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 Temporal behavioural fluctuations are important for disturbance susceptibility  

 Temporal GIS models can be used to synchronise development with conservation 

 Disturbance tolerances can be accounted for at the scale of the individual animal 
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ABSTRACT 14 

Assessing the potential environmental impacts of disturbance on protected species during and after 15 

the development process is a legislative requirement in most nations. However, the restrictions that 16 

this legislation places on developers are often based on limited ecological understanding, over-17 

simplified methodologies, less-than-robust data and the subjective interpretations of field 18 

ecologists. Consequently, constraints may be imposed with no transparent methodology behind 19 

them to the frustration of, and occasionally large expense to, developers. Additionally, protected 20 

species numbers continue to decline and biodiversity continues to be threatened. This paper 21 

describes a GIS conceptual model for assessing ecological disturbance vulnerability, based upon a 22 

case study development in Scotland. First, uncertainties in traditional methods of recording and 23 

representing ecological features with GIS are reviewed such that they may be better accounted for 24 

in the disturbance model. Second, by incorporating temporal fluctuations in ecological behaviour 25 

into the disturbance susceptibility concept, it is argued that it is possible to synchronise 26 

development with conservation requirements. Finally, a method is presented to account for 27 

disturbance tolerances at the scale of the individual animal. It is anticipated that this model will 28 

enable environmental impact assessors to produce more robust analyses of wildlife disturbance risk 29 

and facilitate synchronisation between development and wildlife vulnerability to minimise 30 

disturbance and better avoid delays to the works programme. 31 

KEYWORDS 32 

Ecological Disturbance; Development sites; Protected species; GIS representation; Ecological 33 

networks; Temporal ecology    34 

1 INTRODUCTION  35 

Increasing demand for housing, commerce and industry, driven by an expanding human population, 36 

is perpetuating global urban development (Millennium Ecosystem Assessment, 2005). However, as 37 

global landscapes become increasingly urbanised, space available for new development becomes 38 

ever more constrained. This constraint is compounded by the need to maintain multifunctional 39 

landscapes that promote prosperity for both humans and wildlife (Angold et al., 2006, Rudd et al., 40 

2002) for intrinsic purposes, and to continue the delivery of ecosystem services (Millennium 41 

Ecosystem Assessment, 2005). For these reasons, a series of legislative measures have been 42 
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introduced affording legal protection to selected species and habitats deemed to be under threat or 43 

of particular cultural significance. Central to this concept of protection is the notion of ‘wildlife 44 

disturbance’, such as that caused by excessive noise, vibration, loss of food sources or the 45 

introduction of new predators.  Disturbance is prohibited for certain species under the Habitats 46 

Directive (European Commission, 1992) and Birds Directive (European Commission, 2009), and 47 

various national laws devolved from them. There is, however, no universally accepted definition of 48 

the term ‘wildlife disturbance’ leaving it open to interpretation in best practice guidance issued by 49 

statutory regulators. Consequently, environmental impact assessments with a wildlife disturbance 50 

component are open to subjectivity and lack a standardised approach.   51 

A more in-depth model of wildlife susceptibility to disturbance is clearly needed to reduce levels of 52 

subjectivity and improve the means by which development constraints are integrated into 53 

development programmes.  Given that the risk of disturbing an animal is largely subject to spatial 54 

criteria, Geographical Information Systems (GIS), offer a solid foundation upon which to achieve this 55 

task.  GIS data are also easily displayed via a website or server system, facilitating communication, 56 

and may be viewed at multiple scales to better understand a sites context and broader landscape 57 

connections. GIS has already established its credentials as a planning tool in ecology, for example, in 58 

the design of wildlife corridors (Jenness et al., 2010), nature reserves (Ball et al., 2009) and habitat 59 

restoration schemes (Rempel, 2008).     60 

Goodchild (2007) defines three levels of abstraction between real world phenomena and GIS 61 

representation - conceptualisation of the processes and interactions inherit to the studied 62 

phenomenon, recording of the variables of interest and representation of the variables in 63 

appropriate digital form.    In the context of wildlife disturbance on a development site there are 64 

challenges at each level of abstraction.   65 

Difficulties at the conceptual level are illustrated through a lack of legislative clarity in the definition 66 

of wildlife disturbance. Such ambiguity has led to differing requirements for the treatment of badger 67 
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(Meles meles) setts for example, protected from disturbance in the UK by the Protection of Badgers 68 

Act 1992. In Scotland, the current requirements for compliance with this legislation involves creating 69 

a protection zone of 30 m around the sett, within which potentially disturbing activities are 70 

prohibited (Scottish Natural Heritage, 2013a). However, the English approach (English Nature, 2002) 71 

leaves the interpretation of disturbance to the field ecologist. Whilst the English approach can 72 

facilitate a more complex conceptualisation of wildlife disturbance, its application could be biased by 73 

social or cultural values and research specialisations of the individual ecologist. Conversely, the 74 

problem with the Scottish methodology is twofold: first, the discrete representation undermines the 75 

obvious distance decay in disturbance probability with respect to proximity to the sett entrance; 76 

second, the protection zone radius of 30 m, based on tunnel lengths of excavated setts (Raynor, 77 

2012) is designed to protect the sett structure, giving little consideration to adverse effects of noise 78 

or vibration upon the badger inside. In more extreme cases of physical disturbance such as pile 79 

driving or blasting, the protection zone is increased to 100 m radius (Scottish Natural Heritage, 80 

2013a), although the justification for this distance is not given in any of the reviewed literature.  81 

At the recording level, challenges arise from not being able to monitor wildlife completely and 82 

directly in the field. For example, whilst animals are frequently GPS or radio tagged, giving insight 83 

into their spatio-temporal positions, which in turn allows the derivation of home range (Powell, 84 

2000), interaction patterns (Handcock et al., 2009) and travelling routes (Nams, 2005), the capture 85 

and tagging of every animal on a large development site is impractical. Thus, ecological knowledge is 86 

often derived from field signs including faeces, hair, prints and scratches, which are easy to miss in 87 

the field (Parry et al., 2013). Although such uncertainties are reducing with the introduction of video 88 

technology (Moll et al., 2007), surveillance generally covers only a small area of a given site and a 89 

sub-selection of individual animals. 90 

At the representational level, challenges chiefly arise from the temporally-dynamic nature of 91 

ecosystem functioning, thus affecting the severity and likelihood of wildlife disturbance. Bats for 92 
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example, are extremely reliant upon undisturbed hibernation in order to maintain sufficient fat 93 

supplies to last the winter (Thomas, 1995). Similarly, the Forestry Commission (1995) advocates the 94 

cessation of works in close proximity to badger setts at dawn and dusk to allow its occupants to 95 

move in and out, illustrating the species’ dependence upon daylight cycles.  The lack of an innate 96 

temporal query language within most GIS applications means that answering questions regarding 97 

when a particular operation (e.g. pile driving) should be conducted to coincide with periods of low 98 

disturbance likelihood is difficult.  99 

This paper offers a detailed assessment of the conceptual, recording and representational challenges 100 

faced in communicating wildlife disturbance constraints within a GIS for a case study site in the 101 

Central Lowlands of Scotland. To begin with, potential receptors to disturbance are discussed, along 102 

with uncertainties in their traditional GIS representations. Temporal fluctuations in disturbance 103 

susceptibility are then considered, and insights offered into how anthropogenic disturbance may be 104 

synchronised with cyclic variations in wildlife activity to minimise disturbance. Finally, in the light of 105 

these discussions, a conceptual model for wildlife disturbance vulnerability is proposed. The model 106 

accounts for a more detailed understanding of wildlife ecology and encompasses spatio-temporal 107 

uncertainties in ecological knowledge.   108 

2 METHODOLOGY 109 

Challenges are illustrated using ecological examples from a large (10 km2) brownfield site, located 20 110 

km west of Glasgow, Scotland. The site has proposals for 2500 units of housing, a 150,000m2 111 

business park, related infrastructure and a community woodland park (Renfrewshire Council, 2014). 112 

During the sites’ extended period of phased decommissioning, public access has been 113 

heterogeneously restricted, meaning that some areas of the site have remained undisturbed for 114 

over 75 years, whilst others were in use until 2002. Such conditions have yielded an ecological 115 

mosaic exhibiting a wide variety of successional traits, and have encouraged a number of protected 116 

species to occupy the site including 12 badger social groups (average 3-4 adults per group plus cubs), 117 
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3 otters (plus cubs), 2 breeding pairs of barn owls, small populations of common pipistrelle, brown 118 

long-eared and Daubenton’s bats and 2 breeding pairs of little ringed plover (results of monitoring 119 

by the author since 2012).  120 

Surveys for a number of species were undertaken using methods described in the Chartered 121 

Institute of Ecology and Environmental Management’s (CIEEM) Technical Guidance Series (Chartered 122 

Institute of Ecology and Environmental Management, 2014). These surveys are designed to be 123 

conducted at fine spatial scales, to determine specific landscape features, such as a particular 124 

hedgerow or building, considered important for conservation of an individual animal or social group. 125 

This scale is equivalent to Johnson’s (1980) fourth order of hierarchical habitat selection; the first 126 

being the geographical distribution of the species, the second being the selection of a home range 127 

within that distribution, and the third being the usage of generalised habitat patches within the 128 

home range.  By adopting a fine spatial scale we constrain our study to disturbance concepts 129 

affecting individual animals and social groups, rather than wider populations or meta-populations. 130 

Conceptual, recording and representation challenges were then identified by comparing the 131 

practical requirements of field survey and GIS design with ecological disturbance concepts 132 

highlighted throughout the literature. These concepts were augmented with our own critical 133 

thinking and then consolidated into a conceptual model that encapsulates a more complete idea of 134 

the potential for wildlife disturbance due to different activities.    135 

3 RESULTS AND DISCUSSION 136 

3.1 INFERRING THE UNKNOWN FROM THE KNOWN 137 

Initially, an understanding of how protected species use their available space is necessary in order to 138 

determine both the projected impact of a disturbance event across the ecological network, and the 139 

likely position of an individual animal within it at any given time. However, each of the features that 140 

comprise the ecological network, such as foraging resources, pathways and shelters (collectively 141 

referred to hereafter as ecological network components (ENCs)) are often difficult to observe, record 142 
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and map comprehensively (Parry et al., 2013). In seeking to improve communication of wildlife 143 

disturbance constraints, it is important to understand the limitations of the underlying ecological 144 

data upon which higher level knowledge can be derived. By integrating associated uncertainties that 145 

will be inherent within the disturbance model, decision makers can be better informed as to the 146 

reliability of disturbance projections, and field ecologists can learn where best to target their surveys 147 

as part of any monitoring efforts. The following section highlights some of these uncertainties and 148 

generalisations for different ENCs observed at the case study site. It is not intended to be an 149 

exhaustive list but rather to draw attention to nature of uncertainties in ecological data and to 150 

stimulate discussion and critical thinking. 151 

3.1.1 Foraging resources 152 

Food and water act as vital nodes within the ecological network and their quantities play a 153 

significant role in the estimation of carrying capacities (for a review see McLeod, 1997). However, 154 

given the spatial scale of the case study site, it was not possible to record the availability of food 155 

directly or completely. For example it was not feasible to count the number of berries available 156 

across all woodland and scrub patches, nor was it possible to account for movements of each and 157 

every live prey individual between territories of carnivores. Habitat types are therefore often used as 158 

a surrogate for food availability (e.g. Anderson et al., 2005, Scottish Natural Heritage, n.d.). Whilst 159 

this generalisation forms a convenient measure by which to estimate resource availability, it 160 

assumes a homogeneous distribution of resource biomass throughout each mapped habitat parcel. 161 

Biomass can however vary significantly between microhabitats (Shakir and Dindal, 1997, Shevtsova 162 

et al., 1995).  163 

Moreover, the habitat categorisation processes typically used by commercial ecologists (e.g. Phase 1 164 

Habitat Classification (Nature Conservancy Council, 1990) and the National Vegetation Classification 165 

(NVC) (Rodwell, 2006)) required for a vector-based GIS representation, often renders habitat 166 

boundaries that are not always agreed upon by ecologists (Stevens et al., 2004). Consequently, a 167 

discrete approach to mapping habitats may yield highly uncertain estimates of foraging resource 168 
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availability. Whilst there are alternative habitat representations available that use a raster model, 169 

such as the Land Cover Map (Morton et al., 2011), these do not reflect the continuous nature of 170 

habitat and food availability transitions through space. Rather, they depict the same discrete land 171 

cover classes as the vector models, but are spatially generalised over grid cells of 25 m or 1 km 172 

(Morton et al., 2011).     173 

3.1.2 Home range and territory  174 

The amount of foraging resources available to an individual animal is constrained by its home range 175 

or territory. Individuals with a home range or territory categorised by poor foraging opportunities 176 

are more vulnerable to loss of resources (Kitaysky et al., 1999). By using such data to influence land 177 

use change, under some scenarios it may be possible to dilute the effects of disturbance across 178 

multiple territories or home ranges to the point where it is no longer significant to any one 179 

individual. Multiple methodologies have been developed to derive home ranges from field data with 180 

varying degrees of complexity and realism. The simplest approach, and the one usually applied in 181 

commercial UK ecology, is to utilise a uniform radius buffer around shelters with a distance 182 

extrapolated from literature or ‘expert’ opinion (English Nature, 2002, Scottish Natural Heritage, 183 

2013a, b). However, this approach is also the most generalised as it does not account for factors 184 

such as habitat composition, which can cause variations in home range size from individual to 185 

individual (Börger et al., 2006, Anderson et al., 2005), Consequently, the home range in reality may 186 

be markedly different to that formulated using this methodology. 187 

Slightly more representative of the real world, Minimum Convex Polygon analysis (MCP) (Nilsen et 188 

al., 2008, Börger et al., 2006) can be utilised to derive home ranges and territories from a variety of 189 

spatial data (depending on the species) including field signs, direct observations, location tracking, 190 

camera trap data and echo-sounding. This has the advantage over the buffering approach in that the 191 

analysis is based on data taken directly from the study area, but is nevertheless subject to a 192 

significant number of limitations highlighted by Worton (1987) including bias caused by sample size 193 

and a tendency to overestimate range sizes. The MCP methodology has, however, been 194 
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demonstrated to be effective for delineating badger territories from bait marking data (Delahay et 195 

al., 2000) as latrines are highly characteristic of badger territory edges (Roper et al., 2001). 196 

Conversely, territories of avian species derived from MCP analysis of field signs such as sightings, 197 

droppings, down, and in particular, subjective interpretation of song (Bibby et al., 2000) are likely to 198 

yield home range boundaries of much lower certainty. 199 

A further limitation to MCP analysis is that the derived territories and home ranges are discrete, thus 200 

giving no representation of spatial usage within them. Greater insight into the internal structure of 201 

home ranges and territories can be gained through the application of utilisation distribution 202 

methodologies including kernel density (Worton, 1989, Seaman and Powell, 1996, Powell, 2000, 203 

Börger et al., 2006), time-geographic density estimation (Downs et al., 2011) and random walk 204 

models (Horne et al., 2007) to generate a representation of probability of usage of space within each 205 

home range or territory. GIS representation of this internal ‘probability-of-use’ gradient then 206 

becomes more suited to a raster approach (continuous variation), rather than a vector approach 207 

(discrete objects). Whilst these types of analyses are also subject to uncertainties, such as that 208 

caused by spatial-autocorrelation (Blundell et al., 2001), the chief concern here is that they require 209 

considerable geo-statistical skill to compute and interpret, and also tend to rely upon telemetry 210 

data. In the UK protected species require a licence to trap and fit with a GPS device. Combined with 211 

the complexity of utilisation distribution methodologies this may lead practicing ecologists to 212 

implement the less robust MCP methodologies as at the case study site. 213 

3.1.3 Pathways 214 

Pathways link areas used for shelter and foraging together, thus are an essential component of the 215 

ecological network. As with home ranges and territories, pathways are often inferred from field 216 

signs yielding different levels of certainty depending upon the species studied. Some species on the 217 

case study site, such as badgers, follow well-defined paths and these can often be recognised in the 218 

field by the trained ecologist (Kyne et al., 1990, Neal and Cheeseman, 1996). Badger paths also 219 

tended to follow prominent linear features, such as hedgerows, woodland edges and walls, which is 220 
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consistent with other observations made by Feore and Montgomery (1999), and Hutchings and 221 

Harris (Hutchings and Harris, 2001). Badgers are also known to show little variation in traveling 222 

routes, which in turn facilitates the mapping of these features as discrete lines, but also signifies 223 

greater sensitivity of the animals to path disturbance. In contrast, it is more difficult to define an 224 

exact flight path for birds and bats since they show more spatio-temporal variability in their 225 

travelling routes, their movements leave no field signs such as footprints or flattened grass to 226 

observe and their movements must be considered in three dimensions.  227 

The inference of such ‘fuzzy’ pathway locations may be improved by additional observation, location 228 

tracking or camera traps to help improve data reliability. Additionally, a least cost path can be 229 

inferred, based on known shelters, foraging locations and movement impedances or preferences. 230 

Davies et al. (Davies et al., 2012) for example inferred travelling routes for pipistrelle bats 231 

(Pipistrellus pipistrellus) constrained by lighting sources (known features of avoidance) and 232 

hedgerows, which are known to be preferred travelling routes for the species (Mitchell-Jones, 2004). 233 

Nonetheless, given the ‘fuzzy’ nature of these features, vector representation as discrete lines can 234 

imply greater accuracy in the data than is appropriate. Murdock and Potts (Murdock and Potts, 235 

2009) interviewed ornithologists, and found the estimated positional accuracy of such surveys to be 236 

±50 m. Hence, it may be more appropriate to represent these paths as rasters with a cells size of 50 237 

m or generate 25 m buffer zones around the vector lines to reflect this spatial uncertainty. 238 

3.1.4 Shelters 239 

As with other ENCs, acquiring a comprehensive dataset of all protected shelters in a large study area 240 

can be difficult. Otter (Lutra lutra) holts in particular are notoriously difficult to locate due to their 241 

often secluded position, camouflage and underwater entrances (Parry et al., 2013). Even when 242 

shelters are discovered, the attribution of a species to that shelter can be problematic. Since many 243 

shelters are subterranean, both occupation and species are typically inferred from field signs, such 244 

as the shape of the tunnel, foot prints, faeces, hair and scratches found in close proximity to the 245 

shelter. Although ecological surveyors are trained in using these field signs to find shelters and infer 246 
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species occupation, the process is not infallible, meaning that some shelters may be missed or that 247 

the wrong species may be assigned to it. The latter is particularly problematic when considering 248 

legislative-driven constraints on wildlife disturbance. Consider, for example, that female foxes are 249 

known to use unoccupied badger setts to rear their young (Trewby et al., 2008), but that they are 250 

not protected from disturbance by wildlife legislation. Moreover, it is difficult for the ecologists to 251 

know if the sett is likely to be used by a badger in the future, thus the decision as to whether to 252 

continue to control nearby anthropogenic disturbance, is equally problematic from a legislative 253 

perspective. 254 

Similar legal uncertainties also surround the protection status of otter resting places and bat feeding 255 

perches. UK legislation and best practice guidance  (e.g. Mitchell-Jones, 2004, Scottish Natural 256 

Heritage, 2013b) offers no insight into the frequency of use necessitated for these features to 257 

receive protection, thus their explicit inclusion within a disturbance susceptibility model may place 258 

unnecessary restrictions on development works if alternative areas are available. Perhaps a more 259 

meaningful disturbance analysis would consider areas with the potential to be used by wildlife as 260 

resting places or perches, rather than simply attempting to establish those in current use. A similar 261 

methodology to that used in habitat suitability modelling could be used (for reviews see Fielding and 262 

Bell, 1997, Hirzel et al., 2002, Hirzel and Le Lay, 2008); however, further research would be required 263 

to produce such a model for each relevant feature.  264 

Uncertainty is not only introduced at the recording level but at the digital representation level too. 265 

Shelters are usually represented within a GIS as vector points or generalised into raster cells for 266 

larger scale studies (e.g. National Biodiversity Network, 2012). In the latter case the raster can either 267 

indicate a count of shelters present, or simply indicate presence in a Boolean format. Whilst the 268 

Boolean representation is subject to the most spatial and thematic generalisation, it is less prone to 269 

error (see Figure 1). However, in the case of disturbance modelling at the site scale, the locational 270 

precision of shelter data offered by the vector representation is imperative to formulating the most 271 
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robust strategies of avoidance and mitigation. The issue with this, as with pathway representation as 272 

vectors lines, is that a degree of precision and accuracy is instilled within the data that may lead to 273 

false conclusions regarding its reliability.  274 

Figure 1.  275 

3.2 THE ISSUE OF TIME 276 

Development at the case study site is being conducted over a multi-phased programme, lasting in 277 

excess of a decade. Consequently, temporal ecological factors, which may be overlooked in 278 

development projects conducted over shorter timescales, warrant significant attention here. As 279 

illustrated in section 3.1.4, GIS models of representation can be used to generalise the spatial 280 

dimension; in much the same way, a single GIS layer, in the absence of other thematically related 281 

layers, can be considered a generalisation of the temporal dimension. Many species exhibit spatial 282 

variation in their home ranges through time including otters (Erlinge, 1967), deer (Börger et al., 283 

2006) and badgers (Cresswell and Harris, 1988). For hibernating species such as bats, the spatial 284 

extent of their home ranges will decrease to nothing during winter. Thus, any GIS layer depicting a 285 

home range for a single instance in time must, in the absence of supplementary data, be taken by 286 

the researcher to be representative of all instances of time. Further, seasonal generalisations occur 287 

in modelling food resource availability, since the abundance of nuts and berries for instance are also 288 

dependent upon seasonality. This in turn may affect the temporal frequency of pathway use since a 289 

community may use different feeding areas in different seasons. Finally, shelter usage may also be 290 

dependent on seasonality. A main badger sett, for example, is likely to be active all year round; an 291 

outlier however will be more frequently used in the breeding season when territorial behaviour 292 

peaks (Cresswell et al., 1992). These concepts are illustrated for different species in Figure 2. 293 

Seasonality is not the only driver for temporal generalisation, daily cycles also play a significant role 294 

in governing ecological behaviour, and subsequently in determining the reliability of the GIS data 295 

representing it. Diurnal shelter usage is chiefly governed by the sleeping cycle of the animal, so for a 296 
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nocturnal animal, their shelter is likely to be in use during daytime. Thus, in a temporally-enabled 297 

GIS, the frequency at which data is recorded, and the granularity at which it is modelled, will govern 298 

the generalisation of the time dimension. 299 

Temporal generalisation has particular significance when using ecological GIS data to influence 300 

landscape management decisions. If the protection of the ENCs described above are considered to 301 

be of primary importance in species conservation, then a failure to account for their temporal 302 

fluctuations, both spatially and thematically, may result in under or over protection at a given time. 303 

Under protection may result in development which will impact negatively upon local wildlife, 304 

whereas over protection will place unnecessary strain on developers’ time and resources. This has 305 

particular relevance for constraining site operations such as cable laying, safety lighting, blasting and 306 

pile-driving where wildlife disturbance may only be temporary. Undertaking these works near a 307 

winter food source, travelling route or shelter may be considered acceptable in the summer for 308 

example, provided alternative resources are available. 309 

Unfortunately, the representation of the temporal dimension within GIS can be problematic and is a 310 

primary focus of past and current GIS research (Armstrong, 1988, Erwig et al., 1999, Huang and 311 

Claramunt, 2005, Pelekis et al., 2004, Raper, 2012). Although a full discussion on approaches and 312 

methods of time representation in a GIS is beyond the scope of this paper, it is important to note 313 

here that the vast majority of solutions require customised software, bespoke query languages and 314 

considerable GIS skill to implement and maintain. In the case of commercial ecology this becomes 315 

unfeasible since data sharing between stakeholders, whose specialisms are likely to lie beyond the 316 

domain of GIScience, is of paramount importance. We therefore argue that the extension of GIS into 317 

the temporal dimension needs to be conducted in conjunction with existing propriety or open 318 

source software, making solutions accessible, intuitive and interoperable with other data sources.    319 

Figure 2. 320 
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4 A CONCEPTUAL MODEL FOR REPRESENTING DISTURBANCE VULNERABILITY 321 

The previous sections have illustrated that ecological networks are spatially and temporally dynamic, 322 

and that failure to represent these complexities within ecological disturbance models is an over 323 

simplification of reality. By recognising these complexities and integrating them into ecological 324 

network models, a more solid foundation for disturbance modelling can be formulated. The final 325 

conceptual model for wildlife disturbance vulnerability is constructed from variables that fall into 326 

one of eight categories discussed below.  327 

Spatial accuracy – Given that disturbance potential for an ENC warrants analysis at a fine spatial 328 

scale, the accurate representation of disturbance source and receptor positions is of paramount 329 

importance. In creating a 30 m protection zone for an otter holt, recorded using GPS for example, a 330 

positional accuracy of 10 m has the potential for significant misalignment of the mapped and real 331 

world protection zones. Whilst differential GPS can act to reduce inaccuracy problems (Rempel and 332 

Rodgers, 1997), such resources are not always available in low to medium budget projects. 333 

Therefore, positional accuracy, which is often reported by the GPS device itself, can be used to 334 

buffer the source or receptor to yield a polygon containing possible positions. In cases where 335 

positions have been inferred, such as MCP analysis to yield a home range, accuracy may not be so 336 

easily ascertained, and must therefore be interpreted by the ecologist who made the field 337 

observations, or calculated statistically.   338 

Two dimensional proximity – This is the main focus of the current disturbance protection method 339 

advocated by Scottish Natural Heritage (2013a), which involves buffering disturbance protection 340 

zones around shelters. It should, however, be noted that classification of the study area into binary 341 

categories of ‘susceptible to disturbance’ and ‘not susceptible to disturbance’ is not reflective of a 342 

disturbance magnitude that dissipates continuously with respect to distance from the source (see 343 

Reed et al., 2012). It should also be recognised that the distances currently used to draw these 344 

protection zones around ENCs, although based on limited ecological knowledge, have already been 345 
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accepted into best practice guidance and policy. Thus, the conceptual model proposed here seeks to 346 

represent this uncertainty rather than encourage a potentially contrary methodology. A disturbance 347 

susceptibility surface could be employed here to represent the graduation in disturbance 348 

susceptibility with respect to distance from the ENC. This could be interpolated by assigning a 100% 349 

susceptibility to the ENC and a 5% susceptibility at the protection zone radius proposed under best 350 

practice guidance.    351 

Proximity in the third dimension – Extending the two dimensional proximity concept to incorporate 352 

relative differences in height between disturbance source and receptor can reflect multiple 353 

processes and forces. This promotes greater consideration for elevated ENCs such as bat roosts atop 354 

tall buildings, which should be considered less susceptible to ground based disturbances such as 355 

digging. This can be represented as a modification to the two dimensional susceptibility raster by 356 

reducing the susceptibility value proportional to the vertical separation. The rate at which this 357 

susceptibility is reduced in this way may also depend on whether the source is above or below the 358 

receptor. Where a badger sett is dug into a slope for example, disturbance susceptibility is less 359 

significant below the sett tunnels than above, since the compaction force only operates above and 360 

not below the structure. 361 

Medium composition – This factor can be used to represent how resilient an ENC is to disturbance. A 362 

shelter dug into sand is more likely to collapse when compared to a shelter dug under concrete slabs 363 

when exposed to vibration for example. Equally, pippistrelle bat roosting activity has been shown to 364 

vary with light intensity (Downs et al., 2003); thus, introduction of new light sources may need to be 365 

more stringently controlled near roosts in buildings with windows, or in trees, than in other types of 366 

roost. This would be represented in the same way as foraging resources, i.e. each parcel in a GIS 367 

layer depicting the modelled medium can be assigned a score of resistivity, in much the same way as 368 

is done in groundwater flow modelling. Separate resistivity values can be given for different types of 369 

disturbance. A building for example may have a high resistivity to light pollution but a low resistivity 370 
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to noise. It is however, unlikely that validated models will exist for all required resistances and as 371 

such may need to be given subjective weightings by appropriate experts.         372 

Tolerance – Some species are more tolerant of disturbance than others.  This has been particularly 373 

noted through the study of bird nest proximities to main roads (Hockin et al., 1992). It may therefore 374 

be beneficial to not only apply resistivity scores to the medium within which the ENC is situated, but 375 

also to the ENC itself, based on the species that utilises it. Again, this may need a subjective 376 

weighting devised by experienced ecologists. In addition, this parameter can be modified to 377 

demonstrate community resilience. An urban otter family, established near a railway embankment 378 

for example, may be less susceptible to vibration and noise disturbance than an isolated rural 379 

community. This can be found by proximity analysis of existing ENCs to existing disturbance sources, 380 

and by considering the magnitude of the disturbance.  381 

Position in breeding cycle – Breeding periods signify particularly vulnerable times for wildlife, 382 

however only partial consideration for this aspect is undertaken in the current disturbance 383 

protection guidance. Although statutory regulators may authorise unavoidable disturbance outside 384 

of the breeding season, this concept of temporally variable disturbance risk is generally not reflected 385 

in the criteria for determining whether disturbance will occur. One exception to this rule is the 386 

protection zone of an otter holt which increases from 30 m to 100 m if the holt is found to be natal 387 

(Scottish Natural Heritage, 2013b). As previously discussed in section 3.2, the representation of 388 

temporal data within a GIS can be problematic. One solution to this may be to utilise custom GIS 389 

coding to compare the system clock to known breeding times. The disturbance risk can then be 390 

intensified or relaxed around the modelled ENC accordingly.      391 

Position in sleep cycle – This is also used to represent temporal fluctuations in disturbance 392 

susceptibility, but unlike breeding cycles, the period of the fluctuation is variable. Badgers for 393 

example are nocturnal creatures and Forestry Commission guidelines (The Forestry Commission, 394 

1995) suggest that works in close proximity to setts should not be undertaken two hours either side 395 
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of dawn and dusk. Thus, two four hour windows of increased disturbance risk are proposed in a 24 396 

hour period. However, this is complicated by the fact that dawn and dusk times vary according to 397 

the time of year. Additionally, this concept can also be used to highlight changes to disturbance 398 

susceptibility during hibernation. These can be modelled and represented in much the same way as 399 

is suggested for the position in the breeding cycle parameter. 400 

Disturbance index – Although  best practice guidance tends to account for the intensity of a 401 

disturbance activity (Scottish Natural Heritage, 2013a and English Nature 2002), it does not consider 402 

the more complex relationship between activity intensity and duration. It is reasonable to assume 403 

that a moderate intensity, long duration disturbance event is as likely to disturb wildlife as a high 404 

intensity, short duration event. Equally, the frequency of disturbance events may also play a 405 

significant role in determining the overall disturbance magnitude. Thus, a disturbance index can be 406 

conceived to be a function of disturbance intensity, duration and frequency. Additionally, there may 407 

be a rate of disturbance increase where the animal becomes accustomed to the activity rather than 408 

experiencing disturbance, meaning that higher levels of noise or light, for instance, could be 409 

permitted. Although units for duration are standard for each different disturbance type, units for the 410 

magnitude for each will differ. Light for example is measured in candela, noise is measured in 411 

decibels, and seismic vibration is measured as a displacement acceleration in metres per second 412 

squared. This means that separate disturbance indices must be modelled for each type of 413 

disturbance.  414 

The concept of the ecological disturbance model builds upon the utilisation distribution 415 

methodologies discussed in section 3.1.2 by representing a probability of use gradient within the 416 

home range (at a scale that is fine enough to show preferred traveling routes and shelters) for 417 

discrete time periods. The granularity of these periods will depend upon the variability of habitat 418 

usage for the modelled species at the studied site, and would need to be agreed by ecological 419 

experts on a case by case basis.  Additional modelling can be conducted on these (raster) surfaces to 420 
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infer the likelihood of disturbance at a point in time, based on knowledge of the species ecology 421 

such as breeding seasons and periods of scarce resource availability. Once the vulnerability gradient 422 

map has been created, a disturbance index for a disturbance event can be calculated and compared 423 

to the map to finally assess the likelihood of disturbance for animals occupying the site. These steps 424 

are illustrated in Figure 3 for a single badger territory at the case study site, during the breeding 425 

season.   426 

Figure 3. 427 

5 CONCLUSION  428 

This paper has outlined a new approach to wildlife disturbance susceptibility conceptualisation, 429 

recording and representation within a GIS which accounts for ecological complexities and 430 

uncertainties in both space and time. By building up a digital representation of the spatio-temporal 431 

relationships between species and their foraging resources, home ranges, territories, pathways and 432 

shelters, the effects of disruption to any particular instance of these, at a given time, can be 433 

modelled. In addition, by considering spatio-temporal uncertainties in both data recording and GIS 434 

representation, insight can be given into the reliability of such generated data. Ultimately, an 435 

improved representation of development constraints due to wildlife disturbance considerations will 436 

facilitate better synchronisation between development activity and periods of heightened 437 

disturbance susceptibility. This may well pave the way for developments that would otherwise have 438 

been rejected under static modelling of the worst case scenario, whilst simultaneously acting to 439 

protect wildlife when they require it the most. 440 

Although adoption of the proposed methodology will necessitate an increase in time, computing 441 

resources and data to undertake, these disadvantages are likely to be outweighed by a number of 442 

additional advantages. First, the proposed methodology can transparently demonstrate the 443 

ecological importance of ENCs, and could alleviate current developer frustrations emanating from a 444 
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perception that the ecological industry is overly bureaucratic (see Coleridge, 2013), confusing 445 

(Department for Environment Food and Rural Affairs, 2013) and inflexible. Second, a GIS approach 446 

facilitates not only a more robust approach to disturbance modelling, but also provides a platform 447 

upon which modelling results can be shared. This may stimulate a greater adoption of ecological 448 

concerns into development planning and ease data integration between other development 449 

stakeholders. Third, representing spatio-temporal dynamics of wildlife vulnerability (as opposed to 450 

the static, discrete parcels proposed under some current approaches) would mark a move toward 451 

data that more accurately reflect the real world processes it represents. Calls for such data are not 452 

novel to the ecology industry but have been a criticism of GIS-based approaches to spatial modelling 453 

in a wide variety of applications for some time (Goodchild et al., 2007). 454 
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LIST OF FIGURE CAPTIONS 

 

Figure 1 – Illustration to demonstrate how an otter holt that is missed during an ecological survey 

can affect the truthfulness of different representations. The real world shows three holts, one of 

which has been missed during the survey. The vector representation can be considered to be 

untruthful since one holt is missing.  It does, however, show the greatest degree of positional 

precision. The count raster is also incorrect since the cell highlighted in bold should contain two 

holts. The binary raster can be considered truthful since it only shows presence and absence, 

however this generalisation renders it unsuitable for some types of analyses. 

Figure 2 - Temporal differences in disturbance vulnerability illustrated for different areas of a 

hypothetical site. Due to the temporal variations in disturbance vulnerability, overall disturbance 

could be minimised by conducting site works in the winter, in the northwest of the site, and during 

summer in the southeast. 

Figure 3 - Increasing levels of complexity in the representation of ecological disturbance 

vulnerability, illustrated for a badger network. (a) Discrete vectors representing sett entrances, paths 

and feeding areas. (b) Raster interpolated from discrete protection zones, adjusted for spatial 

uncertainties and incorporating vertical constraints (c) Raster then adjusted for seasonality giving 

greater protection to the breeding setts. (d) Vulnerability map created by adjusting for railway. (e) 

Probability of disturbance for 3 potential disturbance events. 
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