
Shen W. et al. Combined Cloud: A Mixture of Voluntary Cloud and Reserved Instance Marketplace.

JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY : 1– June 2016

Combined Cloud: A Mixture of Voluntary Cloud and Re-

served Instance Marketplace

Wei Shen1, Student Member, IEEE, Wanchun Dou1,∗, Member, IEEE, Fan Wu2,Member, IEEE,

Shaojie Tang3, Member, IEEE and Qiang Ni4, Senior Member, IEEE

1State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210046, China.
2Department of Computer Science and Engineering, Shanghai Jiaotong University, Shanghai 200240,

China
3Department of Information Systems, University of Texas at Dallas, TX 75080, USA.
4School of Computing and Communications, InfoLab21, Lancaster University, Lancaster LA1 4WA, UK.

E-mail: shenwei0917@126.com; douwc@nju.edu.cn; fwu@cs.sjtu.edu.cn; tangshaojie@gmail.com;

q.ni@lancaster.ac.uk

Abstract Voluntary Cloud is a new paradigm of cloud computing. It provides an alternative selection

along with some well-provisioned clouds. However, for the uncertain time span that participants share

their computing resources in Voluntary Cloud, there are some challenging issues, i.e., fluctuation, under-

capacity and low-benefit. In this paper, an architecture is first proposed based on Bittorrent protocol. In

this architecture, resources could be reserved or requested from reserved instances marketplace and could

be accessed with a lower price in a short circle. Actually, these resources could replenish the inadequate

resource pool and relieve the fluctuation and under-capacity issue in Voluntary Cloud. Then, the fault

rate of each node is used to evaluate the uncertainty of its sharing time. By leveraging a linear prediction

model, it is enabled by a distribution function which is used for evaluating the computing capacity of

the system. Moreover, the cost optimization problem is investigated and a computational method is

presented to solve the low-benefit issue in Voluntary Cloud. At last, the system performance is validated

by two sets of simulations. And the experiment results show the effectiveness of our computational

method for resource reservation optimization.

Keywords Voluntary Cloud, System Architecture, Resource Reservation

1 Introduction

“Time-sharing”, as a concept in computer

field, has been proposed by John McCarthy

in 1990s, which is amazing the world by a

new paradigm, “Cloud Computing” nowadays.

“Time-sharing” is no longer a compromise with

scarce computing resources but a pursuit for

0

2 J. Comput. Sci. & Technol., June. 2016, ,

a more efficient and economical computing

model. With prevalence of Cloud Computing

[1][2][3][4], almost all the well-known compa-

nies are devoted to establishing many data-

centers all over the world and providing the

public strong and stable cloud services. How-

ever, as the cloud customers are pure con-

sumers, their local resources have been largely

ignored especially considering the fast growing

of personal computing capacities [5]. Thus,

a novel self-organizing cloud called Voluntary

Cloud has emerged as a compelling paradigm,

which brings many advantages such as cheap-

ness and diversity appealing to the public. Un-

like grid computing [6], each participant can

share “spare time” of their physical machine

with each other in a real Voluntary Cloud

named Spot Cloud1. Yet, the uncertainty of

sharing time is a critical issue in this model.

When a part of participants are doing some

computing tasks, some exceptions may hap-

pen in the entire execution. For example, some

physical machines are broken down or some of

them need to complete an urgent task for them-

selves. In [7], the authors try to solve this prob-

lem by establishing a fault-tolerant architecture

named BFTCloud. Although the mature fault-

tolerant architecture has been proved to be suc-

cessful in deploying distributed services where

sufficient resource pool can replenish the fault

nodes, the problem may be different in imma-

ture or growing-up cloud services. There are

some challenging issues in a small scale Volun-

tary Cloud: 1) fluctuation: the uncertainty of

sharing time results in a high fault rate of each

working node, which brings large fluctuation

to computing ability of the Voluntary Cloud.

Usually, this fluctuation makes computing abil-

ity of the system hardly estimated. Specially,

when the system accepts a series of tasks which

is filled with almost all the nodes and some ex-

ceptions happen on some nodes at the same

time, many of these tasks cannot be completed

on time; 2) under-capacity: indeed, some fluc-

tuations do not bring a big problem to some

large cloud providers where the resource pool

is big enough. But, in a small scale Voluntary

Cloud, the insufficient resources cannot resist

drastic fluctuations; 3) low-benefit: if a task

needs n nodes to complete, the system should

prepare a resource pool where the replicas are

more than 3n + 1 to ensure the tasks’ smooth

implementation in BFTCloud architecture [7].

It improves the system stability but loses over

2/3 system performances and economic bene-

fits.

Reserved Instance Marketplace is a plat-

form firstly proposed by Amazon which can

help the reserved instance owners sell the re-

mainder of their reserved resources [8]. In

the Reserved Instance Marketplace, resources

could be reserved with a lower price in a short

circle, which is a good supplement to Volun-

tary Cloud. Thus, as a Voluntary Cloud or-

ganizer, in order to improve the system sta-

bility and economic benefit, he/she could re-

serve the computing resources from the mar-

kets like Reserved Instance Marketplace2 or

even request some resources from some well-

provisioned clouds. It not only ensures the sta-

bility of Voluntary Cloud but also supplies suffi-

cient elasticity for end-users. Just as illustrated

1http://www.virtustream.com/, Sep 2016
2http://aws.amazon.com/cn/ec2/purchasing-options/reserved-instances/marketplace/ Sep 2016

Combined Cloud 3

by Fig. 1, this organization combined resources

from Voluntary Cloud, Reserved Instance Mar-

ketplace and some well-provided clouds, there-

fore, it is called “Combined Cloud”. In sum-

mary, this paper makes the following contribu-

tions: 1) We identify three challenging issues

in the existing system architectures for Volun-

tary Cloud and propose a framework based on

Bittorrent protocol to solve them. 2) We pro-

pose a computational method to calculate the

quantity of reserved resources to optimize our

economic benefit on the basis of ensuring the

correct implementation of the system. 3) We

conduct two sets of simulations to test our sys-

tem performance and verify the effectiveness of

our computational method for resource reser-

vation optimization.

Exception

H
e

lp

Task 1

Task 2

Exit machine

Broken down

Supplement

Voluntary Cloud Combined Cloud

Some Well-provisioned Cloud

Fig. 1: Combined Cloud

The rest of this work is organized as fol-

lows, a motivating example is proposed to

demonstrate the existing problems in Volun-

tary Cloud and then an architecture is de-

signed based on Bittorrent protocol to solve

these problems in Section 2. In Section 3, a

computational method is proposed to calculate

the appropriate number of reserved resources to

optimize system economic benefits. In Section

4, two sets of simulation experiments are con-

ducted to verify the effectiveness of our com-

putational method for resource reservation op-

timization. At last, some related work is dis-

cussed in Section 5 and the conclusion is made

in Section 6.

2 System Architecture

In this section, a motivating example is

proposed to specify the research problems in

existing architecture for Voluntary Cloud. Sup-

pose some customers’ resources are organized

to be a small scale Voluntary Cloud and the

maximum available capacity of each customer

is assumed to be 20 computing resources per

day. There are two tasks waiting to be as-

signed, one of which needs to complete 30 parts

computing tasks in 4 days and the other needs

to complete 50 parts in 5 days. Assume that

the expected schedule plan is shown by the

“sche” column in Table 1. However, there are

some exceptions in the real execution which

could result in fault-tolerant problem and scal-

able problem.

2.1 Fault-tolerant Problem in Volun-

tary Cloud

In the real execution, some executing tasks

would be aborted by the volunteer due to some

unexpected emergencies. Therefore, this un-

certainty of sharing time results in that the

tasks would not be all completed as scheduled.

Specifically in Day 1, the nodes which imple-

ment Task 1 only complete 6 parts computing

task. Thus it is easy to find that the task would

4 J. Comput. Sci. & Technol., June. 2016, ,

Day 1 Day 2 Day 3 Day 4 Day 5

5

10

15

20 20

17
18

15

10

13

10

16

8

4

Sc
he

du
lin
g

Time

 Scheduling
 Real Execution

(a) Task scheduling and execution

Day 1 Day 2 Day 3 Day 4 Day 5
10

15

20

25

30

35

40

45

50

20 20 20 20 20

13 12

18

12

17
20

27

35
37

45

D
yn

am
ic

 S
ch

ed
ul

in
g

Time

 Dynamic Scheduling
 Real Execution
 Culmulative Needed

(b) Task dynamic scheduling

Day 1 Day 2 Day 3 Day 4 Day 5

10

15

20

25

20

17
18

15

10

20

17

22

15

10

Sc
he

du
lin
g

Time

 Scheduling
 Real Execution

(c) Task scalable problem

Fig. 2: The comparison of scheduling and execution in the motivating example

not be completed as scheduled just as shown in

Fig. 2(a).

In Fig. 2(b), even if the system adopts

dynamic scheduling method and allocates the

spare resources to replenish preceding fault

nodes, the red line which indicates the cumu-

lative needed resources (the sum of the sched-

uled resources and the supplement for preced-

ing fault nodes) surpasses the green line which

shows the real execution. Thus, although the

so-called dynamic scheduling method that rep-

resented by blue line adopts all available re-

sources, the result is not satisfactory. Undoubt-

edly, there are many other better methods to

solve this problem, for example the system can

only accept the task 1 and refuse task 2. How-

ever, no matter what the methods adopted, the

system would waste some computing resources

(In this example, if you only accept the task 1

you cannot make full use of 20 parts computing

resources) or sometimes encounter some excep-

tions because of the uncertainty of the sharing

time and node fault.

2.2 Scalable Problem

Even if the execution can run ideally as

scheduled, scalable problem may still exist.

Just as shown in Fig. 2(c), the task 1’s owner

wants to expand his/her task from 8 parts to 12

parts in day 3, which surpasses the computing

ability of the system.

Therefore, it is easy to find that a growing-

up Voluntary Cloud is hard to cater to cus-

tomers’ various requirements, because it could

not provide fault-tolerant and elastic service

like some large cloud providers.

Table 1: Task scheduling and execution

Task 1 Task 2

sche / exe sche / exe

Day 1 10 / 6 parts 10 / 7 parts

Day 2 7 / 4 parts 10 / 6 parts

Day 3 8 / 8 parts 10 / 8 parts

Day 4 5 / 3 parts 10 / 5 parts

Day 5 / 10 / 4 parts

2.3 System Overview

Service provider should collect some com-

puting resources, accept a series of computing

tasks and ensure that these tasks can be com-

Combined Cloud 5

pleted on time with collected computing re-

sources. In order to build stable and scalable

voluntary-resource cloud infrastructure, an ar-

chitecture is proposed based on a widely-used

p2p structure, Bittorrent [7] just as shown in

Fig. 3. Moreover, three tables store the main

information of the entire system just like Fig.

4.

Directory Web

Server

.Map Table

 Task Submission Task scheduling

 Reserve resources Inform the applicant Direct task migration

 Search for spare resources Tracker service allocate the spare resources

Task migration to reserved resources Apply for resources on demand

Task-finished notification and result transmission Update Map Table

Large cloud

resource provider
.Reservation Table

Tracker Server

Hash Tablee

Fig. 3: System Framework

Definition 1. (Map Table) It is a ta-

ble consisting of a set of data elements using a

model of vertical columns which are identified

by system nodes’ id and horizontal rows which

stand for each node’s multi-attributes which

contain the state, CPU, memory, storage, net-

work bandwidth, fault rate and so on.

In order to define hash table briefly, a relation

∼ and a N similar resources closure should be

first defined.

Definition 2. (Relation ∼) It is a re-

lation between an attributes vector a and a re-

quirement vector r, where r = (r0, r1, ..., rm)

and ri stands for one requirement or attribute

which should be satisfied; a = (a0, a1, ..., am)

represents a part resource’s attributes and each

ai is corresponding to ri; a ∼ r means that each

attribute ai in a satisfies each requirement ri in

r.

Node

IDPK

CPU

Memory

. . .

Node

IDPK

CPU

Memory

. . .

Node

IDPK

CPU

Memory

. . .

Map Table

Task

IDPK

Node Hash

Node Hash

. . .

Task

IDPK

Node Hash

Node Hash

. . .

Task

IDPK

Node Hash

Node Hash

. . .

Hash Table

Resource

IDPK

Ip

Cpu

. . .

Reservation TableAllocation Reservation

R
o

ll B
a

c
k

Apply

End User

Reserve

Large Cloud

Provider

Resource

IDPK

Ip

Cpu

. . .

Resource

IDPK

Ip

Cpu

. . .

PK

Fig. 4: Three Tables in System Framework

Definition 3. (N similar resources

closure for requirements r in Set S)

Given a resources set C ⊂ S, if each attribute

vector c ∈ C satisfies c ∼ r and each attribute

vector a ∈ S−C satisfies a 6∼ r. The set C is

called N similar resources closure for require-

ments r in Set S.

Definition 4. (Hash Table) The hash

table records the location of N similar resources

which cater to the same task’s requirements R

in the resource pool S.

Definition 5. (Reservation Table)

It is a table to record the location and at-

tributes of reserved resources in some large

cloud providers.

By sending computing resources’ information

to the web service, the participants join in the

Combined Cloud. Fig. 5 shows the entire ex-

ecution procedure and the detailed steps are

specified as follows,

6 J. Comput. Sci. & Technol., June. 2016, ,

Inform the

applicant

Task

Submission

Task

Migration

Reserved

resource

exist

Spare resource

exist

Reserve

Resources

Task

Scheduling

Allocate

the spare

resource

 Reserved

Resource

Apply for

resource

on demand

Fig. 5: The entire task execution procedure in the system architecture

(1) Task Submission: when a participant

applies for a task, he/she needs to submit

the task to the web service.

(2) Task Scheduling: then the web ser-

vice searches the Map table, allocates

the computing resources and schedules

the task if the resources are adequate.

Meanwhile, it would record some spare

resources which cater to each task’s re-

quirements into Hash table.

(3) Reserve resources: according to the

machines’ fault rate recorded in the Map

table, the web service reserves a certain

amount of resources from Reserved In-

stance Marketplace and records its loca-

tion and attributes into Reservation ta-

ble.

(4) Inform the applicant: after the above

steps, the web service would inform the

applicant of the allocated machine and

Reservation table.

(5) Task migration: the applicant migrates

the task directly.

(6) Search for spare resources: under the

monitoring of the system, if a task would

haven’t been executed as scheduled, the

node would apply to the tracker server for

some spare resources.

(7) Allocate the spare resources: the

tracker server would search the Hash ta-

ble and allocate some free nodes to the

task.

(8) Task migration to reserved re-

sources: if the spare resources in the

system are used up, the node which exe-

cutes the task would migrate a part of the

task to the reserved resources according

to the Reservation table.

(9) Apply for resources on demand: if

the reserved resources are used up, the

system would apply for new resources on

demand.

(10) Task-finished notification and result

transmission: in the end of execution,

the result would be returned to the appli-

cant.

Combined Cloud 7

(11) Update Map Table: at last, the Map

Table containing the state and fault rate

would be updated in directory web ser-

vice and tracker service.

Inherited by Bittorent protocol, this architec-

ture is composed of a centralized web service,

a tracker server which monitors all tasks’ exe-

cutions and the nodes’ states. The main dif-

ferences in task execution between this archi-

tecture and others based on P2P structure are

resource reservation (Step (3)), task migration

to the large cloud provider (Step (8)) and fault

rate prediction (Step (11)). The task migration

has a mature solution in cloud computing [9]

and the fault rate could be predicted by some

mature regression model.

Task

Scheduling

Search

Attributes

Node

Attributes

Apply the

requirement

No

Cheaper

Yes

No

Record

Yes

Node

ID

Cpu

Node

ID

Cpu

Node

ID

Cpu

Price PricePrice

Fig. 6: The procedure of the resource reserva-

tion

2.4 Resources Reservation Strategy

The resource query match problem are for-

mulated as follows: Let N be the set of the

computing resources in Reserved Instance Mar-

ketplace, P be the set of price for it and A be

the set of m dimension vector. For each node ni

in N, there is a pi and a ai = (ai0, ai1, ..., aim)

to represent its price and attributes, the op-

timal resources reservation should be selected

from N . In the module of this problem, as-

sume that the resource information of Volun-

tary Cloud has been collected, which is denoted

as matrix [N,P]. The problem is converted to

search a part computing resource, which satis-

fies the requirement and has a minimum price

in Matrix [N,P]. Fig. 6 represents the proce-

dure from gathering resources to resource query

match. Thus, a simple algorithm for resources

query match is specified as Algorithm 1.

Algorithm 1 The Procedure of Resource

Query Match

Input: [N,P], A∗

Output: the serial number in N , Sn.

1: Sn = 0;

2: pmin = MAX;

3: for all ni ∈ N do

4: if ni ∼ A∗ then

5: if Pi < pmin then

6: pmin = Pi;

7: Sn = i;

8: end if

9: end if

10: end for

11: return Sn;

3 Computational Method for Calculat-

ing the Quantity of Reserved Re-

sources

A cost-effective, stable and scalable service

is beneficial to encourage the development of

Voluntary Cloud. Considering the fault rate

of each node is predicted by some methods,

it would cause an uncertain quantity of fault

8 J. Comput. Sci. & Technol., June. 2016, ,

nodes. If the reserved resources are less than

the real execution need, the supplementary re-

sources would be reserved on demand and else,

some money would be wastered on the redun-

dant reserved resources, which damages our

economic interests. Thus, a resources reserva-

tion strategy is adopted to optimize the system

profit in Combined Cloud.

3.1 Problem Formulation

Suppose there are N nodes in Voluntary

Cloud denoted by vi, where 1 ≤ i ≤ N . Each

node owns m(vi) MIPS resources, and the fault

rate of each node is denoted as f(vi). The

nodes’ resources vector and fault rate vector are

denoted as m = (m(v0),m(v1), ...,m(vN−1))
T

and f = (f(v0), f(v1), ..., f(vN−1))
T. Be-

cause the fault rate’s prediction exists bias, a

function e(vi) is adopted to indicate the ex-

pected prediction error of each node’s fault

rate. Similarly, the system expected predic-

tion error could be denoted as a vector e =

(e(v0), e(v1), ..., e(vN−1))
T. After defining the

resource in the system, we could schedule k

tasks, each is denoted as ti, where 1 ≤ i ≤ k. In

addition each task needs b(ti) MIPS resources

and the resources requirement vector could be

denoted as b = (b(t0), b(t1), ..., b(tk−1)). Con-

sidering that optimizing many tasks at the

same time is nontrivial, one task would be

used to study and then the result could be ex-

tended to the optimization of the entire sys-

tem. For a task ti which needs b(ti) MIPS

resources, it would be allocated n nodes, and

each is denoted as vij, where 1 ≤ j ≤
n. Resource allocation is denoted as a vec-

tor ati and ati = (a(vi0), a(vi1), ..., a(vi(n−1)))
T

where a(vij) stands for the work the node

vij should complete. Besides, each node’s

fault rate is denoted as a vector fti , fti =

(f(vi0), f(vi1), ..., f(vi(n−1)))
T and each fault

rate’s expected prediction error as e(vij) = ε,

which is supposed to be a Gaussian random

variable with expectation zero and variance σ̂2,

that is, ε ∼ N(0, σ̂2).

Let Pr denotes a MIPS reserved resource’s

price , Pd denotes a MIPS on-demand re-

source’s price and Pc denotes the cost of a

MIPS resource. Likely, the m MIPS resources

are composed of r MIPS reserved, d on-demand

and c local resources. Thus, the price and the

resource composition need to strictly satisfy the

following constraints (1), (2) and (3).

Pr × r + Pd × d+ Pc × c < Pd ×m, (1)

d+ r + c = b(ti), (2)

Pc < Pr < Pd (3)

3.2 Resource Reservation Optimization

3.2.1 A task’s resource reservation optimiza-

tion

For a task ti, after task scheduling and re-

source allocation, its allocation vector is ati
and the node fault vector is fti . Note that

due to the existence of deviations of prediction

which are to be additive and to satisfy Gaus-

sian distribution, each node’s completed work

is a(vij)× (f(vij) + e(vij)) and the entire com-

pleted work is denoted as y = aT
ti
·(h−fti−eti)

where h is a vector (hij)n×1 with hij = 1. Hence

y = aT
ti
· (h− fti)− aT

ti
· eti , (4)

Combined Cloud 9

where aT
ti
·eti distributes as the sum of multiple

Gauss distributions:

aT
ti
· eti ∼

n−1∑
j=0

N(0, a2(vij)σ̂
2). (5)

Due to the property of Gaussian distribution,

it is easy to show that

aT
ti
· eti ∼ N(0,

n−1∑
j=0

a2(vij)σ̂
2). (6)

Without emphasis on the fault rate prediction,

a prediction model is needed to ensure that the

computational method can calculate the accu-

rate result, which has a little influence on our

conclusion. Thus a simple but powerful predic-

tion model, linear model fit by least squares is

used to predict the fault rate in Assumption 1.

Assumption 1 (linear model fit by

least squares). It predicts a node’s fault rate

from the C×p input matrix X , where there are

C instances with p dimensions. The number

of instances and dimensions satisfies the con-

straint

C > p (7)

In this linear model, one estimates the variance

σ̂2 by

σ̂2 =
1

C − p− 1

C−1∑
l=0

(fl(vij)− f(vij))
2 (8)

and hence

(C − p− 1)σ̂2 ∼ σ2χ2
C−p−1, (9)

a chi-squared distribution with C−p−1 degrees

of freedom. To calculate the true distribution

function of aT
ti
·eti , the standardized coefficient

or Z-score could be calculated as

z =
aT
ti
· eti√∑n−1

j=0 a
2(vij)σ̂

(10)

and thus z ∼ tC−p−1. If b(ti) − y − r > 0, the

average cost of Cost can be calculated as

E(Cost) = Pr× r+Pd× (b(ti)− y− r) +Ps× y
(11)

and else

E(Cost) = Pr × r + Ps × y. (12)

Then, the cost the organizer will pay for a task

ti could be calculated from (11) and (12). Be-

cause the Cost is not fixed, the expectation

could be calculated as following,

E(Cost) =
∫ δ

−∞
[Pr × r + Pd × (b(ti)− y − r)

+ Pc × y]dz +
∫ ∞
δ

[Pr × r + Pc × y]dz

(13)

where

δ =
b(ti)− r − aT

ti
· fti√∑n−1

j=0 a
2(vij)σ̂

(14)

δ obeys the t−distribution with the parameter

c-p-1, therefore

E(Cost) = T (δ)[Pr × r + Pd × (b(ti)− y − r)
+ Pc × y] + (1− T (δ))[Pr × r + Pc × y]

(15)

where T (δ) is the cumulative distribution func-

tion of tC−p−1. To calculate the extreme of

equation (15), it should be differentiated with

respect to r, then

dE(Cost)

dr
= Pr +

dT (δ)

dδ
× dδ

dr
· Pd(b(ti)− y − r)

− Pd × T (δ).

(16)

Let dE(Cost)
dr

= 0, a first order ordinary differen-

tial equation should be solved

dE(Cost)

dr
= Pr +

dT (δ)

dr
× dδ

dr
· Pd(b(ti)− y − r)

− Pd × T (δ).

(17)

10 J. Comput. Sci. & Technol., June. 2016, ,

Hence, the r can be calculated as,

r = b(ti)− T−1(Pr/Pd)

√√√√n−1∑
j=0

a2(vij)σ̂

− aT
ti
· (h− fti)

(18)

From equation (18), it is easy to find that b(ti)

and aT
ti
· fti are fixed, so r is correlated with

T−1(Pr/Pd) and
√∑n−1

j=0 a
2(vij)σ̂ which respec-

tively stands for the quantile where Pr/Pd is

in the distribution of fault rate and the vari-

ance of it. The above analysis indicates that

the optimal quantity of the reserved resources

is only correlated with the distribution of the

fault rate but has nothing with the predictive

model. Under the case of one task, the equa-

tion (18) is the minimum point that makes our

expected cost lowest. But, for the entire sys-

tem, the situation is much more complex.

3.2.2 The System’s Resource Reservation Op-

timization

In this subsection, the resource reservation

optimization algorithm in Algorithm 2 has been

proposed. The system’s resource reservation

optimization is not just linear superposition of

each task. There are two different points which

are specified as follows. 1) The existence of the

spare resource pool in the system: when a task

encounters some problems, it could seek some

spare nodes from tracker server to complete its

work. For an isolated task ti, after completed,

the resources the system donates to it are just

correlated with its allocation vector ati . How-

ever, in a system, the resources the system do-

nates to a task are not only correlated with its

allocation vector but also the spare resources.

2) the requirements of different tasks are differ-

ent: for a task, the reserved resources just need

to satisfy its requirements. But, the situation

changes when you consider the entire system

due to diversity of tasks’ requirements.

Algorithm 2 Computational method for re-

served resources

Input: [T], [Rp], [Ra], N

Output: [r] //The quantity of reserved re-

sources

1: Sort [T] into [L] according to [T].quantity

2: Map M, Mr;

3: for all Ti ∈ [L] do

4: M.key = Ti;

5: [S] = Scr(N, Ti.require, [Rp]);

6: M.value = [S];

7: Remove [S] from Rp;

8: end for

9: for all Ti ∈ [L] do

10: Mr.key = Scr(1, Ti.require, [Ra]);

11: Mr.value← Scr(1, Ti.require, [Ra]);

12: end for

13: for all Key in Mr do

14: List A, F ;

15: for all Ti in Mr.value do

16: A← M.getvalue(Ti)

17: end for

18: for all Ai in A do

19: Fi = f(Ai)

20: [r]← equation (18)

21: end for

22: end for

23: return [r];

A task’s N similar resources closure de-

noted Pti could be obtained from the Hash Ta-

ble. If each closure does not overlap, ∀Ai ∈
Pti , Ai /∈ Ptj where j 6= i, then the problems

need to be divided into each closure Pti . There-

Combined Cloud 11

fore, the resources allocated by the system in a

closure, c, are the sum of allocation vector ati
and spare resources S.

Algorithm 3 N similar closure for require-

ments R in set S
Input: N , R, S

Output: [L] //List for N similar resources

vector

1: for all Si ∈ S do

2: if Si ∼ R then [L]← Si

3: end if

4: end for

5: while [L].length > N do

6: for all Li ∈ [L] do

7: for all Lj ∈ [L] do

8: if Li 6∼ Lj then break;

9: end if

10: if i = j then

11: Remove Li from [L]; break;

12: end if

13: end for

14: end for

15: end while

16: if i 6= [L].length then Remove L0 from [L];

17: end if

18: return [L];

c = aT
ti
· (h− fti) + fs (19)

It is easy to derive that

c =
x∑
i=0

aT
i · (h− fi) (20)

where ai stands for the computing resources

in closure Pti and fi is the fault rate corre-

sponding to each computing resource. For ev-

ery closure, the system should select those re-

sources which satisfy the task’s requirements

and cost us the least money. Due to the posi-

tive correlation between the resources’ pricing

and attributions, the resource should be se-

lected in 1 similar closure for its requirement

in set {Amazon reserved resources}, denoted

by [Ra]. Then each closure could be incorpo-

rated into a different set Si according to their

1 similar closure. At last, the quantity of com-

puting resources would be respectively calcu-

lated in every set Si by equation (18). But, if

closures overlap with each other, it need to be

substituted from the spare sources or be just

calculated once in the resources for the low-

est price. From algorithmic point, the second

method is easier to execute. At first, each task

[T] is sorted according to its computing quan-

tity into list [L]. Secondly, each task’s N sim-

ilar resources closure is calculated for its re-

quirements R in resource pool [Rp], where the

resources vector should be removed if it has

been divided into preceding closures. Then,

the procedure is same as the method that deals

with the closures with no overlap. At last, an

algorithm is given to solve N similar closure

for requirements R in set S in Algorithm 2,

denoted by Scr, and the entire computational

method is simplified by Algorithm 3.

4 Performance Evaluation

Two sets of simulations have been con-

ducted to test our system performance and

verify our computational method for resource

reservation optimization.

4.1 Experimental Setting

To conduct the simulation, the system

first randomly generates n participating nodes

12 J. Comput. Sci. & Technol., June. 2016, ,

Table 2: Parameter Setting

System Parameters Setting User Tasks’ Demand

Parameter Value Parameter Value

number of nodes 2000 ∼ 12000 CPU rate 1 ∼ 25.6 Gflops

number of processors per node 1, 2, 4, 8 quantity 0.64 ∼ 640 Pflo

computation rate per processor 1.2, 2.4, 3.2 Hz N N

I/O speed per node 20, 40, 60, 80 MbPS I/O speed 20 ∼ 80 Mbps

memory size per node 512, 1024, 2048, 4096 MB memory size 512 ∼ 4096 MB

disk size per node 20, 60, 120, 240 Gb disk size 20 ∼ 240 Gb

LAN network bandwidth 5 ∼ 10 Mbps N N

WAN network bandwidth 0.2 ∼ 2 Mbps bandwidth 0.1 ∼ 10 Mbps

the mean of fault rate per day 0.05 ∼ 0.35 N N

of which the hardware configuration is ran-

domly selected according to system parame-

ters specified in Table 2. From the table, the

min capacity and max capacity could be de-

rived at each resource dimension. For exam-

ple, along CPU dimension, min capacity and

max capacity are 1×1 = 1 Gflops and 8×3.2 =

25.6 Gflops, respectively which stand for a ma-

chine which is only 1 core running at speed of 1

Gflops and 8 cores per node each operating at

3.2 Gflops. Each node’s resource price is pro-

portional to its computing capacity, of which

the proportional coefficient is λ.

The fault rate in the system is generated

from the Gaussian distribution of which u be-

longs to [0.05, 0.35] and v is equal to 1. When

the fault rate is less than zero, it represents that

the sharing time of some participants surpasses

the scheduling. However, this part of comput-

ing resources would be wasted and so the fault

rate is equal to zero.

The tasks’ requirements are listed in Ta-

ble 2. The data in Table 2 is collected in Re-

served Instance Marketplace in Amazon. In or-

der to reflect the diversity of users’ demands,

the range of tasks’ requirements is relatively

large. For instance, the computing quantity of

a task in the system ranges from 640 Tflo (tera

Floating-point Operations) to 640 Pflo (pera

Floating-point Operations). Each tasks’ time

constraint is set as 86, 400 seconds (one day).

In first experiment, the 100 tasks come

into the system from 5 time points in a day.

Because the interval of their last time is from

1 to 7, the tasks should be scheduled in time

interval [1, 7]. Then a greedy algorithm should

be used to allocate resources to each task. Af-

ter task scheduling and resource allocation, the

tasks would be implemented respectively on

P2P architecture, BFTCloud and Combined

Combined Cloud 13

Cloud. In a P2P architecture, the system al-

locates tasks computing resources without re-

gard to nodes’ fault. However, if any node en-

counters some faults, it would substitute other

nodes for it from resource pool. In the BFT-

Cloud architecture, four nodes are set to com-

plete one part computing task and if any node

encounters some problems, it would also sub-

stitute for it.

Fig. 7: The fault rate of three architectures

In the second experiment, the part pricing

of Amazon EC2 3 would be adopted in Table 3

to substitute it, where the dph stands for dollar

per hour. Then the quantity of the resources

the system should reserve would be calculated

according to our computational method in Sub-

section 3.2. At last, the cost in our computa-

tional method would be compared with other

methods.

4.2 Experimental Result

The computing ability of 8000 nodes could

be calculated as 4700.16Pflo a day and the av-

erage computing task in a day is approximately

4571Pflo which is under the computing ability

of the 8000 nodes. However, the error rate of

it is still more than 0.3, which also results from

uncertainty of sharing time.

4.2.1 System Performance Experiment

Fig. 7 presents the failed task ratio be-

tween Combined Cloud to P2P and BFTCloud

architecture with the node number n = 2000 ∼
11000. The failed task ratio is defined as the

ratio of the number of the tasks which is not

finished on time. When n = 2000, our model

and BFTCloud model are apparently superior

to the general P2P structure because there are

some reserved resources to replenish some fault

nodes. When the number of nodes rises to

6000, the failed ratio in the general P2P struc-

ture rapidly descends. In the tail of the curve,

the failed ratio in the general P2P structure

is close to zero but fluctuates, which results

from each node’s uncertainty of the sharing

time. In our model and BFTCloud, the system

fault rate is comparatively low and stable. The

throughput rate, error rate, task refused rate

and average computing capacity of these three

structures are respectively presented in Fig. 8.

From Fig. 8(a), (c) and (d), the throughput

rate, the task refused rate and the average com-

puting capacity of the P2P structure and Com-

bined Cloud are approximately equal when the

number of nodes exceeds 9000. However, when

the nodes are under 5000, the fluctuation and

under-capacity of the P2P structure are re-

flected. To BFTCloud, the low error rate is

embodied in Fig. 8(b) but the low through-

put, high task refused rate and low computing

capacity are meanwhile reflected in Fig. 8(a)

(c) and (d) respectively, which results in low

economic benefit in the system. Thus, Com-

bined Cloud is more stable than the general

P2P structure and possesses better system per-

3http://aws.amazon.com/cn/ec2/pricing/ Sep 2016

14 J. Comput. Sci. & Technol., June. 2016, ,

Table 3: The part pricing of Amazon EC2 Instances

Name vCPU ECU Memory Storage On-demand Pricing Reserve Pricing

m3.medium 1 3 3.75 4 SSD 0.067 dph 0.0403 dph

m3.large 2 6.5 7.5 32 SSD 0.133 dph 0.0814 dph

m3.xlarge 4 13 15 80 SSD 0.266 dph 0.1631 dph

m3.2xlarge 8 26 30 160 SSD 0.532 dph 0.3243 dph

formance than BFTCloud.

(a) Throughput rate (b) Error rate

(c) Task refused rate (d) The average computing

capacity

Fig. 8: The performance of three architectures

4.2.2 Calculate Method Experiment

In Fig. 9, 10 times comparison exper-

iments were conducted to respectively evalu-

ate our computational method in 2000 ∼ 8000

nodes. The red curve represents the cost if the

system purchases the reserved computing re-

sources at demand price and the blue is the

cost at reserved price. The green curve is the

system cost with our computational method.

It is easy to find that the green curve is under

the red curve which represents that the cost in

our system is at least superior to the cost at

on-demand price.

Fig. 9: The costs of three architecture

Furthermore, when the number of the

nodes is under 6000, the green curve ap-

proaches the blue curve which implies that our

computational cost is almost equal to the low-

est cost. When the number of the nodes is be-

yond 6000 and the experiment times are un-

der 5 times, the red curve fluctuates largely

but the green curve is relatively stable which

demonstrates the cost in our system fluctuates

lowly. At last, when experiment is repeated

many times, the green curve is approaching the

reserved approach which represents that the

cost tends to a stable and economically opti-

Combined Cloud 15

mized cost.

5 Related Work

With the development of computer hard-

ware, our personal computers possess a pow-

erful computing ability. More and more

researches try to organize these computing

resources to provide computing services to

the public. Voluntary Cloud [5][7][10], Self-

organizing Cloud [11][12] and Collaborative

Computing Cloud [13][14][15][16] are just three

new paradigms for cloud computing. Com-

pared with traditional cloud computing or Grid

computing, it shows unique characteristics such

as small scale, instable and low performance.

Thus, the researchers pay their attention to the

following issues in these novel cloud paradigms:

1) The self-organizing model and sys-

tem architecture: a new resource management

method [17] for Cloud Computing, resource

self-organizing model, is proposed that forms

self-government resource groups in the absence

of centralized management control and dynam-

ically optimizes the organizational structure of

resources in accordance with resource changes.

2) The resource allocation and task

scheduling in cloud computing [18][19][20]: the

Voluntary Cloud is different from the tradi-

tional Grid model in the consumption man-

ner. Grids generally assume exclusive resource

usage to ensure users’ QoS. Thus, some ap-

proaches [5][21][11] are proposed to not only

achieve the maximum resource utilization us-

ing the proportional share model (PSM), but

also deliver provably and adaptively optimal

execution efficiency. In addition, the resource

search and match problem in traditional P2P

structure similarly exist in Voluntary Cloud.

The multi-dimensional range search problem is

known to be challenging as contentions along

multiple dimensions could happen in the pres-

ence of the uncoordinated analogous queries.

Moreover, network delay will affect your match-

ing rate. Accordingly, a few researches [22] de-

sign a novel resource discovery protocol to do

with many analogous queries and obtain a high

matching rate.

3) The security and privacy problem in

cloud computing [23][24]: in Voluntary Cloud,

each computing node is distributed in differ-

ent places and belongs to different participants,

which results in many security and privacy

problems. A novel approach [25] tackles both

loss of trust and security control problems by

enabling cloud consumers to extend their se-

curity management process to include cloud

hosted assets in collaboration-based cloud com-

puting environment. Moreover, data dedupli-

cation is one of important data compression

techniques for eliminating duplicate copies of

repeating data, and has been widely used in

cloud storage. Therefore, to better protect

data security, some researchers [26] make the

attempt to formally address the problem of au-

thorized data deduplication. Besides, the study

on the fairness between the nodes in clouds is

a new direction in resource allocation. In [18],

it proposes a performance centric fairness re-

source allocation method to solve this problem.

4) Pricing mechanism: the Voluntary

Cloud or Self-organizing Cloud is sometimes

looked as a market where users share and trade

resources. In this market, the resource pricing

is changing all the time and users need to pur-

chase different types of resources from one or

16 J. Comput. Sci. & Technol., June. 2016, ,

more resource providers to cater to their per-

sonal demand. Thus, a few researches [27] are

devoted to designing a dynamic resource pric-

ing scheme suitable for every rational end user.

To the best of our knowledge, almost all

the work about Voluntary Cloud is proposed

with assumption that the entire system has

been well established and possessed sufficient

resources. However, it is unrealistic for a

long time, because Voluntary Cloud is a new

paradigm which is hard to be received by the

public with a short time. Thus, our work is de-

voted to designing a system architecture which

is more effective than other system architec-

tures [7][10] when a Voluntary Cloud is being

organized or in a small scale. Moreover, a com-

putational method has been designed to help

the organizer who wants to adopt our architec-

ture to make more profit. Our computational

method is a heuristic method with O(n) time

complexity to solve our problem. Because the

problem is unique and local that there is not re-

lated work about it. However, the experiment

results demonstrate our method is effective and

stable.

6 Conclusion and Future Work

Due to the development of Voluntary

Cloud, many problems are emerging beyond

our expectation. A lot of researchers assume

that the resource pool should be considerable

but it is unrealistic in reality. However, in

small scale cloud, resource pool is not suffi-

cient which is an issue that damages the sys-

tem stability and elasticity. This paper pro-

posed a novel architecture that the system can

reserve or request resources from some large

cloud providers. It ensures that each task is

completed on time and is just a compromised

solution to help Voluntary Cloud transit itself

from small scale cloud to an independent and

autonomous cloud. In addition, a computa-

tional method is proposed to optimize our eco-

nomic benefit in resources reservation step. At

last, two sets of simulations are conducted to

validate the effectiveness of our system frame-

work and resource reservation strategy.

In the future, a decentralized architecture

could be conducted by adopting DHT (dis-

tributed hash table) method which is more

complex to design but more convenient to or-

ganize. In addition, the incentive mechanism is

a novel but important research direction. How

to encourage the participants to donate more

computing resources and attract more people

to participate in Voluntary Cloud is a key is-

sue for the organizer. Thus, some tools such

as game theory could be used to design an in-

centive mechanism for our system. It is a good

way to attract more people to participate in our

system and encourage the participants to con-

tribute more computing resources, which would

make the Combined Cloud more effective and

stable.

At last, the rise of Voluntary Cloud may

be harmful to some large cloud providers. It

would scramble for customers and computing

resources. Moreover, it would prevent the Vol-

untary Cloud from reserving or requesting re-

sources from them. In this case, the strategy

presented in this paper should be improved.

The game theory method could be used to an-

alyze this situation and achieve a stable state

solution. In this stable state solution, both

the large cloud providers and Voluntary Cloud

Combined Cloud 17

providers would not change their pricing meth-

ods. Accordingly, it forms a Nash Equilibrium

between the Combined Cloud and large cloud

providers.

Acknowledgment

This paper is partially supported by the

National Science Foundation of China under

Grant No. 91318301 and No. 61672276,

the Key Research and Development Project of

Jiangsu Province under Grant No. BE2015154,

BE2016120, the Collaborative Innovation Cen-

ter of Novel Software Technology, Nanjing Uni-

versity and the EU FP7 CROWN project under

grant number PIRSES-GA-2013-610524.

References

[1] Butt S, Lagar-Cavilla H. Self-service cloud

computing. In Proc. ACM Conference

on Computer and Communications Security,

July 2012, pp. 253–264.

[2] Khalaf M N, Al-Ghuwairi A R, Al-Yasen L.

A trust framework for ranking user as a cloud

provider in peer-to-peer cloud system. In

Proc. the International Conference on Inter-

net of things and Cloud Computing, June

2016, pp. 391–416.

[3] Shao J, Lu R. Fine: A fine-grained privacy-

preserving location-based service framework

for mobile devices. In Proc. IEEE Interna-

tional Conference on Computer Communica-

tions, January 2014, pp. 244–252.

[4] Zhu C, Leung V C M. Trust assistance in

sensor-cloud. In Proc. Computer Communi-

cations Workshops, June 2015, pp. 342–347.

[5] Wang H, Wang F, Liu J, Groen J. Measure-

ment and utilization of customer-provided re-

sources for cloud computing. In Proc. IEEE

International Conference on Computer Com-

munications, December 2012, pp. 442–450.

[6] Foster I, Zhao Y. Cloud computing and grid

computing 360-degree compared. Grid Com-

puting Environments Workshop Gce, 2009, 5:

1–10.

[7] Zhang Y, Zheng Z, Lyu M R. Bftcloud:

A byzantine fault tolerance framework for

voluntary-resource cloud computing. In Proc.

Cloud Computing, June 2011, pp. 444–451.

[8] Yao M, Lin C. An online mechanism for dy-

namic instance allocation in reserved instance

marketplace. In Proc. Computer Communica-

tion and Networks, September 2014, pp. 464–

571.

[9] Zhang W, Tan S. A survey on decision making

for task migration in mobile cloud environ-

ments. Personal and Ubiquitous Computing,

2016, 20(3): 295–309.

[10] Ryden M, Oh K. Nebula: Distributed edge

cloud for data intensive computing. In Proc.

Cloud Engineering, March 2014, pp. 491–492.

[11] Di S, Wang C L. Dynamic optimization

of multiattribute resource allocation in self-

organizing clouds. IEEE Transactions on

Parallel and Distributed Systems, 2013, 24(3):

464–478.

[12] Megahed M, Ismail R M. An enhanced

cloud-based view materialization approach for

peer-to-peer architecture. In Proc. Advanced

Machine Learning Technologies and Applica-

tions, July 2012, pp. 491–492.

18 J. Comput. Sci. & Technol., June. 2016, ,

[13] Ragan-Kelley B, Walters W A. Collaborative

cloud-enabled tools allow rapid, reproducible

biological insights. Isme Journal, 2013, 7(3):

461–464.

[14] Valilai O F, Houshmand M. A collabo-

rative and integrated platform to support

distributed manufacturing system using a

service-oriented approach based on cloud

computing paradigm. Robotics and computer-

integrated manufacturing, 2013, 29(1): 110–

127.

[15] Karnouskos S, Colombo A W. A soa-based

architecture for empowering future collabo-

rative cloud-based industrial automation. In

Proc. Annual Conference on IEEE Industrial

Electronics Society, May 2012, pp. 5766–5772.

[16] Liu G, Shen H. An efficient and trustwor-

thy resource sharing platform for collabora-

tive cloud computing. IEEE Transactions on

Parallel and Distributed Systems, 2014, 25(4):

862–875.

[17] Lin W, Qi D. Research on resource self-

organizing model for cloud computing. In

Proc. Internet Technology and Applications,

June 2010, pp. 291–316.

[18] Chen L, Feng Y. Towards performance-centric

fairness in datacenter networks. In Proc.

IEEE International Conference on Computer

Communications, January 2014, pp. 1599–

1607.

[19] Kayed A, Akijian T. Resource allocation tech-

nique to obtain energy efficient cloud. In Proc.

The International Conference on Engineering

and Mis, March 2015, pp. 722–741.

[20] Liao X, Liu C, Mccoy D. Characterizing long-

tail seo spam on cloud web hosting services.

In Proc. International Conference on World

Wide Web, March 2016, pp. 587–601.

[21] Wang H, Wang F. Resource provisioning on

customer-provided clouds: Optimization of

service availability. In Proc. IEEE Interna-

tional Conference on Communications, De-

cember 2013, pp. 2954–2958.

[22] Di S, Wang C L. Probabilistic best-fit multi-

dimensional range query in self-organizing

cloud. In Proc. International Conference on

Parallel Processing, September 2011, pp. 763–

772.

[23] Al-Qurishi M, Al-Rakhami M, Alrubaian M,

Alamri A. A framework of knowledge man-

agement as a service over cloud comput-

ing platform. In Proc. International Con-

ference on Intelligent Information Processing,

Security and Advanced Communication, May

2015, pp. 322–331.

[24] Wang Z, Chen H. Fault tolerant barrier cov-

erage for wireless sensor networks. In Proc.

IEEE International Conference on Computer

Communications, January 2014, pp. 1869–

1877.

[25] Almorsy M, Grundy J. Collaboration-based

cloud computing security management frame-

work. In Proc. Cloud Computing, September

2011, pp. 364–371.

[26] Li J, Li Y K. A hybrid cloud approach for se-

cure authorized deduplication. IEEE Trans-

actions on Parallel and Distributed Systems,

2015, 26(5): 1206–1216.

[27] Mihailescu M, Teo Y M. Dynamic resource

pricing on federated clouds. In Proc. IEEE

International Symposium on Cluster Comput-

ing and the Grid, May 2010, pp. 513 – 517.

