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Highlights 

 We develop a model to incorporate bank risk within a model of frontier efficiency. 

 We model bank risk from the variance of profits or returns. 

 We estimate our model using panel data for U.S. banks and Bayesian techniques. 

 Excluding risk from the efficiency model significantly biases efficiency estimates. 

 There is a negative risk-efficiency nexus with causality running both ways. 
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Abstract 

We develop a framework to incorporate bank risk, as measured from the variance of profits 

or returns, within a model of frontier efficiency. Our framework follows the premise that risk 

is endogenously related to efficiency. We estimate our model using panel data for U.S. banks 

and Bayesian techniques. We show that excluding risk from the efficiency model 

significantly biases the efficiency estimates and the ranking of banks according to their 

competitive advantage. We also demonstrate that there is a negative risk-efficiency nexus 

with causality running both ways, while our estimates of risk are fully consistent with the 

developments in the banking industry over the period 1976-2014.      

 

 

Keywords: OR in banking; Stochastic frontier; Endogenous risk; Risk-efficiency relationship; 

Bayesian methods 
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1. Introduction 

Is there a causal relationship between the riskiness and efficiency of banks? And if yes what 

is the direction of causality? The goal of this paper is to develop a framework that 

incorporates risk as an endogenous variable into an empirical model of operational 

efficiency. We use the well-established stochastic frontier approach (SFA), under which 

the stochastic term of a production, cost, profit, or return function is decomposed into an 

efficiency-related component and the remainder disturbance.
1
 We show that our framework 

allows the robust estimation of bank efficiency and risk, as well as the identification of the 

potency and direction in the risk-efficiency nexus. 

 There are two novel elements of our framework. First, in line with the standard 

finance literature (e.g., Markowitz, 1952, and many others henceforth), we model risk as the 

variability of the difference between actual and expected profits (returns). In doing this, we 

abstain from including specific variables reflecting only certain aspects of risk as 

inputs/outputs in the production of banking services and allow risk to be estimated in a more 

thorough way. Second, and quite important, we allow our risk and efficiency estimates to be 

endogenous to each other. This is an essential improvement of efficiency models given the 

well-established theoretical proposition that bank risk-taking is endogenous to the 

characteristics of the specific banking firm, including managerial decision-making, and does 

not solely emerge out of context (Hughes, 1999; Danielsson and Shin, 2003).  

 Theoretically, causality between risk and efficiency can run both ways. On the one 

hand, bank managers seek new risky projects to innovate and differentiate from rival banks, 

as well as manage existing risk through diversification with the ultimate goal being to 

                                                 
1
 A competitive approach to the stochastic frontier modeling framework is the use of linear programming 

techniques, mainly Data Envelopment Analysis (DEA). Although DEA methods have advanced to incorporate a 

stochastic structure, which was the traditional drawback relative to the SFA, the inclusion of risk in DEA 

remains quite difficult given the requirement to incorporate stochastic assumptions with respect to the volatility 

of returns. We do, however, propose in the conclusions some possible extensions to incorporate stochastic risk 

within a DEA framework. For a review in using stochastic DEA methods, see Olesen and Petersen (2016), and 

for DEA methods in banking, see Fethi and Pasiouras (2010). 
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increase their revenue (Sharpe, 1964). In contrast, banks pursuing projects with very high 

risk, given inputs and outputs of production, would experience increased risk and inability to 

differentiate so as to achieve maximum returns. Thus, we expect both positive and negative 

forces defining a relation running from risk to profit (return) efficiency.    

 Conversely, under the impulse of the prospect and the behavioral theories, banks with 

relatively low efficiency levels are likely to take very high risks. This can be due to effort to 

catch up with rival banks, slow learning or ineffective risk management, and adaptation 

(Fiordelisi et al., 2011). For the same reasons, banks with efficient risk management are 

likely to exhibit good performance as well as low risk-taking. In a similar fashion, successful 

managers seek new operational structures and technologies to improve operational efficiency 

in the cost side and contain everyday operational risk. Based on the above arguments, a 

potential negative relation between risk and return, i.e. the Bowman (1980) paradox, can also 

be studied as a risk-efficiency nexus. 

 The above theoretical arguments imply that bank efficiency and risk are 

endogenously determined. We note that most of the empirical efficiency literature does not 

include a risk component and, when it does, this risk component is neither formally modelled 

from the variance of profits nor is endogenously determined by efficiency (e.g., Dong et al., 

2016; references therein). We empirically demonstrate that failing to do so leads to biases in 

the estimates of efficiency and the competitive advantage of banks versus one another.       

 In this paper, we extend the SFA by formally building and estimating a four-equation 

vector autoregression (VAR) model. The first equation retains the standard profit or return 

function of the SFA, while the second is a stochastic equation differentiating between actual 

and expected profits (or returns), the variance of which is our measure for risk. The third 

equation models the contemporaneous level of risk as a function of lagged efficiency (and 

other determinants) and the fourth equation models efficiency as a function of lagged risk 
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(and other determinants). Given that our model relies on quite a few latent variables 

(including risk and efficiency), we use Bayesian estimation methods organized around 

Markov Chain Monte Carlo (MCMC).  

 We estimate our model using a panel of large U.S. banks that fully compete on a 

national scale over a period of almost 40 years (1976-2014). The banking industry is ideal for 

our setting, given the special role of risk, the extensive literature on SFA in banking (e.g., 

Berger, 2007; references therein), and the availability of longitudal data over a large time 

span. However, our model can be applied to any other industry for which relevant data are 

available.  

 Our results suggest that the average level of estimated efficiency of banks is 

significantly lower (inefficiency is higher) when we incorporate risk into the SFA. Also, the 

ranking of banks based on their level of efficiency, and thus the identification of their relative 

competitive advantage, is also significantly different from the model without risk or from the 

model where risk is exogenous. Thus, the failure to include risk into the SFA and/or treating 

risk as an endogenous variable results in erroneous inference about both the absolute level of 

efficiency and the relative competitive advantage of banks. 

 Equally important, our findings demonstrate a strong negative relationship between 

risk and efficiency running both ways (from the previous period’s risk to current levels of 

efficiency and vice versa). In this respect, our findings are consistent with the literature 

following the Bowman (1980) paradox. Our findings are also consistent with the implications 

of banking literature on important matters, such as the identification of risky periods closely 

following the historical episodes of financial turmoil and the positive effect of bank capital 

on risk.  

 Our results further motivate our paper from a managerial perspective. To the extent 

that the findings generalize to other industries, the estimation of efficiency while formally 
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incorporating risk as an endogenous variable can better inform firms that compete 

domestically or internationally about their competitive advantages and their sources. The 

example of the comparison of the U.S. and Japanese automotive industries by Chen et al. 

(2015) is particularly apt, as the risky strategic decisions of managers should offer an 

explanation for the divergence in the efficiency of the two industries. This line of research 

should also have important implications for recent endeavors to measure the efficiency of the 

public sector (e.g., Doumpos and Cohen, 2013; Haelermans and Ruggiero, 2013; Galariotis 

et al., 2016), energy sector (e.g., Fragkiadakis et al. (2016), as well as for cases in which 

some of the outputs impose negative social externalities (e.g., Chen and Delmas, 2012). 

 Our work is also related to a strand of finance literature suggesting that any 

measurement of risk should consider its endogeneity (Danielsson and Shin, 2003; 

Brunnermeir and Sannikov, 2014; Delis et al., 2015). This literature stresses that the 

consideration of risk as exogenous within any market or industry and across different 

measures (e.g., from simple accounting ratios, the net present value calculated by the 

discounted cash flow method or economic value added, and/or value-at-risk models) 

produces erroneous estimates and inferences. 

 The remainder of the paper is organized as follows. Section 2 presents and further 

motivates our model. Section 3 discusses the empirical application to the banking industry 

and presents the empirical results. Section 4 concludes the paper.       

 

2. The framework 

2.1. Profit and return efficiency 

The estimation of firms’ operational efficiency is a very popular practice in the operations 

research and economics literatures (e.g., Lozano-Vivas and Pasiouras, 2010; Kumbhakar and 

Lovell, 2000). The merit of frontier efficiency measures compared to the traditional 
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accounting-based measures of firm performance is that the former can identify the 

competitive advantage of a firm vis-à-vis its competitors (see the extensive discussion by 

Chen et al., 2015). In turn, the robust identification of competitive advantage and its sources 

(from e.g., superior cost management or profitable innovation) has unique implications for 

managerial efficiency, goals, and strategies. 

 The most comprehensive measures of frontier efficiency, and the ones used here, are 

based on profit or return on investment (also called return to outlay). The reason is that these 

measures incorporate both revenue effects (of producing at inefficient levels) and cost effects 

(of producing using an inefficient input mix). Under the assumption that firms maximize 

profits given a production set, the objective function of the firm is: 

                  { 
      }.       (1) 

In (1), Π is the profit level of a firm at a specific point in time. In turn, x and y denote vectors 

of inputs and outputs of production, with their prices being the vectors   and  , respectively. 

This is the alternative profit function (e.g., Lozano-Vivas, 1997), which assumes that firms 

maximize profits by adjusting output prices and input quantities (as opposed to output and 

input quantities under the standard profit function). The main reason that this function has 

become popular in empirical research is the relative lack of information on output prices, 

especially for multi-output firms. However, an important merit of this approach is that it also 

allows for the estimation of profit (or return) functions in industries that deviate from perfect 

competition (Berger and Mester, 1997; Lozano-Vivas and Pasiouras, 2010; Lozano-Vivas, 

1997).  

 The objective function in (1) assumes that all firms produce at an optimal (ideal) 

profit frontier. Of course, this assumption is quite problematic because all firms produce with 

some level of inefficiency on either the cost or revenue side. To identify the level of 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

9 

 

inefficiency, the usual practice (e.g., Kumbhakar and Lovell, 2000) is to estimate an equation 

of the form: 

                     ,          (2) 

where      is the vector of outputs and input prices of firm i at time t, β are technology 

parameters to be estimated,     is the stochastic disturbance, and        is a one-sided error 

term representing profit inefficiency. Profit efficiency can then be simply calculated as 

          . This model is usually termed the SFA to firm efficiency measurement. 

 Instead of assuming that firms maximize profit, we can assume that firms maximize 

return on investments. This assumption might be more intuitive from a managerial viewpoint 

because managers are primarily interested not in the absolute level of profit but in the 

evaluation of the ability of their investments to generate profits. The formal model considers 

the maximization of the following objective value function: 

                  {
   

   
}         (3) 

where V = total revenue/ total cost and the rest are as in equation (1). As opposed to (1), 

equation (3) has the additional merit of being non-negative, which is important for the 

estimation because taking logs of profits in (2) can be problematic when firms are in fact 

realizing losses. Equation (3) is homogeneous of degree one in all prices, non-decreasing in 

 , and non-increasing in  . The equivalent of (2) as a return function is obtained simply by 

replacing Π with V in (2) and, for expositional brevity, we only provide the model for profits.  

 

2.2. Endogenous risk in the model of efficiency 

The basic SFA analyzed above does not consider the formal inclusion of a risk component. A 

number of studies, especially in the banking industry where risk deserves special attention 

(e.g., Mester, 1996; Hughes, 1999), recognize this omission and consider risk in the 

estimation of efficiency models via the inclusion of specific risk-related variables in the 
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objective function of the bank along with inputs, outputs, and associated prices. This practice 

is, of course, correct provided that one or a finite number of risk measures (e.g., capital, non-

performing loans, etc.) fully control for the riskiness of the bank. Here, we instead propose 

the estimation of risk within the SFA from the variability of profits or returns, in a manner 

fully consistent with management, finance, and economics theory (since at least Markowitz, 

1952).  

 Even more notably, this paper represents the first effort to consider the potential 

endogeneity between risk and efficiency within the well-established SFA. Theoretically, the 

relation between risk and efficiency in banking can go both ways. To make profits and create 

value for the banking firm, bank managers seek investments with the highest possible net 

present value and manage risk in their portfolios to achieve a maximum. Thus, both the level 

of risk and risk-diversification ability affect the future efficiency and performance of the 

bank and this is the essence of the well-established positive risk-returns relation (Sharpe, 

1964). Further, banks seek to attract new customers and achieve monopolistically 

competitive profits through risky product innovation and differentiation from competition. 

Achieving these objectives given a fixed set of inputs and input prices, would also imply that 

these banks will appear more efficient in the future period.  

 A relation running from risk to efficiency can, however, be negative due to two main 

mechanisms. The first is the presence of a shock that increases bank risk exogenously (what 

Berger and DeYoung, 1997, refer to as the “bad luck hypothesis”). In this case, the increased 

risk emerges from increases in non-performing assets (loans and securities), the limited 

ability to securitize or sell these assets, and increases in adverse selection (concerning the 

screening of new projects) and moral hazard (monitoring of existing projects). Second, the 

prospect and behavioral theories posit that firms with low performance (low profit and return 

efficiency in our case) might seek higher risks in an effort to catch up with competition, 
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while firms with high performance exhibit low risks due to competent risk-management (e.g., 

Fiegenbaum and Thomas, 2004). More recently, Andersen and Bettis (2015) suggest that this 

negative relation can be due to “low-learning” or “mindless” behavior of firms. These 

theories emerged as the main explanations for the Bowman (1980) paradox (i.e., the negative 

risk-return nexus). 

 Causality, however, might run from efficiency to risk, with at least two theories 

pointing to such direction (Fiordelisi et al., 2011; Berger and De Young, 1997). First, the 

“bad management hypothesis” posits that bad monitoring and screening capabilities of 

inefficient banks, along with poor cost and asset management result in higher overall risk. On 

the same line, efficient bank managers seek new operational structures and technologies both 

in the asset (revenue) and the liability (cost) side of their balance sheet, and this leads to 

improved risk monitoring and lower probability of default. Second, the “cost skimping 

hypothesis” suggests that banks might achieve low costs by under-spending on loan 

underwriting and monitoring in the short run, and in the longer run this yields higher non-

performing loans in particular and increased probability of bank default in general. Based on 

the above arguments, we expect that banks with higher efficiency exhibit lower overall risk.

  

 To formally incorporate risk into the SFA, we augment (2) as follows: 

       
               ,        (4) 

        
     .         (5) 

In (5), the difference between Π and Π* represents the deviation of the actual from expected 

profits ε of firms, where ε is distributed as        
 ).

2
 Using the implications of standard 

finance and management theory (e.g., Delis et al., 2015; and references therein), we define 

                                                 
2
 The assumption of normal distribution can be criticized on the basis of skewness or kurtosis, as in the risk-

return relation (e.g., Theodossiou and Savva, 2016). We show below that, at least in our empirical application, 

this does not cause considerable problems. However, we also highlight that the potential use of e.g. a skewed 

generalized distribution (Theodossiou, 1998) is a quite fruitful extension.   
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the variance of profits σ
2
 as the risk of firm i at time t. By modeling return on investments 

instead of profit, we can alternatively obtain the equivalent variance of returns as our 

measure of risk. 

 This modelling choice assumes that risk (σ
2
) is a latent variable and not an input or 

output of production as in the previous literature. This approach has three main advantages. 

First, the variability of profits or returns, as directly estimated from the profit or returns 

function, is a more thorough measure of total bank risk compared to specific accounting 

ratios entering the production function of the bank that separately reflect credit risk, liquidity 

risk, etc. in a non-exhaustive way. To this end, our approach is consistent with the modern 

portfolio theory (Markowitz, 1952; Boyd and Runkle, 1993) and its extensions in more 

thoroughly measuring total bank risk. Second, our framework allows the direct estimation of 

risk at each bank-year observation from the data and not from the volatility of profits or 

returns using backward information (lags) on these variables (e.g., Boyd and Runkle, 1993; 

Laeven and Levine, 2009). We view this as an important advantage, because using 

information from previous periods yields a measure of risk that is sensitive to the number of 

chosen periods and is problematic if data frequency is low (most studies in banking use 

annual data). Third, in line with our theoretical considerations on the endogenous relation 

between risk and efficiency, we show below that our framework can be extended to treating 

risk as an endogenous latent variable. 

 Specifically, we augment equations (4) and (5) with an equation modelling risk as an 

endogenous latent variable. Models of volatility come in a variety of forms (see, e.g., Chib et 

al., 2002), and here we use the following specification:
3
 

       
                  

             
                          ,                

(6) 

                                                 
3
 We prefer the log specification for reasons of symmetry with the translog. Using a linear specification 

produces very similar results.  
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In (6), z  is a vector of other variables potentially affecting risk,    is the stochastic 

disturbance, and               and    are parameters to be estimated. Effectively, we model 

the variance of profits or returns, which follows a panel stochastic volatility structure and 

depends on past inefficiency.  

 The model of equations (4)-(6) is robust as long as the inefficiency component u is 

not affected by the risk component. To allow an examination of causality in the relationship 

between risk and efficiency running both ways, we model inefficiency as:
 4

 

                       
             

                          ,         (7) 

where               and    are parameters to be estimated and    is the disturbance. 

Equation (7) assumes that profit inefficiency is determined by the same variables as risk 

(although the vector z can contain different variables) and, importantly, the lagged risk itself. 

If     , then risk has a systematic effect on profit inefficiency. Other determinants of 

inefficiency may have an effect through the parameters in   , and persistence in inefficiency 

is allowed for by the parameter   . Both of these effects are crucial because they allow 

modelling inefficiency (much like risk in equation 6) as a function of a number of variables 

external to the managerial practices of firms, which is in line with a large literature on the 

determinants of efficiency (see e.g., Lozano-Vivas and Pasiouras, 2010). This model is 

essentially a VAR between the two latent variables (   
  and    ).  

 

2.3. Econometric estimation 

We specify all profit and return functions (i.e., equation 4) using the translog, which is the 

most frequently employed functional form in the relevant literature due to its nice 

mathematical properties and flexibility (e.g., Pasiouras et al., 2009). The econometric 

estimation of our model is conducted with maximum likelihood Bayesian techniques and 

                                                 
4
 The log formulation is used because     is one-sided and treating it as such in the context of a VAR is more 

demanding in the estimation of this function below.  
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associated inference organized around MCMC. To avoid overburdening the reader with 

technical estimation details, we move all these to the Appendix.
5
  

 Despite the complexity of the Bayesian methods relative to conventional maximum 

likelihood that is used in the SFA literature (Kumbhakar and Lovell, 2000), our approach is 

preferred for two main reasons. First, our model includes dynamic latent variables, a fact that 

renders estimation with the usual maximum likelihood techniques completely impractical (if 

not impossible). Second, taking logs of profits can be particularly problematic if the firm is 

actually realizing losses because the observations with losses will be dropped.
6
 Note that for 

the profit efficiency model above, the negative-profits problem is overcome if we assume 

that profit expectations Π
* 

are always positive within the Bayesian framework and simulated 

with MCMC. If this assumption is considered too strong, then the return efficiency model is 

clearly the preferred one because V in equation (3) is always positive.  

           

3. Risk and efficiency in the U.S. banking industry 

Our model can be applied to any industry, given data availability. Here, we use data from the 

U.S. banking industry. The banking industry is an ideal setting given the importance of the 

risky decisions of banks for their efficiency and the endogenous determination of the two. 

For example, banks with very low or very high levels of risky loans will be inefficient in the 

sense that they do not produce the optimal level of risky loans. Similarly, banks that misprice 

the riskiness of loans will be inefficient on the revenue side of their profit or return function. 

                                                 
5
 Estimations are conducted using Fortran with extensive use of the NAG compiler, and all modules are 

available to the readers in an online supplement and in the personal website of the corresponding author. We 

should note that the modelling framework presented in the Appendix is our own work and specific to the 

estimation of equations (4)-(6). Previous studies using Bayesian methods to estimate stochastic frontier models 

are quite frequent (e.g., Van den Broeck et al., 1994; Tsionas, 2002; Orea and Kumbhakar, 2004).  
6
 The usual practice in the literature is to add to all observations a constant larger than the maximum value of 

losses in the sample, thereby rescaling all profits to be positive. However, this approach is subject to substantial 

criticism because it biases the standard error and the inefficiency component of the regression. 
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The banking industry is also ideal given the availability of data over a long time period, 

allowing the robust identification of the risk-efficiency nexus. 

 We collect accounting bank-year (end-of-year) data from the Reports of Condition 

and Income (Call Reports) over the period 1976-2014.
7
 We consider a relatively homogenous 

panel of commercial banks by restricting our sample to only the large ones (top 10% in terms 

of total assets) that operate and compete nationally. Our final working sample after further 

cleaning the data to eliminate objectionable values (negative total assets) and banks that 

ceased operations (due to M&As, failures or liquidations) consists of 15,922 bank-year 

observations. 

 In Table 1, we report summary statistics for the variables used in the empirical 

analysis. To define the inputs and outputs for the banking production process we use the 

intermediation approach (Sealey and Lindley, 1977; Pasiouras et al., 2009), which considers 

the financial assets of banks as outputs of production and financial liabilities and physical 

factors as inputs. Specifically, as bank outputs, we use the logs of total loans (y1) and total 

securities (y2). The inputs and associated prices include the fixed assets and their price 

(expenditures on fixed assets divided by premises and fixed assets), labor and its unit price 

(personnel salaries divided by the number of full-time equivalent employees), and borrowed 

funds and their price (interest expenses on deposits and interest expenses on fed funds 

divided by the sum of total deposits and fed funds purchased). We also include in equations 

(4), (6), and (7) the ratio of equity capital to total assets (EQ/TA) to control for bank 

capitalization and a time trend.  

[Insert Table 1 about here] 

 For logV, we use total bank revenue (total income before taxes) to total cost (total 

operating cost). For the logΠ
*
, which needs to be positive, we use simulated data from the 

                                                 
7
 We collect data for commercial banks only. Data for the period up to 2011 are from 

https://www.chicagofed.org/banking/financial-institution-reports/commercial-bank-data. From 2011 onward 

data are from https://cdr.ffiec.gov/public/PWS/DownloadBulkData.aspx.  
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Bayesian MCMC technique (see Appendix). The issue here is to choose the correct values of 

Π
*
 in the conditioning. The problem occurs in many other cases with so-called random effect 

models or models with missing data, which makes the Bayesian framework an ideal setting. 

Given our data set (D) and parameter γ in equations (6) and (7), if we manage to draw from 

the posterior conditional distributions (γ|Π
*
, D) and (Π

*
|γ, D), then effectively, we have a set 

of (correlated) draws from the joint posterior (γ, Π
*
|D). By retaining the draws for γ, we have 

draws from the posterior marginal (γ|D), which is the central object of interest.  

  

3.1. Empirical results 

Before we estimate our model, we use the standard SFA and translog alternative profit and 

return functions to estimate equation (2) without risk. We use the well-established method of 

Battese and Coelli (1995), which allows the inclusion of EQ/TA as a determinant of 

inefficiency (in the fashion that we also favor in our models). The results show that the 

average bank inefficiency from the profit model is 10.3%, distributed with a standard 

deviation of 0.018. The equivalent average efficiency estimated from the return model is 

15.2%, distributed with a standard deviation of 0.027.
8
 Also, the coefficient estimate on 

EQ/TA as determinant of inefficiency equals 0.142 (0.041) in the profit (return) model and in 

both cases is statistically significant at the 5% level. We use these findings as benchmark to 

infer the importance of modeling risk within the SFA.  

 Turning to our modelling framework, we first estimate a simple stochastic frontier 

model equations (4)-(6) using the profit and return models. In Table 2 we report the posterior 

mean and standard deviation from these estimations. For expositional brevity, we only report 

the results for (6) because the parameter estimates of the translog profit function are too 

numerous to report and do not provide any substantial insights. The posterior mean and 

                                                 
8
 It is quite impractical to report the full set of results from the translog specification (a very large number of 

estimates from the main and interactive terms of the translog), which also do not offer any important intuition 

for our purposes. These results are thus available on request. 
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standard deviation represent the mean and the standard deviation of the densities of each 

parameter estimate conditional on the data. These results can be interpreted in a similar 

fashion to the coefficient estimates and standard errors of the conventional econometric 

models. We cannot, however, directly speak about the level of statistical significance of 

coefficient estimates and we abstain from doing so in the discussion of our results (Lee et al., 

2003).  

 The model fits the data reasonably well, with most of the variables included as 

determinants of risk in equation (6) strongly explaining it. Also, all models easily pass the 

Jarque-Bera test for normality, indicating that the effect of skewness and kurtosis in the form 

considered by Theodossiou and Savva (2016) is less potent in our data set. This might be due 

to the fact that we allow for skewness in equation (6) by including log expected profits and 

covariates zit. Also, the system of equations (6) and (7) incorporates uit and ui,t-1, which is part 

of the error term, and this further reduces the effect of skewness.   

 The mean level of inefficiency is 14.7% for the profit model and 17.1% for the return 

model. Compared to the model without risk, inefficiency is higher and has a wider variance.
9
 

Additionally, Spearman’s rank correlation between the two models (the degree to which the 

ranking of banks from the two models is the same) is statistically significant but not quite 

high (0.13). These are first-hand evidence that a failure to include risk results in significant 

downward biases in the estimates of inefficiency and misleading guidance with respect to 

which bank has a competitive advantage over another. 

[Insert Table 2 about here] 

 The parameter estimates reported in Table 2 and their signs are intuitive. A value of 

the parameter estimate on the lagged component of risk between zero and one implies that 

                                                 
9
 We note that the variance of inefficiency is relatively small in the return model and very small in the profit 

model. This is a first indication that the return model yields more appealing results. However, the small variance 

comes from the use of a sample of very large banks. In companion research we use all banks (not only the 

limited sample for large banks) and the variance is almost 10 times as much. Thus, the result in the variance of 

the inefficiency component is sample-driven and concerns the similarity of the banks used in the sample.  
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the volatility of profits persists but will eventually return to its normal (average) level. A 

value on this term close to zero implies a high speed of adjustment, while a value close to 

one implies very slow adjustment. Given the posterior mean estimates of 0.214 and 0.121 for 

the profit and the return models, risk is only moderately persistent, all else being equal. 

Further, a 10% increase in profit (return) inefficiency in the previous period is associated 

with a 3.2% (5.1%) increase in the volatility of profits (returns). This is first-hand evidence 

for a negative nexus between inefficiency and risk (positive between efficiency and risk), 

which we analyze in more detail below.  

 Finally, the effect of the equity to assets ratio is not strongly related to the volatility of 

either profits or returns (low posterior mean relative to the posterior standard deviation). This 

contradicts the standard finding in the banking literature that banks with higher capital are 

more risky due to a moral hazard mechanism, which holds that increasing capital 

requirements constitute a means of reducing bank managers’ perceptions of the risk of 

default and increase risk-taking (e.g., Jokipii and Milne, 2011; Delis et al., 2015).   

 The results from the estimation of equations (4)-(6) cannot infer anything substantial 

about the direction of causality from risk to efficiency because inefficiency is not 

endogenous to risk. To study the interplay between risk and efficiency we estimate the VAR 

model of equations (4)-(7) and report the results in Tables 3 and 4 for the profit and return 

models, respectively.  

[Insert Table 3 about here] 

 A striking result is that the mean inefficiency level of banks further diverges between 

the profit and return models (11.7% and 18.5%, respectively) compared to the results in 

Table 2 and the model without risk. Intuitively, the mere fact that the VAR model has more 

structure, by imposing interdependence between risk and inefficiency, should in principle 

imply higher values of inefficiency (as inefficiency additionally depends on risk). This 
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provides a strong indication in favor of the results of the return model (the mean inefficiency 

in Table 3 is actually lower than the equivalent of Table 2) compared to the profit model. 

Further, the Spearman correlation coefficient between the VAR return model and the 

equivalent benchmark model without risk is as low as 0.10, which provides a strong 

indication of the importance of the inclusion of risk to robustly identify the competitive 

advantage of one bank versus another.  

[Insert Table 4 about here] 

 Importantly, both the profit and the return models predict that the lagged level of the 

inefficiency component has a strong positive impact on the current level of risk and that the 

lagged level of risk has a strong positive impact on the current level of inefficiency. Thus, we 

find a negative risk-efficiency nexus running both ways. Our estimates are also economically 

significant. According to our preferred return model, a 10% increase in the lagged 

inefficiency leads to a 5.6% increase in σ
2
. Also, a 10% increase in the lagged risk leads to a 

3.1% increase in inefficiency. Thus, risk is more responsive to inefficiency than inefficiency 

is to risk. 

 Our finding on the negative risk-efficiency nexus is in line with the Bowman (1980) 

paradox and consistent with the findings of e.g. Andersen and Bettis (2015).   By 

distinguishing between the upside and the downside variance of profits, we further note that 

most of the negative risk-efficiency nexus is attributable to the downside variance 

(approximately 86% of the estimate), which is risk stemming from decreasing profits. 

Moreover, our sample consists of large banks and, thus, our result is in line with the literature 

suggesting a bell-shaped effect of bank size on performance (e.g., Avramidis et al., 2016). 

The premise of this literature is that banks experience diseconomies of scale or scope after 

reaching a very large size and this negatively affects their performance. In a nutshell, our 

empirical findings are mostly consistent with the prospect and behavioral theories of the risk-
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return nexus, suggesting that inefficient banks either take on very high levels of risk in an 

effort to catch up with more efficient rival banks or their inherent inefficiency (due to e.g. 

large size in our sample) leads to risk mismanagement. Either way, the result is an 

inefficiently high level of risk, which will in turn further increase inefficiency in the 

following period.   

 Another interesting finding is the positive nexus between equity capital and both risk 

and inefficiency in the VAR return model, which we did not identify in the results of Table 2. 

The positive effect of capital on risk is consistent with the prediction of moral hazard theory, 

suggesting that the managers of well-capitalized banks seek higher levels of risk in search for 

yield (Jokipii and Milne, 2011; Delis et al., 2015). This is intuitive because banks facing 

higher capital requirements are forced to hold more capital on their balance sheets instead of 

using capital for more productive and profitable purposes.   

 Perhaps more important, Figure 1 shows the time evolution (annual mean estimates) 

of the downside variance of profits and returns. The findings are consistent with the history 

of financial turbulence in the U.S. The first small peak is around the early 1980s recession. 

Subsequently, our preferred return model indicates a short-lived peak around the Black 

Monday stock market crash in 1987, with risk remaining relatively high around the credit 

crunch in the early 1990s. The model also identifies the increased volatility around the 

Russian debt crisis, the dot-com bubble, and September 11 in the late 1990s and early 2000s. 

Finally, the annual mean estimates of the return model capture the substantial increase in 

bank risk related to the subprime crisis as early as 2005. In fact, the level of risk during the 

subprime crisis was by far the highest in our 1975-2014 sample period, a result in line with 

the perceptions of the depth of the subprime crisis and the toll that it took on the U.S. 

economy in general and banks in particular. 

[Insert Figure 1 about here] 
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 We intentionally keep the analysis presented in the paper short to highlight our 

baseline results. However, we did conduct a series of sensitivity tests on the VAR model. 

First, we add more variables as z in equations (6) and (7). We experiment with more than 20 

variables characterizing bank size, liquidity, earnings management, and the competitive 

environment of banks. Second, we experiment with the Fourier and Leontief flexible 

functional forms for equation (4). The results from the above exercises (reported in Appendix 

C) are strikingly similar with those in Tables 3 and 4. Third, we add more lags for risk and 

inefficiency in equations (6) and (7). We find that this increases computational burden, 

whereas most of the higher lags do not seem to be important determinants of risk and 

inefficiency. 

 

4. Conclusions and managerial implications 

We build and estimate a stochastic frontier model that formally includes risk. The novel 

features of our model are that (i) risk is estimated from the variance of profits or returns and 

(ii) risk and efficiency are both endogenously determined as a function of each other. We 

apply the model to the U.S. banking sector (large banks) over a period of 40 years.  

 Our results have a number of managerial implications. First, we demonstrate that 

efficiency models that do not include a measure of risk, as estimated from the volatility of 

returns, produce a significant downward bias in the average level of inefficiency and a bias in 

the ranking of banks based on their efficiency levels. The latter is particularly important for 

correctly identifying the ranking of banks by their competitive advantage.  

 Second, there is a clear trade-off between risk and efficiency that is primarily 

attributable to banks with decreasing levels of efficiency (downside variance of risk). This 

trade-off goes both ways, with larger levels of inefficiency in the previous period yielding 

higher risk in the current period (which is the most potent effect) and higher risk in the 
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previous period yielding higher inefficiency in the current period. Managers should be well 

aware of this trade-off, especially when they observe a downsizing of their efficiency levels, 

to avoid further future efficiency losses.    

 Third, the efficiency and risk estimates are intuitive and theoretically apt when risk 

and inefficiency are endogenous with respect to one another. For example, our risk estimates 

stemming from the return model are fully in line with the episodes of adverse developments 

in the U.S. banking sector over the last 40 years. These estimates even show how much 

higher was the average realized riskiness of the banking sector before and after the subprime 

crisis compared to other systemic events in the 1980s and 1990s.    

 An obvious extension of our work is to apply our model to other industries and 

compare the findings with those provided in our analysis of the banking sector. We predict 

that the findings will be very similar, provided that the sample includes homogenous and 

directly competitive firms. When working in this direction, we expect to encounter data sets 

where the normality assumption in the distribution of risk does not hold. Thus, it is 

imperative to extend our model in the direction proposed by Theodossiou and Savva (2016) 

and use alternative distributions such as the skewed generalized. Finally, our research opens 

up the possibility to introduce risk within a stochastic DEA model (e.g., Simar and Zelenyuk, 

2011). This can be done in a multi-stage setting, including a non-parametric stochastic 

frontier framework that incorporates risk as per our analysis, a data generating process to 

transform data, and a DEA procedure on the transformed data. As our paper already covers 

considerable ground, we leave these proposals as a desideratum for future research. 
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Appendix A. Markov Chain Monte Carlo methods 

Part A 

In this appendix, we specify the technical details of the MCMC around the basic risk and 

efficiency model. Consider the model 

      
                    (A.1) 

where        
       with                

    The specification of the volatility equation is: 

      
               

                    

where              
    and        can be       

         or            Also,     is a vector of 

other predetermined variables. 

 The model can be written as: 

      
               

         
              

          (A.2) 

or 

      
               

               (A.3) 

Since        contains the observed variables        or          , these variables can be 

effectively treated as predetermined. The latent variables in this model are    
       and    

 . 

The structural parameters are                           

 Let               be the parameter vector in the stochastic volatility equation. All 

error terms                   are assumed independent of     and    . Assuming         

we adopt the following priors: 

    ( ̅  ̅ )      (A.4) 

      
  ̅   ̅  

   

       
 

 ( ̅   )
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where   {     } and  ̅   ̅  are prior hyper parameters. Moreover,  ̅ and  ̅  denote the 

prior means of   and  ̅ , and  ̅  and  ̅  
 denote the prior covariance matrices for these 

parameters. 

 

Conditional posterior of   

Given    
    , and    , we can show that: 

     
               ̂  ̂      (A.5) 

where  ̂  (      
  ̅ 

  )
  

(   ̃    
  ̅ 

   ̅)  

 

Conditional posterior of    

Given    
     , and  , we have that: 

( ̃    )
 
( ̃    )  ̅ 

  
                    ̅    (A.6) 

 

Conditional posterior of     

Given    
        the       are conditionally independent in the posterior and we have: 

     
               

  
    

 

  
    

  
  
   

 

  
    

     (A.7) 

where           
    

     

 

Conditional posterior of    

Given    
  and   

  we have: 

        
  ̂   ̂  

      (A.8) 

where  ̂  (      
  ̅  

  )(           
    

   ̅ ) and  ̂  
   

 (      
  ̅  

  )
  

. 

 

Conditional posterior of   
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We can show that 

                           ̅ 

  
           ̅     (A.9) 

where   [                   ]  Drawing random numbers from (A.5)-(A.9) is 

straightforward. To draw from the posterior conditional distributions of    
  and    

  is more 

involved. For this purpose let us consider the full kernel distribution: 

                      
     

     
    

 
 

   
 ∑ ∑        

        
      

   
 
   

  (A.10) 

  ∑ ∑       
  

   
 
    

 
 

    
 ∑ ∑         

    
   

 
   

 

where the terms   ∑ ∑       
  

   
 
    and   ∑ ∑       

  
   

 
    come from the Jacobian of 

transformation. 

 

Conditional posterior of    
  

It is convenient to define           
 , so that from (A.10) we can obtain the following 

conditional posterior: 

          
 

 

   
          

      
 

    
 (        )

 

   (A.11) 

where            
  . The distribution does not belong to any known family. Since the tail 

behavior is determined by the first two terms in the exponential, which lead to a normal 

distribution if we employ completion of square, we use the following strategy.  

 Prepare a draw    
            

     
  . If the current draw is    

  we accept the 

proposed draw with a Metropolis-Hastings probability given by: 

   {  
 
 

 

    
 (     

   
 

)

 

 
 

 

    
 (     

   
 

)

 }    (A.12) 

A useful result is that if       then (A.10) is always log-concave and the derivatives of the 

conditional log-posterior are: 
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For the cases where      , log-concavity may be used to craft a better proposed 

distribution    
   ( ̂     

 ), where 
 

  
      ̂        and 

 

   
   

  

            . Since in 

our sample the cases with negative profit are relatively few, we did not pursue further this 

approach, although it could prove essential in terms of numerical efficiency in other data sets, 

where losses were exclusively observed. 

 

Conditional posterior of    
  

From (A.10) and using           
 , we obtain the following conditional posterior 

distribution: 
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           (A.13) 

where             
      The first two derivatives of the log-posterior in (A.11) are as 

follows: 
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Thus, the distribution is log-concave for     where: 
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Our strategy is to draw a proposal    
   ( ̂     

 ), where 
 

  
      ̂        and 

 

   
  

 
  

   
    ( ̂  | ). If the current draw is    

 , then the proposal is accepted using the 

Metropolis-Hastings probability: 

   {  
     

           
   ̂     

  

     
           

   ̂     
  
}    (A.14) 

where   (    ̂     
 ) denotes the density of a univariate normal distribution with mean  ̂   

and variance   
 . 

 

Note 

Under (A.2), drawing    
  as in (A.11) with using (A.12) is no longer valid. The correct 

conditional posterior distribution in this case is given by: 
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 (A.15) 

where               
            

     
            

 . In (A.15) the first two terms of 

the exponential still determine the tail behavior. Therefore, we can still use the proposal in 

(A.11), albeit the Metropolis-Hastings acceptance probability in (A.12) has to be modified as 

follows: 
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}   (A.16) 

 

Part B 

In the presence of systematic expectations, the second equation in (A.1) is modified as: 

       
            

        
     (A.17) 

where    
   (     

 ),    
   (     

 ), 

   
     

              (A.18) 
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and  

[
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]   )     (A.19) 

with          
             

     

 Conditionally on         
     

   and          , we can still draw    
  using (A.11) and 

(A.12) or (A.15) and (A.16) with minimal modifications. For example, (A.15) changes to: 

          
 

 

   
          

      
 

    
               

 

 
 

 

   
             

  (A.20) 

where           
        

 , and (A.16) is modified in the obvious way. The other posterior 

conditional distributions remain the same. 

 

Conditional posterior of     

Given            
 , and    

 , from (A.17) we have: 
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 )    (A.22) 

if       and zero otherwise, where    
         

        
 . In (A.21) and (A.22) the    

  

and    
  components are drawn conditional on each other. 

 

 

Conditional posterior of    
  and    

  

Given parameter vectors    and    in (A.18) and   in (A.19) (that is given  ), it is clear that: 

[
   
 

   
 ]   ([

   
   

   
   

]  [
  
  

])    (A.23) 
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subject to    
    if       and    

    if      . The requirement is equivalent to drawing 

from a bivariate truncated normal distribution from (A.23). The joint distribution is 

proportional to: 

 
 

 
       

{  
    

        }
 

where       
     

   ,       
     

   . Conditionally on    
  we have: 

   
     

       
         

     
             (A.24) 

   
     

       
         

     
           

subject to 

   
    if      ,    

   , otherwise 

   
    if      ,    

   , otherwise 

Drawing random numbers from truncated normal distributions (in the positive or negative 

directions) is straightforward. We use acceptance sampling from an exponential distribution 

whose parameter is optimized so that the acceptance rate is maximized (Tsionas, 2000, 

2002). 

 

Conditional posterior of           

We adopt the priors: 

       ̅   ̅       (A.25) 

To derive the required conditional posterior distributions we proceed as follows. Standard 

results for Bayesian multivariate regression yield the following, based on Zellner (1971, pp. 

241-242). Defining: 

   [
  

  
] and   [ 

 
], where Z is the matrix of regressors    , we have: 

            (A.26) 

where             ,   [
  
  

], from which we obtain: 
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       ̂  ̂      (A.27) 

where  

 ̂  [              ̅  ]   [              ̅   ]̅  (A.28) 

 ̂  [              ̅  ]   
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where   and     have a particularly simple form. 

 

Conditional posterior of   

This is given by: 
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[     ]

          (A.29) 

where   ∑ ∑       
   

   
 
        

     ∑ ∑           
 
   

 
             

     
   , and 

         
     

   . The maximum  ̂ of (A.29) can be located by standard univariate 

optimization techniques, under the assumption that the prior is: 

                         (A.30) 

Although this is not essential, if the maximum is interior we can compute   
   

 

  

            
 

and propose a draw       ̂   
   restricted to the interval (-1, 1). Relative to the existing 

draw   , the new draw is accepted with Metropolis-Hastings probability: 

   {  
               ̂   

  

               ̂   
  
}    (A.31) 

We have not encountered cases where the maximum of (A.29) occurs on the boundary. 

 

Part C 

In this part we take posterior analysis in the class of models defined by VAR: 

      
                  

                       
     

          (A.32) 
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where     [
     

     
]       . For all observations we can write the panel VAR in (A.32) 

as: 

                     
                     

         (A.33) 

                    
                     

         

which is in the form of multivariate regression as in (A.26) and therefore coefficients 

          , and    can be drawn following the procedure in (A.27) and (A.28). 

 The conditional posterior distribution of   is given by: 

                 
 

      
 

 
           (A.34) 

where       ,    [
     

     ],            , assuming (A.33) is written in the 

general form: 

                (A.35) 

The prior                  is assumed. Drawing the exponential components    
  and    

 , 

as in Section B, can be performed without modifications. Drawing the remaining latent 

variables is changed as follows. 

 

Conditional posterior of    
  

          
 

 

   
          

      
 

    
 (            )

 

  (A.36) 

             
 

 

   
             

  
 
 
    

     
           

     
      

 

where    
  and    

  are the typical components of    and    defined in (A.34) and (A.35). 

Notably:    [
      

 

      
],    [

           
             

           
             

] and           
 . Our strategy is 
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to locate the maximum and Hessian of (A.36) and propose a normal draw, which is accepted 

using the analogous necessary modification of (A.14). 

 

Conditional posterior of     

This is given by 

        
 

 

   
  (      

     
      )

 
 

 

   
    

        
  (A.37) 

  
 
 
    

     
              

     
        

 
 
       

        
                 

        
      

 

where     appears in both    
  and       

 . We use again a Metropolis-Hastings step and the 

model and Hessian of (A.37) as in the previous case of    
 . 

Conditional posterior of    
  

Relative to (A.20) we now have the extra term: 

  
 

 
    

     
              

     
      

   (A.38) 

and    
  appears in       

 . The most convenient in our case is to propose a draw as in (A.20) 

and use (A.38) or the Metropolis-Hastings acceptance probability relative to the existing 

draw    
    

. However, a more efficient algorithm resulted by combining (A.20) and (A.38), is 

to find the mode and Hessian and proceed using an overall Metropolis-Hastings step. 

 

Other numerical details 

Our MCMC relies heavily on locating the mode and second derivative for a particular 

conditional posterior, denoted generically by    . In all cases, we use a quasi-Newton 

algorithm with numerical derivatives to perform the computation. This is done during the 

transient or burn-in phase, which is tested for convergence using Geweke's (1992) 

diagnostics. 
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After the burn-in, to minimize computational costs we use one Gauss-Newton iteration away 

from the existing draw. In the case of the VAR model in (A.32) we find it more effective to 

maximize jointly with respect to        
               

   and form a joint proposal to 

substitute univariate proposals from (A.36)-(A.38). Relative to the other schemes, this 

resulted in faster convergence and lower autocorrelations at lag 50. Replacing in this case the 

Gauss-Newton iteration with an algorithm that relies on full convergence did not provide 

significantly different performance and the results were mixed when the procedures were 

applied to subsets of the original data set. 

 

Appendix B. Computation of Bayes factors 

In the computation of Bayes factors the role of marginal likelihood is critical. If        is a 

kernel posterior distribution, then the marginal likelihood is      ∫         
 

, where 

       is a structural parameter vector. For a number of models whose posterior 

distributions are                , the marginal likelihoods are       

∫          
 

 and the Bayes factors against, say, model 1 are given as: 

    
     

     
         

 In this paper we use two ways to compute Bayes factors. First, following Verdinelli 

and Wasserman (1995), given a model whose posterior distribution is         , a restricted 

model corresponding to     can be evaluated based on the Bayes factor given by    

∫            

      
, where the denominator provides the value of the prior distribution of   and the 

numerator can be computed as ∫                ∑               
    given the 

MCMC draws {            }. This approach can be used to test stochastic volatility 

models against their EGARCH counterparts by testing     . 
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 This approach cannot be used always for non-nested models.
10

 In general, the kernel 

posterior distribution has the form         , where        is the structural parameter 

vector and   denotes the latent variables, like the collection of    
  and    . If all normalizing 

constants are included in the components of the kernel posterior, then we have the 

factorization: 

     ∫∫             ∫∫                   

 Often the conditional distributions          have a simple form and their 

normalizing constants are available in closed form. From MCMC we have a sequence of 

draws {                 }, which converges in distribution to the posterior whose kernel 

is given by         . Therefore, {    }         . From these results we can approximate 

the marginal likelihood as follows: 

        ∑∫             

 

   

 

Since the inner integral is not available in closed form, the marginal likelihood is 

approximated as: 

        ∑            

 

   

 

where       ∑      
    is the posterior mean of the latent variables, a point of high 

posterior probability mass. This approach makes it possible to approximate marginal 

likelihoods and Bayes factors easily and without large computational costs. 

 

Appendix C. Results from additional sensitivity tests 

In the tables of this Appendix, we report the results from additional sensitivity tests on the 

VAR model. In Tables C1 and C2, we include more variables (measured at the bank-year 

                                                 
10

 For a general discussion see DiCiccio et al. (1997). 
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level) in the vector z in equations (6) and (7). Specifically, we use size (measured by the 

natural logarithm of total assets), liquidity (the ratio of liquid assets to total assets), 

provisions (the ratio of loan-loss provisions to total loans) and market share (the ratio of a 

bank’s assets to the total bank assets in a given state). In Tables C3 and C4, we use the 

Fourier functional form 
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Table C1 

Empirical results from the VAR model with additional variables 

included as z in equations (6) and (7): Profit function 

       
         

 posterior 

mean 

posterior 

s.d. 

posterior 

mean 

posterior 

s.d. 

         
  0.542 0.020 0.211 0.010 

          0.302 0.112 0.212 0.002 

         
  0.148 0.020 0.106 0.122 

Time trend 0.012 0.005 -0.030 0.014 

EQ/TA 0.068 0.039 0.169 0.002 

Size 0.105 0.091 0.014 0.011 

Liquidity -0.047 0.010 0.125 0.048 

Provisions 0.081 0.008 0.018 0.003 

Market share 0.040 0.059 -0.022 0.038 

u 0.115 0.046   

Notes: The table reports the results (posterior mean and standard 

deviation) obtained from the estimation of equations (4)-(7) using 

Bayesian maximum likelihood and Markov Chain Monte Carlo. We report 

only the results from the determinants of stochastic volatility σ and 

inefficiency u, i.e. equations (6)-(7). We estimate a profit function and the 

functional form for (4) is the translog.  

 

 

Table C2 

Empirical results from the VAR model with additional variables 

included as z in equations (6) and (7): Return function 

       
         

 posterior 

mean 

posterior 

s.d. 

posterior 

mean 

posterior 

s.d. 

         
  0.419 0.019 0.294 0.015 

          0.511 0.123 0.389 0.017 

         
  0.201 0.039 0.148 0.185 

Time trend 0.008 0.009 -0.011 0.046 

EQ/TA 0.095 0.015 0.082 0.021 

Size 0.081 0.090 0.009 0.018 

Liquidity -0.035 0.027 0.111 0.061 

Provisions 0.070 0.006 0.023 0.005 

Market share 0.030 0.061 -0.016 0.090 

u 0.180 0.041   

Notes: The table reports the results (posterior mean and standard 

deviation) obtained from the estimation of equations (4)-(7) using 

Bayesian maximum likelihood and Markov Chain Monte Carlo. We report 

only the results from the determinants of stochastic volatility σ and 

inefficiency u, i.e. equations (6)-(7). We estimate a return function and the 

functional form for (4) is the translog.  
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Table C3 

Empirical results from the VAR model: Profit function (Fourier) 

       
         

 posterior 

mean 

posterior 

s.d. 

posterior 

mean 

posterior 

s.d. 

         
  0.510 0.016 0.194 0.008 

          0.320 0.129 0.183 0.002 

         
  0.103 0.021 0.093 0.140 

Time trend 0.009 0.006 -0.027 0.016 

EQ/TA 0.073 0.036 0.152 0.002 

u 0.125 0.040   

Notes: The table reports the results (posterior mean and standard 

deviation) obtained from the estimation of equations (4)-(7) using 

Bayesian maximum likelihood and Markov Chain Monte Carlo. We report 

only the results from the determinants of stochastic volatility σ and 

inefficiency u, i.e. equations (6)-(7). We estimate a profit function and the 

functional form for (4) is the translog.  

 

 

Table C4 

Empirical results from the VAR model: Return function (Fourier) 

       
         

 posterior 

mean 

posterior 

s.d. 

posterior 

mean 

posterior 

s.d. 

         
  0.487 0.014 0.301 0.009 

          0.482 0.105 0.452 0.019 

         
  0.169 0.022 0.126 0.215 

Time trend 0.006 0.010 -0.009 0.025 

EQ/TA 0.089 0.010 0.082 0.020 

u 0.188 0.044   

Notes: The table reports the results (posterior mean and standard 

deviation) obtained from the estimation of equations (4)-(7) using 

Bayesian maximum likelihood and Markov Chain Monte Carlo. We report 

only the results from the determinants of stochastic volatility σ and 

inefficiency u, i.e. equations (6)-(7). We estimate a return function and the 

functional form for (4) is the translog.  
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Table 1 

Summary statistics 

Variable Mean Median Std. dev. Min. Max. 

logΠ 9.16 9.01 1.31 1.09 15.57 

logV 0.21 0.20 0.30 -5.57 3.58 

      2.25 2.19 0.68 -0.17 5.56 

      2.63 2.58 0.61 0.69 4.54 

      1.10 1.17 0.43 -0.24 2.20 

      13.70 13.35 1.19 5.12 20.29 

      12.50 12.33 1.37 1.54 19.22 

EQ/TA 11.71 11.36 1.15 7.92 18.44 

Number of obs. 15,922 15,922 15,922 15,922 15,922 

Notes: The table reports summary statistics for the main variables used 

in the empirical analysis. All variables are in natural logarithms. Π is 

profits before taxes; V is the ratio of total revenue to total cost; w1 is the 

ratio of expenditures on fixed assets to premises and fixed assets; w2 is 

the ratio of personnel salaries divided by the number of full-time 

equivalent employees; w3 is interest expenses on deposits and interest 

expenses on fed funds divided by the sum of total deposits and fed 

funds purchased; y1 is total loans; y2 is total securities; and EQ/TA is 

the ratio of total equity to total assets. 
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Table 2 

Posterior results from the basic model for the volatility 

equation 

 Profit function Return function 

 Posterior 

mean 

Posterior 

s.d. 

Posterior 

mean 

Posterior 

s.d. 

         
  0.214 0.098 0.121 0.015 

          0.324 0.120 0.518 0.102 

         
  0.131 0.057 0.044 0.002 

Time trend 0.007 0.007 0.004 0.013 

EQ/TA 0.040 0.032 0.007 0.022 

u 0.147 0.035 0.171 0.107 

JB test 0.302 0.415 

Notes: The table reports the results (posterior mean and 

standard deviation) obtained from the estimation of 

equations (4)-(6) using Bayesian maximum likelihood and 

Markov Chain Monte Carlo. We report only the results 

from the determinants of stochastic volatility σ, i.e. 

equation (6). We estimate models by alternatively using 

profit and return functions. The functional form for (4) is 

the translog. The variables are defined in Table 1 and u 

represents inefficiency. JB test is the p-value of the Jarque-

Bera tests for normality.  
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Table 3 

Empirical results from the VAR model: Profit function 

       
         

 posterior 

mean 

posterior 

s.d. 

posterior 

mean 

posterior 

s.d. 

         
  0.617 0.022 0.221 0.011 

          0.315 0.116 0.225 0.002 

         
  0.151 0.026 0.117 0.116 

Time trend 0.011 0.004 -0.032 0.012 

EQ/TA 0.071 0.043 0.181 0.001 

u 0.117 0.048   

JB test 0.364 0.259 

Notes: The table reports the results (posterior mean and standard 

deviation) obtained from the estimation of equations (4)-(7) using 

Bayesian maximum likelihood and Markov Chain Monte Carlo. We report 

only the results from the determinants of stochastic volatility σ and 

inefficiency u, i.e. equations (6)-(7). We estimate a profit function and the 

functional form for (4) is the translog. The variables are defined in Table 1 

and u represents inefficiency. JB test is the p-value of the Jarque-Bera 

tests for normality. 
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Table 4 

Empirical results for the VAR model: Return function 

       
         

 posterior 

mean 

posterior 

s.d. 

posterior 

mean 

posterior 

s.d. 

         
  0.453 0.014 0.315 0.017 

          0.556 0.104 0.401 0.015 

         
  0.212 0.026 0.155 0.201 

Time trend 0.009 0.007 -0.013 0.038 

EQ/TA 0.102 0.021 0.077 0.025 

u 0.185 0.124   

JB test 0.484 0.360 

Notes: The table reports the results (posterior mean and standard 

deviation) obtained from the estimation of equations (4)-(7) using 

Bayesian maximum likelihood and Markov Chain Monte Carlo. We report 

only the results from the determinants of stochastic volatility σ and 

inefficiency u, i.e. equations (6)-(7). We estimate a return function and the 

functional form for (4) is the translog. The variables are defined in Table 1 

and u represents inefficiency. JB test is the p-value of the Jarque-Bera 

tests for normality. 
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Figure 1 

Annual averages of downside risk from the profit and return VAR models 

 

 


