∗) = β0 +

N∑
n=1

βn log p
∗
n + 1

2

N∑
n=1

N∑
m=1

βnm log p∗n log p
∗
m. (3)

From the envelope theorem we obtain:

∂ log Π(p∗)

∂ log p∗n
= βn +

n∑
m=1

βnm (logpm − logθm) , n = 1, ..., N. (4)

Defining ξn = − log θn, n = 1, ..., N we have the following system of equations:
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log Π(p∗) = β0 +
∑N

n=1 βn log pn + 1
2

∑N
n=1

∑N
m=1 βnm log pn log pm +A(p, ξ) + v0,

Sn = pnzn
Π = βn +

∑n
m=1 βnm log pm +

∑N
m=1 βnmξm + vn, n = 1, ..., N − 1,

(5)

where

A(p, ξ) =

N∑
n=1

βnξn +

N∑
n=1

N∑
m=1

βnm log pmξn + 1
2

N∑
n=1

N∑
m=1

βnmξnξm, (6)

and v = [v0, v1, ..., vN−1] are error terms satisfying v ∼ NN (O,Σ). For the ξns we have a multivariate half-normal
distribution independently of v and prices:

[ξ1, ..., ξM ,−ξM+1, ...,−ξN ] ∼ N+
N (O,Ω) (7)

As
∑N

n=1 Sn = 1 we can omit the last share equation. To impose homogeneity of degree one in prices we can
employ the usual parametric restrictions or redefine pn := pn/p1 in which case the system in (5) takes the form:

log Π(p∗) = β0 +
∑N

n=2 βn log pn + 1
2

∑N
n=2

∑N
m=2 βnm log pn log pm +A(p, ξ) + v0,

Sn = pnzn
Π = βn +

∑n
m=2 βnm log pm +

∑N
m=1 βnmξm + vn, n = 1, ..., N − 1,

(8)

where

A(p, ξ) =

N∑
n=1

βnξn +

N∑
n=1

N∑
m=2

βnm log pmξn + 1
2

N∑
n=1

N∑
m=1

βnmξnξm, (9)

Additionally, ξ1, ..., ξM ≤ 0 and ξM+1, ..., ξN ≥ 0. Kumbhakar and Lai (2016) essentially consider only the system
of the last N equations in (5) ignoring their revenue function because it is not linear in ξ. Ignoring, however, this
information may be critical as the revenue or profit function provides significant identifying information.1 Then
they formulate the likelihood function from the system of share equations using properties of the closed skew-
normal distribution. This involves evaluating multivariate normal integrals in <N−1 for each observation which can
be cumbersome and computationally non-trivial. The entire system in (5) can be estimated using Markov Chain
Monte Carlo and especially efficient techniques developed in Kumbhakar and Tsionas (2004).

3 The Symmetric Generalized McFadden form and posterior analysis

If all profits are strictly positive we can proceed with the system in (5). In empirical applications, more often than
not some observations have negative profit we have to proceed with a different functional form.2 The Symmetric
Generalized McFadden form (SGM) has been introduced by Diewert and Wales (1987) in the context of cost
functions. As a profit function, the SGM takes the following form:

Π(po) =

N∑
n=1

βnp
o
n + 1

2

∑N
n=1

∑N
m=1 βnmponp

o
m∑N

n=1 αnpon
, (10)

where pon = pn + θn, ∀n = 1, ..., N where θ1, ..., θM ≥ 0 and θM+1, ..., θN ≤ 0. The SGM profit function is linear
homogeneous in prices. Convexity can be imposed by restricting the [βnm] matrix to positive semidefinite (e.g. by
using the Cholesky decomposition) and holds globally. From the envelope theorem we have the netput demands

1In principle identification of the one-sided component is not a problem, unless the distribution of the overall error term turns out
to be nearly symmetric. In applications this may often be the case. Therefore, the inclusion of the profit (or revenue) function may
become essential as it provided information, in nonlinear form, about the one-sided components.

2Some authors add a constant to profits so that all of them become positive. We do not follow this arbitrary practice here.
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and, after introducing error terms we have the following system:

Π(po) =
∑N

n=1 βnp
o
n + 1

2

∑N
n=1

∑N
m=1 βnmpo

np
o
m∑N

n=1 αnpo
n

,+v0,

zn = βn +
∑N

m=1 βnmpo
m

S − 1
2

αn
∑N

n=1

∑N
m=1 βnmpo

np
o
m

S2 + vn, n = 1, ..., N,
(11)

where S =
∑N

m=1 αmpom > 0, αn ≥ 0, ∀n = 1, ..., N and
∑N

m=1 βnmpom = 0, ∀n = 1, ..., N .
Again, we assume v = [v0, v1, ..., vN ] are error terms satisfying v ∼ NN+1(O,Σ) and

log [θ1, ..., θM ,−θM+1, ...,−θN ] ∼ NN (µ,Ω), (12)

where3 µ ∈ <N+1. In “expanded” form the system is the following:

Π =
∑N

n=1 βn (pn + θn) +
1
2

∑N
n=1

∑N
m=1 βnm(pn+θn)(pm+θm)∑N

n=1 αn(pn+θn)
,+v0,

zn = ∂Π
∂po

n
= βn +

∑N
m=1 βnm(pm+θm)∑N
m=1 αm(pm+θm)

− 1
2

αn
∑N

n=1

∑N
m=1 βnm(pn+θn)(pm+θm){∑N
m=1 αm(pm+θm)

}2 + vn, n = 1, ..., N.
(13)

The SGM is quite complicated as a function of θ even after, possibly, dropping the profit function and keeping
only the netput demands. In addition the θs must satisfy the following constraints:

N∑
m=1

αm (pm + θm) > 0,

N∑
m=1

βnm = 0, ∀n = 1, ..., N, βnm = βmn, ∀n,m = 1, ..., N. (14)

The first restriction in (14) will hold as long as θns are “small enough” in the sense that pn + θn > 0, ∀n = 1, ..., N .
For n = 1, ...,M this is not a problem but it can become a problem for n = M + 1, ..., N , i.e. for the inputs. We
check for such problems after estimation. The remaining constraints in (14) are parametric restrictions that can be
imposed easily through the prior. Contrary to standard practice, also recommended by Diewert and Wales (1987)
we do not set the αn equal to the means of netputs but we treat me as unknown parameters.

Suppose we have a set of observed data {Πi, zin, n = 1, ..., N}, i = 1, ..., I so we have I observations on profits
and netputs. Suppose

Yi = [Πi, zi1, ..., ziN ]
′
, i = 1, ..., I,

and Y = {Yi.i = 1, ..., I}. Write the system in (13) as follows:

Yi = f(pi; θi, λ) + vi, i = 1, ..., I, (15)

where pi is the vector of prices for observation i. Given that we denote the parameter vector by λ = {µ,Σ,Ω, α, β, [βnm]}
the posterior distribution of the system in (13) is the following:

π(λ|Y) ∝ |Σ|−I/2

ˆ
<N+1

{
exp

{
− 1

2

I∑
i=1

[Yi − f(pi; θi, λ)]
′
Σ−1 [Yi − f(pi; θi, λ)]

}
I∏

i=1

p (θi|Ω)

}
dθiπ(λ), (16)

where π (θi|Ω) is the prior of θi given by (12) and π(λ) is the prior of parameters λ. The former is the following:

π (θi|Ω) ∝ |Ω|−1/2 exp
{
− 1

2 (log θi − µ)′Ω−1(log θi − µ)− ι′N+1θi
}
, (17)

3The assumption of multivariate log-normality besides being quite flexible it avoids the presence of awkward integrating constants
like the multivariate normal c.d.f which would, otherwise, pose certain obstacles to both maximum likelihood as well as posterior analysis
using Monte Carlo techniques.
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where ιN+1 is a vector of ones in <N+1. Our prior for λ is flat over the domain defined by

N∑
m=1

βnm = 0, ∀n = 1, ..., N, βnm = βmn, ∀n,m = 1, ..., N,

while for the covariance matrices we assume

π(Ω) ∝ |Ω|−(N+1)/2, π(Σ) ∝ |Σ|−(N+2)/2

and [βnm] is positive semidefinite -a restriction that is enforced directly by reparametrizing using the Cholesky
decomposition. As the multivariate integral in (16) is not available in closed form we consider the augmented
posterior (augmented with {θi}):

π(λ, {θi}|Y) ∝ |Σ|−I/2|Ω|−I/2 exp
{
− 1

2

∑I
i=1 [Yi − f(pi; θi, λ)]

′
Σ−1 [Yi − f(pi; θi, λ)]

}
·

exp
{
− 1

2

∑I
i=1

[
(log θi − µ)′Ω−1(log θi − µ)− ι′N+1θi

]}
· π(λ).

(18)

After integrating Σ and Ωout analytically we obtain:

π(λ, {θi}|Y) ∝ |
∑I

i=1 [Yi − f(pi; θi, λ)] [Yi − f(pi; θi, λ)]
′ |−(I+N+1)/2·

|
∑I

i=1 [(log θi − µ)(log θi − µ)′] |−(I+N)/2 · exp
{
−ι′N+1

∑I
i=1 θi

}
· π(λ).

(19)

To explore the posterior in (19) we use the technique of integrated nested Laplace approximation (INLA)
developed by Rue, Martino and Chopin (2009) which requires only first and second order derivatives of the log
posterior.4 INLA produces accurate approximations to marginal posterior densities of λ, {θi} and other functions
of interest.

4 Data and empirical results

To illustrate the new methods we focus on a data set of a large number of U.S banks with 342,868 observations in
total. We keep only banks in the highest decile of total assets. This panel and the variables employed are identical
to those used by Koetter et al. (2012) and Restrepo-Tobon and Kumbhakar (2014). Specifically, as bank outputs,
we use total loans and total securities. The input prices include the cost of fixed assets (expenditures on fixed
assets divided by premises and fixed assets), the cost of labor (salaries divided by the number of full-time equivalent
employees), and the cost of borrowed funds (interest expenses on deposits and interest expenses on fed funds divided
by the sum of total deposits and fed funds purchased). We also include total assets, to control for bank size, and
a time trend. For general studies of the banking industry we refer to Berger and Mester (1997, 2003), Hughes and
Mester (1993, 1998), Feng and Serletis (2009), and Malikov, Kumbhakar and Tsionas (2016).

The empirical results are reported in Table 1 and Figure 1. From Table 1 we see that output inefficiencies
average5 12.5% for loans and 8.5% for securities. Input inefficiencies are 3.5% for capital (fixed assets), 8.7% for
labor and 12.8% for borrowed funds -a particularly large number indicating considerable slacks in borrowed funds.
Over time there seem to be important increases of slacks in both loans (3.2%) as well as securities (1.5%) and
practically no improvement at all in the front of input inefficiencies. Productivity growth is very small and averages
0.17% with sample standard deviation of 0.19%.

The sample distributions of output and input slacks are highly non-normal particularly for the slacks in loans
4These derivatives can be calculated relatively easily using analytical techniques.
5Instead of averaging across the sample we can present marginal posterior densities of the slacks for specific banks and / or years.

We avoid this in the interest of space.
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and securities. From Figure 2, sample distributions of temporal changes in output and input slacks show clearly
that there has been very little, if at all, progress in terms of reducing slacks and inputs and, for the most part,
if not exclusively, inefficiency has increased for both loans and securities. These findings clearly indicate certain
structural weakness in the banking sector, at least for the period we examine here, and they are not incompatible
with the “quiet life hypothesis” in banking.
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Table 1. Posterior statistics of output- and input-oriented slacks
Notes: Posterior means and posterior standard deviations are computed from the marginal posterior densities of θis using the INLA approach,
Rue, Martino and Chopin (2009). The reported statistics are sample averages of these statistics. Efficiency change measures the percentage
change in efficiency over time.

inefficiency inefficiency change
sample mean sample s.d. sample mean sample s.d.

OUTPUTS
total loans 0.125 0.025 0.032 0.014
securities 0.085 0.017 0.015 0.009
INPUTS

fixed assets -0.035 0.011 -0.007 0.003
labor -0.087 0.024 -0.005 0.004

borrowed funds -0.128 0.036 0.002 0.002
OTHER STATISTICS
productivity growth 0.0017 0.0019

Figure 1. Sample distributions of output and input slacks
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Figure 2. Sample distributions of temporal changes in output / input slacks

Conclusions

In this study we extend Kumbhakar and Lai (2016) to the profit function case in order to derive both output-
specific and input-specific inefficiency measures. In order to get rid of the awkward normalizing constants of the
closed skew-normal distribution we propose a multivariate lognormal distribution for the latent input and output
slacks. We adopt a Symmetric Generalized McFadden (SGM) profit function. We propose and apply (to a large
sample of US banks) Bayesian analysis of the SGM model. When augmented with latent technical slacks this
results in a highly nonlinear mixed effects model. Posterior inferences are performed using the integrated nested
Laplace approximation. To our knowledge this is the first study that analyzes the SGM profit function enforcing
all regularity restrictions globally without calibrating certain parameters and, at the same time, delivers exact
finite-sample estimates and posterior densities of input and output oriented slacks.
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