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Interference-Aware Energy Efficiency Maximization
in 5G Ultra-Dense Networks

Chungang Yang∗, Jiandong Li∗, Qiang Ni†, Alagan Anpalagan‡, Mohsen Guizani§

Abstract—Ultra-dense networks can further improve the spec-
trum efficiency (SE) and the energy efficiency (EE). However, the
interference avoidance and the green design are becoming more
complex due to the intrinsic densification and scalability. It is
known that the much denser small cells are deployed, the more
cooperation opportunities exist among them. In this work, we
characterize the cooperative behaviors in the Nash bargaining
cooperative game-theoretic framework, where we maximize the
EE performance with a certain sacrifice of SE performance.
We first analyze the relationship between the EE and the SE,
based on which we formulate the Nash-product EE maximization
problem. We achieve the closed-form sub-optimal SE equilibria to
maximize the EE performance with and without the minimum
SE constraints. We finally propose a CE2MG algorithm, and
numerical results verify the improved EE and fairness of the
presented CE2MG algorithm compared with the non-cooperative
scheme.

Index Terms—Cooperative game; Energy efficiency (EE);
Ultra-dense networks; Spectrum efficiency (SE).

I. INTRODUCTION

The fifth generation (5G) mobile communication systems
are facing novel challenges due to promising mobile Internet
and Internet of Things applications [1]. 5G should be with
both spectrum efficiency (SE) and energy efficiency (EE) [2],
[3], [8]–[12]. Increasing network densification is regarded as
one of the powerful ways to jointly enhance them in a cost-
effective manner [1], [4], [5]. However, ultra-dense deploy-
ment of small cells also introduces novel technical challenges,
e.g., the interference. In order to avoid the interference and
increase the SE, some useful observations of interference
management were reported in [6], e.g., the more irregular
and denser deployment of small cells, the higher gains in
interference mitigation.

However, the interference and green design problems in the
ultra-dense networks are becoming more complex due to the
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intrinsic densification and scalability. On one hand, ultra-dense
small cells underlay the macrocell, which introduces complex
interference. It is hard to analyze the interactive behaviors and
strategic decision-making among different small cell eNBs
(SeNBs). Meanwhile, the scalability is also challenging in
specific hotspots. On the other hand, distributed resource
management and interference control will be more effective
in ultra-dense networks. However, the signaling overhead will
always be high, which challenges and burdens the backhaul
of the networks.

Different from the existing research on interference miti-
gation by improving the SE performance only, in this work,
we study the EE maximization problem by exploring and
exploiting various cooperative diversity gains. First, it is
known that the denser the small cells are, the more cooperative
diversity gains can be explored to mitigate interference, thus
improving the SE and the EE performance [19]. Second, to
explore the intrinsic characteristics of ultra-dense networks,
game theory can well characterize the interactive behaviors
and strategic decision-making among different small cell
players. Meanwhile, game theory also facilitates the design
of distributed resource management and interference control.
To characterize the cooperative behaviors, we turn to the
bargaining cooperative games. The main contributions are
summarized as follows:

• We implement the mean field approach to characterize
and mitigate the complex interference influence. This
approach can be applied in the ultra-dense networks with
easier analysis of the relationship between the EE and the
SE.

• With the known interference scenario, we provide closed-
form relationships between the SE and the EE in different
cases. This clarifies the bargaining cooperative optimiza-
tion problem formulated in this work.

• We propose a distributed cooperative interactive algo-
rithm to approximate the optimal solutions, where both
the efficiency and the fairness can be guaranteed.

The remainder of this article is structured as follows. In
Section II, we illustrate the typical ultra-dense networks and
clarify the technical challenges. In Section III, we analyze the
optimal tradeoff between the SE and the EE, and discover
how much revenues can be gained in the cooperative way. We
formulate the cooperative EE maximization game (CE2MG)
model in Section IV. The SE optimization to maximize the
energy efficiency is analyzed without multiple constraints in
Section V, and then with constraints in Section VI, respec-
tively. Based on these analysis, we propose a distributed



2

CE2MG algorithm. Finally, in Section VII we provide exten-
sive numerical results to verify the improved EE performance
and the fairness of the presented CE2MG algorithm compared
with the non-CE2MG algorithm. We conclude this work in
Section VIII.

II. TRADEOFF, DENSIFICATION, AND COOPERATIVE
BARGAINING GAMES

There are many seminal research attempting for the EE
and the SE maximization, or tradeoff optimization, and we
surveyed them in [28]. Meanwhile, various interference-aware
management strategies have been designed for either SE
or EE optimization [7]–[12]. However, it is not simple to
simultaneously optimize both the EE and the SE [8], [12],
[13]. Generally speaking, the optimal EE performance often
leads to lower SE performance, and vice versa. Therefore,
there exists an inherent tradeoff between the EE and the SE
optimization. Existing studies on the tradeoff of the EE and
the SE optimization can be divided into two categories: one
is to characterize a closed-form relationship between the EE
and the SE [15]; the other is to maximize the EE with the
SE requirement or to maximize SE with an EE requirement.
There have been several studies on the SE and the EE in
ultra-dense networks, for instance, authors in [17] analyzed
them with extreme densification levels of both indoor and
outdoor scenarios. Authors in [18] investigated the downlink
performance of coordinated scheduling among different small
cells. It was shown that given the number of antennas, the EE
is a decreasing function with the increasing user density.

Most of surveyed work in this area concentrate on the trade-
off between the spectrum and the energy efficiency, and the
resource sharing, power control, or scheduling, cell zooming,
and other traffic-aware techniques are designed to achieve
it. However, in our paper, we take a different perspective
to maximize the EE performance by sacrificing some SE
performance, which is motivated by the fact that sacrificing
a certain spectrum efficiency can significantly improve the
energy efficiency [29].

Moreover, we investigate the problem in ultra-dense net-
works [30], thus it is necessary to firstly know the desification
concept. By now, there is not a standard concept of ultra-
dense networks. Ultra-dense networks can be defined as those
networks, where there are more cells than active users [31].
In other words, λb ≫ λu, where λb is the density of access
points, and λu is the density of users. Another definition of
ultra-dense networks was solely given in terms of the cell
density, irrespective of the users density. Authors in [31]
provided a quantitative measure of the density at which a
network can be considered ultra-dense when the density of
access points λb ≥ 103cells/km2 . In fact, the first definition
converges to the second given that the active users density
considered in dense urban scenarios is upper bounded by about
600 active users/km2 [31].

In our previous work, we have studied the resource com-
petition problem between primary and secondary users, where
we formulated the interference-aware power control problem
as a bargaining game in [20]. Meanwhile, joint channel and

power allocation were investigated in [21], and [22] surveyed
the problems which were modeled as a cooperative game in 5G
heterogeneous cellular networks. More details of the advanced
game models and their applications in wireless communica-
tions can be found in [26]. Previously, in [23], we presented
an overview of the basics of the celebrated Nash bargaining
solution and its extensions with geometric interpretations to
help understand them and facilitate distributed algorithm de-
sign. Then, both symmetric and asymmetric cooperative game-
theoretic frameworks were formulated with different tradeoffs
incorporating an asymmetric unified -coefficient determined
cooperative game model [20]. As a use case, a preference
function was designed firstly incorporating both the SE and
the EE.

As stated above, the SE and the EE are coupled with each
other, and the complex interference influences should be well
investigated to maximize the EE performance. To solve the
EE maximization problem, we formulate a novel cooperative
game-theoretic framework in this work. Different from the
current investigations of tradeoff and optimization between the
EE and the SE [24], [25], we answer two important questions:

• What are the characteristics of the optimal tradeoff
between the EE and the SE with known interference
situations;

• How to maximize the EE without sacrificing much of the
SE, that is what the achievable SE performance is while
maximizing the EE.

We formulate a novel cooperative energy efficient maxi-
mization game (CE2MG) model and propose a distributed
CE2MG algorithm to achieve the optimal SE solution to
maximize the EE performance for each small cell.

III. ULTRA-DENSE NETWORKS AND CHALLENGES

In this section, we illustrate ultra-dense networks, and
discuss the characteristics of the SE and the EE, and clarify the
interference and high energy consumption challenges affecting
the SE and the EE performance.

A. Ultra-Dense Networks and Characteristics of SE and EE

We illustrate the ultra-dense heterogeneous small cell net-
works (ultra-dense networks) in Fig. 1. We assume that over
the macrocell coverage, the small cells are densely deployed.
SeNBs with the omni-directional antenna, coexist with the
macrocell eNB (MeNB) via a shared spectrum access. We
assume that L SeNBs share bandwidth with the MeNB, where
severe inter-tier interference and intra-tier interference exist
and thus impact the overall system performance. There are L
cooperating SeNBs, and the concerned SeNBs are interchange-
ably called players in this paper.

In the ultra-dense networks, we omit the effects and analysis
of the MeNB on the dense SeNBs in Fig. 1. We concentrate on
the investigation of the tradeoff between the EE and the SE,
and the way to approach the EE maximization point without
sacrificing much of SE of each SeNBℓ, where ℓ ∈ L and
L = {1, ..., L}. Meanwhile, here we assume that all L-SeNBs
form a grand coalition, which is proved to be the most social
optimal in the cooperative game theoretic discipline [26].
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TABLE I
SUMMARY OF THE KEY NOTATIONS AND DEFINITIONS.

Notation Meaning
L, and ℓ The SeNB set also called the player set L = {1, ..., L}, and the index of each SeNBℓ, ℓ ∈ L

mℓ, and pcst
ℓ The number of SUEs, and the fixed energy consumption in each SeNBℓ, ℓ ∈ L

cmℓ , wm
ℓ , and gmℓ The downlink capacity, undesirable power, and channel gain of SUEm in the SeNBℓ, ℓ ∈ L

pℓ, ϖℓ, and cℓ The downlink transmission power, normalized undesirable power, and the system capacity of the SeNBℓ, ℓ ∈ L
πℓ, and ηℓ The spectrum and energy efficiency of the SeNBℓ, ℓ ∈ L
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Fig. 1. A sketch of ultra-dense heterogeneous and small cell networks.

Then, we formulate the cooperative bargaining game theoretic
framework of the EE maximization in ultra-dense networks.

As shown in Fig. 1, there exist several hotspots, which
can represent a residential community or an office building.
Each hotspot can be a grand coalition constituted by multiple
SeNBs, where each SeNB is also called a player in a game.
Each SeNBℓ, ℓ ∈ L, will pursue the EE maximization with
suitable SE settings. Without loss of generality, we use a
specific SeNB as an example. For SeNBl, l ∈ L serving ml

small cell user equipments (SUEs), we assume that all the ml

SUEs can achieve a similar performance due to the limited
coverage of the SeNBs. The downlink capacity of the mth
SUE served by the SeNBl can be approximately represented
by the Shannon capacity function as

cmℓ = W ln

(
1 +

pℓg
m
ℓ

ωm
ℓ

)
, (1)

where W , pℓ, gmℓ are the spectrum bandwidth, the downlink
transmission power, and the channel gain of the mth SUE
served by the SeNBℓ. ωm

ℓ is the sum of inter- and intra-tier
interference plus noise power, which is perceived by the mth
SUE served by the SeNBℓ. To simplify the following analysis,
here we use the natural logarithm to compute the capacity,
which results in the unit of Mnat/s/User. Furthermore, the
capacity of each small cell can be expressed

ĉmℓ = W ln

(
1 +

pℓ
ϖℓ

)
, (2)

where ϖℓ is termed as the average normalized undesirable

power, which is given by

ϖℓ =
1

mℓ

∑
m

ωm
ℓ

gmℓ
. (3)

Here, ϖℓ is the average normalized undesirable power with
respect to the total number mℓ of associated SUEs with the
SeNBℓ.

With the above assumption of the similar capacity achieved
by all associated SUEs in the small cell, it is known that if
SeNBl serves ml SUEs, then the total per-small cell capacity
is

cℓ = mℓĉ
m
ℓ . (4)

In the ultra-dense small cell networks, as the number of
small cells is very large, the distance between the small cell
base station and the user is very small. Therefore, the channel
condition and cell capacity for different small cells is very
familiar with each other. Thus, we assume that there is not
much difference for the capacity of different cells in the small
cell network. In this paper, for simplicity of expression and
highlighting the contribution of our work, we assume all users
receive with similar capacity.

Certainly, this assumption also leads to other benefits. It can
reduce the analysis, or in other words we can derive the closed-
form solution to reflect the relationship between the EE and
the SE. Based on which, the designed distributed algorithm
can reduce the signaling overhead. Finally, this is in line with
the cooperative game settings, where all the players rationally
expect the utility maximization.

Most of the small cells are deployed by individual sub-
scribers or the service providers, therefore each small cell
owner cares more about the per-cell SE performance and
the system EE performance. To investigate the relationship
between them and to maximize the EE performance, we should
first define the cell-specific spectrum and the energy efficiency
as follows.

Definition 1: The SE πℓ of the SeNBℓ can be defined as

πℓ =
cℓ
W

, (5)

where cℓ (Mnat/s) is the small cell capacity defined in (4), W
(MHz) is the bandwidth, and the SE πℓ (nat/s/Hz).

The EE is another critical performance metric in dense
networks due to rapidly rising costs and carbon footprint of
energy consumption. Below we define the EE performance
metric.

Definition 2: Without loss of generality, we define the EE
ηℓ of the SeNBℓ as

ηℓ =
cℓ

ϵℓpℓ + pcstℓ

, (6)
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where ϵℓ represents the effectiveness of the power amplifier in
the SeNBℓ, where 0 ≤ ϵℓ ≤ 1. The term pcstℓ is the constant
circuit power consumption.

In the next section we clarify serious interference and high
energy consumption challenges affecting the SE and EE per-
formance metrics. Then, we identify the potential opportunities
in ultra-dense networks through the metric analysis.

B. Summary of Research Challenges

We summarize the research challenges for the ultra-dense
deployment of small cells as follows:

• Intra-tier interference among different small cells: For a
full co-channel deployment, the fact of having multiple
small cells close to each other increases interference,
thereby degrading the achievable SE.

• High energy consumption: Increasing the number of
small cells leads to an increase in the global energy
consumption of the system. A high energy consumption is
not desirable in the ultra-dense networks due to its impact
on the environment and its high operating expenses.

Serious intra-tier interference and high energy consumption
significantly affect the performance of both the SE and the EE.
With interference-awareness of small cells, we characterize
the relationship between the SE and the EE with interference
and circuit energy consumption consideration for an individual
small cell. Accordingly, we formulate an EE maximization
problem via a cooperative game theoretic framework, which
consists of the following contents in this work.

IV. TRADEOFF ANALYSIS AND OPPORTUNITIES OF
COOPERATION GAINS

In this section, we first derive the tradeoff relationship
between the SE and the EE, which will help us explore oppor-
tunities of cooperation gains, and realize the EE-maximization
problem.

A. Tradeoff Analysis between SE and EE

We have the SE and the EE definitions in (5) and (6)
respectively. It is useful to clarify the relationship between
them, which can help us design an energy efficient ultra-dense
network.

Theorem 1: The tradeoff relationship between spectrum
and energy efficiency of each player ℓ, ℓ ∈ L can be
summarized as

ηℓ =
πℓ

ϵℓ
ϖℓ

W

(
e

πℓ
mℓ − 1

)
+

pcst
ℓ

W

. (7)

Proof: Observed from (4) and (5), it is easy to conclude
that

Wπℓ = mℓc
m
ℓ , (8)

with the assumptions of similar capacity achieved by all the
SUEs associated to the SeNBℓ. At this time, we compute the
transmission power pℓ via (2) with cmℓ = Wπℓ

mℓ
according to

(8). At last, we achieve a closed-form transmission power pℓ
as

pℓ = ϖℓ

(
e

πℓ
mℓ − 1

)
. (9)

Furthermore, with (5) we know cℓ =
πℓ

W . Substituting (9) into
(6), and with necessary normalized transformation with respect
to bandwidth W , we conclude this proof.

Observing the closed-form of tradeoff relationship between
the spectrum and the energy efficiencies in (7), we know that
it is important and different from the literature, e.g., [34],
because it characterizes the relationship between the EE and
the SE. Meanwhile, here we can clearly see the effects of the
number of small cells, the interference, and circuit power on
the tradeoff. Moreover, we have the following conclusions.

• When pcstℓ ̸= 0, if SE πℓ → 0, then the EE ηℓ → 0;
if SE πℓ → ∞, then ηℓ → 0. Therefore, the EE ηℓ is
a first-increasing and then finally decreasing function of
SE πℓ.

• When pcstℓ = 0, if SE πℓ → 0, then the EE ηℓ = Wmℓ

ϵℓϖℓ
;

if SE πℓ → ∞, then ηℓ → 0.
Meanwhile, if we can always attain the optimal SE π⋆

ℓ , ℓ ∈
L, then the transmission rate of the SeNBℓ is c⋆ℓ = Wπ⋆

ℓ can
be determined with the above assumptions. Furthermore, the
Theorem 1 leads to various cooperative gains to mitigate the
interference, save the energy, and balance the traffic.

V. COOPERATIVE ENERGY EFFICIENCY MAXIMIZATION
GAME (CE2MG) AND PROBLEM FORMULATION

With the above listed technical challenges, we have found
that the identified cooperation benefits could deal with them. In
this section, we explore such kinds of rich cooperation diver-
sities to combat these challenges via a bargaining cooperative
game theoretic framework. We formulate a cooperative energy
efficient maximization game (CE2MG) model and propose
a distributed CE2MG algorithm to achieve the optimal SE
solution of each player maximizing system EE. Bargaining-
based cooperative game can guarantee the performance of both
the efficiency and the fairness among different SeNBs.

A. Cooperative Energy Efficiency Maximization Game
(CE2MG)

It is known that the optimal Nash cooperative bargaining
solution (NBS)-based control will achieve an optimal tradeoff
between Nash fairness and Nash axiomatic efficiency under
the framework of Nash axiomatic theory, which has been
verified in our previous NBS-formulated work of [20]–[22].
In summary, the cooperative EE maximization game can be
achieved by solving the Nash-product problem of {π⋆

1 , π
⋆
2} =

maxη1≥ηmin
1 ,η2≥ηmin

2
(η1−ηmin

1 )(η2−ηmin
2 ), where ηmin

1 and
ηmin
2 are regarded as the disagreement points. Generally, ηmin

1

and ηmin
2 are set as the minimal energy efficiency requirements

of the participating players.
With these basic statements of Nash bargaining game of

a two-player case, we define the L-player cooperative EE
maximization game as follows.

Definition 3: The L-player cooperative EE maximization
game (CE2MG) is formulated as CE2MG = {L,S,U},
with L = {1, 2, ..., L} as the player set, and L-SeNBs in
ultra-dense networks are regarded as the players; S is the

Cartesian product action space defined as S =
L∏

ℓ=1

Sℓ, where
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Sℓ represents the available set of player ℓ, which will be further

given with multiple constraints; U =
L∏

ℓ=1

uℓ is systematic

utility function, which characterizes the player’s EE preference
regarding the tradeoff between EE and SE as described in (7).

The optimal total utility in the Nash-product form defined
in the presented (CE2MG) framework guarantees both the
efficiency and the fairness, which has been proved in [20]–
[22]. In the following, we first define the cooperative bargain-
ing solution of the CE2MG and investigate its properties. We
use the straightforward achieved definition in game theory to
describe the equilibrium behaviors.

Definition 4: An SE profile π⋆ = {π⋆
ℓ , ℓ ∈ L} is a Nash

cooperative bargaining solution if and only if no player can
improve its utility by deviating unilaterally, i.e.,

uℓ(π
⋆
ℓ , π

⋆
−ℓ) ≥ uℓ(πℓ, π

⋆
−ℓ), ∀ℓ ∈ L, ∀πℓ ∈ Sℓ, πℓ ̸= π⋆

ℓ .

Nash cooperative bargaining solutions for the CE2MG can be
guaranteed by following the best response function.

Definition 5: We define the best response function (BRF) of
player ℓ ∈ L as the optimal SE profile that maximizes the EE
utility when any SE profiles {π−ℓ,−ℓ ∈ L,−ℓ ̸= ℓ} of other
players are given. Mathematically, it is represented as

ρ(π−ℓ) = arg max
πℓ∈Sℓ

uℓ(πℓ, π−ℓ).

Based on the definition of the BRF, it is known that the Nash
cooperative bargaining solution of player ℓ ∈ L is

π⋆
ℓ = ρ(π⋆

−ℓ).

At this time, the problem is transferred to derive the BRF
to approach the cooperative bargaining equilibrium solution
of player ℓ ∈ L. We will formulate the Nash-product EE
maximization problem to achieve such a BRF.

B. Problem Formulation

In the general cooperative bargaining game-theoretic frame-
work, the CE2MG is formulated as the following optimization
problem

P1 : max u =
L∏

ℓ=1

(
ηℓ − ηmin

ℓ

)
, (10a)

subject to π ≤
L∑

ℓ=1

πℓ, (10b)

πℓ ≤ πmax
ℓ , ℓ = 1, ..., L. (10c)

Objective (10a) is the Nash product function of the EE function
defined in (7) and the minimum EE of the player ℓ, which is
in line with the Nash bargaining game-theoretic framework.
Constraint (10b) represents the summation of SE that is larger
or equal to a minimum SE requirement π. πℓ and πmax

ℓ are the
SE and maximum SE of player ℓ, respectively. Each player is
constrained by the individual rate limit in (10c).

This equivalent re-formulation is widely used to transfer
the Nash product-based objective function into the utility-
summation form using the logarithmic function [22]. It is
known that this process does not change the convexity of the
prime objective function in (10).

Moreover, and according to [22], the equivalent model of
(10) is given by

P2 : max û =

L∑
ℓ=1

ln
(
ηℓ − ηmin

ℓ

)
, (11a)

subject to (10b) and (10c), (11b)

where we compute û = ln(u) as a natural logarithmic
transformation that will not change the convexity of u. We
will analyze the problem to achieve the specific BRF without
and with the constraints in the following two sections.

VI. OPTIMAL SPECTRAL EFFICIENCY ANALYSIS WITHOUT
CONSTRAINTS

In this section, we first study the optimal SE to maximize the
EE, where we omit the individual and system SE requirements.
Then, some intrinsic characteristics between the EE and the
SE are provided in this section.

We first characterize the optimal tradeoff between the EE
and the SE aware of the interference situation. We will intro-
duce the corresponding methods to estimate the interference
power in the simulation section.

With (7) and to simplify the following expressions, we
represent the EE as

ηℓ =
πℓ

φℓ + σℓ
, (12)

where φℓ = µℓ

(
e

πℓ
mℓ − 1

)
is a function of the SE πℓ, and

here µℓ = ϵℓ
ϖℓ

W is the effective interference plus noise power
spreading over all the bandwidth W , and σℓ =

pcst
ℓ

W is the nor-
malized circuit power consumption. For each implementation
of the EE maximization, we assume that both the normalized
static power consumption σℓ and the normalized interference
power µℓ are determined.

Finally, according to (11a), we have the following optimiza-
tion problem without multiple constraints.

P3 : max û =
L∑

ℓ=1

ln

(
πℓ

φℓ + σℓ
− ηmin

ℓ

)
. (13)

Furthermore, we analyze the possible existence properties and
the closed-form of SE to maximize the EE.

Theorem 2: There always exist optimal solutions of SE to
maximize the EE with the known σℓ, µℓ, and fixed number of
SUEs, mℓ, ℓ ∈ L in P3 defined in (13).

Proof: With the known σℓ, µℓ, and fixed number of
SUEs, mℓ, ℓ ∈ L in P3 defined in (13), the individual EE-
related utility function uℓ = ln

(
πℓ

φℓ+σℓ
− ηmin

ℓ

)
is a unimodal

function with respect to πℓ. The detailed proof can be found
in the Appendix A.

With the above conclusion, it is known that there always
exist optimal solutions of the spectrum efficiency to maximize
the EE. We further derive the optimal closed-form solutions.

Theorem 3: The optimal SE π⋆
ℓ , ℓ ∈ L to maximize the

system EE can be mathematically achieved by solving the
following equation:

πℓ = mℓ

(
1− µℓ − σℓ

µℓ
e
− πℓ

mℓ

)
, (14)
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when πℓ ̸= ηmin
ℓ (φℓ + σℓ).

Proof: Here, we know that φℓ = µℓ

(
e

πℓ
mℓ − 1

)
, and

we can compute first-order partial differential function with
respect to πℓ, yielding

∂φℓ

∂πℓ
=

1

mℓ
µℓe

πℓ
mℓ =

φℓ + µℓ

mℓ
. (15)

Further, we compute the partial differential function of the
individual utility function uℓ with respect to SE πℓ, which is
shown as

∂uℓ

∂πℓ
=

(φℓ + σℓ)− πℓ
∂φℓ

∂πℓ(
πℓ − ηmin

ℓ (φℓ + σℓ)
)
(φℓ + σℓ)

(16)

=
(φℓ + σℓ)− πℓ

mℓ
(φℓ + µℓ)(

πℓ − ηmin
ℓ (φℓ + σℓ)

)
(φℓ + σℓ)

.

In the above derivation process of (16), we use the result
of (15). According to Theorem 2, we know that the opti-
mal solutions always exist. Therefore, we conclude that if
πℓ − ηmin

ℓ (φℓ + σℓ) ̸= 0, which can be also represented as
πℓ ̸= ηmin

ℓ (φℓ + σℓ), then we know that

(φℓ + σℓ)−
πℓ

mℓ
(φℓ + µℓ) = 0, (17)

will guarantee ∂uℓ

∂πℓ
= 0 in (16). At last, with (17) we know

that

πℓ = mℓ
φℓ + σℓ

φℓ + µℓ
. (18)

We compute φℓ+µℓ = µℓe
πℓ
mℓ and φℓ+σℓ = µℓe

πℓ
mℓ +µℓ−σℓ

according to φℓ = µℓ

(
e

πℓ
mℓ − 1

)
, and substitute these two

equations to (18), which concludes the proof.
Theorem 4: If the attained average SE πℓ

mℓ
of each SeNBℓ,

ℓ ∈ L is large enough in the ultra-dense networks, then we
conclude that the optimal SE π⋆

ℓ = mℓ

√
σℓ

µℓ
.

Proof: If the attained average SE πℓ

mℓ
of each SeNBℓ,

ℓ ∈ L is large enough in the ultra-dense networks, then we
know that

e
− πℓ

mℓ ≈ 1− πℓ

mℓ
(19)

with the first-order series approximation to e
− πℓ

mℓ . Substituting
(19) into (14), we conclude the proof.

In summary, we conclude from Theorem 4 that more
associated SUEs (mℓ), higher circuit power consumption (σℓ),
and less normalized undesirable power (µℓ) mean the SeNBℓ

should pursue more SE (πℓ) to maximize the EE.

VII. ANALYSIS OF OPTIMAL SPECTRAL EFFICIENCY TO
MAXIMIZE ENERGY EFFICIENCY

In this section, we solve the CE2MG problem with both
the individual and the system SE constraints among different
SeNB-players. We try to find the optimal SE of each player
to maximize the system EE. We analyze the dual problem of
predefined problem P2 in (11), based on which we analyze
the proposed CE2MG algorithm and the solution properties.

A. The Denoted Problem

In this section, we solve the problem P2 in (11) by solving
its Lagrangian relaxation problem, shown as

P4 : max
λ≥0,κℓ≥0,ℓ∈L

ξ, (20a)

subject to πℓ ∈ Sℓ, ℓ ∈ L, (20b)

where

Sℓ =

{
π ≤

L∑
ℓ=1

πℓ, πℓ ≤ πmax
ℓ , ℓ ∈ L

}
, (21)

and ξ represents the Lagrangian function associated with P2.
ξ is defined in (22).

B. Analysis of SE to Maximize EE

It is critical to derive the detailed best response function for
the CE2MG model via solving (22).

Theorem 5: Again with all σℓ, µℓ, ℓ ∈ L as constants, we
conclude that

πℓ = mℓ
(φℓ + σℓ) (λ− κℓ) η

min
ℓ + 1

φℓ+µℓ

φℓ+σℓ
+mℓ (λ− κℓ)

, (23)

where we assume that the Lagrangian parameters λ, and κℓ,
ℓ ∈ L are pre-determined according to KKT conditions of

λ

(
π −

L∑
ℓ=1

πℓ

)
= 0 (24)

L∑
ℓ=1

κℓ (πℓ − πmax
ℓ ) = 0.

Proof: With respect to the SE πℓ, we derive the first-order
derivation of the Lagrangian relaxed function in (22), which
yields

∂ξ

∂πℓ
=

(φℓ + σℓ)− πℓ

mℓ
(φℓ + µℓ)(

πℓ − ηmin
ℓ (φℓ + σℓ)

)
(φℓ + σℓ)

− (λ− κℓ) . (25)

We solve the equation ∂ξ
∂πℓ

= 0, and then with necessary
calculation and we have

πℓ

mℓ
=

(φℓ + σℓ) + (λ− κℓ) η
min
ℓ (φℓ + σℓ)

2

φℓ + µℓ +mℓ (λ− κℓ) (φℓ + σℓ)
(26)

=
(φℓ + σℓ) (λ− κℓ) η

min
ℓ + 1

φℓ+µℓ

φℓ+σℓ
+mℓ (λ− κℓ)

.

With (26), therefore, we know (23) holds with KKT conditions
of the Lagrangian parameters constrains of λ, and κℓ, ℓ ∈ L
in (24).

Here, Theorem 5 is a general conclusion, with Theorem 3
as a special case of λ = κℓ = 0, for all ℓ ∈ L.
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ξ =

L∑
ℓ=1

ln

(
πℓ

φℓ + σℓ
− ηmin

ℓ

)
− λ

(
π −

L∑
ℓ=1

πℓ

)
−

L∑
ℓ=1

κℓ (πℓ − πmax
ℓ ) (22)

=
L∑

ℓ=1

{
ln

(
πℓ

φℓ + σℓ
− ηmin

ℓ

)
+ (λ− κℓ)πℓ

}
+

(
L∑

ℓ=1

κℓπ
max
ℓ − λπ

)

C. Distributed CE2MG Algorithm

With the above analysis, a distributed CE2MG algorithm is
presented to achieve the optimal SE of each SeNBℓ, ℓ ∈ L to
maximize the EE. The detailed implementation of the proposed
distributed CE2MG algorithm is described as follows:

• Initialization: Initialize the related parameters including
the total number (L) of SeNBs in the considered ultra-
dense networks, the number of SUEs (mℓ) associated
to each SeNBℓ, the circuit power consumption pcstℓ , the
shared bandwidth W , the effectiveness of the power
amplifier ϵℓ, the minimum EE requirement ηmin

ℓ , and the
introduced Lagrangian factors of λ0 , κ0

ℓ of the SeNB
player ℓ ∈ L.

• Observation: To achieve the awareness of the interfer-
ence environment, it is critical for each SeNB player
ℓ ∈ L to attain the undesirable power ϖℓ =

1
mℓ

∑
m

ωm
ℓ

gm
ℓ

in the form of (3) and σℓ =
pcst
ℓ

W . The critical estimation
of ωm

ℓ is given in Appendix B.
• Decision: Each SeNB player ℓ ∈ L repeats the following

steps until the convergence to achieve the optimal SE
(π⋆

ℓ ), ℓ ∈ L:
– First, estimate the initial SE via

πt
ℓ = ln(1 +

ptℓ
ϖt

ℓ

).

– Second, calculate the best response function

φt
ℓ = µt

ℓ

(
e

πt
ℓ

mℓ − 1

)
,

where µt
ℓ = ϵℓ

ϖt
ℓ

W .
– Third, calculate the next available SE via

πt+1
ℓ = mℓ

(φt
ℓ + σℓ) (λ

t − κt
ℓ) η

min
ℓ + 1

φt
ℓ+µℓ

φt
ℓ+σℓ

+mℓ (λt − κt
ℓ)

– Finally, update the Lagrangian multipliers using

λt+1 = λt + α

(
π −

L∑
ℓ=1

πt
ℓ

)
, (27)

and

κt+1
ℓ = κt

ℓ + β
(
πt
ℓ − πmax

ℓ

)
, (28)

where α and β are the adjustable step factors, which
sensitively affect the convergence properties of the
CE2MG algorithm.

• Convergence: Determine the termination condition using∥∥λt+1 − λt
∥∥ ≤ ε1, (29)

and ∥∥κt+1
ℓ − κt

ℓ

∥∥ ≤ ε2, (30)

where ε1 and ε2 are convergence precision settings.

For the proposed distributed CE2MG algorithm, we have
the following remarks:

• First, the iteration equations of the Lagrangian multipliers
(27) and (28) are achieved by the sub-gradient deriva-
tions.

• Second, with the convergence settings of (29) and (30)
the proposed distributed CE2MG algorithm can converge
after limited iterations, which is verified via numerical
simulation.

• Third, in the observation step, each SeNB can achieve the
real undesirable power in the form of (3) via the similar
interference estimation method in [27], which is given in
Appendix B.

VIII. NUMERICAL RESULTS

In this section, we first illustrate the simulation scenarios
and the basic settings with multiple parameters. Then, we ver-
ify the convergence property, the effectiveness condition, and
the improved performance of the proposed distributed CE2MG
scheme. Finally, we evaluate the scheme with more settings,
including the interference situation, different requirements, and
extremely dense players.

A. Basic Simulation Settings

In this section, we present simulation results for an
interference-limited downlink OFDMA ultra-dense network
and observe the performance of the proposed algorithm in
equilibrium. We set the system parameters as the bandwidth
W = 20MHz, background noise power is 2e−13 Watt with
the noise power spectrum density as -174dBm/Hz. The average
channel gain is 2.5e−10, which is determined with the fading
model of 148+40log10[d], where d is the maximum coverage
radius of various SeNBs in the unit of km. The average number
of SUE mℓ = 5 associated to each SeNBℓ, the effectiveness
of the power amplifier ϵℓ = 0.8, the minimum EE requirement
ηmin
ℓ = 1, and the introduced Lagrangian factors of λ0 = 1,
κ0
ℓ = 0.5 of the SeNB player ℓ ∈ L. If it is not specified in

the following subsection, then the numerical results are with
these basic system settings. However, we will change some
of them during the following simulations to reflect improved
performance using the proposed algorithm.
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B. Convergence Verification
First, we illustrate the iteration process of the proposed

CE2MG scheme, where we use the settings of mℓ = 5, ηmin
ℓ =

1 as the benchmark case. Meanwhile, we choose mℓ =
10, ηmin

ℓ = 1, and mℓ = 5, ηmin
ℓ = 2 as another two cases

to reflect the effects of increasing number of SUEs and the
increasing minimum EE requirement of the SeNBℓ on the final
performance and the convergence rate. The EE performance of
the proposed CE2MG scheme with the above different settings
is described in Fig. 2 with respect to multiple iterations.
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Fig. 2. Convergence verification and effectiveness.

Observing Fig. 2, several conclusions can be made as
follows:

• The proposed CE2MG scheme guarantees the conver-
gence with different settings, different numbers of SUEs
and various minimum energy efficiency requirements of
the SeNBℓ. We can see that the proposed CE2MG scheme
will converge to a steady region of convergence around
less than 1000 iterations.

• Increasing the number of SUEs in a specific SeNBℓ

will help enhance the EE, which can be found from the
performance curves of the settings of mℓ = 5, ηmin

ℓ = 1
and mℓ = 10, ηmin

ℓ = 1. Also, increasing more SUEs
will make the convergence rate slow down since more
implementations occur.

• An increasing minimum EE requirement of the SeNBℓ

will help to improve the final performance, and there is
little effect on the convergence rate, which can be found
from the performance curves of the settings of mℓ =
5, ηmin

ℓ = 1 and mℓ = 5, ηmin
ℓ = 2.

Second, we investigate the tradeoff relationships of the
proposed CE2MG scheme with different assumptions of fixed
effective interference plus noise power µℓ and the normalized
static power consumption σℓ, which is illustrated in Fig. 3.

Fig. 3 demonstrates three tradeoff relationships of the pro-
posed CE2MG scheme with different assumptions of (µℓ, σℓ),
(2 × µℓ, σℓ), and (µℓ, 2 × σℓ). We can make the following
conclusions:

• Specific SeNBℓ, e.g., (2× µℓ, σℓ), that bears more inter-
ference will achieve a low tradeoff between SE and EE,

0 10 20 30
1

2

3

4

5

π
l
 (nats/s/Hz)

η
l (

M
n

a
ts

/J
o

u
le

)

 

 

(µ
l
, σ

l
)

(2 × µ
l
, σ

l
)

(µ
l
, 2 × σ

l
)

Fig. 3. Tradeoff relationships of the proposed CE2MG scheme with different
assumptions.

compared with the least value, e.g., (µℓ, σℓ). On the one
hand, more interference means lower EE with the same
SE, e.g., when specific SE πl = 10, specific SeNBℓ, e.g.,
(µℓ, σℓ) that bears less interference can achieve a 33% EE
improvement, compared with the case of (2×µℓ, σℓ). On
the other hand, more interference means lower SE with
the same EE, e.g., when specific EE ηl = 4, specific
SeNBℓ, e.g., (µℓ, σℓ) that bears less interference can
achieve a 40% SE improvement, compared with the case
of (2× µℓ, σℓ).

• Specific SeNBℓ, e.g., (µℓ, 2 × σℓ) that consumes more
power will achieve a low tradeoff between SE and energy
efficiency, compared with the least value, e.g., (µℓ, σℓ).
On the one hand, more power consumption means lower
EE with the same SE, e.g., when specific SE πl = 10,
specific SeNBℓ, e.g., (µℓ, σℓ) that is with less power
consumption can achieve a 100% EE improvement, com-
pared with the case of (µℓ, 2 × σℓ). On the other hand,
more power consumption means lower SE with the same
EE, e.g., when specific EE ηl = 3, specific SeNBℓ, e.g.,
(µℓ, σℓ) that consumes less power can achieve a 25%
spectrum efficiency improvement, compared with the case
of (µℓ, 2× σℓ).

C. Performance Evaluation with Dense Deployments of Small
Cells

In this subsection, we first characterize the effects of densi-
fication (e.g., the increasing number L of small cells) on the
system EE η and the average EE ηℓ of specific SeNBℓ, ℓ ∈ L.
At last, we investigate the fairness among different SeNBs,
and the optimal tradeoff of our proposed CE2MG scheme
compared with the selfish non-CE2MG scheme.

First, we observe the effects of densification (e.g., the
increasing number L of small cells) on system EE η and
average energy efficiency ηℓ of specific SeNBℓ, ℓ ∈ L. Without
loss of generality, we illustrate both the system EE and the
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Fig. 4. Effects of densification on the system EE (a) and the average EE (b).

average EE performance with respect to the increasing number
L of small cells via Fig. 4.

We conclude that the system EE η keeps increasing with the
increasing number L of small cells, which can be seen in Fig.
4; however, the rate and the speed are not the same. At first,
a dramatic increment of the system EE η until the number
(L) of small cells is about 200 and after that, there is little
increment in the SE. On the other hand, we depict the curve
of the individual average energy efficiency (ηℓ) with respect to
the increasing number (L) of small cells. We can see that ηℓ
keeps decreasing and then reaches a flat performance, which
can be seen in Fig. 4.

Second, we investigate the fairness among different SeNBs,
and the optimal tradeoff of our proposed CE2MG scheme
compared with the selfish Non-CE2MG scheme. Here, the
non-CE2MG scheme can be regarded as the conventional non-
cooperative method. Here, we assume that the SeNBs always
selfishly expect more spectrum efficiency have the same strat-
egy as the non-cooperative players in the CE2MG model. In
addition, the corresponding scheme is termed as Non-CE2MG
scheme. When analyzing the formulated CE2MG, fairness is
an important issue in the multiple players case. Here, in this
paper, fairness means that L SeNB players will achieve a
fair improved performance with respect to either energy or
spectrum efficiency. Here, we use Jain’s fairness index as the
criterion of fairness. This is mathematically computed as

J =

(
L∑

ℓ=1

ηℓ

)2

L
L∑

ℓ=1

η2ℓ

,

where we use the achieved EE η as the measurement metric.
Here, we compute the fairness index of J from L = 1, and
then we compute it again with one SeNB participating into
the CE2MG gaming process until the total number of SeNBs
is 200. The fairness index of the proposed CE2MG scheme
and the benchmark Non-CE2MG are illustrated in Fig. 5.

Here, we conclude that both the presented CE2MG scheme
and the Non-CE2MG scheme will achieve decreasing fairness
due to the increasing number of small cells. Meanwhile,
the presented CE2MG scheme always outperforms the Non-
CE2MG scheme. For instance, the presented CE2MG scheme
will achieve a 30% fairness improvement compared with the
Non-CE2MG scheme when the number of small cells is 200.
Furthermore, we can see that the presented CE2MG scheme
will maintain this advantage with a larger number of small
cells.

At last, we show the tradeoffs in the measurement of η
µ

in Fig. 5. Also, here the presented CE2MG scheme signifi-
cantly outperforms the Non-CE2MG scheme. For instance, the
presented CE2MG scheme will achieve at least 30% tradeoff
improvement compared with the Non-CE2MG scheme when
the number of small cells is 150. Also, we can see that the
presented CE2MG scheme will maintain this advantage with
a larger number of small cells. Overall, with an increasing
number of players, both the fairness and the tradeoff decrease;
however, the presented CE2MG scheme significantly outper-
forms the Non-CE2MG scheme due to the exploring of the
cooperation gains.

IX. CONCLUSION

Ultra-dense networks enhance the system capacity via ex-
ploring both spatial and frequency diversities. The interference
and green design problems were more complex due to the
intrinsic densification and scalability, and at the same time it
requires distributed control with reduced signaling overhead.
Different from the popular research on interference mitigation
on improving the SE performance, in this work, we studied
the energy efficiency maximization problem by exploring and
exploiting various cooperative diversity gains. In this work,
we formulated a cooperative energy efficiency maximization
game (CE2MG) model and proposed a distributed CE2MG al-
gorithm to achieve the optimal SE solution of each small cells
to maximize the system energy efficiency. We characterized
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Fig. 5. Performance of the Jain’s fairness index (a) and the EE vs. SE tradeoffs (b).

the optimal tradeoff relationship between energy efficiency and
spectrum efficiency with the emphasis of circuit power con-
sumption of small cell and the known interference situations.
Based on the derived tradeoff function, we proposed an energy
efficiency utility function to maximize energy efficiency with-
out sacrificing more spectrum efficiency. Numerical results
verified the convergence properties, the tradeoff relationship,
the improved system energy efficiency performance and the
fairness of the presented CE2MG algorithm compared with
non-CE2MG solution.

APPENDIX A
UNIMODAL FUNCTION PROOF OF THE FORMULATED

UTILITY FUNCTION

We can prove the designed utility function is a unimodal
function, which guarantees the existence of the maximum
point. For the designed utility function uℓ = ln( πℓ

ϕℓ+σℓ
−

ηmin
ℓ ), we know the spectrum efficiency πℓ = cℓ

W , and
πℓ ≥ 0; at the same time, ϕℓ = µℓ(e

πℓ
mℓ − 1) ≥ 0, and

µℓ = εℓϖℓ

W ≥ 0, σℓ =
pcst
ℓ

W ≥ 0, and mℓ ≥ 0. In the
designed utility function uℓ = ln( πℓ

ϕℓ+σℓ
− ηmin

ℓ ), we know
πℓ

ϕℓ+σℓ

ϕℓ+σℓ>0
> ηmin

ℓ ⇒ πℓ > (ϕℓ + σℓ)η
min
ℓ , which can help

first determine the value range of πℓ = cℓ
W . We define the

function F (πℓ) = πℓ − (µℓ(e
πℓ
mℓ − 1) + σℓ)η

min
ℓ , and then we

have ∂F (πℓ)
∂πℓ

= 1− µℓη
min
ℓ

mℓ
e

πℓ
mℓ with πℓ

mℓ
≥ 0. There exist two

cases:
• Case 1: when µℓη

min
ℓ

mℓ
≥ 1, we know ∂F (πℓ)

∂πℓ
< 0 always

holds. It is known that πℓ

ϕℓ+σℓ
− ηmin

ℓ |πℓ=0 ≤ 0 when
πℓ = 0, which tells that there does not exist πℓ > 0 to
achieve the uℓ > 0.

• Case 2: when µℓη
min
ℓ

mℓ
< 1, we have ∂F (πℓ)

∂πℓ
= 1 −

µℓη
min
ℓ

mℓ
e

πℓ
mℓ = 0. We obtain πℓ = mℓ ln(

mℓ

µℓηmin
ℓ

), and we

can see that ∂F (πℓ)
∂πℓ

will decrease with πℓ. Meanwhile,
we know ∂F (πℓ)

∂πℓ
|πℓ=0 > 0, which leads to F (πℓ) is a

unimodal function.

In this case 2, with πl = ml ln(
ml

µlηmin
l

), we have
F (πl)|πl=ml ln(

ml
µlη

min
l

) = ml ln(
ml

µlηmin
l

) − ml + µlη
min
l −

σlη
min
l . This concludes that when F (πl)|πl=ml ln(

ml
µlη

min
l

) ≥ 0,

F (πl) will exist with the potential πl.
As follows, we further prove the designed utility function

ul = ln( πl

ϕl+σl
− ηmin

l ) is a unimodal function. We assume
that G(πl) − ηmin

l > 0, where G(πl) = πl

ϕl+σl
, thus leading

to ul = ln(G(πl)− ηmin
l ). We have ∂ul

∂πl
= 1

G(πl)−ηmin
l

∂G(πl)
∂πl

.

Here, we know G(πl) − ηmin
l > 0; therefore, if ∂ul

∂πl
> 0,

then ∂G(πl)
∂πl

> 0. Furthermore, ∂G(πl)
∂πl

= ϕl+σl−(∂ϕl/∂πl)πl

(ϕl+σl)2
=

K(πl)
(ϕl+σl)2

.
By now the problem is to prove whether the numerator is

larger than 0. We further have K(πl) = µl(1− πl

ml
)e

πl
ml −µl+

σl, and we know ∂K(πl)
∂πl

= [ 1
ml

e
πl
ml −( 1

ml
e

πl
ml + πl

m2
l
e

πl
ml )]µl =

−πlµl

m2
l
e

πl
ml < 0. It is easy to conclude that K(πl) is a

monotonic function. Meanwhile, with the definition of K(πl),
we know when πl = 0, K(πl) = σl > 0; when πl → −∞,
K(πl) → −∞. We can conclude that G(πl) = πl

ϕl+σl
a

unimodal function.
In summary, we know the designed utility function ul =

ln( πl

ϕl+σl
− ηmin

l ) is a unimodal function.

APPENDIX B
ESTIMATION OF UNDESIRABLE INTERFERENCE POWER

Here, we estimate the undesirable interference power value
of ωm

ℓ in a mean field approach [27]. We have

ωm
ℓ =

L∑
ℓ′=1,ℓ′ ̸=ℓ

p′ℓg
m
ℓ′,ℓ = (L− 1) p̂′ℓĝ

m
ℓ′,ℓ,

where p′ℓ, g
m
ℓ′,ℓ represent the downlink power of other SeNBs

ℓ′ ∈ L, ℓ′ ̸= ℓ except the SeNBℓ, and the interference gain
from the SeNB′

ℓ to the SeNBℓ. In addition, p̂′ℓ is the known
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test transmit power, and ĝmℓ′,ℓ defines the mean interference
channel gain, which can be estimated by the following idea.

If we test using p̂′ℓ, then the received power at SeNBℓ is

p′Rℓ = p̂′ℓg
m
ℓ′,ℓ + ωm

ℓ ,

where gmℓ′,ℓ is the known effective channel gain, and p̂′ℓg
m
ℓ′,ℓ

is the effective received power, and ωm
ℓ is the received

interference power from all the other SeNBs ℓ′ ∈ L, ℓ′ ̸= ℓ.
With the above two equations we can derive the only

unknown variable ĝmℓ′,ℓ as

p′Rℓ = p̂′ℓg
m
ℓ′,ℓ + (L− 1) p̂′ℓĝ

m
ℓ′,ℓ,

and we have

ĝmℓ′,ℓ =
p′Rℓ − p̂′ℓg

m
ℓ′,ℓ

(L− 1) p̂′ℓ
.

That is, each SeNB can achieve the undesirable power in the
form of (3) via the interference estimation method in [27].
This method can approximate the real interference with the
increasing number of SeNBs.
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