Improving First Order Temporal Fact Extraction
with Unreliable Data

No Author Given

No Institute Given

Abstract. In this paper, we deal with the task of extracting first or-
der temporal facts from free text. This task is a subtask of relation
extraction and it aims at extracting relations between entity and time.
Currently, the field of relation extraction mainly focuses on extracting
relations between entities. However, we observe that the multi-granular
nature of time expressions can help us divide the dataset constructed by
distant supervision to reliable and less reliable subsets, which can help
to improve the extraction results on relations between entity and time.
We accordingly contribute the first dataset focusing on the first order
temporal fact extraction task using distant supervision. To fully utilize
both the reliable and the less reliable data, we propose to use curriculum
learning to rearrange the training procedure, label dropout to make the
model be more conservative about less reliable data, and instance atten-
tion to help the model distinguish important instances from unimportant
ones. Experiments show that these methods help the model outperform
the model trained purely on the reliable dataset as well as the model
trained on the dataset where all subsets are mixed together.

Keywords: temporal fact extraction, distant supervision, knowledge
base

1 Introduction

Knowledge base population aims at automatically extracting facts about entities
from text to extend knowledge bases. These facts are often organized as (subject,
relation, object) triples. Among these relations, the relations that require time
expressions as objects play an important role in the completeness of knowledge
base. For example, every person should have date_of_birth and almost all aster-
oid should have date_of _discovery. However, we find that in Wikidata', there
are 19.3% people in it that do not have date_of _birth, and 39.3% asteroids do
not have date_of_discovery. Therefore, extracting relations between entity and
time is an important task.

As suggested by T-YAGO [20], which extends YAGO [6] with temporal as-
pects, there are two types of facts that we need to extract: First order facts are
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triples like (Barack_Obama, spouse, Michelle_Obama), whose subjects are enti-
ties. Higher order facts take other facts as subjects. For example, ((Barack_Obama,
spouse, Michelle_-Obama), start_time, 3_-October_1992) is a higher order fact in-
dicating the start time of the marriage of Barack Obama and Michelle Obama.
In this paper, we will focus on first order temporal fact extraction, which is a
subtask of first order fact extraction (often referred to as relation extraction)
that focuses on extracting facts that take time expressions as objects

Previous work of relation extraction mainly focuses on extracting relations
between entities, and the task of extracting first order temporal facts receives
only limited attention. Some researchers try to extract first order temporal facts
from semi-structured documents like Wikipedia? [9], but how to extract first
order temporal facts from free text is seldom investigated specifically.

Indeed, most of the existing methods developed to extract relations between
entities can be used directly to extract first order temporal facts, which to some
extent explains the sparsity of researches in first order temporal fact extrac-
tion. However, there are still interesting properties in first order temporal fact
extraction that the entity-entity relation extraction task does not have.

When extracting first order facts from free text, distant supervision is often
used to build noisy datasets [12]. Given a (subject s, relation r, object o) triple
in knowledge base, it uses s and o to retrieve text corpora like Wikipedia articles,
and collects sentences containing both s and o as supports for this triple. The
noisy nature of distant supervision has long been bothering researchers, and
various techniques have been introduced to deal with the noises [17, 16].

However, it is different when applying distant supervision to first order tem-
poral fact extraction. We find that the more fine-grained the time expression is,
the more likely the retrieved sentence is a true support for this triple. For ex-
ample, sentences containing both Oct. 5, 2011 and Steve Jobs are highly likely
to indicate Steve Jobs’ death date, while sentences containing only 2011 and
Steve Jobs may only talk about his resignation. The intuition is that, there is
usually only one thing that worth writing down relates to an entity in a single
day. As the time granularity becomes coarser, more important things are likely
to happen in this time period, and hence the data quality goes down.

We find that sentences containing full date (day, month and year) are highly
reliable and we can train a relation extractor as if we are using human labeled
data. However, there is still useful knowledge remaining in sentences containing
only coarser granularities. Therefore, how to use the less reliable data to improve
the model becomes another problem.

Following this observation, we construct the first first order temporal fact
extraction dataset with distant supervision. The dataset is grouped into 4 smaller
dataset with decreasing reliability. To fully utilize both the reliable and less
reliable data, we propose to use curriculum learning to rearrange the training
procedure, label dropout to make the model be more conservative about less
reliable data, and instance attention to help the model distinguish important
instances from unimportant ones. Experiments show that these methods help
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the model outperform the model trained purely on the reliable dataset as well
as the model trained on the dataset where all subsets are mixed together.

2 Related Work

Relation Extraction The most related thread of work to us is relation extraction.
Most of the methods in this field can be applied directly to first order temporal
fact extraction, which possibly explains why there are seldom researches focus
specifically on extracting first order temporal facts from free text. The commonly
used paradigm in relation extraction is distant supervision [12], which tries to
construct noisy dataset using triples in knowledge base as guidance. Feature
based [12], graphic model based [7,16] and neural network based [23] methods
have all been applied under this paradigm. To cope with the noisy nature of
distant supervision, there are also some researches aim at reducing the noise
introduced by distant supervision [17], or put this task in the multi-instance
paradigm [7,16,23]. However, we find that the multi-granular nature of time
expressions can help us distinguish reliable and less reliable data constructed by
distant supervision. Therefore, the problem of noises is much smaller for first
order temporal fact extraction task, and we can actually use the noisy data to
improve the model performance.

Higher Order Temporal Fact Extraction Higher order temporal fact extraction
mainly aims at identifying the valid time scope of a triple in knowledge base
or extracted by relation extraction. Therefore, it is also referred to as temporal
scoping. The commonly used dataset is introduced by the 2011 and 2013 tem-
poral slot filling (TSF) shared tasks hosted by Text Analysis Conference (TAC)
[8, 5]. Regular expression based methods[20], graph based methods [19] and dis-
tant supervision based methods [2,15] have all be used in this task. While our
task focuses on first order temporal facts which contain a variety of relations
(see Table 1), this thread of work only tries to find the start time and end time
of triples, which makes this task seems easier. However, since this task takes a
triple as subject, people need to come up with different methods to handle this
property, and thus makes this task harder.

Event Temporal Relation Identification Event temporal relation identification is
a related task introduced by TempEval [18,14]. This task aims at identifying
event-time and event-event temporal relations like before, after and overlap.
Feature based methods [11] and Markov Logic Network based methods [22] have
been applied to this task. Apart from ordering events, TIE system [10] also uses
probabilistic inference to bound the start and the ending time of events. This
task differs from our task in that it deals with the relations between event and
time rather than entity and time, and it mainly focuses on ordering events while
we focuses on extracting triples that take time expressions as objects.



3 Dataset Construction

We use Wikidata as the knowledge base and Wikipedia articles as the corpus.
There are about 29 relations that require time as object in Wikidata. To ensure
sufficient training instances for each relation, 12 relations are used (see Table 1).

Distant Supervision For each triple (entity e, relation r, time t), we use the
official name and the aliases in Wikidata of entity e as its surface forms. As for
time ¢, we generate its surface forms in 4 granularities: Full Date (month and
year, like 12 Jan. 2011), Month Year (month and year, like Jan. 2011), Year
Only (only year, like 2011), and Month Day (day and month, like 12 Jan.).

Negative Data The negative data come from two sources. First, for every entity
mention € in a retrieved sentence, each (é,t) pair except (e,t) is considered to
have no relation. Entity mentions are identified by finding strings that matches
the canonical names or aliases of entities in Wikidata using Aho-Coraisake al-
gorithm [1]. Second, we retrieve all the sentences containing the surface forms
of entity e and detect time mentions ¢ with SUTime [4]. For each entity surface
form, we find at most 5 corresponding entities using Wikidata API3. If £ does
not appear in any triples that take these entities as subjects in Wikidata, the
entity mention and the time mention are considered to have no relation.

Dataset Validation We manually examined 20 randomly selected sentences for
each relation in each granularity (see Table 1). We find that full-date data have
high quality and the data quality goes down as the granularity becomes coarser.
Since sentences containing only day and month are limited, some relations do
not have 20 instances in month-day data. Considering the limited number and
low quality, month-day data will not be used in the experiment. Note that
point_in_time and end_time data in full-date granularity are not very reliable.
This is because that these two relations often take battles as subjects. However,
descriptions about battles are often very detailed, and many retrieved sentences
actually describe events in the battle rather than the battle itself.

4 Model

The inputs to our first order temporal fact extraction model are sentences labeled
with an entity mention e and a time mention ¢. The task is to identify the relation
between the given time and entity. We will first briefly introduce the baseline
model. Then we will discuss several methods to utilize both the reliable and the
unreliable data to achieve better performance.
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Relation Full Date|Month Year|Year Only|Month Day

date_of_birth 20/20 19/20 19/20 11/20
date_of_death 20/20 13/20 13/20 9/20
time_of_discovery 20/20 15/20 12/20 5/20
inception 17/20 15/20 7/20 4/20
dissolved_or_abolished 15/20 8/20 10/20 1/5
time_of-spacecraft_launch | 19/20 17/20 13/20 1/1
time_of_spacecraft_landing| 18/20 5/20 7/20 4/5
first_performance 18/20 16/20 15/20 1/2
publication_date 19/20 15/20 16/20 5/12
point_in_time 13/20 13/20 19/20 8/19

start_time 18/20 18/20 14/20 14/18

end_time 10/20 13/20 9/20 11/20

Table 1. Statistics of extracted temporal relation mention. Left side of the slash is the
number of correct relation mentions, right side is the number of mentions examined.

4.1 PCNN Model

Our basic model is the Piecewise Convolutional Neural Network (PCNN) [23],
which achieves the state-of-art results in entity-entity relation extraction task.
Following the PCNN work, we also concatenate position embeddings to the orig-
inal word embedding as input. To be concrete, for each word in the sentence, we
calculate its distance to the entity mention and the time mention. Each distance
(e.g. -2, -1, 1, 2, etc) is associated with a randomly initialized embedding vector,
which will be updated during training.

As shown in Figure 1, the input sentence is divided into three parts by the
entity mention e and the time mention ¢. The convolution and max-pooling
operation are applied to the three parts separately to obtain the embeddings of
each part. After that, these three embeddings are concatenated and fed to a full
connection layer. Finally, the softmax classifier is used to generate the relation
distribution, and cross entropy is used as loss function.

Due to the noises in the less reliable data, we find that the model trained
the dataset with all the subsets (except the month-day data) mixed together
performs significantly worse than the model trained only on the full-date data.
Therefore, we consider the latter one as our baseline model. Due to the high
reliability of full-date data, we use multi-class classification paradigm rather than
the multi-instance classification paradigm used in the original PCNN paper.

4.2 Curriculum Learning

Instead of adding less reliable data directly to the training set, an alternative
way to incorporate these data is to use the idea of curriculum learning [3]: start
with easier aspect of the task and then increase the difficulty level gradually.
To be concrete, we first train our model on the reliable full-date data for ¢y
epochs. Since the data is highly reliable, the task is relatively easy for the model
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Fig. 1. The architecture of the PCNN model. In this example, Neil Young is the entity
mention and November 1945 is the time mention.

and can give the model the basic classification ability. After that, we add the less
reliable month-year data to the training set to increase the difficulty and train
for another ¢y epochs. Finally, the most unreliable year-only data is added, and
the model is trained for the last cs epochs.

The intuition behind this is that, after training on the reliable data for several
epochs, the model has already been positioned near the optimal point in the
space of model parameters, and therefore it is less likely to be misled by less
reliable data. Also note that since the reliable data is used throughout the entire
training procedure and is fitted more times than less reliable data, the reliable
data actually lead the whole training.

4.3 Label Dropout

Inspired by the DisturbLabel method [21], which randomly convert the gold label
of a training instance to another label arbitrarily, we propose a more conservative
method called Label Dropout to exploit less reliable data.

While DisturbLabel adds noises to the dataset to make the model more
robust and generalize better, we want to use noises to make the model more
conservative. Rather than converting the gold label of a training instance to
another label arbitrarily, we only convert it to the negative label. To be concrete,
for each positive training instance, we randomly convert it to negative instance
with probability p in each epoch, where p decreases with data reliability.

The intuition is that, if a positive instance turns negative randomly during
training, it actually has two opposite impact on the model parameters, which
means it will have less influence on the model and the model will be more
conservative about this unreliable instance and gives it lower score. However, the
negative data is not affected since the possibility that a negative data is actually
a positive data is small. Apart from that, with the help of the introduced noises,
this method also forces the model to learn the most essential features in less
reliable data, and thus avoids the model from learning unreliable features.
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Fig. 2. Instance Attention Model. The part with solid squares and solid lines is the
vanilla PCNN for relation extraction. The part with hollow squares and dashed lines is
the W-PCNN used to obtain weights for each training instance x;. a; is the output of
the full connection layer of PCNN, b; is the output of the connection layer of W-PCNN,
0; is the output of the full connection layer of W-PCNN] s; is the instance weight and
d; is the relation distribution.

4.4 Instance Attention

To make the training procedure more robust, we further introduce a novel in-
stance attention method. The basic intuition is that we want the model to have
the ability to know which instance is important and which is not. This is achieved
by applying attention mechanism to the instance level. In each batch, we gener-
ate a weight for each instance, which indicates the importance of each instance.
On the one hand, under the framework of curriculum learning, the model can
learn the pattern of noisy data and give them lower weights. On the other hand,
the model can learn to give up very hard instances or concentrate on promising
instances that is not well-learned.

To be more specific, we train a parallel PCNN model containing both the
original PCNN and a smaller PCNN (referred to as W-PCNN) with fewer con-
volution kernels designed to produce the weight for each instance x;. As shown
in Figure 2, the part with solid squares and solid lines is the original PCNN
model, and the part with hollow squares and dashed lines is the W-PCNN. To
consider both the information of the input instance and the PCNN prediction,
we concatenate the output vector a; of the full connection layer in the original
PCNN and the output vector b; of the concatenation layer in W-PCNN. The
concatenated vector ¢; = [aiT, biT]T is fed to a full connection layer, generating
an output vector o;:

0o; = W, X ¢ (1)



where W, is the weight matrix. The weight of the input instance x; is generated
by instance level softmax:

eWSTOi
Yy emsTon
where wg is the weight vector, k is the batch size and the denominator is the
used for normalization. The final batch loss is then generated by:

(2)

S; =

k
batch_loss = Z 8; X loss; (3)

i=1

where loss; is the cross entropy loss of instance x; generated by the original
PCNN model .

5 Experiment

Dataset Detail We use the full-date data as our basic dataset. With 8:1:1 split,
we get 22,214 positive instances for training, 2,776 for validation and 2,771 for
testing. Furthermore, since date_of _birth and date_of _death (big relations) take
a large portion of the data, we only use relations other than them in month-
year and year-only data as additional unreliable data, which contains 2,094 and
53,469 positive instances separately. We generate 2 negative instances for every
positive instance using the first strategy. As for the second strategy, we generate
40,000 negative instances for training, 3,576 for validation, and 3,493 for testing.

Hyperparameters We use 100-dimension word embedding pre-trained using GloVe
[13] and 20 dimensional randomly initialized position embedding. We use SGD
for optimization with batch size 20, learning rate 0.1, dropout probability 0.5.
The PCNN model has 200 convolution kernels followed by an full connection
layer with 200 output units. W-PCNN has 50 convolution kernels and the full
connection layer has 200 output units. The settings of curriculum learning pa-
rameters are ¢c; = co = cg = 15, which means the month-year data is added in
the 16" epoch, and the year-only data is added in the 31** epoch. The label
dropout method drops month-year data with probability 0.5, and year-only data
with probability 0.7 (we do not conduct label dropout for full-date data).

5.1 Main Results

Following previous work on relation extraction, we report the precision recall
curve (PR curve) of our model. The overall PR curve on test set is shown in
Figure 3(a). We can see that if we do not distinguish the subsets with differ-
ent reliability and mix them together (see the mized line), we will get significant
worse results than the model trained with only reliable subset. Therefore, we con-
sider the latter model as our baseline. By using curriculum learning, the model
gains a significant boost over the baseline PCNN. Label dropout improves the
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Fig. 3. Precision recall curves on test data. The label base refers to the basic PCNN
model trained only on the full-date data, curr refers to curriculum learning, drop refers
to label dropout, att refers to instance attention, mized refers to the model trained with
these three types of data mixed together. The figure is truncated to better display the
main results. Therefore, some parts of the mized line are invisible.

performance in the low recall region (corresponding to high precision). Instance
attention further improves the results in both high and low recall region. This
shows that all of the three proposed methods help the model make better use
of the less unreliable data. To further investigate where these improvements
come from, we also report PR curves of small relations (relations other than
date_of birth and date_of _death) in Figure 3(b).

As we can see, the small-relation curve of curriculum learning is close to the
baseline, showing that the additional noisy instances does not contribute much
useful information to small relations and the overall boost comes mainly from
the improvement of big relations. Recall that we do not use big relations in less
reliable data, therefore the reason for the improved performance of big relations
should come mainly from the reduced false positive rate.

When label dropout is added, the noisy positive data become useful and make
the model more be conservative about its prediction. When the model assigns a
positive label to an instance that it is not very confident about, it will produce a
lower score than before, and thus makes the scores of confident predictions and
less confident predictions more separatable from each other, which is reflected
by the better performance of low recall region. However, the lowered scores of
less confident predictions make them less separatable from those instances that
the model is very unconfident about. Therefore, the performance decreases in
the high recall region.

Finally, instance attention enables the model to avoid the influences of noises
and very hard instances by giving them lower weights and concentrate on promis-
ing instances that are not well learned. This mechanism makes the training pro-
cedure more self-adaptive and thus smoothes the small relation curve of label
dropout, which leads to good performance in both high and low recall regions.
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5.2 Influence of Curriculum Learning Parameters

Since the curriculum learning method contributes the major boost to the baseline
model, it is worth further investigating how its parameters influence the result.
We report the PR curves of our full model with different settings of ¢;. As we
can see from Figure 4, ¢; = ¢co = ¢3 = 15 achieves the best overall performance.
Slightly increase c; or slightly decrease ¢y and c3 does not significantly influence
the overall performance, which shows the robustness of the model.

However, when we decrease the epochs trained only with full-date data, the
performance significantly drops. This indicates that we should train the model
with only reliable data for enough epochs so that the model is tuned near the
optimal position in the parameter space, and thus robust to the noise of less reli-
able data. Otherwise, the model will be easily misled to the suboptimal position
by the noises. We can also see that increasing the training epochs for less reliable
data impairs the overall performance as well. This indicates that although our
model has some resistance to noises in the less reliable data, it will still tend to
overfit the less reliable data given enough training epochs.

To conclude, when tuning the model, it is safer to use larger ¢ for reliable
data and smaller ¢ for less reliable data. Note that 15 is the number of epochs
that the baseline model needs to roughly converge, which to some extent explains
why the model underfits the reliable data when c¢; is smaller than 15, and why
the model overfits the less reliable data when ¢o and cg is bigger than 15.

5.3 Influence of Label Dropout Parameters

To see how the label dropout parameters influence the model performance, we
report the PR curves of our full model with different settings of label dropout
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parameters in Figure 5. As we can see, the best performance is achieved when
p1 = 0.5 (label dropout rate of month-year data) and ps = 0.7 (label dropout
rate of year-only data). Slightly increase the label dropout rate does not produce
significant difference, which to some extent shows the model robustness. Further
increasing the label dropout rate will produce results that are consistently worse,
indicating that high label dropout rate will decrease the amount the information
that the model can learn from the less reliable data. However, the performance
drops immediately when the label dropout rate decreases. This indicates that
the increased influence of unreliable positive data causes more harm to the model
than the loss of possibly learnable information.

6 Conclusion

In this paper, we contribute the first dataset that focuses specifically on first
order temporal fact extraction using distant supervision. We observe that, by
grouping the data with different time granularities, we can naturally obtain
data groups with different levels of reliability. Although we can train our model
directly on the reliable full-date data, methods like curriculum learning, label
dropout and instance attention can further exploit the unreliable data to produce
better results than the model trained with only reliable data.
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