A Convolution BiLSTM Neural Network Model for
Chinese Event Extraction

No Author Given

No Institute Given

Abstract. Chinese event extraction is a challenging task in information extrac-
tion. Previous approaches highly depend on sophisticated feature engineering and
complicated natural language processing (NLP) tools. In this paper, we first come
up with the language specific issue in Chinese event extraction, and then propose
a convolution bidirectional LSTM neural network that combines LSTM and CNN
to capture both sentence-level and lexical information without any hand-craft fea-
tures. Experiments on ACE 2005 dataset show that our approaches can achieve
competitive performances in both trigger labeling and argument role labeling.

Keywords: event extraction, neural network, Chinese language processing

1 Introduction

Event extraction aims to extract events with specific types and their participants and
attributes from unstructured data, which is an important and challenging task in infor-
mation extraction. In this paper, we focus on the Chinese event extraction task proposed
by the Automatic Content Extraction (ACE) program [7], which defines the following
terminology for event extraction:

Trigger: the main word that most clearly expresses the occurrence of an event.

Argument: an entity, temporal expression or value that plays a certain role in the
event.

There are two primary subtasks of an ACE event extraction system, namely trigger
labeling and argument labeling. For example, consider the following Chinese sentence:

S1: Intel 75 FFE ML T AL .

Intel founds a research center in China.

In the trigger labeling task, “A% 37 (founds) should be labeled as the trigger of
event type Business. Then in the argument labeling task, “Intel”, “7[E” (China), and
“ff 57 H1.0 (research center) should be labeled as the roles of Agent, Place and Time
respectively in this event.

Current state-of-the-art approaches [4, 14, 5] usually rely on a variety of elabo-
rately features. In general, we can divide them into two categories: lexical features and
sentence-level features. Take trigger labeling on the following sentences for example:
the word “A3.” (found) indicates a Business event in S1 but not in S2 or S3.

II

$2: B ML T 1994 £, IUAE & — 30 ¥R 3% WGl /9 SREA -
It was founded in 1994, and now is a very popular band.
S3: EBE & ML BEF L -

The hospital has founded rescue centers.

Sentence-level features maintain important clues of the whole sentence. We can
summarize S2 as “E & —3Z SFA” (it is a band) and encode it into a sentence-level
feature, which indicates that the verb “A37.” (founded) is not a trigger.

Lexical features contain semantic information of words and their surrounding con-
text. In S3, given the next word <K% H.0 (rescue centers) as a lexical feature, we can
inference that “A{{37.” (founded) is not a trigger of type Business.

Traditional approaches [2, 6, 13,4] usually rely on a series of NLP tools to extract
lexical features (e.g., part-of-speech tagging, named entity recognition) and sentence-
level features (e.g., dependency parsing). Although they achieve high performance, they
often suffer from hard feature engineering and error propagation from those external
tools.

Recently, neural network models have been employed to produce competitive per-
formance against traditional models for many NLP tasks. Chen et al. [5] propose a con-
volutional neural network to capture lexical-level clues, with a dynamic multi-pooling
layer to capture sentence-level features, which yields state-of-art on English event ex-
traction.

Inspired by the effectiveness of neural networks, in Section 2, we present a con-
volution bidirectional LSTM neural network that can learn both lexical and sentence-
level features without any hand-engineered features in Chinese event extraction task.
Specifically, we first use a bidirectional LSTM to encode the semantics of words in the
whole sentence into sentence-level features without any parsing. Then, we can take
advantage of a convolutional neural network to capture salient local lexical features
for trigger disambiguation without any help from POS tags or NER.

We are also enlightened by the work of Chen and Ji [6], who are the first to report
the language specific issue in Chinese trigger labeling. So we propose a character-based
method committed to the problem in Section 2.3. Section 3 presents the model applied
to argument labeling, and Section 4 discusses the experimental results. Section 5 con-
cludes this paper.

2 Trigger Labeling

Trigger labeling, also called event detection, which aims to discover event triggers and
assign them a predefined event type.

Unlike previous work [2, 6], which divide event detection into two subtasks: (1)
trigger identification: to recognize the event trigger; (2) trigger classification: to assign
an event type for an identified trigger. We jointly learn tigger identification and type
classification by one network to reduce the error propagation problem of a pipeline
model. Before we present our solution, we first come up with the language specific
issue in Chinese trigger labeling.

I

2.1 Language Specific Issues

Unlike English, Chinese do not have delimiters between words. That makes word seg-
mentation a fundamental step in Chinese event detection. However, we find that seg-
mentation granularity does have an impact on the prediction. As showed in table 1,
these triggers can not be recognized accurately if we simply predict whether a word is
an event trigger or not. We summarize them as the following two types.

Table 1. Examples of inconsistency problem between words and triggers. Words are segmented
by spaces.

|Sentence Triggers
s DI EEN T BN B - o) vl (arrested)
| |The suspects were arrested.

ERGHRE T —% V- i (shoot)

S5 Polices shoot and kill a criminal. |8 (kill)

X e 1 P A IRE -
It is a premeditated murder case.

S6 X7 (murder)

Cross-word triggers: While many events anchor on a single word, multiple words
could reasonably be called a trigger. In S4, the arrest_jail event should be triggered by
neither “V& A nor “¥£M”, but by “V& AJEM” (arrested).

Inside-word triggers: Almost all Chinese characters have their own meanings, and
some of which can be triggers themselves. There may be more than one trigger in a
word like “i £8” (shoot and kill). Continuous characters of a word can also form a
trigger such as “X|7%” (murder) in “X|Z%Z” (murder case).

Table 2 summarizes the number of problematic triggers we found in ACE 2005
Chinese corpus using different Chinese word segmentation tools. Even the minimum
inconsistency rate is as high as 14%.

Table 2. Number of triggers inconsistent with the words.

NLP Tools Cross-word |Inside-word | Total
Stanford NLP! [487 166 653
Jieba’ 554 85 639
NLPIR? 314 172 486

To address the language specific issues, we treat event detection as a sequence la-
beling task rather than classification. Sentences are tagged in the BIO scheme, where
each token is labeled as B-type if it is the beginning of an event trigger with type type, or

"http://nlp.stanford.edu/software/segmenter.shtml
Zhttps://github.com/fxsjy/jieba
3https://github.com/NLPIR-team/NLPIR

v

I-type if it is inside a trigger, or O otherwise. Our first labelling model is a word-based
BiLSTM model with a CNN layer as shown in Figure 1.

2.2 Word-based Method

LS LI TN

Word
Embedding

JUTE MRBEN #E BN M PP

Word
Embedding

Local
contextual

Convolution

features

Output Max pooling
Layers
ottm \ X J
o ¢ L Local Feature map 1 Feature map 2
Best tag contextual
sequence o [o B-arrested I-arrested features
(a) Convolution BiLSTM network (b) Details of CNN in (a)

Fig. 1. The main architecture of our word-based model. The local contextual feature c; (grey
rectangle) in (a) for each word w; is computed by the CNN as (b) illustrated. Our convolutional
neural network learns an representation of local context information about the center word “¥%
\”. Here the context size is 7 (3 words to the left and to the right of a center word), and we use
a kernel of size 4 with two feature maps. The symbol P in sentence of (b) represents a padding
word.

LSTM Network Recurrent neural networks (RNNs) maintain a memory based on
history contextual information, which makes them a natural choice for processing se-
quential data. Unfortunately, it is difficult for standard RNNs to capture long range
dependencies due to vanishing/exploding gradients [3]. Long Short-Term Memory [10]
is explicitly designed to address the long-term dependency problem through purpose-
built memory cells. They are composed of three multiplicative gates that control the
proportion of information to forget and to store in the cell states.

For the event extraction task, if we access to both past and future contexts for a
given time, we can take advantage of more sentence-level information and make better
prediction. This can be achieved by bidirectional LSTM networks [8, 9]. Figure 1(a)
shows the layers of a BILSTM trigger identification model.

v

A forward LSTM network computes the hidden state h_z of the past (left) context
of the sentence at word w;, while a backward LSTM network reads the same sentence
in reverse and outputs E given the future (right) context. In our implementation, we
concatenate these two vectors to form the hidden state of a BILSTM network, i.e. h; =

an

Convolutional Neural Network Convolutional neural networks are originally applied
to computer vision to capture local features [12]. CNN architectures have gradually
shown effectiveness in various NLP tasks, and have been used for event extraction in
previous studies [5]. We employ a convolutional neural network as illustrated in Figure
1(b) to extract local contextual information for each word in a sentence.

Given a sentence containing n words {wy, ws, .. ., wy, }, and the current center word
wy, a convolution operation involves a kernel, which is applied to words surrounding w;
in a window to generate the feature map. We can utilize multiple kernels with different
widths to extract local features of various granularities. Then max pooling is performed
over each map so that only the largest number of each feature map is recorded. One
property of pooling is that it produces a fixed size output vector, which allows us to
apply variable kernel sizes. And by performing the max operation, we are keeping the
most salient information. Finally, we take the fixed length output vector c,,, as a repre-
sentation of local contextual information of center word w;.

In our implementation, the sliding window size is 7 (3 words to the left and to the
right of a center word), and we use several sizes of kernels to capture context informa-
tion of various granularities.

The Output Layer We concatenate the hidden state h; of BILSTM with contextual
feature ¢, extracted by CNN at each time step ¢. Then [h; ¢y,] is fed into a softmax
layer to produce the log-probabilities of each label for w;.

However, word-base method still can not solve the inconsistency problem caused by
inside-word triggers. Like Chen and Ji [6], we construct a global errata table to record
the most frequent triggers in the training set. During testing, if a word has an entry in
the errata table, we replace its label with its corresponding trigger type directly.

2.3 Character-based Method

Despite of the effectiveness of the errata table, word-based method is not a flawless so-
lution because it only recognizes triggers across words or frequent inside-word triggers
appearing in training data.

Ideally, character-based method may solve both inconsistency problem. It uses the
same tagging scheme as word-based method to label each character. As shown in Fig-
ure 2, the only difference between them is the input layers of their networks: character-
based method uses character embedding while word-base method uses word embed-
ding.

VI

Character
Embedding

Bidirectional LSTM

Lexical Features
from CNN

Output Layer

(o] o (0] (0] B-arrested l-arrested I-arrested I-arrested

Fig. 2. Character-based Convolution BiILSTM network.

3 Argument Labeling

In the above section, we present our convolution BiLSTM model for trigger labeling.
The idea of this neural network architecture is also suitable for argument labeling: we
use a bidirectional LSTM to encode its sentence-level information, concatenated with a
CNN-extracted local lexical feature, to predict whether an entity serves as an argument
in a sentence. Next, we will introduce the main differences between the models used in
trigger labeling and argument labeling.

3.1 Input Layer

As a pipeline system, besides word embeddings, we can use the information extracted
from upstream trigger labeling task. Therefore, we propose four additional types of
feature embeddings to form the input layer of BiILSTM and CNN.

Trigger position feature: whether a word is in a trigger

Trigger type feature: classified trigger type of a word, and NONE type for non-
trigger words

Entity position feature: whether a word is in an entity

Entity type feature: entity type of a word, and NONE type for non-entity word. The
ACE dataset provides ground truth of entity recognition, so we can generate entity
features directly without external NLP tools.

We then transform these features into vectors by their lookup tables, and concate-
nating them with the origin word embeddings, as the final input layer of BILSTM and
CNN.

VII

3.2 Output Layer

It is worth mentioning that argument labeling is no longer a sequence tagging task, but
a classification task. ACE dataset provides ground truth of entity recognition, and it
guarantees that arguments can only be labeled from those entities. As a result, we only
need to predict the role of a tagged entity instead of every word in the whole sentence.
For example, there are three triggers (bold words), and three entities (italic words) in S7,
which together makes up nine pairs of trigger and argument candidate to be classified.

S7: /S AR AL TE EE, B Bob 1) R Tl Joe B R FE -
Six murders occurred in France, including the assassination of Bob and the
killing of Joe.

We modify the output layers of both CNN and BiLSTM network to adjust to the new
task. For BILSTM, we still want to make use of its ability to memory long sequences,
so we regard the hidden state of the last word hy as sentence-level information. And
for CNN, we take all words of the whole sentence as the context, rather than a shallow
window for each center word. Finally, we feed the concatenation of output vectors from
two networks into a softmax classifier just like trigger labeling.

4 Experiments

4.1 Experimental Setup

We used the standard ACE 2005 corpus for our experiments, which contains 633 Chi-
nese documents. Following the setup of Chen and Ji [6], we also randomly selected 509
documents for training and 64 documents as test set, and the reserved 60 documents for
validation.

Evaluation Metric: Similar to previous work, we evaluated our models in terms of
precision (P), recall (R), and F-measure (F') for each subtask. These performance
metrics are computed following the standards of correctness for these subtasks:

— A trigger is correctly identified if its offsets exactly match a reference trigger;

— A trigger is correctly classified if its trigger type and offsets exactly match a refer-
ence trigger;

— An argument is correctly identified if its offset, related trigger type and trigger’s
offsets exactly match a reference argument;

— An argument is correctly classified if its offsets, role, related trigger type and trig-
ger’s offsets exactly match a reference argument.

4.2 Network Training

We implement the neural network using the Tensorflow library[1]. During training, we
keep checking performance on the validation set and pick the highest F-score parame-
ters for final evaluation.

Parameter initialization: Weight matrix parameters are randomly initialized with
uniform samples from [—0.01, 0.01]. Bias vectors are initialized to zero.

VIII

Pre-trained embeddings: Word and character embeddings are pre-trained on over
261 thousand articles crawled from Chinese news website. All embeddings are fine-
tuned during training.

Optimization algorithm: For all models presented, parameter optimization is per-
formed using Adam[11] with gradient clipping[15]. We also apply the dropout method
[16] on both the input and output vectors of all models to mitigate overfitting.

Hyper-parameters: In different stages of event extraction, we adopted different
parameters. Table 3 summarizes the chosen hyper-parameters for all experiments.

Table 3. Hyper-parameters for all experiments.

Layer |Hyper-parameter Trigger identification Argument identifica-
and classification tion and classification
word embedding 100 100
Input character embedding 50 100
entity feature embedding |— 32
trigger feature embedding|— 32
LSTM |state size 100 120
context size 7 sentence length
CNN |kernel size [3,5,7] [2,3,4,5]
number of filters [32, 32, 32] [64, 64, 64, 64]
Dropout|dropout rate 0.5 0.5
batch size 32 20
gradient clipping 1.0 2.0

4.3 Trigger Labeling

Table 4 lists the results of previous work [6,4] and our models. The performances of
Char-MEMM and Rich-L are reported in their paper.

— Char-MEMM [6] is the first character-based method to handle the language specific
issue, which trains a Maximum Entropy Markov Model to label each character with
BIO tagging scheme.

— Rich-L [4] is a joint-learning, knowledge-rich approach that extends the union of
the features employed by Char-MEMM and Li et al. [13] with six groups of linguis-
tic features, including character-based features and discourse consistency features,
which is the feature-based state-of-art system.

Compared with the feature-based approaches, all neural network based models out-
perform Char-MEMM, because they can capture semantic and syntactic information
in the absence of feature engineering and avoid the errors propagated from other NLP
tasks like NER and POS tagging.

Rich-L performs 10-fold cross-validation experiments, so that the results reported
by them obtain more accurate estimation of system performance. Therefore, it is unfair

IX

to directly compare our results with them. But we can still see the models evaluated
in the bucket achieve competitive F-score on event identification without any human-
designed features and discourse level knowledge.

Table 4. Comparison of different models on Chinese event detection (trigger identification and
classification) (%).

Trigger Identification Trigger Classification

Model P R F P R F
Char-MEMM [6] 824 | 506 | 627 | 788 | 483 | 59.9
Rich-L [4] 622 | 719 | 66.7 | 589 | 68.1 63.2
Word-based CNN 71.7 | 583 | 643 | 67.7 | 55.1 60.7
Word-based BiLSTM 684 | 612 | 646 | 639 | 574 | 605
Word-based C-BiLSTM 758 | 59.0 | 664 | 69.8 | 542 | 61.0
+ Errata table 76.0 | 638 | 693 | 69.8 | 599 | 64.5
Character-based C-BiLSTM| 65.6 66.7 66.1 60.0 60.9 60.4
+ Errata table 68.1 69.2 | 68.7 61.6 | 647 | 63.1

Word-based Models vs. Character-based Models As we can summarize from table 4,
when applying the same network architecture, word-based methods always have higher
precisions while character-based methods always have higher recalls.

We then take a further step to see their impacts on different kinds of triggers. Table 5
shows that: (1) Word-based methods can not label inside-word triggers, while character-
based methods can handle this issue nicely, which brings them higher overall recall; (2)
Two methods achieve similar F-measure in regular trigger identification; (3) It is harder
for character-based method to correctly identify cross-word triggers. As there are more
cross-word triggers than inside-word triggers in dataset, the overall F-measure of word-
based method is slightly higher.

Table 5. Results of different types of triggers with different models on trigger identification.
Regular triggers mean triggers composed of exactly one word.

Regular Triggers |Inside-word Triggers|Cross-word Triggers
P R F P R F P R F
Word-based C-BiLSTM 0.78 | 0.65 | 0.71 - 0 - 0.64 | 0.39 | 0.48
Character-based C-BiLSTM| 0.72 | 0.70 | 0.71 | 0.30 | 0.69 | 0.41 | 0.57 | 0.22 | 0.32

Model

There are several reasons causing the low precision of character-based method:

(1) Character-based method has to learn the extra word segmentation by themselves.
7.3% of triggers identified by it are partially mislabeled, like triggers in S8 and S9.

(2) Word embedding brings richer semantic information than character embedding.
Take S10 as an example, characters “#1” and “[7]” do not have any meaning related to

X

the formed word “#A[F]” (the end of a road). But this word strongly suggests that “3t”
(dead) is not a trigger. Given the more accurate embedding of surrounding context,
word-based networks can understand the meaning of the center word better and do
better disambiguation.

(3) RNN in character-based method needs to maintain information for longer se-
quence, as 1.7 times longer than the average length of word sequences. Evaluating on
sentences containing more than 150 characters, F-measure of character-based method
is 70%, while word-based method can achieve 72.8%.

Table 6. Error analysis: examples of triggers mislabeled by character-based C-BiLSTM, but can
be identified correctly by word-based C-BiLSTM.

|Sentence Correct Labels Wrong Labels
g PEVI IR ABEUE, . 7E (go) T (visit)
After visiting to relevant staff, ... BI BO
S9 B 23T B (congratulatory) FE (message)
There is the full congratulatory message |BI OB
§1o|/D 1 B I8 i Bt HE - FE (dead) #[A (end)
The thief was chased into a dead end. 0 00 B OO

Neural Network Architectures Our convolution BiLSTM model has two main com-
ponents that we could take them apart to understand their impacts on the overall per-
formance. As table 4 shows, BiLSTM is slightly more efficient than CNN, and the
convolution BiLSTM model outperforms other models. Constructing an errata table is
an effective method that increases both precisions and recalls.

We also evaluate the capacity of each network on trigger disambiguation. Table 7
provides suggestive evidence that CNN-extracted local features, together with LSTM-
extracted sentence-level information can help reduce some errors caused by ambiguous
triggers as we expected.

Table 7. Percentages of ambiguous words whose all occurrences in the test set are classified
correctly. Ambiguous words can have different labels according to their meaning and context,
like the word “A%3Z” (found) in S1 ~ S3. All networks listed in this table are word-based.

BiLSTM|CNN|C-BiLSTM
ambiguous word classification (%)| 58.4 |60.0 62.5

4.4 Argument Labeling

Table 8 shows results for argument labeling after trigger labeling. As we can observe
from our evaluation standards that once a trigger has not been labeled correctly, neither

XI

of its arguments will be labeled correctly. In the stage of trigger labeling, the character-
based methods have higher recalls and can extract more golden triggers. As a result,
character-based methods perform much better than word-based methods in argument
labeling. And we can draw the same conclusion that word-based methods have higher
precision while character-based methods achieve higher recalls, as trigger labeling.

Table 8. Comparison of different models on Chinese argument labeling (%). +e means that the
input (result of trigger labeling) has been modified by an errata table.

Argument Argument

Model Identification Classification

P R F P R F
Char-MEMM 64.4 | 36.4|46.5|60.6 | 34.3 | 43.8
Rich-L 43.6|57.3|49.5|39.2 | 51.6 | 44.6
word-based C-BiLSTM 56.6 |43.649.349.7 |38.3 432
word-based C-BiLSTM +(e) 56.5|47.0|51.3|49.641.3(45.0
character-based C-BiLSTM 53.2151.6 524 |47.0|45.6|46.3
character-based C-BiLSTM +(e)| 53.0 | 52.2 | 52.6 | 47.3 | 46.6 | 46.9

Errata table is not such effective as in trigger labeling, especially for character-based
C-BiLSTM. Adding an errata table even drops a little precision in argument identifica-
tion.

Char-MEMM concludes that neighbor word features are fairly effective. They use
the left word and right word of an entity to reduce spurious argument, which is a similar
objective with our CNN-extracted lexical features. But we can achieve much better
results in argument identification and classification.

It is worth noting that some of the arguments are not in the same sentence with their
triggers. It is a bottleneck of our C-BiLSTM model, while Rich-L uses discourse-level
features to handle this problem. Under this unfavorable circumstance, our C-BiLSTM
can still achieve a comparable result against sophisticated human designed features.

5 Conclusion

In this paper, we propose a novel convolution bidirectional LSTM model on Chinese
event extraction task. Our model departs from the inherent characteristic of Chinese,
formulates the event detection task as a sequence labeling fashion, and features both
bidirectional LSTM and CNN to capture both sentence-level and lexical features from
raw text. Experimental results show that without human-designed features and external
resources, our neural network method can achieve comparable performances on ACE
2005 datasets with traditional feature based methods.

XII

References

10.

11.

12.

13.

14.

15.

16.

. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis,

A., Dean, J., Devin, M., et al.: Tensorflow: Large-scale machine learning on heterogeneous
distributed systems. arXiv preprint arXiv:1603.04467 (2016)

. Ahn, D.: The stages of event extraction. In: Proceedings of the Workshop on Annotating

and Reasoning about Time and Events. pp. 1-8. Association for Computational Linguistics
(2006)

. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient descent

is difficult. Neural Networks, IEEE Transactions on 5(2), 157-166 (1994)

. Chen, C., Ng, V.: Joint modeling for chinese event extraction with rich linguistic features.

In: COLING. pp. 529-544. Citeseer (2012)

. Chen, Y., Xu, L., Liu, K., Zeng, D., Zhao, J.: Event extraction via dynamic multi-pooling

convolutional neural networks. In: Proceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing. vol. 1, pp. 167-176 (2015)

. Chen, Z., Ji, H.: Language specific issue and feature exploration in chinese event extrac-

tion. In: Proceedings of Human Language Technologies: The 2009 Annual Conference of
the North American Chapter of the Association for Computational Linguistics, Companion
Volume: Short Papers. pp. 209-212. Association for Computational Linguistics (2009)

. Doddington, G.R., Mitchell, A., Przybocki, M.A., Ramshaw, L.A., Strassel, S., Weischedel,

R.M.: The automatic content extraction (ace) program-tasks, data, and evaluation. In: LREC.
vol. 2, p. 1 (2004)

. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional Istm and

other neural network architectures. Neural Networks 18(5), 602-610 (2005)

. Graves, A., Mohamed, A.r., Hinton, G.: Speech recognition with deep recurrent neural net-

works. In: Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International
Conference on. pp. 6645-6649. IEEE (2013)

Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation 9(8), 1735-
1780 (1997)

Kingma, D., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. Proceedings of the IEEE 86(11), 2278-2324 (1998)

Li, P., Zhou, G., Zhu, Q., Hou, L.: Employing compositional semantics and discourse consis-
tency in chinese event extraction. In: Proceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language Learning.
pp- 1006-1016. Association for Computational Linguistics (2012)

Li, Q., Ji, H., Huang, L.: Joint event extraction via structured prediction with global features.
In: ACL (1). pp. 73-82 (2013)

Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks.
ICML (3) 28, 1310-1318 (2013)

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, 1., Salakhutdinov, R.: Dropout: A sim-
ple way to prevent neural networks from overfitting. The Journal of Machine Learning Re-
search 15(1), 1929-1958 (2014)

