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abstract 

 

Type 2 diabetes is a risk factor for developing chronic neurodegenerative disorders such as 

Alzheimer’s or Parkinson’s disease. The underlying mechanism appears to be insulin 

desensitisation in the brain. A range of GLP-1 mimetics and GIP analogues initially designed 

to treat diabetes protected transgenic animals that model Alzheimer’s disease and toxin 

based animal models of Parkinson’s disease. Novel dual GLP-1/GIP analogues also show good 

neuroprotective effects. Based on these findings, first clinical trials have been conducted. In a 

pilot study in patients with Alzheimer’s disease, the GLP-1 analogue liraglutide showed good 

protective effects in 18FDG-PET brain imaging. It was found that the disease related decay of 

brain activity had been completely stopped by the drug. In a pilot study in patients with 

Parkinson’s disease, the GLP-1 mimetic exendin-4 showed good protection from motor and 

cognitive impairments. These results demonstrate the potential of developing disease-

modifying treatments for Alzheimer’s and Parkinson’s disease. 
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1. Diabetes is a risk factor for neurodegenerative disorders 

 

One of the established risk factors for the development of Alzheimer’s (AD) or Parkinson’s 

disease (PD) is type II diabetes mellitus (T2DM). In several patient data base analyses, T2DM 

has been identified as a risk factor for PD, indicating that insulin desensitization in the 

periphery may be a factor in initiating or accelerating the development of neurodegenerative 

processes 1,2. In AD, several epidemiological studies found a correlation between T2DM and 

an increased risk of developing AD at a later stage in life 3-8. In one investigation, T2DM had 

been identified as a risk factor that doubled the chance of developing AD 9. In a longitudinal 

cohort study that follows up the health status of people over time, glucose intolerance in a 

oral glucose tolerance test correlated with an increased risk of developing AD in people with 

significantly elevated blood glucose levels 10. Other studies arrived at similar conclusions 11. 

In Parkinson’s disease, T2DM has also been identified as a risk factor 12-15. In the basal 

ganglia, dopaminergic transmission failure, insulin desensitisation and energy depletion had 

been associated with T2DM 16. 

 

2. Insulin signaling desensitises in the brain 

 

A key mechanism that appears to link T2DM with neurodegnerative disorders is the loss of 

insulin signaling in the brain. A biochemical analysis of brain tissue of AD patients showed a 

clear profile of insulin desensitisation, even in people that were not diabetic 17-20. Insulin 

receptor subunits and IRS1 was found to be hyper-phosphorylated, a biochemical profile also 

seen in diabetics in the peripheral tissue 19,20. In PD, insulin desensitisation was also 

observed in the key brain area such as the basal ganglia and substantia nigra 1,21,22. Energy 

utilisation, mitochondrial function, insulin signaling and dopamine transmission was found 

to be compromised 21,23,24. It is interesting to note that these effects were also found in non-

diabetic subjects. This demonstrates that insulin desensitisation is not always dependent on 

glucose levels. However, patient data showed that a higher percentage of PD patients were 

diabetic or glucose intolerant compared to age matched controls 2. 

 

 

3. Insulin is a key growth factor 
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Insulin is an important growth factor that is essential for the homeostasis and cell growth 

and repair in neurons. Counter-intuitively, glucose uptake in neurons is not insulin 

dependent, with the exception of large neurons that express the GLUT4 subtype 25,26. Hence, 

the brain had been commonly known as an ‘insulin insensitive’ organ 27. However, insulin 

and IGF-1 are important growth factors that activate cell growth, cell repair, gene expression, 

energy utilisation and protein synthesis 28-31. This may explain why insulin desensitisation in 

the brain increases the risk for developing neurodegenerative disorders such as AD and PD. 

 

4. Treating AD patients with insulin 

 

Just as insulin improves T2DM, treating AD patients with insulin shows improvements in 

cognition, attention, reducing levels of biomarkers for AD, and normalising brain energy 

utilisation 32-35. Insulin cannot be given to people who are not diabetic. Delivering insulin by 

nasal application where it enters the brain more directly can circumvent the problem of 

inducing hypoglycaemia. Nasal application of insulin improved attention and memory 

formation even in non-diabetic people 34,36,37. A phase II clinical trial in AD patients showed 

improved cognition in patients with mild cognitive impairments (MCI). It further improved 

the amyloid1-40/1-42 ratio in the cerebrospinal fluid and increased brain activation as seen 

in 18FDG-PET scans which measure brain activity and energy utilisation, and furthermore 

showed improvement in mental tasks 38-40. However, similar to patients with T2DM, insulin 

delivery appears to enhance brain insulin desensitisation and worsen cognitive decline 40. 

For a review, see 41,42. 

 

 

5. T2DM drugs have neuroprotective properties 

 

Drugs to treat T2DM and that normalise insulin signaling are on the market. These are 

mimetics of the incretin hormone Glucagon-like peptide 1 (GLP-1) 43,44. GLP-1 is a growth 

factor of the glucagon family type and has similar properties than insulin has 31. These drugs 

do not affect blood glucose levels directly and therefore are safe to take by people who are 

not diabetics 45. The drugs are well received and have a good safety record 46.  

Several of these drugs can cross the blood-brain barrier, which demonstrates that there is a 

transporter for GLP-1, similar to other growth factors such as insulin or leptin 25,47-51. 
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There has been some discussion whether GLP-1 receptors are expressed in neurons. A study 

that analysed RNA expression of the GLP-1 receptor has demonstrated a wide distribution of 

GLP-1Rs in the brain, including the cortex, hippocampus, and the substantia nigra; key brain 

areas in AD and PD disease development 52. Several antibody-based histological 

investigations of GLP-1 receptor expression in the brain had been conducted since 53-59. 

However, a study that demonstrated that these antibodies may not be selective for the 

receptor followed 60, and a recent analysis of GLP-1R expression in the brain using a 

transgenic GFP expression reporter mouse strain demonstrated good expression of GLP-1Rs 

in the cortex, hippocampus area CA3 and dentate gyrus, and others 61, putting the discussion 

to rest once and for all. 

 

 

6. GLP-1 mimetics show effects in animal models of Alzheimer’s disease 

 

In several transgenic mouse models of AD, which expresses the human Swedish mutated 

form of the amyloid precursor protein (APP) and a mutated human form of presenilin-1 (PS-

1), both mutations which lead to AD in humans, GLP-1 mimetics were neuroprotective. 

Liraglutide (Victoza®) is on the market as a treatment for T2DM 62. Once-daily injections for 

8 weeks reduced key parameters such as memory loss, synapse loss, reduced synaptic 

transmission, chronic inflammation in the brain, and amyloid plaque load in the brain 63. The 

same treatment in aged transgenic mice with advanced amyloidosis still showed some 

protective effects, suggesting that treatment at later disease stages may still have benefits 64. 

When treated from an early age onward, the drug did prevent disease progression and has 

the potential to be used as a prophylactic 65. The GLP-1 mimetic lixisenatide (Lyxumia®) also 

had similar neuroprotective effects compared to liraglutide 66. Liraglutide had clear 

protective effects in a mouse model of tau phosphorylation and tangle formation, a key 

biomarker for AD. In the human P301L mutated tau expressing mouse, a model of fronto-

temporal lobe dementia and ALS, liraglutide reduced the amount of tangles and 

hyperphosphorylated tau 67. In the accelerated senescence SAMP8 mouse model, liraglutide 

also showed good protective effects on memory formation and neuronal loss 68. The GLP-1 

mimetic exendin-4 (Byetta®, Exenatide®, Bydureon®) also showed good effects in a triple 

transgenic mouse model of AD 69.  
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Exendin-4 showed neuroprotective effects in other animal models of neurodegeneration as 

well 70-73. GLP-1 mimetics furthermore improve neuronal progenitor cell proliferation and 

neurogenesis in the mouse brain. In mouse models of AD and of diabetes, GLP-1 analogues 

can increase or normalise neuronal progenitor cell proliferation in the CNS 57 50,63,69,74-76. 

Testing analogues of the sister incretin Glucose-dependent insulinotropic polypeptide (GIP) 

also showed good effects in the APP/PS1 mouse model of AD 77-79. 

 

 

7. GLP-1 mimetics show effects in animal models of Parkinson’s disease 

 

Exendin-4 has shown good neuroprotective effects in several mouse models of PD. In the 6-

hydroxydopamine (6-OHDA) model of PD where dopaminergic neurons are eliminated by 6-

OHDA, animals were treated for 3 weeks and showed functional recovery. In the substantia 

nigra, dopaminergic neurons were partly protected from the toxic effects of 6-OHDA 80.  

This result was confirmed in a second study which also used the 6-OHDA lesion technique, 

and a second technique, the lipopolysaccaride (LPS) induced substantia nigra lesion. 

Exendin-4 reduced the lesions induced by the toxins. The levels of dopamine measured in the 

basal ganglia were also increased. The numbers of neurons in the substantia nigra was also 

higher than in the lesion only group 81. In a third study, Exendin-4 protected dopaminergic 

neurons and rescued motor function in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

(MPTP) lesion mouse model of PD 59. 

When comparing the more effective GLP-1 mimetics liraglutide and lixisenatide with 

exendin-4, it was found that both liraglutide and lixisenatide demonstrated good protective 

effects while exendin-4 showed only minor protection in the MPTP mouse model of PD. 

Motor activity was partly rescued, and dopaminergic neurons were protected in the 

substantia nigra. Expression of the dopamine biomarker tyrosine hydroxylase (TH) was also 

rescued in the liraglutide and lixisenatide treated mice. Pro-apoptotic cell signaling was 

reduced, while growth factor signaling was enhanced by both drugs 82. When testing the 

sister incretin GIP in the MPTP mouse model, it was found that the long-lasting protease 

resistant analogue D-Ala2-GIP-glu-PAL showed good protective effects. Motor activity was 

partly rescued, and the number of dopaminergic neurons in the substantia nigra was 

increased. Synapse numbers were increased, and the cAMP/PKA/CREB growth factor second 

messenger pathway was shown to be activated by D-Ala2-GIP-glu-PAL 83.  
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New dual GLP-1 and GIP receptor agonists have been developed to treat T2DM. Some have 

already been tested in clinical trials and show superior performance compared to liraglutide 

84. When testing a novel dual agonist in the MPTP mouse model of PD, it was found that it 

rescued motor activity, synapse numbers, numbers of dopaminergic neurons in the 

substantia nigra, and reduced chronic inflammation (see fig. 1). Interestingly, the expression 

of the neuroprotective growth factor Brain-Derived Neurotropic Factor (BDNF) was 

enhanced, which can explain some of the neuroprotective effects observed 85,86. BDNF has 

clear protective effects on synaptic activity 87,88. 

 

 

8. Clinical trials 

 

The results obtained in the preclinical studies show an impressive range of neuroprotective 

effects of GLP-1 and GIP mimetics. As several GLP-1 mimetics are already on the market as 

treatments for T2DM with a good safety profile, clinical trials have started that investigate 

the neuroprotective effects of exendin-4 or liraglutide in PD or AD patients.  

 

Parkinson’s disease  

A clinical pilot trial of exendin-4 in PD patients has been completed (clinical trials identifier 

NCT01174810).  This ‘proof of concept’ study tested the effects of exendin-4 in a randomised, 

open label trial in 45 patients. The drug was administered over 12 months, followed by a 2 

month wash-out period. In a single-blinded rating of motor activity, clear improvements 

were found, and cognitive measures were improved in the drug group compared to controls. 

Exendin-4 treated patients had a mean improvement at 12 months on the MDS-UPDRS of 2.7 

points, compared to a mean decline of 2.2 points in control patients (P  = 0.037). Importantly, 

the drug group showed a clear improvement in the Mattis DRS-2 cognitive score, suggesting 

that exendin-4 has beneficial effects on cognition and memory 89. The group was re-tested 12 

months after the trial had finished, and the clear differences between groups in motor 

performance and cognitive scores had not changed 90. This suggests that the group difference 

is not due to a placebo effect, as 12 months is too long for such subjective effects to last.  

A phase II trial testing the once-weekly formulation of exendin-4, Bydureon®, has been 

completed (NCT01971242). The results will be reported shortly and initial observations 

suggest a good outcome. 
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A phase II trial testing liraglutide in PD patients is under preparation and will start in July 

2016, testing 100 patients in a double blind, placebo controlled design. 

 

Alzheimer’s disease 

 A randomized, double blind clinical trial to assess the safety and efficacy of Exendin-4 

treatment in 230 MCI patients (early phase Alzheimer’s disease) is currently ongoing at the 

NIH/NIA in the USA. This trial is testing the effects of exendin-4 on key parameters such as 

performance in the Clinical Dementia Rating (CDR) scale sum-of-boxes, the Alzheimer's 

Disease Assessment Scale - cognitive sub-scale (ADAS-cog), Behavioral and cognitive 

performance measures, changes on structural and functional MRI brain imaging, and 

hormonal and metabolic changes in cerebrospinal fluid and plasma AD biomarkers 

(ClinicalTrials.gov Identifier: NCT01255163). 

 

A small-scale trial with 34 patients has been completed in Denmark at the University of 

Aarhus. This double blind, randomized trial tests the effects of liraglutide vs. placebo on MCI 

patients, using 18FDG-PET imaging to estimate cortical activity and PIB-PET imaging to 

measure plaque load  91. Excitingly, there was a clear effect on brain  18FDG-PET activity. FDG 

is a modified glucose molecule, and the uptake correlates well with brain activity, synaptic 

activity, and disease progression 92. While the placebo group showed the expected reduction 

in the 18FDG-PET signal of up to 20%, the drug group showed no reduction at all and even 

demonstrated improved signalling in some brain areas 93 (NCT01469351). 

 

A second larger scale phase II clinical trial with liraglutide in 206 MCI patients is currently 

ongoing in the UK. The trial has a randomised, placebo controlled double blind design and 

will analyse 18FDG-PET brain activity, PET inflammation markers (microglia activation), MRI 

brain scan changes, CSF samples for inflammation markers and amyloid /tau levels, and 

cognitive tests such as the ADAS Exec score. Patient recruitment is currently ongoing 

(NCT01843075). 
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A novel GLP-1/GIP dual agonist protects the brain  
in a mouse model of Parkinson’s disease 

 
Motor activity is protected from the effects of MPTP 

                    
 

Dopaminergic neurons are protected in the brain 

                   
 
Fig. 1: A novel dual GLP-1 and GIP receptor agonist displays neuroprotective properties in 
the MPTP mouse model of PD. Motor activity was much reduced by MPTP, and the novel drug 
rescued this to some extent. In the substantia nigra, dopaminergic neurons that express TH 
are much reduced in numbers by MPTP, and the novel dual agonist protected neurons to 
some extend. Shown are histological sample sections; A=saline control, B=drug, C=MPTP, 
D=MPTP plus drug.  Adapted from 86. 
 


