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Abstract

When a subdominant light scalar field ends slow roll during inflation, but well after the

Hubble exit of the pivot scales, it may determine the cosmological perturbations. This

thesis investigates how such a scalar field, the spectator, may leave its impact on the

Cosmic Microwave Background (CMB) radiation and be consequently constrained. We

first introduce the observables of the CMB, namely the power spectrum Pζ , spectral

index ns and its running dns/d ln k, the non-Gaussianities fNL, gNL and τNL, and the

lack of isocurvature and polarization modes. Based on these studies, we derive the

cosmological predictions for the spectator scenario, revealing its consistency with the

CMB for inflection point potentials, hyperbolic tangent potentials, and those with a

sudden phase transition. In the end, we utilize the spectator scenario to explain the

CMB power asymmetry, with a brief tachyonic fast-roll phase.
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1 Introduction

There are countless mysteries in the universe – dark matter, dark energy, blackholes,

and the early universe, to list a few. We have been constantly pursuing the mysteries,

and discovering new ones as well – two hundred years ago these terminologies did not

even exist. As old mysteries are solved, and new ones are discovered, we understand the

universe progressively.

Thousands of years ago, we hardly knew anything about the universe, let alone its

origin. In the Chinese ancient myths, the earth is a flat square and the sky an inverted

bowl over the earth [7], and was born from a giant egg. Numerous alternative beliefs co-

existed, such as the earth should be a floating disc between heaven and underworld [8],

or a globe instead [9], perhaps with a habitable interior [10]. At that time, nobody was

able to verify any of the proposals, simply because no one could travel afar from the

tribe and witness the boundary.

Of course the earth is a globe, as we have now reached the consensus. In history,

however, it took us thousands of year to confirm that. When the sailors were conquering

the seas and oceans, map-making and astronomy were essential for navigation. As our

ancestors sailed afar, such advances enabled them to realize that the earth could not fit

into a flat map. That was the first indication that the earth is a globe, which eventually

led to the confirmation by Magellan. Our extended scope has hence drawn the conclusion

that the earth is round.

On the other hand, the accuracy and precision of our measurements determine with

the equal importance, if not more, the advances of our philosophical views of the uni-

verse. Through the precise observations, we have become aware that the earth is not

the centre of the universe, and neither is the sun. On the contrary, it is now believed

that the universe is statistically isotropic [11], favoring no special location or direction,
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and therefore does not possess any astronomical centre.

We have also realized the universe is not static: stars form and and die; galaxies

can also form or merge. Even the whole observable universe was discovered to be

expanding. Consequently, this raised a series of philosophical questions. In theory, how

and why does the universe expand? In reality, what is the evolutionary history of the

universe? The first question was answered by the Friedmann-Robertson-Walker (FRW)

metric [12–14], adding an additional degree of freedom into the spacetime metric for

a homogeneous universe, known as the scale factor. According to the Hilbert-Einstein

action, the relative expansion rate of the universe – the Hubble rate – is then found

to be proportional to the square root of energy density of the universe which, on the

other hand, also evolves as the universe expands – energy densities of non-relativistic

and ultra-relativistic particles are both diluted by the universe expansion, though at

different rates (see [15]). The FRW metric also allows us to solve the latter question

by tracing the universe backwards in time. The universe should hence be made of

denser and hotter plasma in the past, suggesting a time-finite evolutionary history in

the minimal scenario, which has been entitled the Hot Big Bang Theory.

The Hot Big Bang Theory also predicts another observational consequence – the

Cosmic Microwave Background (CMB) radiation [16]. If the universe started from

high-temperature plasma, at the recombination it should cool down sufficiently, so that

electrons and protons are able to form hydrogen atoms, which are electrically neutral.

Before recombination, the plasma is opaque to photons, with extensive interactions

which prevent photons from travelling freely. After recombination, hydrogen atoms

hardly interact with photons, allowing them to free-stream. Such cosmic photons are

then gradually redshifted to the microwave level today as the universe expands, filling

the cosmos in all directions and forming a background. Since the speed of light is

12



Figure 1: The observed CMB temperature fluctuation map by the Planck satellite.

[17]

constant, the CMB photons we see today should have originated from a sphere, which

centres on us. This sphere is known as the Last Scattering Surface (LSS).

The CMB was observed for the first time in 1964, by Penzias and Wilson acciden-

tally [18]. The observed CMB has a blackbody spectrum at the temperature ≈ 2.7

Kelvin. It also demonstrated a suprisingly high isotropy from all directions of the uni-

verse. This very first observation has been confirmed by more recent ones, such as

the Cosmic Background Explorer (COBE) [19], the Wilkinson Microwave Anisotropy

Probe (WMAP) [20,21], the Atacama Cosmology Telescope (ACT) [22], the South Pole

Telescope (SPT) [23, 24], Planck [11, 25–29], and the Background Imaging of Cosmic

Extragalactic Polarization (BICEP) [30–32]. Meanwhile, the more recent observations

have also detected tiny anisotropies in the CMB (∼ 10−5), or the CMB temperature

fluctuations, as shown in Figure 1, which correspond to the primordial perturbation

that is nearly scale invariant and Gaussian. The properties of the CMB anisotropies

will be discussed in Chapter 2.
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The CMB observations are difficult to explain with the Hot Big Bang Theory. First,

it fails to explain naturally why the universe is mostly isotropic, because in Hot Big

Bang, the opposite sides of the LSS can never form causal contact or reach thermal

equilibrium. On the other hand, it also lacks a mechanism to produce the almost scale

invariant primordial perturbation.

The failure of the Hot Big Bang Theory saw the birth of the Cold Big Bang Theory,

which is the currently most accepted theory of the early universe. It prefixes the Hot Big

Bang with an exponential expansion phase, known as inflation [33–37]. In order to pre-

establish the causal contacts and the thermal equilibrium, during inflation we need the

universe to be dominated in energy density by one or more components whose equations

of state are smaller than −1/3, or equilvalently for scalar fields, whose kinetic energies

remain weaker than potential energies. Besides, these components should be able to

drive inflation for at least ∼ 50 e-folds of the universe expansion [26, 38]1 . However,

the negative equation of state cannot be achieved with ordinary non-relativistic matter

or relativistic particles, whose equations of state are 0 and 1/3 respectively. For this

reason, inflation should have emerged from some component(s) other than matter or

radiation. After inflation, such component(s) should decay into the hot plasma which

signals the start of the Hot Big Bang, during a stage known as reheating [39–45].

The initial success of inflation utilizes just a scalar field, which moves very slowly,

unlike the oscillating scalar fields in a static universe [33–37, 46]. The slow motion can

take place naturally for scalar fields in an expanding universe, where the Hubble rate

of universe expansion enters the equation of motion as a friction term, resembling a

1 One e-fold of the universe expansion is the period where the universe size becomes e times of

its original value (measured by the scale factor). And e = 2.718 · · · is the mathematical constant

corresponding to the base of natural logarithm.
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very viscous fluid holding a harmonic oscillator. The field will perform an over-damped

slow motion instead of oscillations if the Hubble rate is much larger than the mass

of the scalar field, which can be achieved typically when the field exceeds the Planck

scale2 Mp ≡ 1/
√
G ≈ 1.2209 × 1019 GeV, or when it is super-Planckian. During the

slow motion, the equation of state of the scalar field is close to −1, behaving as a

cosmological constant, whose equation of state is exactly −1 and whose energy density

does not depend on the universe expansion. Due to the nature of the over-damped slow

motion, this scenario has hence been named slow-roll inflation. Slow-roll inflation can

be terminated safely when the scalar field reaches sub-Planckian values as opposed to

super-Planckian, which is known as the graceful exit of slow-roll inflation. It is also

shown to produce the right amount of perturbations through quantum fluctuations.

(For a review on cosmological perturbations, see [15, 47, 48].) Due to its simplicity and

its very good agreement with observations, single-field slow-roll inflation has become a

major success in modern physics, and the inflation scenario has been crowned as the

“inflation paradigm”. We will discuss single-field slow-roll inflation in Chapter 3.

Providing the exponential expansion alone does not guarantee a model’s success. It

should also predict correctly all the other observables, such as the nearly scale invari-

ant and Gaussian primordial perturbation. Due to its simplicity, single-field slow-roll

inflation has its limitations in producing all the possible features in the cosmologi-

cal observables, known as the consistency relations (see Section 3.4). This motivates

cosmologists to look for alternative scenarios or extensions of the single-field slow-roll

inflation, which can provide a broader range of predictions hoping to cover more possi-

2 The gravitational constant is defined as G = 6.674× 10−11N ·m2/kg2. We use natural units in

the thesis where the speed of light c, the Planck constant ~, and the Boltzmann constant kB are set

to unity.
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ble features in the future CMB observations. Various scenarios of inflation have been

proposed in recent years. Non-canonical scalar fields can enforce slow roll with the speed

limit from non-canonical kinetic terms without having to reach super-Planckian values,

such as in DBI inflation [49]. When multiple fields coexist, they can induce numerous

scenarios of inflation, such as hybrid inflation [50–54], assisted inflation [55–61], and

many more [1,4,38,45,62–99]. In these scenarios, fields responsible for driving inflation

are called the inflatons. Most of such scenarios are outside the scope of the thesis, so we

will only briefly mention the relevant multi-component inflation with canonical scalar

fields in Chapter 4.

Among the multi-field inflation scenarios, the minimal scenario is that one field

(the inflaton) leads inflation but produces negligible perturbations, while the other field

(the spectator) is only responsible for generating the primordial perturbation but has

absolutely no role in inflation, as discussed in Chapter 5. The two fields do not need to

interact with each other, except minimally by gravity. In this sense, if the spectator field

is perturbed or even removed from the model, inflation can still proceed without any

change. The only difference is that the primordial perturbation would be much weaker.

The first realization of these separate roles is the curvaton scenario [100–103], as

will be discussed briefly in Section 5.1. In the curvaton scenario, the scalar field re-

sponsible for the curvature perturbation is called a curvaton. The curvaton field can be

as simple as a light field without any coupling. It behaves as an effective cosmological

constant during inflation, and only decays after inflation ends. The curvaton field can

take up a significant part of the total energy density in the post-inflationary evolution.

This greatly limits its parameter space because observations fail to see any isocurvature

perturbations [26,104].

A more recent development of the separate roles is the spectator scenario [2, 3],

16



in which the spectator ends slow roll well before the end of inflation. Therefore, the

energy density of the spectator field or its decay products is redshifted away in the rest

of inflation, leaving negligible contributions to the contents of the current universe, as

discussed in Section 5.2. The only signature left from the spectator field is the primordial

perturbation, which originated from the spectator perturbation at the Hubble exit (see

Section 5.3). The price to pay is that spectator field potentials, such as the typical ones

in Section 5.4, are more complicated than a bare non-interacting light field.

A recent CMB feature which has come into people’s attention is the CMB power

asymmetry. The CMB power asymmetry is the amount of asymmetry in the CMB

power spectrum. For example, we may observe that the amplitude of the CMB per-

turbation is stronger on one hemisphere than that on the other. The CMB power

asymmetry was first noticed in the WMAP data [105–107], and later confirmed with

a higher precision by the Planck satellite [11, 108]. After modelling the CMB power

asymmetry phenomenologically in Section 2.6, we attempt to address its primordial

origins in Section 6.1, which turns extremely difficult if the primordial perturbation is

(almost) scale invariant and sufficiently Gaussian (Section 6.2). The observed amount

of CMB power asymmetry, on the other hand, can be obtained in the presence of a

brief tachyonic fast roll phase, through enhancing the very large scale perturbations, as

shown in Section 6.3. Therefore, the CMB power asymmetry can be explained by the

spectator scenario with a tachyonic fast roll phase (Section 6.5), whilst satisfying other

observational constraints in Section 6.4.

The conclusion of the thesis is drawn in Chapter 7.
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2 Observations of the Cosmic Microwave Back-

ground (CMB)

In this chapter, we derive the statistical properties of the CMB temperature fluctuation.

They shall constrain the early universe models in the forthcoming chapters.

2.1 CMB angular power spectrum

Let us define the CMB temperature map as T (n̂), where n̂ is the unit spatial three-

vector for the 3-dimensional incoming direction of the observed CMB photons. The

CMB temperature anisotropy is then defined as

∆T (n̂) ≡ T (n̂)− T , (2.1)

where the mean temperature of the CMB is given by

T ≡ 1

4π2

∫
d2n̂T (n̂). (2.2)

The statistical information of the CMB temperature fluctuation can be extracted by

decomposing ∆T (n̂) into spherical harmonics Ylm(n̂), with l = 0, 1, 2, . . . and m =

−l,−l + 1, . . . , l, as

∆T (n̂) =
∑

lm

almYlm(n̂). (2.3)

The coefficients alm are then called the angular multipoles of the CMB temperature

fluctuation. From the orthogonality condition of the spherical harmonics (see Section

A.1), we can solve alm inversely, as

alm ≡
∫

d2n̂ ∆T (n̂)Y ∗lm(n̂). (2.4)

The a00 component should be exactly zero by definition, Eq. (2.1). The temperature

fluctuation ∆T (n̂) is a real function. This enforces the relation

a∗lm = (−1)mal−m. (2.5)

18



In the simplest scenario, we assume that no point is statistically preferred or different

over the others in the universe, so that every point is statistically equivalent by nature.

It also means there is no preferred direction from any point in the universe, including

the earth. This is called statistical isotropy (see for example [109]). Therefore the

expectation value of any correlation function should remain invariant under spatial

rotations [110, 111]. The statistical isotropy has been well tested for our observable

universe patch through the CMB [11].

For the two-point correlation function, statistical isotropy means that it should only

depend on the angle between the two directions, i.e.

〈∆T (n̂)∆T (n̂′)〉 = F (n̂ · n̂′). (2.6)

This relation enforces alm to satisfy

〈a∗lmal′m′〉 = Clδl,l′δm,m′ , (2.7)

where Cl is the angular power spectrum of the CMB, and is the independent of m and

m′. Here 〈 〉 takes the expectation value over all the possible configurations of the

universe arising from the quantum fluctuations in the early universe.

From the observed alm, an unbiased estimator for Cl can be constructed as

Ĉl ≡
1

2l + 1

∑

m

a∗lmalm, (2.8)

whose variance is given by [109]

Var Ĉl ≡
〈(

Ĉl − 〈Ĉl〉
)2
〉

=
C2
l

2l + 1
, (2.9)

which is known as the cosmic variance, and which cannot be lessened via multiple

measurements.

The quantum fluctuations during inflation can be parameterized by the gauge-

invariant3 scalar quantity, the (primordial) curvature perturbation ζ(x), or its Fourier

3 The gauge invariance will be discussed further in Section 3.2.

19



0

1000

2000

3000

4000

5000

6000

D
T
T

`
[µ

K
2
]

30 500 1000 1500 2000 2500
`

-60
-30
0
30
60

∆
D
T
T

`

2 10
-600
-300

0
300
600

Figure 2: The Dl observation from Planck [28]. The blue points are the observed

Dl with error bars at 1σ confidence level. The red curve shows the best fit curve of

Dl. The residues w.r.t the best fit are shown in the lower figure.

transformation partner ζ(k), which is defined as4

ζ(k) ≡
∫
ζ(x)e−ik·xd3x. (2.10)

Since ζ(x) is a scalar, it is also called the scalar perturbations or the CMB temperature

fluctuations. (See Section 3.2.1.)

We can write the transfer function from the curvature perturbation to the CMB

temperature perturbation as gl(k), which leads to

alm = (−i)l
∫

d3k

2π2
Y ∗lm(k̂)gl(k)ζ(k). (2.11)

4 We use the bold form to indicate spatial three-vectors in this thesis. The time dependence of

ζ is implicit here.
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The detailed derivation can be found in [109]. The two-point correlation function of

ζ(k) can be written as

〈ζ(k)ζ†(k′)〉 = (2π)3δ(k− k′)Pζ(k), (2.12)

where Pζ(k) is the power spectrum of the curvature perturbation ζ(k). With the above

relations, we can derive Cl as

Cl =
2

π

∫
dk k2|gl(k)|2Pζ(k). (2.13)

The Planck satellite has given its observation of the Cl values as well as the best-fit

curve in Figure 2, in terms of [25]

Dl ≡
l(l + 1)

2π
Cl. (2.14)

We can parameterize Pζ(k) order by order around a reference scale k0, as

k3Pζ(k) = k3
0Pζ(k0)

(
k

k0

)ns−1+ 1
2

dns
d ln k

ln k
k0

+higher order

, (2.15)

where the Planck observation has chosen [28,112]

k0 ≡ 0.05Mpc−1. (2.16)

In Eq. (2.15), the parameter ns is called the spectral index of scalar perturbations, where

s stands for “scalar”, and dns
d ln k is the running of the spectral index. They are both taken

as constant values at the reference scale k = k0. The running is compatible with zero

by

dns
d ln k

= −0.0065± 0.0076. (2.17)

After taking the zero running, Planck reports other parameters and their errors [26,28]

Pζ =
k3

0

2π2
Pζ(k0) = (2.142± 0.048)× 10−9, (2.18)

ns = 0.9667± 0.0040. (2.19)

All errors are at 1σ confidence level unless otherwise noted. The term Pζ characterizes

the overall strength of the curvature perturbations, as defined in Section 3.2.2.
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2.2 CMB angular bi-spectrum

The curvature perturbation ζ(k) may deviate from independent Gaussian distributions.

This non-Gaussianity can provide extra statistical information through correlation func-

tions in the CMB. (See [113] for a review.) The CMB angular bi-spectrum is hence

defined as

Bm1m2m3
l1l2l3

≡ 〈al1m1al2m2al3m3〉. (2.20)

Statistical isotropy requires the expectation values of three-point correlation functions to

be invariant under spatial rotations. Therefore, we can extract the rotational invariant

part of the CMB angular bi-spectrum, Bl1l2l3 , as [110,111]

Bm1m2m3
l1l2l3

= Bl1l2l3




l1 l2 l3

m1 m2 m3


 , (2.21)

where the pair of parentheses correspond to the 3j symbol, defined in Section A.2.

The three-point correlation function of ζ(k) is defined as

〈ζ(k1)ζ(k2)ζ(k3)〉 = (2π)3δ3(k1 + k2 + k3)B(k1, k2, k3), (2.22)

where, due to statistical isotropy, B(k1, k2, k3) does not depend on the directions. For

independent Gaussian ζ(k), we have B(k1, k2, k3) = 0.

Then we are able to calculate Eq. (2.20) and Eq. (2.21). Noting the relations [114]

δ3(k1 + k2 + k3) =
1

(2π)3

∫
d3xei(k1+k2+k3)·x, (2.23)

eik·x = 4π
∑

lm

iljl(kx)Ylm(k̂)Y ∗lm(x̂), (2.24)

22



we can find

Bl1l2l3 =

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
2

π

)3




l1 l2 l3

0 0 0




×
∫
k2

1k
2
2k

2
3x

2dk1dk2dk3dxB(k1, k2, k3)

×gl1(k1)gl2(k2)gl3(k3)jl1(k1x)jl2(k2x)jl3(k3x). (2.25)

Here jl(x) is the spherical Bessel function.

Inflation may generate non-Gaussianities locally. The local non-Gaussianity in the

curvature perturbation, if any, is known to be small [27]. Such near-Gaussian local

effects can be written as a series expansion of the perfect Gaussian variable

ζ(x) = ζG(x) +
3

5
fNL(ζ2

G(x)− 〈ζ2
G(x)〉) + higher order, (2.26)

where ζG(x) is the perfect Gaussian variable, and fNL is the parameter to indicate

the amount of deviation from perfect Gaussian distributions, or the amount of local

non-Gaussianity. This expansion is only valid when

ζG(x)� 1, (2.27)

fNLζG(x)� 1, (2.28)

and similarly for higher order terms. From Eq. (2.26), we can find the leading order

expectation values of ζ(x)

〈ζ(x)〉 = 0, (2.29)

〈ζ2(x)〉 = 〈ζ2
G(x)〉, (2.30)

〈ζ3(x)〉 =
18

5
fNL〈ζ2

G(x)〉2, (2.31)

. . . .
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The Fourier transformation of Eq. (2.26) yields,

ζ(k) = ζG(k) +
3

5
fNL

∫
d3k′

(2π)3
ζG(k′)ζG(k− k′). (2.32)

This allows us to solve B(k1, k2, k3) for the local non-Gaussianity according to Eq. (2.22),

as5

B(k1, k2, k3) =
6

5
fNL

(
Pζ(k1)Pζ(k2) + Pζ(k1)Pζ(k3) + Pζ(k2)Pζ(k3)

)
. (2.33)

The CMB angular bi-spectrum is then [113,115]

Bl1l2l3 =
6

5
fNL

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π




l1 l2 l3

0 0 0




×
∫

dxx2
[
αl1(x)βl2(x)βl3(x)

+αl2(x)βl1(x)βl3(x) + αl3(x)βl1(x)βl2(x)
]
, (2.34)

where we have defined

αl(x) ≡ 2

π

∫
k2dk gl(k)jl(kx), (2.35)

βl(x) ≡ 2

π

∫
k2dk Pζ(k)gl(k)jl(kx). (2.36)

Planck has given the latest constraint on the primordial local bi-spectrum [27]

fNL = 0.8± 5.0. (2.37)

We will only be interested in the local type bi-spectrum in this thesis. Other types of

the primordial bi-spectra have also been constrained by Planck, such as the equilateral

type (fNL = −4 ± 43) and the orthogonal type (fNL = −26 ± 21), which can be found

in [27].

5 Here we do not distinguish between Pζ(k) and PζG(k) because they are equal at the leading

order.
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2.3 CMB angular tri-spectrum

Similarly, the CMB angular tri-spectrum can be studied with 〈al1m1al2m2al3m3al4m4〉,

which can be decomposed into a Gaussian part and a non-Gaussian part

〈al1m1al2m2al3m3al4m4〉 = 〈al1m1al2m2al3m3al4m4〉G + 〈al1m1al2m2al3m3al4m4〉nG. (2.38)

The non-Gaussian part 〈al1m1al2m2al3m3al4m4〉nG only gains contribution from in-

teractions between the perturbation modes, so it vanishes for purely Gaussian CMB

perturbations, and is also called the connected part. The Gaussian part is also called

the disconnected part, contributing a constant amount to the angular tri-spectrum at

the leading order [113]6

〈al1m1al2m2al3m3al4m4〉G = (−1)m1+m3Cl1Cl3δl1,l2δl3,l4δm1,−m2δm3,−m4

+(−1)m1+m2Cl1Cl2δl1,l3δl2,l4δm1,−m3δm2,−m4

+(−1)m2+m4Cl2Cl4δl1,l4δl2,l3δm1,−m4δm2,−m3 . (2.39)

Given the CMB power spectrum Cl, we can then calculate the Gaussian part of

the CMB angular tri-spectrum. Any significant excess observed would imply non-

Gaussianities in the angular tri-spectrum. Only considering the inflationary effects on

the CMB tri-spectrum, we can write the non-Gaussian part of the four-point correlation

function of the curvature perturbations, as

〈ζ(k1)ζ(k2)ζ(k3)ζ(k4)〉nG = (2π)3δ3(k1 + k2 + k3 + k4)TnG(k1,k2,k3,k4). (2.40)

The tri-spectrum also allows various shapes, two of which have received most atten-

6 Alternatively it can be expressed in the rotational invariant way as in [111].
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tion are parameterized in terms of τNL and gNL, as [113]

TnG(k1,k2,k3,k4)

=
1

2
τNL

(
Pζ(k1)Pζ(k12)Pζ(k3) + Pζ(k1)Pζ(k12)Pζ(k4) + Pζ(k1)Pζ(k13)Pζ(k2)

+Pζ(k1)Pζ(k13)Pζ(k4) + Pζ(k1)Pζ(k14)Pζ(k2) + Pζ(k1)Pζ(k14)Pζ(k3)

+Pζ(k2)Pζ(k12)Pζ(k3) + Pζ(k2)Pζ(k12)Pζ(k4) + Pζ(k2)Pζ(k23)Pζ(k1)

+Pζ(k2)Pζ(k23)Pζ(k4) + Pζ(k2)Pζ(k24)Pζ(k1) + Pζ(k2)Pζ(k24)Pζ(k3)

+Pζ(k3)Pζ(k13)Pζ(k2) + Pζ(k3)Pζ(k13)Pζ(k4) + Pζ(k3)Pζ(k23)Pζ(k1)

+Pζ(k3)Pζ(k23)Pζ(k4) + Pζ(k3)Pζ(k34)Pζ(k1) + Pζ(k3)Pζ(k34)Pζ(k2)

+Pζ(k4)Pζ(k14)Pζ(k2) + Pζ(k4)Pζ(k14)Pζ(k3) + Pζ(k4)Pζ(k24)Pζ(k1)

+Pζ(k4)Pζ(k24)Pζ(k3) + Pζ(k4)Pζ(k34)Pζ(k1) + Pζ(k4)Pζ(k34)Pζ(k2)
)

+
54

25
gNL

(
Pζ(k1)Pζ(k2)Pζ(k3) + Pζ(k1)Pζ(k2)Pζ(k4) + Pζ(k1)Pζ(k3)Pζ(k4)

+Pζ(k2)Pζ(k3)Pζ(k4)
)
, (2.41)

where k12 ≡ k1 + k2.

The parameter gNL comes similarly with fNL. When the curvature perturbations are

not perfectly Gaussian, the higher order terms can be parameterized as

ζ(x) = ζG(x) +
3

5
fNL(ζ2

G(x)− 〈ζ2
G(x)〉) +

9

25
gNLζ

3
G(x) + higher order. (2.42)

Therefore gNL characterizes the strength of the cubic correction term. The parameter

τNL does not appear directly in Eq. (2.42), but it corresponds to the second order

contribution from the CMB local bi-spectrum.

Similar to the bi-spectrum calculations, we can start from [115,116]

〈al1m1al2m2al3m3al4m4〉nG =
1

2π5

∫
δ3(k1 + k2 + k3 + k4)TnG(k1,k2,k3,k4)

×
4∏

n=1

(−i)lnY ∗lnmn(k̂n)gln(kn)d3kn, (2.43)
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and calculate the contributions from the non-vanishing gNL and τNL terms, as [115]

〈al1m1al2m2al3m3al4m4〉nG

= τNL

∑

LM

(−1)M+l1+l2+l3+l4

(
Al1l2l3l4

(L)Gm1m2M
l1 l2 L G

m3m4−M
l3 l4 L

+Al1l3l2l4
(L)Gm1m3M

l1 l3 L G
m2m4−M
l2 l4 L +Al1l4l2l3

(L)Gm1m4M
l1 l4 L G

m2m3−M
l2 l3 L

)

+
27

25
πgNL

∑

LM

(−1)MBl1l2l3l4G
m1m2M
l1 l2 L G

m3m4−M
l3 l4 L , (2.44)

where

Al1l2l3l4
(L) ≡

∫
k2dk Pζ(k)γl1l2,L(k)γl3l4,L(k), (2.45)

Bl1l2l3l4 ≡
∫
x2dx

(
αl1(x)βl2(x)βl3(x)βl4(x) + αl2(x)βl1(x)βl3(x)βl4(x)

+αl3(x)βl1(x)βl2(x)βl4(x) + αl4(x)βl1(x)βl2(x)βl3(x)
)
, (2.46)

γl1l2,l(k) ≡
√

2

π

∫
x2dx jl(kx)

(
αl1(x)βl2(x) + αl2(x)βl1(x)

)
. (2.47)

The Gaunt integral Gm1
l1

m2
l2

m3
l3

is defined in Eq. (A.4).

The Planck observations have constrained the angular tri-spectra of the shapes τNL <

2800 at 95% confidence level [117] and gNL = (−9.0±7.7)×104 at 1σ confidence level [27].

2.4 CMB polarization modes

So far, we have discussed the CMB temperature anisotropies. Besides the temperature,

each CMB photon also contains an additional degree of freedom. This results in the

possible polarization in the CMB, whose fluctuations can also be measured, and can in

theory provide extra information for the early universe. However, the CMB polarization

also gains contribution from other sources, such as lensing and foreground dust, which

make the measurement of contribution from primordial effects particularly difficult.

The CMB polarization can be decomposed into two separate modes, E and B, as

discussed in [118]. The B mode gains contribution from the (primordial) tensor pertur-
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bations. Its strength is determined by the primordial tensor perturbation, which can

be similarly parameterized as in Eq. (2.15) and Eq. (2.18). For the primordial tensor

perturbation, we use the power spectrum symbol Pt. The relative strength of the ten-

sor perturbation compared with that of the curvature perturbation is defined as the

tensor-to-scalar ratio:

r ≡ PtPζ
. (2.48)

Fluctuations in the CMB polarization has yet to be observed, suggesting a weak tensor

perturbation. The current constraints are given by r0.002 < 0.07 at 95% CL [119] and

r < 0.12 at 95% CL [32] respectively.7

2.5 Isocurvature perturbations

Besides the perturbations in the CMB, there are also other types of perturbations in the

universe, such as the energy density perturbations in visible matter, cold dark matter,

and neutrinos, as well as the velocity perturbations in neutrinos. In principle, these per-

turbations can be either independent of each other, or have some correlations. However,

the simplest scenario would be that all these perturbations originated from the same

curvature perturbation ζ in early universe. In this simplest scenario, the universe would

be called adiabatic.

The adiabaticity of the universe can be violated when the equation of state of our

universe is not a mere function of energy density, which may take place if there is

more than one degree of freedom in the early universe (see Chapter 4). Perturbations

perpendicular to the adiabatic perturbation are referred to as isocurvature perturbations,

7 Here r0.002 indicates the value r measured at the scale 0.002Mpc−1, instead of the previously

chosen reference scale k0 ≡ 0.05Mpc−1. We will omit the subscript 0.002 for the remaining part of

the thesis.
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which can leave their signatures in the CMB [120–122].

By observing the CMB, the Planck satellite has not seen any isocurvature pertur-

bations. Therefore, multi-field models should not produce isocurvature perturbations

more than what Planck could have observed. This regulates the parameter spaces

of multi-field models. One specific example of multi-field models, the curvaton sce-

nario [101, 103] (see Section 5.1), produces correlated or anti-correlated isocurvature

perturbations whose amplitude is hence required to be small (see [26]).

In this thesis, we will not be involved in any calculations of the isocurvature per-

turbations. Instead, quantitative results are only referred from existing publications.

For this reason, numerical details of the isocurvature perturbations are irrelevant and

omitted in the thesis.

2.6 CMB power asymmetry

In previous sections, we have assumed the universe is statistically isotropic, so the

expectation values of correlation functions are invariant under spatial rotations, such

as Eq. (2.6) for CMB angular spectrum, and Eq. (2.21) for CMB angular bi-spectrum.

This assumption is too ideal to be fully tested, simply because we cannot jump out of

our current universe patch. However, what we can test is the statistical isotropy in our

observable patch.

The Planck satellite has tested statistical isotropy by various means in [108], high-

lighting the power asymmetry of the CMB8 . The power asymmetry of the CMB suggests

the amplitude of CMB temperature perturbations can be asymmetric, so perturbations

on one side can be stronger than those on the opposite side. This signal was also found

by the previous observations in [105,106], and may as well show up in the CMB polar-

8 In [11], the latest Planck release has confirmed their previous results in [108].
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(a) The power asymmetry along the maximal power asymmetry direction.
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(b) The power asymmetry along the temperature dipole direction.

Figure 3: The two Cl curves and their relative differences are calculated by the

Planck group, from two opposite patches of the CMB map with an angular diameter

90◦ [123]. The directions have been picked to match the maximal power asymmetry,

and the temperature dipole.
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ization perturbations [124]. This might suggest a “preferred direction” in our observable

universe patch.

In Figure 3, the Planck group have processed two opposite patches of the CMB

map, and have shown the two Cl curves together with their relative differences. The

preferred direction from the maximal CMB power asymmetry and that from the CMB

temperature dipole were found not to match. The CMB power asymmetry thus may

have a different origin with that of the temperature dipole.

In the later analyses [108, 125], the power asymmetry becomes less significant for

high l, as shown in Figure 4. Still, the power asymmetry remains at low l, overcoming

cosmic variance effect at ∼ 3σ.

To address the possible power asymmetry in the CMB, let us first consider the scale

independent case. We can start from the symmetric and unmodulated CMB temperature

fluctuations ∆T (n̂), which by itself is statistically isotropic. The power asymmetry then

can be modelled at the leading order as a dipole modulation multiplier along direction

p̂ with strength A. The CMB temperature fluctuations after modulation then become:

(see for instance [105,106])

∆T (n̂) = (1 +A p̂ · n̂)∆T (n̂). (2.49)

The currently observed CMB power asymmetry is weak, so we expect 0 < A� 1. The

2013 Planck observation [108] sees A = 0.07±0.02, which confirms the previous analyses

on WMAP data [105,106]. The Planck 2015 results are “essentially identical” [11].

If we pick a small local patch in the direction n̂ on the CMB map, and calculate the

CMB power spectrum only in this patch, it will also acquire a directional dependence

(neglecting O(A2)),

P∆T (n̂) = (1 + 2A p̂ · n̂)P∆T . (2.50)

This directional dependence becomes most significant when we compare two opposite
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Figure 4: The relative differences of the opposite Cl curves are plotted in more recent

studies.
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directions, n̂ = p̂ and n̂ = −p̂. Their relative difference is given by [6]

P∆T (p̂)− P∆T (−p̂)
1
2(P∆T (p̂) + P∆T (−p̂))

= 4A. (2.51)

Since the CMB temperature fluctuations are seeded by curvature perturbations, it is

straightforward to think that the power asymmetry may share the same origin and also

come from inflation. In fact, because of the large scale of CMB power asymmetry, it is

difficult to be seeded by any post-inflationary mechanism. Further discussions about its

inflationary origins and scale dependences are covered in Chapter 6.

Other than power asymmetry, the CMB tempearture fluctuation exhibits a simple

pattern – weak and almost scale invariant perturbations with negligible running, small

and insignificant non-Gaussianities, and lack of B polarization mode or isocurvature

perturbations. Naively, a single scalar field in the early universe would suffice to produce

all of them. This will be the topic of next chapter.
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3 Single-field slow-roll inflation

Single-field slow-roll inflation is the earliest successful attempt in explaining CMB tem-

perature fluctuations. In this chapter, we look into single-field slow-roll inflation at

background and perturbation levels. We then examine power-law and inflection point

potentials for single-field slow-roll inflation, which are compared against CMB observa-

tions.

3.1 Background evolution

In the case of a single-field slow-roll inflation, we can start from the Einstein-Hilbert

action with a real scalar inflaton φ:

S ≡
∫ √−g d4x

(
M2

p

16π
R− 1

2
∂µφ∂µφ− V (φ)

)
, (3.1)

where the determinant is defined as

g ≡ det(gµν), (3.2)

and the Planck mass is defined as Mp ≡ 1/
√
G. The definition of the Ricci scalar R

can be found in many general relativity or cosmology textbooks, such as [109]. We have

picked the sign convention of space-time metric gµν as (−,+,+,+). Greek indices go

through 0, 1, 2, 3 for the four space-time dimensions, and Latin ones correspond to 1, 2, 3

only for the three spatial dimensions.

The metric gµν and the inflaton φ are functions of space and time in general. Assum-

ing a mostly homogenous initial condition for single-field slow-roll inflation, where the

perturbative approach is feasible, we can expand spatial perturbations order by order,
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as9

gµν(xµ) = ḡµν(t) + δgµν(xµ), (3.3)

φ(xµ) = φ̄(t) + δφ(xµ), (3.4)

where the bars on top indicate background solution, and the δ’s in front indicate pertur-

bations which are space-time dependent. Throughout this thesis, we will simply drop

the bars on top for background evolutions. Symbols without a δ in front would au-

tomatically indicate the background, unless explicit spatial dependences are specified.

The background FRW metric can be written as (in flat space)

gµν ≡




−1 0 0 0

0 a2(t) 0 0

0 0 a2(t) 0

0 0 0 a2(t)




. (3.5)

The parameterization a(t) is known as the scale factor, parameterizing the “size” of the

universe.

Now we solve the background dynamics of inflation, whose review can be found

in [45]. We define the relative expansion rate of the universe as

H ≡ da

adt
, (3.6)

which is known as the Hubble rate. The Hubble rate is determined by the Friedmann

equation

H2 =
8πρ

3M2
p

, (3.7)

where ρ is the total energy density of the universe. During single-field slow-roll inflation,

9 Inflation may also take place if the inhomogeneity is large, for example in the case of chaotic

inflation and multi-verse [37,74,126]. We will not discuss these possibilities in the thesis.
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we have

ρ =
1

2
φ̇2 + V (φ). (3.8)

The equation of motion of the inflaton φ at background level can be derived from Eq.

(3.1) as

φ̈+ 3Hφ̇+ V ′(φ) = 0, (3.9)

where ˙≡ d/dt, and primes on potentials indicate derivatives w.r.t the field.

In an expanding universe, the Hubble rate acts as a friction force for oscillating

fields. When the friction is strong enough, φ becomes over-damped. This requires the

conditions

εφ ≡ 4πV ′2

9M2
pH

4
=
M2

pV
′2

16πρ2
< 1, (3.10)

ηφ ≡ V ′′

3H2
=
M2

pV
′′

8πρ
, |ηφ| < 1. (3.11)

The parameters εφ and ηφ are called the first and second slow-roll parameters for

φ respectively. Similarly, Eq. (3.10) and Eq. (3.11) are the slow-roll conditions for φ.

When the slow-roll conditions are well satisfied, i.e. εφ � 1 and |ηφ| � 1, the slow-roll

parameters εφ and ηφ can be regarded as small variables, which then enable φ to roll

very slowly. In such cases, we only need to care about the leading order contributions

from εφ and ηφ, which is the so called slow-roll approximation.

When the slow-roll approximation holds, we can find

φ̈ � 3Hφ̇ ≈ −V ′(φ), (3.12)

φ̇2 � V (φ). (3.13)

Therefore, potential energy will dominate over kinetic energy during slow roll. Potential

energy then drives inflation because it is not diluted by universe expansion. The kinetic

term also changes slowly enough, so the second order derivative in the equation of motion
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becomes negligible at background level. The Hubble rate and the equation of motion

then become

H2 =
8πV

3M2
p

, (3.14)

and

3Hφ̇+ V ′(φ) = 0. (3.15)

For single-field slow-roll inflation, we can confirm the following relations

εφ =
d

dt

1

H
=

d lnH

dN
, (3.16)

d ln εφ
dN

= −4εφ + 2ηφ, (3.17)

where N , the number of remaining e-folds of the universe expansion till a specific point,

e.g. the end of inflation, is defined as

dN ≡ −Hdt, (3.18)

or alternatively

a(N) = a(N0)eN0−N , (3.19)

for any reference point at N = N0, where we have chosen the e-folding N as the time

measure. Since the slow-roll conditions are only well satisfied for εφ � 1 and |ηφ| � 1,

single-field slow-roll inflation is terminated when either εφ ≥ 1 or |ηφ| ≥ 1 is satisfied.

One important concept in the expanding universe is the total distance a photon can

travel in the future, assuming the Hubble rate is kept constant. It is known as the event

horizon of the universe. The comoving event horizon at any time t0 is

∫ ∞

t0

dt

a(t)
=

∫ ∞

t0

dt

a0eH(t−t0)
=

1

a0H0
. (3.20)

For inflation, the value of comoving event horizon coincides with the comoving Hub-

ble radius, 1/a0H0, which is the universe expansion rate in length scale. The volume
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enclosed by the comoving Hubble radius is the Hubble patch. Scales much smaller than

the comoving Hubble radius are called sub-Hubble, and those much larger are super-

Hubble. As the universe expands, equilibrium can only be established on sub-Hubble

scales (if not pre-established).

When the universe is dominated by a perfect fluid with constant equation of state

parameter w, its energy density has the power-law relation [15]

ρ ∝ a−3(1+w). (3.21)

This indicates the comoving Hubble radius would follow

1

aH
∝ a 1

2
(1+3w). (3.22)

In the Hot Big Bang, the universe starts with relativistic particles, and cools down

gradually during expansion. As the temperature drops, the universe moves from radi-

ation dominated era to matter dominated era. The radiation dominated and matter

dominated eras correspond to the equations of state w = 1/3 and w = 0 respectively, so

the comoving Hubble radius would always be increasing as the universe expands. Con-

sequently, the Hot Big Bang does not have a convincing mechanism to form thermal

equilibrium on the LSS. This is one of the major difficulties of the Hot Big Bang theory.

Inflation solves the difficulty with the (near) exponential expansion phase. According

to Eq. (3.16), for εφ � 1, the Hubble rate (and hence the energy density) decreases very

slowly per e-fold of universe expansion. This means the universe is dominated by a near

cosmological constant during inflation, from φ whose the equation of state is almost

−1. The comoving Hubble radius therefore decreases during inflation, according to Eq.

(3.22), which allows a pre-established thermal equilibrium on the LSS if inflation lasts

sufficiently long.

The evolution of φ can be solved from the background equation of motion Eq. (3.12),
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as

8πV (φ)

M2
pV
′(φ)

dφ = dN. (3.23)

When either of the slow-roll parameters reaches O(1), the single-field slow-roll inflation

will come to an end. This allows us to define the end of single-field slow-roll inflation as

N = Ne at max(εφ, |ηφ|) = 1, (3.24)

where we use the subscript e for the end of inflation.

3.2 First order perturbations

During inflation, perturbations can exist in fields and/or the metric. We are only in-

terested in scalar fields, so their perturbations will be discussed in Section 3.2.1. The

metric is a 4 × 4 real symmetric matrix, with 10 total degrees of freedom. They can

be decomposed into 4 scalar degrees of freedom (see Eq. (3.25)), 4 vector degrees of

freedom, and 2 tensor degrees of freedom. The scalar perturbations couple with the

energy density and pressure inhomogeneities; the vector perturbations are normally

redshifted away as the universe expands; the tensor perturbations do not couple with

other inhomogeneities, but only depend on the energy scale of inflation. Therefore, we

are interested in the scalar and tensor perturbations, and treat them separately in this

section. (See [15,45,47,48,127] for a review.)

3.2.1 Scalar perturbations

First order scalar perturbations appear in both the metric and the field. The field

perturbation is simply δφ(xµ), as defined in Eq. (3.4). The most generic form of the
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Figure 5: We are free to choose any gauge in the universe, such as those

shown in blue, red or green. The choice of gauge should not affect any

physical process or quantity. The solid and dashed black curves illustrate

the exponential universe expansion during inflation. The horizontal and

vertical axes are for the physical spatial and time dimensions respectively.

metric perturbations can be written as10

δgµν =



−2A ∂iB

∂iB a2(−2Cδi,j +DijE)


 , (3.25)

where A,B,C,E correspond to different scalar perturbation modes which are in general

space-time dependent. Here

Dij ≡ ∂i∂j −
1

3
δi,j∇2. (3.26)

Then we are left with five scalar perturbations δφ,A,B,C, and E. There are how-

ever unphysical degrees of freedom in them. The same physical process can be por-

10 Here we perturb the metric with physical time, not the conformal time.

40



trayed with different sets of the perturbations by choosing a different reference frame,

or gauge/slicing, as shown in Figure 5. We will use tilde for the variables after trans-

formations. So consider the infinitesimal local space-time transformation in comoving

coordinates:

xµ → x̃µ = xµ + δxµ, (3.27)

in which the transformation δxµ can depend on the space-time coordinates xµ.

The field perturbation δφ follows the single transformation rule as

δφ→ δ̃φ = δφ− φ̇δx0. (3.28)

Regarding the metric perturbations, any space-time line element should remain invari-

ant, d̃s2 = ds2, from

ds2 = (gµν + δgµν)dxµdxν (3.29)

to

d̃s2 = (gµν + δ̃gµν)dx̃µdx̃ν . (3.30)

The transformation rule of A,B,C,E can thus be solved as follows [15,45,47,48,127].

Before the coordinate transformation, the original line element is expressed in Eq.

(3.29). It can be expanded in the form

ds2 = (gµν + δgµν)dxµdxν

= −(1 + 2A)
(
dx0
)2

+ a2
3∑

i=1

(
1− 2C + 2∂i∂iE

)(
dxi
)2

+2∂iBdx0dxi + a2
∑

i 6=j
∂i∂jEdxidxj . (3.31)

41



After transformation, the new line element (Eq. (3.30)) becomes

d̃s2 =
(
gµν + δ̃gµν

)
dx̃µdx̃ν

= −
(

1 + 2Ã+ 2∂0δx
0
)(

dx0
)2

+a2
3∑

i=1

(
1− 2C̃ + 2∂i∂iẼ + 2∂iδx

i + 2Hδx0
)(

dxi
)2

+
(

2∂iB̃ − ∂iδx0 + a2∂0δx
i
)

dx0dxi

+2a2
∑

i>j

(
∂i∂jẼ + ∂iδx

j + ∂jδx
i
)

dxidxj . (3.32)

For any line element dxµ, the transformation Eq. (3.27) should leave the length

invariant. This hence requires each of the coefficients of dxµdxν to be identical in Eq.

(3.31) and Eq. (3.32), i.e.

A = Ã+ ∂0δx
0, (3.33)

∀i, −C + ∂i∂iE = −C̃ + ∂i∂iẼ + ∂iδx
i +Hδx0, (3.34)

∀i, ∂iB = ∂iB̃ − ∂iδx0 + a2∂0δx
i, (3.35)

∀i > j, ∂i∂jE = ∂i∂jẼ + ∂iδx
j + ∂jδx

i. (3.36)

The transformation rule for A can then be solved as

Ã = A− ∂0δx
0. (3.37)

We can decompose the spatial part of the coordinate transformation by defining β

and vi as

δxi = ∂i(a2β) + vi, ∂iv
i = 0. (3.38)

β contributes to the change in the scalar metric perturbations, while the “transverse

vector” vi only contributes to the vector perturbations, and thus is not of interest here.

The decomposition reshapes Eq. (3.35) into

∂i

[
B̃ −B − δx0 + ∂0(a2β)

]
= −a2∂0v

i, (3.39)
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from which we can find the transformation rule for B, as

B̃ = B + δx0 − ∂0(a2β). (3.40)

Similarly, we can derive the transformation rules for C and E:

C̃ = C − 1

3
∇2β +Hδx0, (3.41)

Ẽ = E − 2β. (3.42)

In this sense, it is possible to transform the coordinates and the scalar perturbations

together, so the physical process remains the same but the perturbations (A,B,C,E, φ)

become different. This means we have unphysical gauge degrees of freedom in the

representation.

There are typically two possible treatments11:

• Construct gauge-invariant variables and limit the calculations to these gauge-

invariant variables as much as possible [15,127–130].

• Choose the specific gauge that is most convenient for the calculations. The gauge

invariance can be recovered later by combining the gauge dependent quantities.

In this thesis, we will employ the second treatment, because the relevant discussions

will mostly take place in one gauge – the spatially flat gauge. In the spatially flat gauge,

the spatial part of the metric is unperturbed, with δgij = 0. This can be achieved from

an arbitrary gauge, with the gauge transformation that eliminates E and C (defined in

Eq. (3.25)), as

β =
1

2
E, Hδx0 = −C − 1

6
∇2E. (3.43)

The gauge degrees of freedom are then completely fixed by the transformation.

In the spatially flat gauge, the spatial part of the metric is a multiple of the identity

matrix in Cartesian spatial coordinates. This allows the remaining metric perturbations

11 For a review and/or lecture notes on cosmological perturbations, see [15,45,47,48,127].
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A,B to decouple from the field perturbation δφ in the perturbed action at leading order,

as can be seen from Eq. (3.1). We can extract the leading order perturbed action coming

from the field perturbation δφ, as12

δS(δφ) = −1

2

∫
a3d4x

(
∂µδφ∂µδφ+ V ′′(φ)δφ2

)
. (3.44)

This yields the equation of motion for the field perturbation

δ̈φ+ 3H ˙δφ+ V ′′(φ)δφ− ∂i∂iδφ = 0. (3.45)

After Fourier transformation, in the momentum space it becomes

δ̈φk + 3H ˙δφk +

(
V ′′(φ) +

k2

a2

)
δφk = 0, (3.46)

where

δφk ≡
∫

d3x δφ(x)e−ik·x. (3.47)

This is a harmonic oscillator with a friction force and a varying mass term, which

cannot be quantized directly. We only know how to quantize a canonical harmonic

oscillator with a constant mass in a flat space-time. So we switch to the variables

dτ ≡ dt

a
, (3.48)

ψ ≡ aδφ, (3.49)

where τ is called the conformal time. The relevant action then becomes

δS(ψ) =

∫
d3xdτ

[
1

2
ψ′2 − aHψ′ψ +

1

2

(
H2 − V ′′(φ)

)
a2ψ2 − 1

2

3∑

i=1

(∂iψ)2

]
, (3.50)

where the definition ′ ≡ d/dτ only holds in this section of the thesis.

Given an arbitrary function of perturbation ψ and (conformal) space-time, f(ψ,x, τ),

we can add its total derivative w.r.t space x or time τ into the Lagrangian density. This

12 The first order perturbations are always zero because their coefficients are required to vanish

by the equations of motion at background level.
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does not change the physics of the system, so we add 1
2

∫
d3xdτ [d(aHψ2)/dτ ] into Eq.

(3.50), which gives the new action

δS(ψ) =

∫
d3xdτ

[
1

2
ψ′2 +

(
H2 +

1

2
Ḣ − 1

2
V ′′(φ)

)
a2ψ2 − 1

2

3∑

i=1

(∂iψ)2

]
, (3.51)

Now ψ has become a canonical harmonic oscillator with the equation of motion

ψ′′ −
(

2H2 + Ḣ − V ′′(φ)
)
a2ψ −

3∑

i=1

∂i∂iψ = 0. (3.52)

After Fourier transformation, it becomes

ψ′′k +
[
k2 − (2H2 + Ḣ − V ′′(φ))a2

]
ψk = 0. (3.53)

Using the slow-roll parameters εφ and ηφ, and according to Eq. (3.11) and Eq. (3.16),

we further simplify the equation of motion to

ψ′′k +
[
k2 − a2H2(2− εφ − 3ηφ)

]
ψk = 0. (3.54)

We can fix the conformal time τ to be zero at the end of inflation. This would give

rise to the simple relation

∫ 0

τ
dτ =

∫ te

t

dt

a
=

∫ ae

a

da

a2H
' 1

H

∫ ae

a

da

a2
≈ 1

aH
. (3.55)

So with this choice of the conformal time, the conformal time becomes the negative

comoving Hubble radius

τ ≈ − 1

aH
. (3.56)

The approximations hold in Eq. (3.55) because well before the end of inflation (∼ 50

e-folds), the slow-roll parameter εφ � 1, so the universe expands exponentially while

the Hubble rate remains almost constant. This approximation has relative error ∼ εφ.

For this reason, when we substitute it back into Eq. (3.54), we also drop the slow-roll

parameters in Eq. (3.54). This leads to

ψ′′k +

(
k2 − 2

τ2

)
ψk = 0. (3.57)
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Now focus on the mass term of the harmonic oscillator. The first term k2 remains

constant. The second term 2/τ2 ≈ 2a2H2 increases exponentially during inflation.

Therefore, any specific perturbation mode with the momentum k may experience two

distinct phases of evolution during inflation:

• In the beginning, the momentum dominates the mass term with |kτ | � 1. The

perturbation ψk is a perfect quantum harmonic oscillator.

• As the universe expands exponentially during inflation, the comoving Hubble ra-

dius of the universe decreases and the evolution enters |kτ | � 1. At this point, the

perturbation ψk obtains a tachyonic mass and is no longer a quantum harmonic

oscillator. The evolution has become classical and is determined by the harmonic

oscillator initial conditions during the preceding quantum phase.

Since 1/k is the wavelength of the perturbation, and |τ | = 1/aH is the comoving

Hubble radius of the universe, another way to distinguish the two phases is whether

the perturbation mode can fit into one Hubble patch. Perturbations with |kτ | � 1 are

thus also called sub-Hubble perturbations, and those with |kτ | � 1 are super-Hubble

perturbations. In this sense, perturbations may start sub-Hubble during inflation, and

gradually become super-Hubble. The time of switching from sub-Hubble to super-

Hubble is known as the Hubble exit, or leaving the Hubble patch.

We use hats for operators in this chapter. The real harmonic oscillator ψk can then

be quantized as

ψ̂k = vkâk + v∗−kâ
†
−k, (3.58)

where âk and â†k′ conform with the commutation relation

[âk, â
†
k′ ] = (2π)3δ3(k− k′). (3.59)
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Also, vk is a c-number yielding to

v′′k +

(
k2 − 2

τ2

)
vk = 0. (3.60)

Eq. (3.60) has the solution [109]

vk =
e−ikτ√

2k

(
1− i

kτ

)
, (3.61)

so in the early times where t is sufficiently small or, equivalently, −τ is sufficiently large,

Eq. (3.58) would reduce to the harmonic oscillator solution with

ψ̂k ∝
e−ikτ√

2k
. (3.62)

The power spectrum of ψk is Pψ(k), defined as

〈0|ψ̂kψ̂
†
k′ |0〉 = (2π)3δ3(k− k′)Pψ(k), (3.63)

where, according to the quantization,

Pψ(k) = |vk|2 =
1

2k

(
1 +

1

k2τ2

)
. (3.64)

Here we have assumed the vacuum state of the universe |0〉 is the Bunch-Davis vacuum

[131].

With τ = −1/aH and δφ = ψ/a, from Eq. (3.64) we get the power spectrum of δφ,

(similarly defined,) as

Pδφ(k) =
H2

2k3

(
1 +

k2

a2H2

)
. (3.65)

Several e-folds after Hubble exit, the second term in the parentheses will become negli-

gible, so the power spectrum of δφ(k) reaches constant:

Pδφ(k)
∣∣∣
super−Hubble

=
H2

2k3
. (3.66)

Therefore, after the perturbation mode leaves the Hubble patch, it gradually stops

evolving and becomes frozen.
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We can recover the time part of the gauge invariance by considering only the time

translation

x0 → x̃0 = x0 + δx0. (3.67)

From Eq. (3.28) and Eq. (3.41), we can construct the gauge invariant curvature pertur-

bation by compensating the changes under the time translation Eq. (3.67). The time

gauge invariant curvature perturbation ζ can thus be defined as13

ζ ≡ C +
H

φ̇
δφ. (3.68)

Since now ζ is a gauge-invariant quantity, its power spectrum should not depend on

the choice of gauge. After the mode k freezes, the power spectrum of ζ then becomes

Pζ(k) = Pζ(k)
∣∣∣
C=0

=
H2

φ̇2
Pδφ(k) =

2π

k3

H2

εφM2
p

. (3.69)

We then expand the power spectrum of ζ around a reference scale k0 following Eq.

(2.15), which provides the spectral index of the scalar perturbations

ns ≡ 1 +
d

d ln k
ln
(
k3Pζ(k)

)

= 1− d

dN
ln
H2

εφ

= 1− 6εφ + 2ηφ. (3.70)

The running of the spectral index can be derived similarly,

dns
d ln k

= 8εφ(−3εφ + 2ηφ)− 2ξφ, (3.71)

where the third slow-roll parameter is defined as

ξφ ≡
M4

pV
′V ′′′

(8πρ)2
, (3.72)

13 To further take into account the spatial transformations (for µ = 1, 2, 3 in Eq. (3.27)), the

spacetime gauge invariant curvature perturbation can be defined as ζ(st) ≡ ζ + 1
6∇2E. The extra

term is the same for a spacetime gauge invariant curvature perturbation for Eq. (3.75).
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with the relation

dηφ
dN

= ξφ − 2εφηφ. (3.73)

The definition of ζ in Eq. (3.68) is obviously only applicable to single-field slow-

roll inflation. In the more general case, we can consider an adiabatic universe. The

energy density perturbation of the universe, δρ, transforms under the time translation

Eq. (3.67) as

δρ→ δ̃ρ = δρ− δ̇ρ δx0. (3.74)

This allows us to define the gauge invariant curvature perturbation more generally as

ζ ≡ C +
H

ρ̇
δρ. (3.75)

It can be confirmed easily that Eq. (3.75) reduces to Eq. (3.68) for single-field slow-roll

inflation.

3.2.2 Separate universe approach

The above section has explained how perturbations evolve before the Hubble exit. Now

the question is how perturbations would evolve after the Hubble exit but before the

beginning of Hot Big Bang. It has been known in general, that super-Hubble curvature

perturbations are conserved:

• on uniform energy density hypersurfaces/slicings,

• if the universe remains sufficiently adiabatic in the future evolution (i.e. the pres-

sure or the equation of state is a mere function of energy density).

This is known as the separate universe approach [132–136], which essentially regards

each of the local Hubble patches as a homogenous patch. Each Hubble patch is then

perturbed as a whole by the super-Hubble perturbations, and smoothened within so the

sub-Hubble perturbations are neglected. When the above two conditions are satisfied,
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all the Hubble patches on the uniform energy density hypersurface are identical except

that each has a different time shift, originated from the super-Hubble curvature pertur-

bations. The separate universe approximation should be valid because the sub-Hubble

perturbations, or the gradients from the super-Hubble perturbations, have a vanishing

net effect when averaged over all the Hubble patches in the universe.

For single-field slow-roll inflation, the homogenous Hubble patch has only one degree

of freedom and is always adiabatic. Therefore, super-Hubble curvature perturbations

are always conserved during single-field slow-roll inflation, regardless of the uniform

energy density hypersurface chosen.

For the more generic multi-component inflation, (Chapter 4,) extra complications

can be involved. The universe may contain non-adiabatic perturbations, which can

transfer to curvature perturbation gradually well after the Hubble exit. For this reason,

the desired uniform energy density hypersurface can be significantly delayed.

Therefore, as a more generic method using separate universe approach, in this section

we study how the field perturbation in the Hubble patch, δφ, transfers to curvature

perturbation ζ, at or after the Hubble exit. For this purpose, we count the extra

number of e-folds of universe expansion for the chosen Hubble patch up to the uniform

energy density hypersurface, due to the initial super-Hubble field perturbation δφ on

spatially flat hypersurfaces. This extra amount of expansion should then correspond

to the scalar perturbation C on uniform energy density hypersurface, or equally the

curvature perturbation ζ. This is portrayed in Figure 6. The so-called δN formalism

thus reduces the problem into simply solving background evolutions, and then taking

the differentiations.

For single-field slow-roll inflation, we have (on spatially flat slicing)

ζ(x) = δN(x) = Nφδφ(x), (3.76)
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Figure 6: In the spatially flat gauge (green), the perturbed patches (red) can be

evolved to the uniform energy density hypersurface (blue) that fulfills the adiabatic

condition. The resulting perturbation in the number of e-folds of the universe expan-

sion then corresponds to the amount of curvature perturbation ζ for every patch. In

single-field slow-roll inflation, the uniform energy density hypersurface can be cho-

sen at the Hubble exit as shown. The solid and dashed black curves illustrate the

exponential universe expansion during inflation. The horizontal and vertical axes

are for the physicsl spatial and time dimensions respectively.
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where δφ(x) is the field perturbation on spatially flat hypersurfaces. According to Eq.

(3.23),

Nφ ≡
∂N

∂φ
=

8πV (φ)

M2
pV
′(φ)

. (3.77)

Since single-field slow-roll inflation is always adiabatic, we can pick the uniform energy

density hypersurface right at the Hubble exit as shown in Figure 6. Therefore the

field perturbation δφ(x) in the location space does not evolve after Hubble exit. This

immediately gives

ζk = Nφδφk, (3.78)

with the power spectrum

Pζ(k) = N2
φPδφ(k) =

2π

k3

H2

εφM2
p

. (3.79)

As we have seen, it easily reduces to Eq. (3.69) in the single-field slow-roll inflation

scenario.

The spectral index and its running can then be obtained straightforwardly. For

example,

ns ≡ 1 +
d ln k3Pζ(k)

d ln k

= 1− d ln k3Pζ(k)

dN

= 1− 2 d lnNφ

dN
− d ln k3Pδφ(k)

dN

= 1− 2Nφφ

Nφ
φ′ − d lnH2

dN

= 1− 6εφ + 2ηφ, (3.80)

where φ′ ≡ dφ/dN , and Nφφ ≡ ∂Nφ/∂φ. So it also recovers Eq. (3.70).

We can also look at the problem in location space completely. Starting from Eq.

(3.76), the power spectrum of field perturbation in the location space is defined as14

〈0|δ̂φ(x)δ̂φ
†
(x)|0〉 = Pδφ(x). (3.81)

14 Note again that hats are used for quantum operators.
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Therefore,

Pδφ(x) =

∫
d3k

(2π)3
Pδφ(k) =

1

4π2

∫
H2d ln k. (3.82)

The curvature perturbation then follows

Pζ(x) =
1

πM2
p

∫
H2

εφ
d ln k. (3.83)

From the above equations, we can obviously see that perturbations receive contri-

butions from all the super-Hubble modes. We will discuss the infrared and ultraviolet

divergences of the integral shortly, but let us first look at the strength of quantum

fluctuations compared with classical motion.

Eq. (3.82) tells us that for every e-fold of inflation, the field perturbation δφ(x)

typically gains the extra amount ∼ ±H/2π. At the same time, the classical slow-roll

motion of the inflaton φ contributes by the amount ∼ dφ/dN . The relative strength of

quantum fluctuations can be written as

H

2π

(
dφ

dN

)−1

=
1
√
πεφ

H

Mp
. (3.84)

When this ratio is much smaller than unity, quantum fluctuations are much weaker than

classical slow roll. In the opposite limit, the motion of field is dominated by quantum

fluctuations, and we can also say the field is frozen.

It is worth noting that the above calculations are only applicable to single-field slow-

roll inflation. When multiple components coexist in the universe, such as in Chapter

4, the choice of uniform energy density hypersurface must agree with the adiabatic

condition. The earliest possible choice may be well after the Hubble exit. In such case,

we can either evolve the field perturbation δφ from the Hubble exit to the hypersurface,

or the corresponding Nφ from the hypersurface back to the Hubble exit. In either way,

their product δN = Nφδφ should follow the correct evolution.
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Let us now turn back to the observational divergences in the integrals in Eq. (3.82)

and Eq. (3.83). The ultraviolet divergence has several suppressions and cut-offs. For

example, our limited resolution of the observations cannot observe perturbations of

too small scales, and this introduces a hard cut-off to the ultraviolet divergence. The

physical divergences, on the other hand, can only be resolved by fundamental theories,

which are beyond the scope of the thesis.

To deal with the infrared divergence, let us think what Pζ(x) represents in the

observations. We can only see perturbations within our current Hubble patch, so we

cannot compare them with patches too distant away. In this sense, perturbations with

scales much larger than the Hubble size today should have only suppressed contributions

to our observed Pζ(x), indicated with P
(ob)
ζ (x). They only produce gradient effects

within our Hubble patch, which are exponentially suppressed towards the infrared limit.

In particular, suppose only the limited spatial region R is visible to us. For any

observable spatial function f(x), the observed power spectrum of perturbations in the

location space can be written as

P
(ob)
f ≡ 1

(2π)3

〈
|f − f̄ |2

〉
=

1

(2π)3

(〈
|f |2

〉
−
〈∣∣f̄
∣∣2
〉)

, (3.85)

where the top bar means averaging over the visible region R, as

f̄ = f(x) ≡ 1

|R|

∫

x∈R
f(x)dx, (3.86)

and the volume of R is defined as

|R| ≡
∫

x∈R
dx. (3.87)

At this point we do not specify the dimension or geometry of R.

Let us define the power spectrum of f in the Fourier space as

〈fkf∗k′〉 = (2π)3δ3(k− k′)Pf (k). (3.88)
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The first term of Eq. (3.85) can then be calculated at ease

〈
|f |2

〉
=

∫
d3kPf (k). (3.89)

The second terms requires some calculation

〈∣∣f̄
∣∣2
〉

=

〈∣∣∣f(x)
∣∣∣
2
〉

=
1

2|R|2
∫

x,x′∈R
dxdx′

〈
f(x)f∗(x′) + h.c

〉

=
1

2|R|2
∫

d3kPf (k)

∫

x,x′∈R
dxdx′

[
eik·(x−x

′) + c.c
]

=
1

|R|2
∫

d3kPf (k)

∫

x,x′∈R
dxdx′ cos k · (x− x′)

=

∫
d3kPf (k)

[(
cos k · x

)2
+
(
sin k · x

)2]
, (3.90)

where h.c and c.c indicate the Hermitian conjugate and the complex conjugate respec-

tively.

In our universe, the visible region R is spherically symmetric. The second term in

the parentheses of Eq. (3.90) thus vanishes. For the visible and dark matter, we can

see perturbations with different distances from us, within the ball of radius rmax, i.e.

R = {x|x ≤ rmax}. For such cases, the average becomes

cos k · x ≡ 1

|R|

∫

x≤rmax

cos(k · x)dx

=
3

r3
max

∫ rmax

0
r2dr

sin kr

kr

=
3

θ3
(sin θ − θ cos θ), (3.91)

where we have defined the dimensionless variable

θ ≡ krmax. (3.92)

55



Therefore using Eq. (3.91), we get the observed power spectrum in a ball

P
(ob)
f (x) =

1

(2π)3

(〈
|f |2

〉
−
〈∣∣f̄
∣∣2
〉)

=
1

2π2

∫
dkk2Pf (k)

[
1− 9

θ6
(sin θ − θ cos θ)2

]

=
k3

0Pf (k0)

2π2

∫
dθ

θ

[
1− 9

θ6
(sin θ − θ cos θ)2

]
, (3.93)

where in the last step, we have assumed a scale-invariant power spectrum

k3Pf (k) = k3
0Pf (k0), for any k. (3.94)

Now in the infrared limit where k → 0 or equivalently θ → 0, the term being integrated

in Eq. (3.93) is equal to θ/5. So the observed power spectrum does not have any infrared

singularity within our observed Hubble patch.

Similarly, the CMB is only emitted from the LSS sphere. Therefore the averaging

should take place for all directions, but only at a fixed radius rls, which is our comoving

distance to the LSS. This corresponds to R = {x|x = rls}, giving

cos k · x ≡ 1

|R|

∫

x=rls

cos(k · x)dx =
sin θ

θ
, (3.95)

where we have redefined the dimensionless variable

θ ≡ krls. (3.96)

The observed power spectrum on a sphere then becomes

P
(ob)
f (x) =

1

2π2

∫
dkk2Pf (k)

(
1− sin2 θ

θ2

)

=
k3

0Pf (k0)

2π2

∫
dθ

θ

(
1− sin2 θ

θ2

)
, (3.97)

where we have similarly assumed a scale invariant power spectrum. The term being

integrated is proportional to θ/3 in the k → 0 limit, so the infrared divergence is

similarly resolved for the CMB. This can also be seen in Figure 7.
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Figure 7: The integral in Eq. (3.97) is shown as a function of its inte-

gral lower bound. The infrared cutoff, kminrls, is infrared safe because it

converges as kmin → 0. The upper bound of the integral is taken e2 for

demonstration.
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Since the integral in Eq. (3.97) is an O(1) model independent constant, we can

abandon it by redefining the power spectrum as

Pf ≡
1

2π2
k3

0Pf (k0). (3.98)

Then the field perturbation and curvature perturbation will have the power spectra

[132–136]

Pδφ =
H2

4π2
, (3.99)

and

Pζ =
H2

πεφM2
p

. (3.100)

3.2.3 Tensor perturbations

The primordial scalar perturbations are responsible for the CMB temperature fluctua-

tions we see today. The tensor perturbations, on the other hand, produce polarization

fluctuations in the CMB. The tensor perturbations have only two degrees of freedom.

For a photon traveling in the z direction, they act on the flat FRW metric in the form

of15

δgµν =
a2

2




0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0




. (3.101)

The variables h+ and h× are the two independent modes of the tensor perturbations.

Such perturbations will induce the perturbation in the action

δS(h+, h×) =
M2

p

64π

∫
a3d4x

∑

i=+,×

[
1

2
ḣ2
i −

1

2
(∂zhi)

2

]
. (3.102)

From Eq. (3.102), we find that each of the tensor perturbations corresponds to a

plane wave solution traveling along the z direction. We simply need to canonicalize the

15 For a review or textbook, see [15,45,47,48,109,127].
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fields by switching to the conformal time τ , and defining (while neglecting the subscripts

because both tensor modes act identically and independently)

h̃ ≡ aMp

8
√
π
h. (3.103)

So the new perturbed action becomes (for each of the tensor perturbations)

δS(h̃) =

∫
d3xdτ

[
1

2
h̃′2 +

(
H2 +

1

2
Ḣ

)
a2h̃2 − 1

2
(∂zh̃)2

]
. (3.104)

Now we are able to quantize h̃ following the routine in Section 3.2.1. This gives the

power spectrum of h̃

Ph̃(k) =
1

2k

(
1 +

1

k2τ2

)
, (3.105)

and hence the power spectrum of the tensor perturbations h well after the Hubble exit

Pt(k) ≡ Ph(k) =
32πH2

k3M2
p

, (3.106)

where the subscript t represents tensor perturbations. Since the power spectrum of the

tensor perturbations only depends on the energy scale of inflation, the measurement of

the tensor perturbations is very helpful in determining how early inflation took place

[137].

In practice, the power spectrum Pt(k0) is rarely used when referring to the strength

of tensor perturbations. More often, the relative strength of tensor perturbations w.r.t

scalar perturbation is used. This parameter is called the tensor-to-scalar ratio, and is

defined as

r ≡ PtPζ
= 16εφ, (3.107)

where the last equal sign holds only for single-field slow-roll inflation. Note the power

spectrum we have used is similarly defined for tensor perturbations according to Eq.

(3.98), as

Pt =
16H2

πM2
p

. (3.108)
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The Planck observations have not found any tensor perturbation with r < 0.11 at

95% CL, and neither has BICEP with r < 0.07 [26, 119, 138]. This immediately gives

the upper bound for inflation energy scale

ρ
1
4 =

(
3rPζ
128

) 1
4

Mp < 1.6× 10−3Mp. (3.109)

3.3 Higher order perturbations

As explained in Section 2.2 and Section 2.3, observations in the CMB temperature

fluctuations may find possible deviations from pure Gaussian perturbations. These non-

Gaussianities may come from primordial cosmology, such as inflation. In Eq. (2.34), we

have shown how the non-Gaussian curvature perturbation ζ can induce a non-vanishing

three-point correlation function on the CMB temperature map. In this section, we

will discuss how single-field slow-roll inflation produces primordial non-Gaussianity, in

terms of local fNL, τNL and gNL, and therefore how they will be constrained by recent

observations. (See Section 2.2 and Section 2.3 for definitions, and [113,139] for a review.)

The δN formalism proves to be an effective approach for higher order perturbations.

For single-field slow-roll inflation, every smoothened Hubble patch has only one degree

of freedom – the inflaton φ(x). Therefore we can always write the number of remaining

e-folds of inflation as a function of inflaton in the background evolution N(φ). Previ-

ously in Section 3.2.2, we have expanded N(φ) up to linear order in Eq. (3.76). More

generically, it can be expanded to higher orders as [140–142]

ζ(x) = δN(x)

= Nφδφ(x) +
1

2
Nφφ

(
δφ2(x)− 〈δφ2(x)〉

)

+
1

6
Nφφφδφ

3(x) + higher order. (3.110)

In Eq. (3.110), including the 〈δφ2(x)〉 term is to ensure the expectation value of
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curvature perturbation vanishes strictly 〈ζ(x)〉 = 0. Knowing that δφ(x) is a Gaussian

variable, by comparing Eq. (2.32) with Eq. (3.110), we can find the Gaussian part of

curvature perturbation easily

ζG(x) = Nφδφ(x). (3.111)

Replacing δφ(x) with ζG(x)/Nφ, Eq. (3.110) becomes

ζ(x) = ζG(x) +
1

2

Nφφ

N2
φ

(
ζ2
G(x)− 〈ζ2

G(x)〉
)

+
1

6

Nφφφ

N3
φ

ζ3
G(x) + higher order, (3.112)

which corresponds to [140–142]

fNL =
5

6

Nφφ

N2
φ

, (3.113)

and

gNL =
25

54

Nφφφ

N3
φ

. (3.114)

Therefore fNL and gNL can be calculated easily based on δN formalism. Note however

that the above expressions are in general scale dependent, because Nφ, Nφφ and Nφφφ

can change during inflation. This feature should be interpreted as the scale dependences

of local non-Gaussianities, an extension of Eq. (2.26) or Eq. (2.42).

The parameter τNL comes from the second order effect of local fNL on the CMB

tri-spectrum. In single-field slow-roll inflation, there is only one degree of freedom φ

that may produce the curvature perturbation. Therefore, the simple relation holds

τNL =
36

25
f2

NL. (3.115)

Higher order derivatives of N can be derived from its first order derivative in Eq.

(3.77). The local non-Gaussianities can then be expressed in terms of the slow-roll
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parameters [141–143]

fNL =
5

6
(2εφ − ηφ), (3.116)

gNL =
25

54
[2ηφ(ηφ − εφ)− ξφ] , (3.117)

τNL = (2εφ − ηφ)2. (3.118)

3.4 Testing single-field slow-roll inflation with the CMB

Before diving into the models of single-field slow-roll inflation, we first briefly summarize

the cosmological observables that can be utilized to test inflationary models. Based on

the previous contents in Chapter 2 and Chapter 3, we can construct Table 1.

Since all the energy scale free16 cosmological observables of single-field slow-roll in-

flation can be expressed in terms of slow-roll parameters, single-field slow-roll inflation

has to satisfy a series of consistency relations including [142,143]

(
ns − 1 +

1

8
r

)2

= 4τNL =
144

25
f2

NL, (3.119)

(
ns − 1 +

1

8
r

)
(ns − 1) +

dns
d ln k

=
108

25
gNL. (3.120)

As a result, if the observations disagree with any of the above consistency relations,

we can rule out single-field slow-roll inflation. In such cases, one would then have to

introduce extra complexities in the model17 .

16 By energy scale free, we mean all the observables in Table 1 except the power spectrum of the

curvature perturbation. This is because none of them depend on the overall energy scale of inflation.
17 Table 1 can change when additional complexities are introduced, such as when the single-field

slow-roll inflation has a non-trivial initial condition with a large momentum in φ, far away from the

slow-roll attractor solution near the Hubble exit of the CMB scales. Such scenarios are off the topic

of this thesis, and will not be discussed.
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Table 1: Single-field slow-roll inflation predictions and the Planck CMB observations

[26,27]. Errors are at 1σ unless otherwise noted.

Parameters Predictions Observations

Pζ
H2

πεφM2
p

(2.142± 0.048)× 10−9

ns 1− 6εφ + 2ηφ 0.9667± 0.0040

dns
d ln k

8εφ(−3εφ + 2ηφ)− 2ξφ −0.0065± 0.0076

fNL
5

6
(2εφ − ηφ) 0.8± 5.0

gNL
25

54
(2ηφ(ηφ − εφ)− ξφ) (−9.0± 7.7)× 104

τNL (2εφ − ηφ)2 < 2800 at 95% CL

r 16εφ < 0.07 at 95% CL
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The second consistency relation (Eq. (3.120)) is far from practical use. The errors

in r, gNL and dns
d ln k are currently large. However, our current observations are accurate

enough to distinguish the first consistency relation (Eq. (3.119)). The curvature per-

turbation is almost scale invariant and the tensor-to-scalar ratio is small (r < 0.07).

Single-field slow-roll inflation is thus required to produce small non-Gaussianities in

fNL � 1 and τNL � 1, regardless of the specific model [142, 143]. This can already be

confirmed partly by the Planck observations.

3.5 Models of single-field slow-roll inflation

There are hundreds of models of inflation, even just for single-field slow-roll inflation

[98, 144]. In this thesis, we will only discuss the inflation with a power-law potential,

and the inflection point inflationary models. (For a review, see [45,47,93,145,146].)

3.5.1 Inflation with a power-law potential

Inflation can be realized with a very simple power-law potential of a real scalar φ, in

the form

V (φ) =
1

p
λM4

p

(
φ

Mp

)p
. (3.121)

This potential contains two parameters – the exponent p that determines the power of

the potential, and the coupling constant λ. Typically, people are interested in the p = 2

and p = 4 models, corresponding to the quadratic and quartic potentials respectively.

For p = 2, we can define

m ≡
√
λMp (3.122)

as the bare mass of φ. Eq. (3.121) then reduces to quadratic inflation, corresponding to

a single scalar field with mass m which drives inflation with the potential

V (φ) =
1

2
m2φ2. (3.123)
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The p = 4 case is called chaotic inflation [37], which is dominated by the self-coupling

of a massless scalar. The potential is

V (φ) =
1

4
λφ4. (3.124)

Due to the simple potential form, the power-law potential is sometimes regarded as the

simplest model of inflation.

We will still use the generic potential Eq. (3.121). The slow-roll parameters can then

be calculated as

εφ =
p2M2

p

16πφ2
, (3.125)

ηφ =
p(p− 1)M2

p

8πφ2
, (3.126)

ξφ =
p2(p− 1)(p− 2)M4

p

64π2φ4
. (3.127)

Taking the inflation condition as εφ < 1, we find that the power-law potential can

provide inflation easily as long as18

|φ| > p

4
√
π
Mp. (3.128)

Since during inflation φ never changes sign, without loss of generality we take φ > 0.

From Eq. (3.23), we can solve the background evolution of φ as a function of the number

of remaining e-folds of inflation N , as

φ(N) =
Mp

4
√
π

√
p(p+ 4N). (3.129)

Putting it back into the slow-roll parameters then gives

εφ(N) =
p

p+ 4N
, (3.130)

ηφ(N) =
2(p− 1)

p+ 4N
, (3.131)

ξφ(N) =
4(p− 1)(p− 2)

(p+ 4N)2
, (3.132)

18 Although for p > 2, |ηφ| = 1 is reached first during inflation, we will still use εφ < 1 as the only

measure for the end of inflation for simplicity.
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and all the cosmological observables

Pζ =
128π

3
λ

[
p(p+ 4N)

16π

] p
2

+1

, (3.133)

ns = 1− 2(p+ 2)

p+ 4N
, (3.134)

dns
d ln k

= − 8(p+ 2)

(p+ 4N)2
, (3.135)

r =
16p

p+ 4N
. (3.136)

We have omitted the non-Gaussianity observables which are automatically determined

by single-field slow-roll consistency relations.

The parameter λ can be fixed by the power spectrum of scalar perturbations ac-

cording to Eq. (3.133). If we also restrict the power parameter p among certain discrete

values, such as 2 and 4 in this thesis, the inflation model with a power-law potential is

then left with no free parameter.

Then, the power-law potential for inflation is completely predictive. The only un-

certainty comes from N . Since we are only able to know the physics at the relatively

low energy scales, we cannot be certain about the post-inflationary dynamics before Hot

Big Bang, such as how the inflaton φ decays into visible matter and dark sector. But in

general, the CMB scales should correspond to N ∼ 50 to 60. Therefore we can simply

calculate the observables for N = 50 and N = 60 separately. In Table 2, we show the

results for p = 2 and p = 4.

From Table 2, we see that quadratic inflation agrees very well with the observed

scalar perturbations. It however produces some tensor perturbations which is in tension

with Planck. The chaotic inflation model is in even stronger tension with Planck data

in scalar spectral index and tensor-to-scalar ratio, as can be seen from Figure 8.

In fact, the potential Eq. (3.121) makes it difficult to produce large tensor-to-scalar

ratio while keeping ns ≈ 1. From Eq. (3.134) and Eq. (3.136), the power-law potential
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Table 2: Inflationary predictions from a power-law potential and the observations.

Quadratic (p = 2) and chaotic (p = 4) inflations are demonstrated. The Planck 2015

data [26–28] are used.

Parameters Observations
Quadratic inflation Chaotic inflation

N = 50 N = 60 N = 50 N = 60

m/Mp

Pζ = 2.142× 10−9

5.0× 10−7 4.2× 10−7 N/A N/A

λ N/A N/A 3.7× 10−15 2.2× 10−15

ns 0.9667± 0.0040 0.960 0.967 0.941 0.951

dns
d ln k

−0.0065± 0.0076 −8× 10−4 −5× 10−4 −1× 10−3 −8× 10−4

r < 0.07 at 95% CL 0.16 0.13 0.31 0.26
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Figure 8: The Planck observations constrain inflationary models as above [26]. The x and

y coordinates correspond to the spectral index and the tensor-to-scalar ratio. The shaded

grey, red, and blue regions show the Planck observational constraints when combined with

different data sources. The colour depths indicate the 1σ and 2σ confidence levels. Other

shaded regions and line segments correspond to the predictions of various inflationary models,

for 50 and 60 e-folds of inflation before the Hubble exit on smaller and bigger circle sides

respectively.
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needs to satisfy an additional consistency relation besides those in Section 3.4:

(
1 +

2

p

)2

r2 = 64(1− ns)2. (3.137)

Given r < 0.07 and ns ≈ 0.96, the consistency relation requires p . 1, which is beyond

the scope of the thesis. The power-law potential cannot reproduce our observations for

p = 2 or p = 4, due to the consistency relation.

On the other hand, another fundamental problem of the power-law potential is that

the inflaton φ typically needs to reach Planck scale Mp to produce inflation, as required

in Eq. (3.128) [147].

3.5.2 Inflection point inflation

In this section, we will consider the single-field slow-roll inflation models that can be

effectively regarded as an inflection or saddle point potential in the neighbourhood19 .

Such potentials may arise from Minimal Supersymmetric Standard Model (MSSM) [85,

148], as an example. The inflection point brings about a plateau in the potential, which

is flat enough locally to accommodate slow roll while the inflaton stays sub-Planckian

(�Mp).

The constructed scalar potential is [80, 82]20

V (φ) =
1

2
m2φ2 − λA φ6

6M3
p

+ λ2 φ
10

M6
p

, (3.138)

where m and A > 0 are called the soft breaking mass and the A-term respectively. Let

us define

4α2 ≡ 1− A2

40m2
. (3.139)

19 We only study inflection point here.
20 Inflection point potentials are possible in various forms [4, 80, 82, 90–93, 149]. Here we only

discuss a specific one.
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Figure 9: The inflection point inflation can be achieved typically around

the inflection point φ0 because of the cancellation in V ′(φ).

There exists an inflection point φ0 in the potential V (φ) with V ′′(φ0) = 0, which lies at

φ0 =

(
mM3

p

λ
√

10

) 1
4

+O(α2). (3.140)

At the inflection point φ0,

V (φ0) =
4

15
m2φ2

0 +O(α2), (3.141)

V ′(φ0) = 4α2m2φ0 +O(α4), (3.142)

V ′′′(φ0) = 32
m2

φ0
+O(α2). (3.143)

Neglecting higher order expansion terms around the inflection point φ0, the effective

potential around inflection point becomes

V (φ) = V (φ0) + V ′(φ0)(φ− φ0) +
V ′′′(φ0)

6
(φ− φ0)3. (3.144)
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The first and second slow-roll parameters then become

εφ =
225M2

p

16πφ6
0

[
α2φ2

0 + 4(φ− φ0)2
]2

(1 +O(α2)), (3.145)

ηφ =
15M2

p

πφ3
0

(φ− φ0) +O(α2). (3.146)

From Eq. (3.145) and Eq. (3.146), we can find inflation near the inflection point if the

potential is flat enough with εφ < 1, i.e.

α4 � 16πφ2
0

225M2
p

� 1. (3.147)

The second inequality comes from our wish to keep the inflaton sub-Planckian. The

potential then has the shape as Figure 9.

From now on we keep only the leading order terms. The slow-roll parameters are

then simplified to

εφ =
225M2

p

16πφ6
0

[
α2φ2

0 + 4(φ− φ0)2
]2
, (3.148)

ηφ =
15M2

p

πφ3
0

(φ− φ0). (3.149)

Inflation hence only occurs close enough to the inflection point with |ηφ| < 1, as21

|φ− φ0| <
πφ3

0

15M2
p

. (3.150)

The Hubble expansion rate is given by

H2 ≈ 32πm2φ2
0

45M2
p

. (3.151)

According to Eq. (3.150), we set the end of inflation at

φe ≡ φ0 −
πφ3

0

15M2
p

, (3.152)

21 The first slow-roll condition should also be satisfied to allow slow-roll inflation. However, during

inflection point inflation, the violation of the second slow-roll condition is usually much earlier. For

this reason, we don’t consider the first slow-roll condition.
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where the subscript e indicates end of inflation. The dynamics of background solution

can then be solved, which yields the power spectrum of curvature perturbation [4, 83,

85,90]

Pζ(N) =
256πm2φ4

0

3× 153α4M6
p

sin4

(
15αM2

p

4πφ2
0

N

)
, (3.153)

and the spectral index for scalar perturbations [4, 83,85,90]

ns = 1−
15αM2

p

πφ2
0

cot

(
15αM2

p

4πφ2
0

N

)
. (3.154)

Since the potential in this setup is usually very flat around the inflection point, the

second slow-roll parameter |ηφ| is usually much larger than the first slow-roll parameter

εφ. The spectral tilt ns − 1 should then mostly come from ηφ, while leaving εφ very

small. In such cases, one would expect a very small tensor-to-scalar ratio. Overall,

the inflection point potential Eq. (3.138) has been shown to agree well with the Planck

observations in [4].

On the other hand, inflection and/or saddle point potentials of inflation require the

model parameters to be substantially tuned [85]. Here the parameters m and A must be

tuned to bring about a very small α. This raises the question why in nature the param-

eters would cancel so finely, and can be regarded disadvantageous for inflection/saddle

point inflation. This is however beyond the scope of the thesis.

To summarize, in this chapter we have derived generic predictions of single-field

slow-roll inflation. We have studied power-law and inflection point potentials. The

consistency relation in single-field slow-roll inflation forbids many features in the CMB,

such as large non-Gaussianities, which will be investigated in the framework of multi-

field inflation in the upcoming chapters.
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4 Multi-component inflation

In this chapter, we derive the cosmological predictions for multi-field inflation. Spectator

fields can be regarded as the minimal multi-field inflation scenario. Single-field slow-roll

inflation with an extra perfect fluid is also discussed. Conclusions of this chapter will

provide assistance for the spectator calculations in the next chapter.

4.1 Generic multi-field slow-roll inflation

4.1.1 δN formalism

Consider n slowly rolling real canonical scalar fields, indicated with φµ where µ =

0, 1, . . . , n − 1. Assuming δN formalism (see Section 3.2.2 and [132, 134, 140–142]) and

perturbative calculations are applicable, we can always write the remaining e-folds of

universe expansion as a function of the fields on spatially flat hypersurfaces

N = N(φ0, φ1, . . . , φn−1) = N(φµ). (4.1)

According to separate universe approach [132, 134], the perturbation in N then cor-

responds to a curvature perturbation, which can be expanded in terms of the field

perturbations δφµ on spatially flat hypersurfaces as [140–142]

ζ(x) = δN(x) = Nµδφ
µ+

1

2
Nµν(δφµδφν−〈δφµδφν〉)+

1

6
Nµνλδφ

µδφνδφλ+higher order,

(4.2)

where

Nµ ≡ dN

dφµ
, (4.3)

Nµν ≡ d2N

dφµdφν
, (4.4)

Nµνλ ≡ d3N

dφµdφνdφλ
, (4.5)

. . . .
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The space-time dependences are omitted for simplicity.

We know for slowly rolling scalars, their quantum fluctuations should be Gaussian,

like Eq. (3.63), which will satisfy

〈δφµ(k)δφν(k′)〉 = (2π)3δµνδ3(k− k′)Pδφ(k). (4.6)

For super-Hubble perturbations, Eq. (3.66) and Eq. (3.99) still hold, giving rise to

Pδφ(k) =
H2

2k3
, Pδφ =

H2

4π2
. (4.7)

The leading order curvature perturbation is the Gaussian part

ζG(x) ≡ Nµδφ
µ(x). (4.8)

The power spectrum of curvature perturbation can hence be calculated easily at leading

order [132,134]

Pζ = Pδφ
∑

µ

N2
µ. (4.9)

The local bi-spectrum is measured from (Section 2.2)

〈ζ3(x)〉 = 3

〈
ζ2
G ×

1

2
Nµν

(
δφµδφν − 〈δφµδφν〉

)〉

=
3

2
NµνNλNη

〈
δφλδφη

(
δφµδφν − 〈δφµδφν〉

)〉

= 3NµνNµNν〈(δφ)2〉2

=
3NµνNµNν(∑

µN
2
µ

)2 〈ζ2
G(x)〉2. (4.10)

Recall the definition of fNL from Eq. (2.26) and Eq. (2.31). By comparing Eq. (2.31)

and Eq. (4.10), we find the expression of fNL for multi-field inflation, as [140,141]

fNL =
5

6

NµνNµNν(∑
µN

2
µ

)2 . (4.11)
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Similarly, the local tri-spectra can be derived as [142]

gNL =
25

54

NµνλNµNνNλ(∑
µN

2
µ

)3 , (4.12)

τNL =
NµNµλNλνNν(∑

µN
2
µ

)3 . (4.13)

When only one field contributes to the curvature perturbation, such as when other

fields are heavy and provide negligible perturbations, we can redefine the fields so that

the only field contributing to curvature perturbation is named as φ0. Then the only non-

vanishing term among Nµ for µ = 0, 1, . . . , n−1 is N0. The non-Gaussianity parameters

reduce to

fNL =
5

6

N00

N2
0

, (4.14)

gNL =
25

54

N000

N3
0

, (4.15)

τNL =
N2

00

N4
0

. (4.16)

Therefore, the consistency relation Eq. (3.115) also holds in the multi-field scenarios

where only one field produces curvature perturbation.

For the power spectrum of tensor perturbations, the same relation Eq. (3.108) also

holds for multi-field inflation. However, the tensor-to-scalar ratio changes because the

scalar perturbations are different

r ≡ PtPζ
=

64π

M2
p

∑
µN

2
µ

. (4.17)

4.1.2 Multi-field evolution

In the above section, we have expressed cosmological observables in terms of Nµ, Nµν ,

and Nµνλ. We will move on to computing Nµ, Nµν , and Nµνλ in this section.

Consider the generic multi-field inflation scenario with n slowly rolling canonical

scalar fields, φµ, where µ = 0, 1, . . . , n − 1. When the full action of the model and the
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Figure 10: The field perturbation δφ (black) is schematically decomposed into adia-

batic + entropy perturbation modes (green), or into field perturbation modes (pur-

ple), or into curvature + isocurvature perturbation modes (red) on a two dimensional

hypersurface of the full phase space. The adiabatic and curvature modes are along

the trajectory (blue). The entropy mode is perpendicular to the trajectory while

the isocurvature mode is on the uniform N hypersurface (dashed red).
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initial conditions are given, the classical solution of the background evolution becomes

a fixed trajectory in the n dimensional phase space of the physical system, as in Figure

10. Based on the perturbative calculations of separate universe approach [132–136], we

can treat each Hubble patch as a homogenous separate universe which receives the field

perturbations φµ → φµ + δφµ. As shown in Figure 10, the generic perturbations δφµ

can be decomposed in three typical ways, each of which then corresponds to a different

approach in calculating the evolution of perturbations:

• The perturbation δφµ is decomposed along the trajectory of the background evolu-

tion, and the n−1 dimensional hypersurface that is perpendicular to the trajectory.

The adiabatic mode is the component along the trajectory, and the n− 1 entropy

modes are on the n− 1 dimensional hypersurface. Together, they form a complete

and orthogonal basis of the n dimensional field space. The adiabatic mode can be

regarded as a time shift, which is the same as the perturbation mode in single-field

slow-roll inflation. The complexity arises from the entropy modes, which can still

produce curvature perturbation after Hubble exit. From the Hubble exit, we need

to keep track of all the perturbations and calculate how entropy modes transfer

to adiabatic mode as the universe evolves, up to the point when entropy modes

cease to transfer to adiabatic mode, known as the adiabatic limit. After reaching

the adiabatic limit, the adiabatic perturbation then corresponds to the amount of

curvature perturbation that would be generated. Isocurvature perturbations can

be calculated similarly [150,151].

• The perturbation δφµ is decomposed along the n field directions, into n separate

components of the field perturbations, δφµ. We can then evolve the field pertur-

bations δφµ, or the distribution of perturbations P (δφµ), from Hubble exit to the

adiabatic limit. Then, field perturbations can be projected onto the curvature
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perturbation direction, and also isocurvature perturbation directions if needed,

yielding the cosmological predictions straightforwardly [152–154].

• The perturbations δφµ are decomposed along the trajectory of background evo-

lution, and the n − 1 dimensional hypersurface, on which any field perturbation

does not lead to any curvature perturbation. The curvature mode is the component

along the trajectory, and the n−1 isocurvature modes are on the n−1 dimensional

hypersurface. Together, they form a complete but not necessarily orthogonal basis

of the n dimensional field space. Given any perturbation δφµ on any point of the

trajectory, we can instantly tell that δφµ produces the curvature perturbation that

is exactly equal to the curvature mode of the decomposition. This is because the

isocurvature modes do not produce any curvature perturbation by definition (see

Figure 10). According to δN formalism, such isocurvature modes do not produce

any δN in separate universes, so we can call the n−1 dimensionsal hypersurface as

the uniform N hypersurface. Note that in our convention, adiabatic and curvature

perturbations are not the same, and neither are isocurvature and entropy pertur-

bations. To derive the n − 1 dimensional isocurvature hypersurface, we need to

evolve the isocurvature hypersurface from a known position, such as at the adia-

batic limit or a known boundary, back to the Hubble exit of the perturbation mode

of our concern. Isocurvature perturbations can be calculated similarly [1,155–157].

For the comparisons between these approaches, see [1, 153,154].

For convenience, we will use the last two approaches in the thesis. In order to

parameterize the uniform N hypersurface, we can use Nµ to determine the direction of

the hypersurface, Nµν for the geometrical curvature of the hypersurface, and so forth

for higher order expansion if required. Therefore the question of evolving the uniform

N hypersurface now becomes the question of evolving Nµ, Nµν , . . . , from a known
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boundary hypersurface at a later time to the Hubble exit of the perturbation mode of

our interest. For example, we may pick the boundary when the universe reaches the

adiabatic limit, where the uniform N hypersurface overlaps with uniform energy density

hypersurface.

According to the separate universe approach, we can parameterize the phase space

of a homogenous Hubble patch with φµ, for the n fields with µ = 0, 1, . . . , n−1. Here we

also define a different parameterization, using pµ where µ = 0, 1, . . . , n− 1. The zeroth

component corresponds to p0 ≡ N , the coordinate along curvature direction, and pi (for

the i = 1, 2, . . . , n − 1 components in pµ) are the isocurvature coordinates on uniform

N hypersurface.

In the absence of any isocurvature perturbation concerns, pi can be chosen arbitrarily

without exact definitions, as long as they form a complete but not necessarily orthogonal

basis of uniform N hypersurface. We can then write the local coordinate transformation

φµ ←→ pµ as

dφµ = σµνdpν , (4.18)

where the summation over ν is implicit, and the transformation matrix σµν is defined

as

σµν ≡ dφµ

dpν
. (4.19)

The inverse transformation is

dpµ = σµνdφν , (4.20)

in which the inverse transformation matrix satisifies

σµν ≡
dpµ
dφν

, (4.21)

with the consistency relation

σµασ
αν = σνασαµ = δνµ . (4.22)
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Consider the action for multi-field slow-roll inflation

S ≡
∫ √−g d4x

(
M2

p

16π
R− V +

∑

µ

1

2
∂νφµ∂νφ

µ

)
, (4.23)

where the potential is abbreviated from the form

V = V (φ) = V (φµ) ≡ V (φ0, φ1, . . . , φn−1). (4.24)

Assuming we have solved the background evolution for the fields φµ, we then have

limited information about the transformation matrix, as

σµ0 =
dφµ

dN
=
M2

pV,µ

8πV
, (4.25)

where we use superscripts and subscripts “, µ” for total derivatives w.r.t pµ and φµ

respectively. The slow-roll approximation has been applied at the second equality.

The differentiations satisfy

d

dpµ
= σµν

d

dφν
,

d

dφµ
= σµν

d

dpν
. (4.26)

It is also commutative on σ by definition, as

σµν,λ = σµλ,ν . (4.27)

Applying Eq. (4.26) on Eq. (4.27), we find

σµν,λ = σµλ,ν = σανσµλ,α. (4.28)

Since the inverse transformation matrix σλµ is the inverse of σλµ, its derivative should

follow the differential rule for inverse matrices, i.e.

σλµ
,0 = −σλασβµσαβ,0 = −σλασβµσγβσα0

,γ = −σλασα0
,µ . (4.29)

By substituting Eq. (4.25) into Eq. (4.29), it reduces to

σλµ
,0 =

M2
p

8π

(
V,αV,µ
V 2

− V,αµ
V

)
σλα. (4.30)
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After the manipulation, Eq. (4.30) has become a set of first order linear differential

equations for σλµ, w.r.t the e-folding p0 = N . The equation set is separable for each

λ. Since the background evolution φµ is known, the coefficients of Eq. (4.30) are also

known.

By definition Nµ ≡ N,µ = σ0µ, so the λ = 0 part of Eq. (4.30) corresponds to

dNµ

dN
=
M2

p

8π

(
V,αV,µ
V 2

− V,αµ
V

)
Nα. (4.31)

Therefore we have formulated the set of differential equations that Nµ should satisfy,

which can then be solved backwards on a per model basis.

For higher order perturbations, some calculations would reveal a similar relation

σλµ,ν
,0 = −σλµ,ασα0

,ν − σλν,ασα0
,µ − σλασα0

,µν . (4.32)

The λ = 0 component corresponds to

dNµν

dN
=

M2
p

8π

(
V,αV,ν
V 2

− V,αν
V

)
Nµα +

M2
p

8π

(
V,αV,µ
V 2

− V,αµ
V

)
Nνα

−
M2

p

8π

(
2V,αV,µV,ν

V 3
− V,αV,µν

V 2
− V,µV,αν

V 2
− V,νV,αµ

V 2
+
V,αµν
V

)
Nα.(4.33)

After solving Nµ from Eq. (4.31), we are then able to solve Nµν from Eq. (4.33).

From above, we can solve Nµ and Nµν , so the curvature perturbation ζ from any

field perturbations δφµ is predictable. For the isocurvature perturbations, if we know

exactly how the inflationary model couples to the standard model degrees of freedom,

we can then define isocurvature directions accordingly.

For example, when we are interested in the relative energy density perturbation of

cold dark matter (CDM), we can specifically define p1 along this direction. The rest

of the components p = 2, . . . , n − 1 should be picked on the uniform N(= p0) and p1

hypersurface with n−2 dimensions, so that these components are decoupled from CDM

isocurvature perturbation in addition to curvature perturbation. Such isocurvature
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perturbations should follow the same evolution equations as Eq. (4.31) and Eq. (4.33),

corresponding to different λ components of the same equations, Eq. (4.30) and Eq.

(4.32).

One substantial application of the local coordinate transformation φµ ←→ pµ is to

obtain N0 after knowing the rest, i.e. Ni, for i = 1, 2, . . . , n − 1. This is useful, for

example, when calculating the combined curvature perturbations from the inflaton and

the curvaton/spectator field in Chapter 5.

For this purpose, consider the field perturbation δφ0, which can be decomposed into

two components:

• the perturbation δp0 along the trajectory direction, which projects onto the field

perturbation space as {δφµ = dφµ

dp0
δp0}, and

• the field perturbations δφi which fill the remaining n− 1 dimensions in the phase

space.

The first component contributes to the curvature perturbation by the amount

δp0 =

(
dφ0

dp0

)−1

δφ0. (4.34)

The second component then cancels out the rest of the field perturbations δφi coming

from the first component. Their net contribution to field space is exactly δφ0, whilst

their total contribution to curvature perturbation can be obtained because we know Ni.

The mathematical approach is simple. From Eq. (4.22), we get

σ0µσ
µ0 = Nµ

dφµ

dN
= 1. (4.35)

This immediately gives

N0 =

(
dφ0

dN

)−1(
1−Ni

dφi

dN

)
, (4.36)

where dφµ/dN is known from the background equations of motion.
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4.1.3 Two-field inflation

When only two fields are present, the conclusions can be further simplified. For µ =

ν = 0, Eq. (4.22) becomes

M2
p

8πV

∑

α

NαV,α = 1. (4.37)

This allows us to eliminate Nα for α 6= µ in Eq. (4.31) because there are only two fields,

which gives

dN0

dN
= uN0 + v, (4.38)

where the temporary variables are defined as

u ≡
M2

p

8π

(
V,0V,01

V V,1
− V,00

V

)
, (4.39)

v ≡ V,0
V
− V,01

V,1
, (4.40)

and similarly for N1.

Now the differential equations for N0 and N1 are separable, allowing us to provide

a solution in the integral form with Mathematica

N0(N) = N0(Nref) + e
∫N
Nref

udN
∫ N

Nref

ve
−

∫N
Nref

udN
dN, (4.41)

where the subscript “ref” corresponds to a reference point which can be picked at the

time when the universe has become adiabatic, so N0(Nref) is known. It should stay on

the same trajectory with that of background evolution, i.e. pref
i = pi.

Similarly, since Nµνσ
ν0 = dNµ/dN can be read out directly from Eq. (4.38), for

second order perturbations we can also eliminate Nµα for α 6= ν in Eq. (4.33). The

second order equations will also fit within the form Eq. (4.38), but with different though

more complicated u and v. The second order solutions hence also have an integral

form. The integral form is a further simplification that only applies on two-field models,

because we are unable to separate the differential equations for n > 2 in general.
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4.1.4 Separable potentials

There are other scenarios where the conclusions can be further simplified, even for more

than two fields. One common case is when the potential adopts a specific form, such

as the separable potentials [150, 155, 158]. For example, very often we may encounter

potentials that can be decomposed for each field, as

V (φµ) ≡
∑

µ

Vµ(φµ), (4.42)

so the fields do not couple with each other. Note here that Vµ indicates the separated

potentials for each field φµ, not the derivative of φµ which would contain a comma.

Since the potential is separable, we have the relation

V,µν = 0, for µ 6= ν. (4.43)

This allows us to greatly simplify Eq. (4.31), giving

dNµ

dN
=

M2
p

8π

V,αV,µ
V 2

Nα −
M2

pV,µµ

8πV
Nµ (4.44)

=
V,µ
V
Nα

dφα

dN
− ηµNµ (4.45)

= −ηµNµ +
V,µ
V
, (4.46)

where in the last step, we have applied the relation σ0ασ
α0 = 1. The slow-roll parameters

for multi-field inflation with the separable potential Eq. (4.42) are defined as

εµ ≡
M2

pV
2
,µ

16πρ2
, (4.47)

ηµ ≡
M2

pV,µµ

8πρ
, (4.48)

and the total energy density is just ρ ≈ V .

For separable potentials, the slow-roll parameters satisfy the relation

d ln εµ
dN

= 2ηµ − 4ε, (4.49)
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where the total first slow-roll parameter is defined as

ε ≡ − d

dt

1

H
=

d lnH

dN
=
∑

µ

εµ. (4.50)

The differential equation Eq. (4.46) yields to the same form with Eq. (4.38), with

u = −ηµ, (4.51)

and

v =
V,µ
V
. (4.52)

In the case of separable potentials, the integrals in Eq. (4.41) can be worked out analyt-

ically, because they only contain total derivatives. For example, ηµ is a total derivative

as can be seen from Eq. (4.49) and Eq. (4.50). The solution is

Nµ = N ref
µ +

8π

M2
p

Vµ − V ref
µ

V,µ
. (4.53)

The superscript “ref” is similar to the subscripts in Eq. (4.41). The same formula is

also derived in [150,155,158].

4.2 Spectator fields

From the above, we see that multi-field inflation can be simplified a lot with only two

fields, or with uncoupled fields. When we look for the minimal extension of single-

field slow-roll inflation, one possible candidate is to introduce only two uncoupled fields

(except minimally by gravity). Generically, both fields can participate in inflation, and

produce curvature perturbations, but again the simplest possibility is the two fields

have separate roles. The inflaton field φ dominates energy density and drives inflation,

while it only contributes negligibly to curvature perturbation. The spectator field σ

then remains subdominant in energy density, but is responsible for creating curvature

perturbation.
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The definition of spectator fields in this thesis follow the criteria below:

• The spectator field produces the observable curvature perturbation, in terms of

amount and length scale. Otherwise, we are not motivated to study it.

• The inflation background dynamics are hardly changed if the spectator field is

modified or removed, at least during the period it produces observable perturba-

tions. This requires the spectator to remain subdominant in energy density. The

inflation dynamics should be hardly affected by the spectator.

In principle, there are no other limitations, such as when the spectator decays or ends

slow roll, or what its (or its decay products’) energy density ratio is in the beginning of

Hot Big Bang. Most two-field inflation scenarios, such as hybrid inflation [50] or assisted

inflation [55–60], do not belong to the inflaton-spectator category. This is because the

inflation dynamics cannot stay exactly the same after removing one field. The inflaton

and the spectator can even couple as long as the above criteria are satisfied, but we will

insist on no coupling in the thesis, purely for minimalism.

The total potential can hence be written as

Vtot(φ, σ) ≡ V (φ) + U(σ), (4.54)

where V and U are the respective potentials for φ and σ. During inflation, the inflaton

dominates the energy density, and we can neglect σ for background evolution. The

system then reduces to single-field slow-roll inflation, during which we can directly

apply the calculations in Section 3.1. The perturbations, however, would involve model-

dependent calculations.
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4.3 Single inflaton with a perfect fluid

Let us consider the case where we add a perfect fluid with a constant equation of state

parameter w into single-field slow-roll inflation. We will only consider the fluid to be

matter-like with w = 0 or radiation-like with w = 1/3 in the thesis. The perfect fluid

can also represent fields, such as those in fast oscillations which behave as matter-like

fluids with w = 0.

Now the energy density of the universe contains two parts

ρ = V (φ) + ρf , (4.55)

where the potential energy density V (φ) comes from the inflaton φ, and the energy den-

sity of the perfect fluid is ρf . We know that a slow-roll field behaves like a cosmological

constant, with

V (φ) ∝ a0, (4.56)

but the perfect fluid is redshifted according to [15]

ρf ∝ a−3(1+w). (4.57)

Due to the distinctive redshift rates, we shall expect the contribution from perfect fluid

to be quickly redshifted away, leaving the universe in a single-field slow-roll inflation

state. Before the perfect fluid is redshifted away, it however can still contribute to the

e-folding of universe expansion22.

Inflation requires the comoving Hubble radius to decrease as the universe expands,

so the inflaton φ have to take the major role in energy density. We will work within this

22 We do not address how to establish the initial conditions here, but as an example the perfect

fluid can come from the decay of a pre-existing slow-roll field. The preceding stage can be multi-field

inflation, or the spectator mechanism which will be discussed in Chapter 5.
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constraint, so the Hubble rate of universe expansion satisfies

H2 =
8π

3M2
p

(
ρfie

3(1+w)(N−Ni) + V (φ)
)
, (4.58)

where the subscript i indicates the initial condition. Therefore, ρfi and Ni are regarded

as known constants for the scenario.

The equation of motion for inflaton is (after slow-roll approximation)

3Hφ̇+ V ′(φ) = 0, (4.59)

or alternatively,

H2 =
V ′(φ)

3

dN

dφ
. (4.60)

By combining Eq. (4.58) and Eq. (4.60), we can eliminate the Hubble rate H, and reduce

them to a differential equation of φ w.r.t N as

8π

3M2
p

[
ρfie

3(1+w)(N−Ni) + V (φ)
]

=
V ′(φ)

3

dN

dφ
. (4.61)

The differential equation can be solved exactly with Mathematica, as

Ni −N = n(φi, φ) +
1

3(1 + w)
ln

1− rfiα
1− rfi

, (4.62)

where n(φ1, φ2) is the number of e-folds of universe expansion if the perfect fluid is not

present:

n(φ1, φ2) ≡
∫ φ1

φ2

8πV

M2
pV
′dφ, (4.63)

and correspondingly, the second term in Eq. (4.62) is the contribution from perfect fluid.

Also, rf is the energy density ratio of the perfect fluid versus total, as

rf ≡
ρf

V (φ) + ρf
< 1, (4.64)

and

α ≡ 1− 24(1 + w)πV (φi)

M2
p

∫ φi

φ

e−3(1+w)n(φi,φ)

V ′(φ)
dφ. (4.65)
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To understand how the perfect fluid affects perturbations, let us consider the in-

finitesimal perturbations in initial condition on a spatially flat slicing

φi → φi + δφi, ρfi → ρfi + δρfi. (4.66)

The parameters n, rfi and α will change correspondingly:

δn(φi, φ) =
8πV (φi)

M2
pV
′(φi)

δφi = 2

√
π

ε̃φi

δφi
Mp

, (4.67)

δrfi = rfi(1− rfi)
(
δρfi
ρfi
− 4
√
πε̃φi

δφi
Mp

)
, (4.68)

and

δα = −
[
4ε̃φi(1− α) + 6(1 + w)α

]√ π

ε̃φi

δφi
Mp

. (4.69)

Here the tilded slow-roll parameters are defined as if the inflaton φ is the only component

in the universe, and obtained by replacing the total energy density with φ’s potential

energy density in Eq. (3.10), Eq. (3.11) and Eq. (3.72), so that

ε̃φ ≡
M2

pV
′2

16πV 2
=

εφ
(1− rf )2

, (4.70)

η̃φ ≡
M2

pV
′′

8πV
=

ηφ
1− rf

, (4.71)

ξ̃φ ≡
M4

pV
′V ′′′

(8πV )2
=

ξφ
(1− rf )2

. (4.72)

From above, we can find the total change in the number of e-folds of inflation by

fixing the reference point at the end of inflation with Ne = 0, as

ζ = δNi =
1

1− αrfi

[
2

√
π

ε̃φi

δφi
Mp

+
(1− α)rfi
3(1 + w)

δρfi
ρfi

]
. (4.73)

Therefore, when the perturbation only exists for φ, the amount of the curvature per-

turbation produced would be similar to that from single-field slow-roll inflation, except

with a small correction from (1− αrfi).
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When multiple components coexist during inflation, isocurvature perturbations may

be produced. In the case of single inflaton with a (matter-like or radiation-like) perfect

fluid, the isocurvature perturbations are typically negligible. This is because any energy

density perturbation in the perfect fluid is redshifted away quickly during the remaining

inflation. Therefore as long as the perfect fluid goes away early enough before the end

of inflation, it will not leave any relic in the energy components we see today.

We can also obtain closed form solutions for the background evolution if necessary,

by evaluating α. For this purpose, we need to calculate the integral in Eq. (4.65),

which converges to the attractor solution quickly as inflation proceeds because of the

exponential damping. For the slowly rolling inflaton φ, we can perform a series expansion

of the slow-roll parameters around the initial point, i.e.

1

V (φ)
=

1

V (φi)
+ n

d

dn

1

V (φ)

∣∣∣∣
i

+
n2

2

d2

dn2

1

V (φ)

∣∣∣∣
i

+ higher order. (4.74)

Eq. (4.65) can then be calculated order by order, in the form

α = α(0) + α(1) + α(2) + higher order, (4.75)

where each α(j) ∼ O
(
εxφη

y
φξ

1
2

(j−x−y)

φ

)
corresponds to the slow-roll parameter expansion

of the order j (assuming that the first and second slow-roll parameters are small at the

same (first) order, while the third slow-roll parameter is small at the second order).

Some calculations then yield α order by order

α(0) = 0, (4.76)

α(1) = − 2ε̃φi
3(1 + w)

, (4.77)

α(2) = −4ε̃φi(3ε̃φi − η̃φi)
9(1 + w)2

, (4.78)

α(3) = − 4ε̃φi
27(1 + w)3

[
10ε̃φi

(
3ε̃φi − 2η̃φi

)
+ 2η̃2

φi + ξ̃φi

]
, (4.79)

. . . .
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We can also write them in terms of the original slow-roll parameters

α(0) = 0, (4.80)

α(1) = − 2εφi
3(1 + w)(1− rfi)2

, (4.81)

α(2) = − 4εφi
9(1 + w)2(1− rfi)3

(
3εφi

1− rfi
− ηφi

)
, (4.82)

α(3) = − 4εφi
27(1 + w)3(1− rfi)4

[
10εφi

1− rfi

(
3εφi

1− rfi
− 2ηφi

)
+ 2η2

φi + ξφi

]
, (4.83)

. . . .

Therefore, at the leading order, α ∼ O(εφi) < 0.

To summarize, in this chapter we have studied multi-field inflation at perturbation

level. The existence of a perfect fluid in single-field slow-roll inflation can potentially

contribute to cosmological perturbations. Spectator fields arise naturally as a minimal

multi-field inflation scenario, which shall be discussed in the next chapter.
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5 Spectator scenario

In this chapter, we first introduce the curvaton scenario and recall some of its exist-

ing studies. We then proceed to the spectator scenario and study its background and

perturbation evolutions. In the end, we map out the parameter space of the spectator

scenario for three example potentials.

5.1 Curvaton scenario

The curvaton scenario was proposed in [100–103], as an alternative scenario to produce

the primordial perturbations. The inflaton φ drives inflation as in single-field slow-roll

inflation, while the curvaton remains subdominant in energy density during inflation.

The curvaton is either slowly rolling or frozen during inflation. Its perturbations will be

kept, and only transfer to the curvature perturbation after inflation. The final energy

density ratio of the curvaton or its decay products’ is not constrained by the scenario.

There are two typical curvaton scenarios – a dominant curvaton and a subdominant

curvaton at the time of decay – which are demonstrated in Figure 11. The simplest
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curvaton potential takes the form23

U(σ) ≡ 1

2
m2σ2. (5.1)

The evolution follows the four phases below:

• During inflation, both fields are slowly rolling, acting as the cosmological constant.

The curvaton can even be frozen, so its quantum fluctuations are stronger than its

slow roll. The existence of a curvaton σ does not change the inflation dynamics

other than slightly boosting the Hubble rate by contributing to the total energy

density. At the Hubble exit of pivot scales, the perturbation in the field σ is

preserved and does not affect universe evolution right away.

• Inflation ends once the inflaton has ended slow roll. It starts to oscillate and then

decays into relativistic particles at some point. The curvaton still remains slowly

rolling after inflation because it is much lighter than the inflaton. The universe

then consists of two components – the perfect fluid of radiation coming from φ’s

decay products, and the cosmological constant like curvaton σ. The radiation is

23 Although there are many other choices of the curvaton potential, Eq. (5.1) is advantageous due

to its simplicity. The constant mass m allows us to predict when it ends slow roll independently

of the field value σ or its initial conditions [101, 103]. This property also allows the curvaton to be

frozen instead of slowly rolling, without changing any of the cosmological predictions. Therefore,

we will only investigate the minimal potential Eq. (5.1) for the curvaton in the thesis. There is

a rich literature in the study of curvaton, such as those with different potentials, kinetic terms,

particle physics origins and inflationary models, or the case when both the inflaton and the curvaton

contribute to curvature perturbation, or vector curvaton. The curvaton may also drive a second

phase of inflation. Some of the relevant literature can be found in [4, 72, 73, 75, 78, 79, 93, 101, 103,

104,140,159–222].
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expected to dominate the universe for some time, despite the redshift from universe

expansion. There can also be a phase of oscillation for φ right after the end of

inflation.

• As the Hubble rate quickly declines, at some point it will drop below the curvaton

mass m, so the curvaton starts to oscillate around its vacuum expectation value.

The oscillating curvaton behaves like matter, and also starts to be redshifted away,

though at a lower rate than radiation. To prevent a second phase of inflation, we

require the curvaton to remain subdominant at the transition point where it ends

slow roll.

• When the Hubble rate further drops below the decay rate of the curvaton, the

curvaton decay process becomes efficient enough so the energy density of curvaton

is assumed to be fully and instantly transferred to its decay products. The decay

products are relativistic, so the radiations from inflaton and curvaton are blended

together and are assumed to become indistinguishable. This forms the adiabatic

initial condition for Hot Big Bang. The curvaton’s energy density ratio peaks at

its time of decay, which consequently leads to the highest conversion rate from the

initial curvaton perturbation to curvature perturbation ζ. In the minimal scenario,

this is the only source of primordial perturbations, dictating all the inhomogeneities

of the universe we see today.

After inflation, the curvaton’s energy density ratio increases, until it decays into

radiation. The curvaton may even catch up with the inflaton during the process, after

it starts to oscillate. This gives us the two possible scenarios shown in Figure 11. If the

curvaton fails to catch up with the inflaton in energy density before it decays, then it

never will.

The potential Eq. (5.1) has been extensively studied in the past, giving rise to the
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prediction of power spectrum of curvature perturbation [101,103]

Pζ =
r̃2

9π2

H2
∗

σ2
∗
, (5.2)

where

r̃ ≡ 3ρσd
4ρd − ρσd

(5.3)

characterizes the conversion rate from the curvaton field perturbation to curvature per-

turbation. Here the subscripts ∗ and d correspond to the time of pivot scale Hubble exit

and the time of curvaton decay respectively, while ρσ and ρ are the energy densities of

the curvaton and the total. Since the curvaton is much lighter than the inflaton, the

spectral index only depends on the first slow-roll parameter of the inflaton:

ns ≈ 1− 2ε∗ ≈ 1− 2εφ∗. (5.4)

This constrains the inflaton model by

εφ∗ ≈ 0.02. (5.5)

The non-Gaussianities of curvature perturbation have also been investigated for cur-

vaton scenario, giving [103,140,142,172]

fNL =
5

4r̃
− 5

3
− 5

6
r̃, (5.6)

gNL =
25

54

(
−9

r̃
+

1

2
+ 10r̃ + 3r̃2

)
, (5.7)

τNL =
36

25

(
5

4r̃
− 5

3
− 5

6
r̃

)2

. (5.8)

The curvaton scenario therefore gives two distinct non-Gaussianity predictions for the

two possibilities in Figure 11:

• When curvaton always subdominates energy density, we typically acquire large

non-Gaussianities (� 1):

fNL =
5

4r̃
, gNL = −25

6r̃
, τNL =

9

4r̃2
. (5.9)
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• When curvaton is subdominant at the time it ends slow roll, but becomes dominant

at the time of decay, the non-Gaussianities are small (∼ O(1)):

fNL = −5

4
, gNL =

25

12
, τNL =

9

4
. (5.10)

There is also a possibility in-between where the curvaton contributes significantly but not

fully to the total energy density at the time of decay. The non-Gaussianity predictions

are also expected to lie in between.

The primordial tensor perturbations only depend on the energy scale of inflation,

giving the same power spectrum as in Eq. (3.108). The tensor-to-scalar ratio will be

suppressed because scalar perturbations now come from the curvaton

r =
144πσ2

∗
r̃2M2

p

. (5.11)

As a multi-field model, the curvaton scenario can also produce isocurvature pertur-

bations [104]. The current observation strongly constrains the existence of isocurvature

perturbations. This requires r̃ � 1 or 1 − r̃ � 1, so the universe should be filled with

either the inflaton decay products or the curvaton decay products. The only exception

of the requirement is a fundamental theory that guarantees the same branching ratios

for inflaton and curvaton.

The Planck satellite gives accurate measurements on the non-Gaussianities of the

CMB temperature perturbation, thus constraining models of inflation and/or the cur-

vature perturbation generation mechanisms. The curvaton models, acting as the source

of the curvature perturbation, are also constrained accordingly. Planck sees no local

bi-spectrum according to the bound fNL = 0.8 ± 5.0. This leads to the constraint

r̃ > 0.06 at over 3σ significance (see Eq. (5.9)), for the quadratic curvaton model that

is fully responsible for curvature perturbation. When this is combined with the absence

of isocurvature perturbations, the constraint becomes r̃ > 0.98 [26]. Therefore, the

97



curvaton must also produce the matter contents of our universe.

The large ratio r̃ > 0.98 may also cause other issues for the curvaton model. To avoid

a second phase of inflation, the curvaton should contribute no more than half to the total

energy density at the time it ends slow roll. This means the curvaton must oscillate for

more than 4 e-folds before it decays. It raises the question of why its coupling constant

with matter is so small, and how to suppress possible parametric resonance during the

oscillations [224].

In order to match the Planck observations, there have been several extensions of

curvaton model in recent literature. We will not discuss them in the thesis, but instead,

simply list them as below:

• When the curvaton potential has a self-coupling term, it may produce negative fNL

by itself which cancels out the positive fNL from the minimal curvaton scenario

[171]. The curvaton is thus allowed not to dominate the energy density of the

universe at decay. However it produces extra gNL unavoidably, which can be

observed in future measurements. The coupling constant also requires extra tuning

for the fine cancellation.

• If curvaton and inflaton have the same branching ratios, their decay products

become indistinguishable and therefore no isocurvature perturbation is produced.

The constraint then falls back to r̃ > 0.06, and mild non-Gaussianities can be

achieved within the observational bound. However the identical branching ratio

should come out automatically from the theoretical construction of inflaton and

curvaton models, but not as a mere assumption without any justification.

• The curvaton can also contribute only partially to curvature perturbation, while

the rest comes from other fields, such as the inflaton. In such cases, the inflaton

perturbations can dilute the characteristics of the curvature perturbations from

98



curvaton, depending on the contribution ratio to curvature perturbation. This can

suppress the local fNL from the curvaton, while the other observables, such as ns

and τNL are also subject to change [222,225].

5.2 Spectator scenario

Above, we have demonstrated the curvaton scenario, in which a light field seeds the

fluctuations and then decays after inflation has come to an end. The minimal cur-

vaton model however is strongly constrained by the recent Planck data, due to the

non-Gaussianity and isocurvature constraints.

On the other hand, if a field exits slow roll or decays much before the end of inflation,

it will never influence the thermal history of the universe and will become a spectator

field. Its decay products will be redshifted away during inflation and the inflaton will

be solely responsible for creating all the matter. Meanwhile such a spectator field could

still be responsible for seeding the CMB anisotropy, provided the relevant scales for the

CMB leave the Hubble patch before the spectator field ends slow roll. In this respect,

spectator scenarios do not produce any isocurvature perturbations in the universe.

As explained in Section 4.2, we will stick to the separable potential Eq. (4.54) where

the inflaton and spectator fields do not couple. The spectator energy density is always

subdominant, giving V (φ)� U(σ) at any time. If the spectator field ends slow roll well

before the end of inflation but after the Hubble exit of the pivot scales, it gives rise to

two consequent phases of inflation as shown in Figure 12:

1. Phase I: The inflaton φ leads inflation. Both φ and σ are slowly rolling. This

phase ends as the slow-roll condition for σ breaks down. We assume that the

relevant perturbations for the CMB leave the Hubble patch in this phase24.

24 The observed pivot scale actually has a window of several e-folds. Here we consider every mode
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Figure 12: A schematic timeline for spectator scenario is shown above. The solid

lines are the background evolutions of the energy densities of inflaton, spectator and

the total contribution. The green and blue dashed lines represent the evolution of

spectator and total energy densities of the universes with perturbed σ. The two

phases of spectator evolution are separated by the phase boundary when σ breaks

the slow-roll condition.
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2. Phase II: When σ ends slow roll, the inflaton φ still dominates inflation under

slow-roll conditions. Then σ either oscillates around the minimum of it’s potential,

or decays instantly. In either case, σ or its decay products are being redshifted

away swiftly during this phase, and can be regarded as a perfect fluid with a

constant equation of state w. For this reason, several e-folds after the beginning

of this phase, the dynamics reduce to that of single-field slow-roll inflation of φ.

We will use the subscripts “∗” for the Hubble exit of the mode of our concern, “b” for

the boundary between the two inflationary phases, and “e” for the end of inflation. In

Phase I, slow-roll approximations are satisfied for both fields, giving rise to the equations

of motion

dφ

dN
=

M2
pV
′

8π(U + V )
, (5.12)

dσ

dN
=

M2
pU
′

8π(U + V )
, (5.13)

where we have used the number of the remaining e-folds N as proper time. The potential

energy densities V (φ) and U(σ) are defined according to the separable potentials in Eq.

(4.54).

Eq. (5.12) and Eq. (5.13) suggest a simple relation

dφ

V ′
=

dσ

U ′
, (5.14)

whose integrated form is
∫ φ∗

φ

dφ

V ′
=

∫ σ∗

σ

dσ

U ′
, (5.15)

which holds up to the boundary point b.

Phase I ends when the slow-roll condition of the spectator breaks down. This can

be either first or second slow-roll condition, but here we will only choose the violation

separately so the window is not shown in Figure 12.
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of second slow-roll condition. This is because the violation of first slow-roll condition

typically leads to negligible curvature perturbation from the spectator field, which will

be justified in Section 5.3. In order to violate second slow-roll condition before first-

order, we can use a plateau potential, such as the one shown in Figure 9. For plateau

potentials, both slow-roll conditions are well satisfied before the spectator reaches the

plateau boundary, but the second slow-roll condition breaks down upon reaching the

plateau boundary. The boundary condition of the end of slow roll can then be written

as

ησb ≡
M2

pU
′′
b

8π(Ub + Vb)
= −1. (5.16)

After the spectator ends slow roll, it then acts as a perfect fluid with a constant

equation of state w. The universe enters single-field slow-roll inflation with a perfect

fluid, which has been solved in Section 4.3. The energy density of spectator (or its

decay products) is diluted as the universe expands, according to ρσ ∝ a−3(1+w). If the

spectator decays into radiation early on, it will remain subdominant in energy density,

and never take any role in the following evolution. However, in the worst case where the

spectator never decays, it oscillates around its vacuum with w = 0 while the inflaton

decays into radiation immediately after inflation. To prevent the spectator from coming

into our sight, it has to end slow roll before the last ∼ 20 e-folds of inflation. We will

not consider the worst case, but instead assume that spectator decays reasonably early,

so it will not leave any imprint on the energy density as long as it ends slow roll before

the end of inflation. This guarantees negligible isocurvature perturbations from the

spectator.
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5.3 Perturbations

The cosmological perturbations arising from the spectator field can be calculated using

δN formalism. Similar with the calculations in the curvaton scenario, we first neglect

the perturbations from the inflaton, and only consider the initial spectator perturbation

at the Hubble exit, δσ∗. All other perturbations are induced by this initial perturbation.

During Phase I, δσ∗ perturbs Eq. (5.15) at the boundary by the amount

−δφb
V ′b

=
δσ∗
U ′∗
− δσb
U ′b

. (5.17)

The field perturbations at the boundary, δφb and δσb, should still satisfy the boundary

condition Eq. (5.16), giving

8πV ′b δφb + (M2
pU
′′′
b + 8πU ′b)δσb = 0. (5.18)

Combining the above equations gives us the induced field perturbations at the bound-

ary

δφb = −V
′
b

U ′∗
(1− θ)δσ∗, (5.19)

δσb =
U ′b
U ′∗
θδσ∗, (5.20)

where the variable θ is defined as

θ ≡ εφb
εφb + εσb + ξσb

≈ εφb
ξσb
� 1. (5.21)

The third slow-roll parameter for σ at the boundary, ξσb, is assumed to be relatively

large (& O(1)) for the plateau potentials we consider here. The approximation holds as

long as the corresponding slow-roll parameters, εφ and εσ are both much smaller than

unity.

In order to calculate the perturbations in the e-folding, we work in the uniform φ

slicing. Eq. (5.15) then tells us how the field perturbation δσ evolves after the Hubble
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exit

δσ

U ′
=
δσ∗
U ′∗

. (5.22)

The number of e-folds of Phase I can be written as an integrated form

N∗ −Nb ≡
∫ N∗

Nb

dN =

∫ φ∗

φb

8π(U + V )

M2
pV
′ dφ. (5.23)

The initial perturbation δσ∗ alters it by the amount

δN∗ − δNb =
8π

M2
p

(
−Ub + Vb

V ′b
δφb +

∫ φ∗

φb

U ′

V ′
δσdφ

)
, (5.24)

in which (according to Eq. (5.14) and Eq. (5.22)) the integral can be simplified to

∫ φ∗

φb

U ′

V ′
δσdφ =

δσ∗
U ′∗

∫ φ∗

φb

U ′2

V ′
dφ =

U∗ − Ub
U ′∗

δσ∗. (5.25)

Consequently, we get the final expression for the perturbed number of e-folds in Phase

I as

δN∗ − δNb =
8π
[
U∗ − Ub + (1− θ)(Ub + Vb)

]

M2
pU
′
∗

δσ∗. (5.26)

After the spectator σ ends slow roll, the universe enters the second phase of inflation.

Single-field slow-roll inflation with a perfect fluid has been solved in Section 4.3, which

gives the perturbation in the e-folding for Phase II, (according to Eq. (4.73),) as

δNb − δNe =
1

1− αrσb

[
8πVb
M2

pV
′
b

δφb +
(1− α)U ′b

3(1 + w)(Ub + Vb)
δσb

]
, (5.27)

where

rσb ≡
Ub

Ub + Vb
(5.28)

is the energy density ratio of spectator at the phase boundary, and α is defined in Eq.

(4.65).

Since the energy density of spectator field is redshifted away in Phase II, the uni-

verse becomes adiabatic before the end of inflation, without producing any curvature

perturbation after inflation:

δNe = 0. (5.29)
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Combining Eq. (5.26), Eq. (5.27) and Eq. (5.29) gives the total curvature perturbation

ζ from the initial field perturbation δσ∗

ζ = δN∗ = Nσδσ∗, (5.30)

where

Nσ =
1− α

1− αrσb

{
8πU∗
M2

pU
′
∗

+ θ
[ U ′b

2

3(1 + w)(Ub + Vb)U ′∗
− 8πUb
M2

pU
′
∗

]}
+
α(1− rσb)
1− αrσb

8π(U∗ − Ub)
M2

pU
′
∗

.

(5.31)

During inflation, most of the slow-roll parameters are much smaller than unity,

including εφ, εσ, |ηφ|, |ησ∗|, ξφ � 1, but with the exceptions of ησb = −1 and ξσ. Therefore

we can perform a series expansion w.r.t the slow-roll parameters together with rσ � 1.25

In addition, when the potential U(σ) is sharp enough at the phase boundary, i.e. θ � 1

and rσbξσb � εφbεσb, Eq. (5.31) becomes dominated by the very first term. The leading

order of Eq. (5.31) is then simplified to

Nσ ≈
8πU∗
M2

pU
′
∗
. (5.32)

When the inflaton dominates the curvature perturbation, we have

Nφ ≈
8πV∗
M2

pV
′
∗
. (5.33)

Therefore, by comparing the above two equations, we find that for spectator to dominate

the curvature perturbation, it simply demands a relatively flatter potential

U ′∗
U∗
� V ′∗

V∗
. (5.34)

For a simple spectator potential such as the power law potential U(σ) ∝ σp, it is

hardly possible for the spectator to fulfill the three conditions simultaneously – dom-

inating curvature perturbation, remaining subdominant in energy density, and exiting

25 The slow-roll parameter ξφ does not have to be much smaller than 1, but in many cases it is

no larger than O(ε2φ). Therefore here we also take it as a small quantity.
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slow roll before the inflaton does. They can be satisfied altogether, on the other hand, if

we use a plateau potential for U(σ). For plateau potentials, slow roll is terminated when

the spectator reaches the (sharp enough) plateau edge, justifying our previous choice of

the plateau potential for Eq. (5.16).

The above calculations would then give the power spectrum of curvature perturbation

Pζ =
16H2

∗U
2
∗

M4
pU
′
∗

2
=

H2
∗r

2
σ∗

πM2
pεσ∗

. (5.35)

The spectral tilt is given by

ns − 1 ≡ −∂ lnPζ
∂N

= −2εφ∗ + 2ησ∗ −
4εσ∗
rσ∗

, (5.36)

where we have neglected the term −2εσ∗.

Note from Eq. (5.35), we can obtain εσ∗ from the observed power spectrum of the

curvature perturbation

εσ∗ =
H2
∗r

2
σ∗

πM2
pPζ

. (5.37)

By plugging it back into Eq. (5.36), we see that as long as the inflation energy scale

H∗ � 10−5Mp, the last term in Eq. (5.36) is negligible compared to the observed spectral

tilt, ns − 1 ≈ −0.033 [26]. So we are left with

ns − 1 = −2εφ∗ + 2ησ∗. (5.38)

With the help of Eq. (5.36), the running of spectral tilt can be shown as

dns
d ln k

= −dns
dN

= −1

2
(ns − 1)2 − 2

[
3ε2∗ − 2(εφ∗ηφ∗ + εσ∗ησ∗)− η2

σ∗ + ξσ∗

]
. (5.39)

The strength of local bi-spectrum fNL can be derived from taking the derivative
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∂/∂σ∗ on Eq. (5.31). The leading terms are26

fNL ≡ 5

6

Nσσ

N2
σ

=
10s2

σεφb
3rσb

[
2εφb − ηφb
3(1 + w)

− εφb
ξ2
σb

(
1− λσb

ξσb

)
+
ηφb
ξσb

]

+
20s2

σεσbεφb
9(1 + w)r2

σbξσb

(
2− 4 + 3w

ξσb
− λσb
ξ2
σb

)
+

5εσ∗
3r2
σ∗
− 5ησ∗

6rσ∗

+higher order, (5.40)

where the energy density ratio of spectator between the boundary and the Hubble exit

is defined as

sσ ≡
Ub
U∗

< 1, (5.41)

and the fourth slow-roll parameter is

λσ ≡
M6

pU
′2U ′′′′

[8π(U + V )]3
. (5.42)

The third order derivative Nσσσ = ∂3Nσ/∂σ
3
∗ can be calculated in the same way and

also gNL. According to Eq. (4.12), we obtain the leading order tri-spectrum of curvature

perturbation as

gNL =
25

54

{
2ησ∗
r2
σ∗

(
ησ∗ −

εσ∗
rσ∗

)
− ξσ∗
r2
σ∗

+
4s3
σεφbξφb
r2
σb

[
1

3(1 + w)
− 1

ξσb

]

+
8s3
σεφbεσb

3(1 + w)r3
σbξσb

A

}
, (5.43)

where

A ≡ ξφb + ηφb

(
2ηφb +

3ησ∗
s

)
− 3εφb

(
2ηφb +

ησ∗
s

)(
2− 4 + 3w

ξσb
− λσb
ξ2
σb

)

+2ε2φb

[
6− 2

ξσb
− 3(1 + w + λσb)

ξ2
σb

+
3(4 + 3w)λσb − χσb

ξ3
σb

+
3λ2

σb

ξ4
σb

]
. (5.44)

Here we have also defined another energy density ratio

s ≡ Ub + Vb
U∗ + V∗

< 1, (5.45)

26 In this thesis some expressions appear different from those in [3]. However, they are identical

because here we use energy density ratios at different times (rσb and rσ∗) to simplify the results.
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and the fifth slow-roll parameter for σ

χσ ≡
M8

pU
′3U ′′′′′

[8π(U + V )]4
. (5.46)

In the above simplest case, where inflaton perturbation is negligible, curvature pertur-

bation comes solely from the spectator field and τNL fulfills the simple relation

τNL =
36

25
f2

NL. (5.47)

When the spectator potential is extremely flat on the plateau (εσ, ησ∗ → 0 and

sσ → 1) and the plateau edge is extremely sharp (ξσb → ∞), the non-Gaussianity

predictions are greatly simplified to

fNL =
10εφb(2εφb − ηφb)

9(1 + w)rσb
, (5.48)

gNL =
50εφbξφb

81(1 + w)r2
σb

− 25ξσ∗
54r2

σ∗
. (5.49)

Therefore the local fNL in the spectator scenario is similar to that of curvaton scenario,

because they both are inversely proportional to energy density ratio. However, spectator

scenario produces a weaker fNL, because it is also suppressed by the slow-roll parameters

of inflaton. The local fNL in spectator scenario can be large (� O(1)) or small (. O(1)),

depending on which is even smaller, the energy density ratio or the slow-roll parameter

suppression.

In the above calculations, we have assumed that classical slow roll dominates over the

quantum fluctuations of σ for the relevant scales. This requires the classical displacement

of σ to be larger than the quantum fluctuations per Hubble time, i.e.

Pδσ∗ <
(

dσ

dN

)2

. (5.50)

Multiplying both sides with N2
σ and using Eq. (5.35), we can convert it to a model

independent lower bound on rσ∗

r2
σ∗ > Pζ . (5.51)
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According to the Planck observation [26], which gives Pζ ≈ 2.5 × 10−9, we obtain a

lower bound rσ∗ > 5× 10−5

On the other hand, when the spectator potential is very flat, such as when the spec-

tator is frozen during inflation, the spectator may fail to end slow roll during inflation.

On such occasions, as the Hubble rate decreases after inflation, the spectator will how-

ever accelerate exponentially. If the spectator reaches the edge of plateau before taking

over the inflaton (or its decay products) in energy density, the model becomes effectively

the curvaton scenario. Otherwise, we will encounter a second phase of inflation, which

is beyond the scope of this thesis.

In order to achieve an ideal spectator scenario, we will need a plateau that is suffi-

ciently flat to dominate curvature perturbation, but not too flat so the spectator still

ends slow roll during inflation. We also require the potential to be smooth enough

(U ′′ small enough) on the plateau for the near scale invariant spectrum. There are no

shortage of such fields. Their origin could come from anywhere – the visible sector or

a hidden sector. Such a spectator does not even have to couple to the Standard Model

degrees of freedom because it does not leave any trace in the current energy density

or isocurvature perturbations. All the onus will be now on the inflaton’s coupling to

the Standard Model degrees of freedom for creating the right thermal history of the

universe.

5.4 Spectator models

5.4.1 Step function spectator

In certain circumstances, we may encounter a spectator field σ with the potential u(σ),

which slowly rolls at σ > σ0 and decays instantly at σ = σ0. Such scenarios can be

modelled equivalently with a potential which has a step function multiplier, namely
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U(σ) which is defined as

U(σ) = H(σ − σ0)u(σ) =





u(σ), for σ > σ0,

0, else,

(5.52)

where we assume u(σ) is flat and smooth enough to accommodate slow roll for σ > σ0.

The Heaviside step function is defined as

H(x) ≡





1, for x > 0,

0, else,

(5.53)

which can be regarded as a limiting case of the hyperbolic tangent function

H(x) = lim
k→+∞

1 + tanh kx

2
. (5.54)

Such step function potentials can also model composite scenarios, such as using the

symmetry breaking mechanism of hybrid inflation as spectators.

We will keep k as a large number here, and only take the k → +∞ limit in the

final step. The spectator σ then leaves slow roll at σb > σ0 when the second slow-roll

condition is violated, or limk→∞ σb = σ+
0 . Due to the sharp transition at the plateau

edge σb, its whole energy density is instantly transferred to its decay products, which

can be regarded as a perfect fluid with a constant equation of state w. No energy density

is lost in the process, requiring tanh k(σb − σ0) → 1, or k(σb − σ0) � 1 for the sharp

transition. This simplifies the derivatives of the step function as

∂n tanh k(σ − σ0)

∂σn
≈ (−2)n+1kne−2k(σ−σ0), for n = 1, 2, . . . under k(σ − σ0)� 1.

(5.55)

It then yields the second slow-roll parameter at the phase boundary, for k(σb−σ0)�

1,

ησb ≡
M2

pu
′′
b

8π(ub + Vb)
= −

k2M2
pub

2π(ub + Vb)
e−2k(σb−σ0) = −1, (5.56)

110



from which we solve that the spectator ends slow roll at

σb − σ0 =
1

2k
ln

k2M2
pub

2π(ub + Vb)
. (5.57)

Based on this, we calculate the rest of the slow-roll parameters

εσb =
M2

pu
′
b
2

16π(ub + Vb)2
, (5.58)

ξσb = 2kMp

√
εσb
π
, (5.59)

λσb = −2k2M2
p

εσb
π
, (5.60)

χσb = 2k3M3
p

(εσb
π

) 3
2
. (5.61)

For a step function potential whose edge is infinitely sharp (i.e. k → ∞), the local

bi-spectrum (Eq. (5.40)) and tri-spectrum (Eq. (5.43)) are simplified to

fNL =
10s2

σεφb(2εφb − ηφb)
9(1 + w)rσb

+
5εσ∗
3r2
σ∗
− 5ησ∗

6rσ∗
, (5.62)

gNL =
25

54

[
2ησ∗
r2
σ∗

(
ησ∗ −

εσ∗
rσ∗

)
− ξσ∗
r2
σ∗

+
4s3
σεφbξφb

3(1 + w)r2
σb

]
. (5.63)

If we further assume the potential u(σ) is very flat and smooth, (i.e. εσ � 1, ησ∗ � 1,

and sσ ≈ 1,) they will reduce to Eq. (5.48) and Eq. (5.49).

As a naive example, we can consider both fields to have quadratic potentials. The

potential U(σ) also has a step function for a sharp transition during inflation. In this

case, the potentials are written as

V (φ) =
1

2
m2
φφ

2, U(σ) =
1

2
m2
σσ

2H(σ − σ0). (5.64)

Inflation is driven by V (φ). In the beginning, when the relevant perturbations leave

the Hubble patch, we have σ∗ > σ0, so it stays on the plateau and rolls down slowly.

When the spectator field reaches σb = σ0, it decay instantly into radiation which can be

modelled by the the sudden change in the potential arising from the step function, which

terminates slow roll. The radiation is quickly diluted away by the remaining inflation.
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Since σ rolls very slowly during Phase I, we typically expect σ∗ − σ0 � σ0. This means

the effective potential for σ > σ0 can be approximated by a linear potential

U(σ) =
1

2
m2
σσ

2
0 +m2

σσ0(σ − σ0). (5.65)

For this model, we have a total of 4 free parameters – mφ, mσ, σ0, and Nb which

is the number of e-folds of universe expansion from the phase boundary to the end of

inflation (after setting Ne = 0). The overall energy scale only affects the power spectrum

of the curvature perturbation by

Pζ =
8(2N∗ + 1)m2

φσ
2
0

3M4
p

. (5.66)

Therefore we can fix Pζ to the observed value and hence reduce the number of free

parameters to 3. We want σ to dominate curvature perturbation, which requires σ0 to

be large enough (σ0 � φ∗). However as long as this condition is satisfied, the value of

σ0 hardly affects the cosmological predictions of the model. We are left with only two

free parameters, which are the mass ratio mσ/mφ and Nb. For this model, the energy

density ratio at the phase boundary is given by

rσb =
m2
σσ

2
0

m2
φφ

2
b

. (5.67)

So we will use rσb and Nb for coordinates of the two-dimensional parameter space,

replacing mσ/mφ.

After transforming the parameter space, the free parameters reduce frommφ,mσ, σ0, Nb

to rσb and Nb. The other two degrees of freedom are absorbed in Pζ which is fixed by

observation, and σ0 which does not change the cosmological predictions. Based on the

background solution for single-field slow-roll inflation for φ (as Eq. (3.129)):

φ =
Mp

2
√
π

√
2N + 1, (5.68)
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the transformation in the parameter space has the following relations

m2
φ =

3M4
pPζ

8(2N∗ + 1)σ2
0

, (5.69)

m2
σ =

3(2Nb + 1)M6
pPζrσb

32(2N∗ + 1)πσ4
0

. (5.70)

The local bi-spectrum in Eq. (5.62) is now simplified to

fNL =
5

6(2Nb + 1)2rσb
. (5.71)

The two dimensional parameter space (rσb, Nb) is constrained by the following con-

ditions

1. The Hubble exit of pivot scale, the phase boundary, and the end of inflation are

all well separated. So typically we choose 3 ≤ Nb ≤ N∗ − 3.

2. The spectator field should remain subdominant in energy density, so rσb � 1.

3. The inflaton should provide suppressed curvature perturbation compared to that

from spectator, which means r2
σb � s2

σεσ∗/(s
2εφ∗). For the specific model, it

corresponds to σ0 � φ∗ and does not constrain the free parameters.

4. The first slow-roll parameter is smaller than unity when σ stays on the flat poten-

tial, i.e. εσ∗ < 1.

5. The quantum fluctuations of σ should not dominate over its classical slow roll.

This means Eq. (5.51) is valid. Here, it means

rσb >

√
2N∗ + 1

2Nb + 1
Pζ . (5.72)

Under the above conditions, we can calculate the spectral index ns, its running

dns/d ln k, the local bi-spectrum fNL, and tri-spectrum gNL. A specific example of

fNL is shown in Figure 13, for the parameters N∗ = 50, σ0 = 10Mp and w = 1/3.

The regions violating any of the above five conditions are excluded and shown by the
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Figure 13: The local bi-spectrum fNL is shown for a step potential spectator field

with a quadratic inflaton, as discussed in Section 5.4.1. The yellow shaded region is

excluded from parameter space by the five criteria discussed in Section 5.4.1. Darker

regions indicate a higher fNL. The red dashed contours are for fNL = 1, 5, 10, 20 from

top right to bottom left.

114



yellow shaded region in Figure 13. We can read out from Eq. (5.69) the mass for φ

here is mφ ≈ 3.0 × 10−7Mp, so the curvature perturbation from φ is indeed negligible.

In addition, for these parameters we have ns = 0.98, dns/d ln k = −3 × 10−4 and

gNL � 1, all of which hardly depend on the choice of Nb or rσb. They all fall within the

observational bounds [26,27].

From Figure 13, we see that the parameter space is limited. In particular, rσb

is constrained on both sides because we need σ to be subdominant and its quantum

fluctuations not to overcome slow-roll motion. Moreover, σ hardly contributes to ns,

fNL or gNL because its slow-roll parameters are tiny. With the inflaton φ being the

only contribution to spectral index, we get ns ≈ 0.98, a small running, a small local bi-

spectrum fNL, and a smal tri-spectrum gNL. For these parameters, we can see the local

bi-spectrum strength fNL has a maximum value around 20, which is capped because

the classical slow roll has to dominate over quantum fluctuations. It also agrees well

with the Planck observations, which limit fNL < 16 at ≈ 3σ [27]. In this case, the

major contribution to fNL comes from the conversion from non-adiabatic perturbations

to curvature perturbation, which becomes non-Gaussian after the spectator ends slow

roll and decays into perfect fluid, even though this non-Gaussian conversion only lasts

for one e-fold or so.

5.4.2 Inflection point spectator

Flat directions naturally arise in string theory and supersymmetric theories [93]. These

flat directions can also be candidates for the spectator potential. In most cases, such

flat directions can be written locally as an effective scalar potential in the form [80,82]

U(∆σ) = U0

(
1 + γ1

∆σ

Mp
+
γ3

6

∆σ3

M3
p

)
+ higher order, (5.73)
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where

∆σ ≡ σ − σ0 (5.74)

is the displacement of the scalar spectator σ from its inflection/saddle point σ0.

Therefore at ∆σ = 0, i.e. σ = σ0, we will get an inflection/saddle point where U = U0

and U ′′ = 0. For inflection and saddle points, we will have γ1 > 0 and γ1 = 0 respectively,

and we always have γ3 > 0. In general, the higher order terms in the effective potential

Eq. (5.73), e.g. ∆σ4, also provide a small contribution to the potential or its derivatives.

Here we assume their contributions vanish for the sake of simplicity.

In this respect the motion of σ can be solved as follows. We first obtain the field

displacement at the phase boundary ∆σb, from the breakdown of the second slow-roll

condition ησb = −1

∆σb = −8πMp(Ub + Vb)

γ3U0
. (5.75)

With this we can introduce a very helpful parameter γ0, which tells us how “flat” the

potential is at the inflection point

γ0 ≡
√

γ1

Mp

2M3
p

γ3∆σ2
b

=

√
γ1γ3

2

U0

4π(Ub + Vb)
. (5.76)

Therefore the ratio of U ′(σ) between the inflection point and the phase boundary is

γ0/(1+γ0). For the inflection point potential we are interested in here, typically γ0 � 1.

As long as we specify the inflaton potential and Nb, we are able to solve the equation

of motion for ∆σ. The slow-roll approximation in Phase I gives the l.h.s of Eq. (5.15)

as

∫ ∆σ

∆σb

d∆σ

U ′
=

M2
p

U0

√
2

γ1γ3
arctan

√
γ3

2γ1

∆σ

Mp

∣∣∣∣
∆σ

∆σb

=
M2

p

4πγ0(Ub + Vb)

(
arctan

1

γ0
+ arctan

x

γ0

)
, (5.77)

where the temporary variable

x ≡ ∆σ

|∆σb|
, (5.78)
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is the relative displacement from the inflection point.

Since σ always subdominates energy density, we can neglect its contribution to the

Hubble rate when solving the background evolution for φ(N). By equating Eq. (5.77)

(as the l.h.s of Eq. (5.15)) with the r.h.s of Eq. (5.15), we derive the evolution of σ(N)

in terms of x(N), as

arctan
x

γ0
= − arctan

1

γ0
+

4πγ0(Ub + Vb)

M2
p

∫ φ

φb

dφ

V ′(φ)
. (5.79)

We can also derive the slow-roll parameters that are needed to calculate the cosmo-

logical observables

εσ =
64π3(Ub + Vb)

4

γ2
3U

2
0 (U + V )2

(γ2
0 + x2)2, (5.80)

ησ =
Ub + Vb
U + V

x, (5.81)

ξσ =
(Ub + Vb)

2

2(U + V )2
(γ2

0 + x2), (5.82)

and all the higher slow-roll parameters vanish by our initial assumption. When the

plateau formed by the inflection point is flat but has a sharp transition at the boundary

(γ3 is large and γ0 < 1), and the plateau is narrow (|∆σb| �Mp), the observables then

can be simplified. For example, the spectral index and its running become 27

ns − 1 = −2εφ∗ + 2sx∗, (5.83)

dns
d ln k

≈ −1

2
(ns − 1)2 + 2εφ∗(2ηφ∗ − 3εφ∗) + s2(γ2

0 − x2
∗). (5.84)

As a simple example, we consider the quadratic inflaton potential

V (φ) =
1

2
m2φ2, (5.85)

and we assume it dominates over the spectator potential U(σ). After setting the end

of inflation at Ne = 0 and taking the pivot scale as N∗ = 50, we have a total of 5 free

27In the limit s→ 1, they reduce to the results in [3].
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parameters m,U0, γ1, γ3 and Nb. By using the same trick as in Section 5.4.1, we can fix

the overall energy scale to match Pζ , and switch to the parameter space rσb, γ0, γ3, Nb.

Then the cosmological observables and the solution x∗(N∗) are independent of γ3 when

γ3 is large, as can be seen from Eq. (5.79), Eq. (5.83), and Eq. (5.84). Therefore, here

we take a large γ3 and further reduce the parameter space to rσb, γ0, Nb.

The background evolution of φ can be worked out as a function of N

φ(N) = Mp

√
2N + 1

4π
. (5.86)

This reduces Eq. (5.79) to

arctan
x∗
γ0

= − arctan
1

γ0
+
γ0(2Nb + 1)

4
ln

2N∗ + 1

2Nb + 1
. (5.87)

We can make some predictions from the expressions already. In Eq. (5.87) when

N∗ = 50 and γ0 are fixed, the relative displacement x∗ at the Hubble exit is maximized

when the last term in Eq. (5.87) reaches maximum at Nb ≈ 18. Since the field σ

contributes to the spectral index by 2sx∗ as in Eq. (5.83), we should expect the spectral

index to also reach maximum at Nb ≈ 18. The last term of Eq. (5.40) contributes

−5x∗/6rσb to the local fNL, which should reach the minimum at Nb ≈ 18.

Our analytical predictions can be verified by considering the typical case N∗ = 50,

γ3 = 1010, γ0 = 0.15 and w = 1/3. The only remaining free parameters are rσb and

Nb. We can hence plot the CMB observables on the (rσb, Nb) parameter space, as in

Figure 14 and Figure 15, where the parameter γ1 is also shown. The parameter space

has the same exclusion conditions as discussed in Section 5.4.1, which are shaded in

yellow. Here the third constraint for the specific model can be shown as

r4
σb �

64π3(γ2
0 + x2

∗)

γ2
3εφ∗

. (5.88)

The energy scale for the spectator field, U0, varies from 10−26M4
p to 10−17M4

p .
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(a) The model parameter γ1. (b) The running of the spectral index

dns/d ln k.

Figure 14: Cosmological observables and γ1 are drawn for the inflection point spec-

tator field with a quadratic inflaton potential. The x axis is the logarithmic of rσb,

the energy density ratio of the spectator field w.r.t the total at the phase boundary.

The y axis is Nb, the number of e-folds of inflation from the phase boundary “b” to

the end of inflation. The shaded yellow regions are excluded by the five constraints

discussed in Section 5.4.1. The shaded green regions are observationally favoured by

the spectral index within 0.9667± 0.0080 whereas the solid green lines indicate the

central value, based on the 2σ constraint by Planck [26]. Two additional subfigures

are placed in Figure 15 due to page limit.
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(a) The local bi-spectrum fNL. (b) The local tri-spectrum gNL.

Figure 15: Parameter space for the inflection point spectator with a quadratic infla-

ton, followed from Figure 14.

In Figure 14 and Figure 15, we find agreement with our analytical predictions.

Around Nb ≈ 18, the spectral index peaks and drops out of the 2σ confidence level,

whereas the local bi-spectrum reaches its minimum. The running of the spectral index

is typically small. The local fNL and gNL can both attain small values within the current

observational bound.

It is worth noting that the fine-tuning of inflection/saddle point potentials is allevi-

ated on spectator fields. This is simply because the inflaton dominated energy density

allows for a less flat inflection/saddle point potential.

120



5.4.3 Hyperbolic tangent spectator

In this section, we consider a smoother plateau for the spectator potential, which is the

hyperbolic tangent function, in the form

U(σ) =
U0

2

(
1 + tanh

σ

σ0

)
. (5.89)

For simplicity, we favour a small enough parameter for σ0, so the slow-roll phase for

the spectator takes place at σ > 2σ0, but σ0 should not be so small that it becomes a

step-like potential. The effective potential is

U(σ) = U0

(
1− 2e

− 2σ
σ0

)
. (5.90)

We can then write down the slow-roll parameters

εσ =
M2

pU
2
0

4πσ2
0V

2
e
− 4σ
σ0 , (5.91)

ησ = −
M2

pU0

2πσ2
0V

e
− 2σ
σ0 , (5.92)

ξσ =
M2

pU
2
0

4π2σ4
0V

2
e
− 4σ
σ0 , (5.93)

where we have neglected the spectator energy density because it is subdominant.

The spectator ends slow roll at ησb = −1, i.e.

e
2σb
σ0 =

M2
pU0

2πσ2
0V

. (5.94)

Here we assume the inflaton energy density V (φ) to be almost constant during inflation.

This can be guaranteed by the saddle point potential V (φ). The background evolution

of the spectator field can then be solved as

e
2σ
σ0 =

M2
pU0

2πσ2
0V

(N −Nb + 1). (5.95)

The solution then gives the simple expressions for the slow-roll parameters, Eq. (5.91),
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Eq. (5.92) and Eq. (5.93), as

εσ =
πσ2

0

M2
p

1

(N −Nb + 1)2
, (5.96)

ησ = − 1

N −Nb + 1
, (5.97)

ξσ =
1

(N −Nb + 1)2
. (5.98)

The condition σ > 2σ0 then demonstrates the relation (together with Eq. (5.94))

εσ � rση
2
σ < |ησ|, (5.99)

which guarantees the slow roll is terminated by the second order condition.

When the spectator σ reaches the edge of the hyperbolic tangent plateau at σb,

we assume it decays instantly and completely into relativistic species, thus leaving no

residual isocurvature perturbations. All the matter is then created by the decay of the

inflaton field, such as the saddle point inflaton similar with that in Section 3.5.2, which

can be written as [4, 84,226]

V (φ) =
1

2
m2|φ|2 − Ah

6
√

3
φ3 +

h2

12
|φ|4 . (5.100)

For A = 4m, we can find the saddle point at

φ0 =
√

3
m

h
. (5.101)

The effective potential around the saddle point then becomes

V (φ) = V (φ0) +
V ′′′(φ0)

6
(φ− φ0)3 + higher order, (5.102)

where

V (φ0) =
m4

4h2
, (5.103)

V ′′′(φ0) =
2√
3
hm. (5.104)
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The spectator field can always be dropped when considering the inflaton dynamics.

Also neglecting the higher order terms and taking the inflaton energy density to be near

constant (V (φ) ≈ V (φ0)) during inflation, the slow-roll parameters for the inflaton can

be written as

εφ =
9M2

p(φ− φ0)4

πφ6
0

, (5.105)

ηφ =
3M2

p(φ− φ0)

πφ3
0

. (5.106)

At the end of inflation, the second slow-roll condition is violated with ηφe = −1, giving

φ0 − φe
φ0

=
πφ2

0

3M2
p

� 1, (5.107)

where the inequality holds because of our sub-Planckian assumption φ0 � Mp. The

small relative field displacement then justifies our approximation of V (φ) ≈ V (φ0).

Then we can solve the background evolution of the inflaton

φ = φ0 −
2πφ3

0

3M2
p(2 +N −Ne)

. (5.108)

For practical purposes, the inflaton perturbations could be assumed to be subdominant

in producing curvature perturbation, as compared to that of the spectator’s.

Assuming the saddle point potential of the inflaton is very flat (εφ∗ � ησ∗) and

smooth (ηφ∗ � ησ∗) near the Hubble exit of the pivot scales, we can neglect the inflaton’s

slow-roll parameters in the cosmological observables. The slow-roll parameter εσ is also

negligible according to Eq. (5.99). At the pivot scale N = N∗, the spectral index ns,

the local bi-spectrum fNL, and the local tri-spectrum gNL are then only determined by

the slow-roll parameters of the spectator σ, giving the leading order terms

ns − 1 = 2ησ∗ = − 2

N∗ −Nb + 1
, (5.109)

fNL = −5ησ∗
6rσ∗

=
5

6(N∗ −Nb + 1)rσ∗
, (5.110)

gNL =
25(2η2

σ∗ − ξσ∗)
54r2

σ∗
=

25

54(N∗ −Nb + 1)2r2
σ∗
, (5.111)
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where, due to the flatness of the hyperbolic tangent potential and the saddle point

potential, the energy density ratio is simply

rσ∗ ≈ rσb ≈
U0

V (φ0)
. (5.112)

The power spectrum of curvature perturbation then becomes

Pζ =
2(N∗ −Nb + 1)2r2

σ∗V0

3πM2
pσ

2
0

. (5.113)

Therefore to obtain the observed power spectrum for the curvature perturbation, which

requires σ0 to take the value

σ2
0

H2
∗

=
r2
σ∗

4π2Pζ
(N∗ −Nb + 1)2. (5.114)

When the inflaton model is given, the parameters N∗ and V (φ0) are fixed. The

spectral index ns, the local bi-spectrum fNL, the local tri-spectrum gNL, and the relative

value σ0/H∗ then only depend on rσ∗ and Nb. We can then plot the two-dimensional

phase space (rσ∗, Nb) in Figure 16 and Figure 17, where Ne = 0 is taken.

One can see that the model predicts the spectral index, its negligible running, and

the local bi-spectrum as shown in the green shade which depicts the 3σ range of the

current Planck data [26, 27]. We have also shown the values of gNL in Figure 16 and

Figure 17. Since σ decays into radiation, there is no residual isocurvature perturbations,

which matches with observation.

In this chapter, we have summarized the previous studies of the minimal curvaton

scenario, which has been severely constrained by the Planck observations. We then

moved on to spectator scenario, and obtained good agreement with the CMB. For the

spectator models with inflection point potentials, hyperbolic tangent potentials, and

those with a sudden phase transition, we have mapped out their parameter space in

accordance with the CMB.
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(a) The relative scale σ0/H∗. (b) The running of the spectral index.

Figure 16: The parameter space for the hyperbolic tangent spectator model with a

saddle point inflaton. The yellow shaded regions are excluded due to the multiple

constraints in Section 5.4.1. The green bands comply with the Planck observations

at 3σ confidence level for all the observables, including the spectral index and its

running, and the local non-Gaussianities. The red contour lines are for the values

of the respective parameters. Here we have taken the pivot scale e-folding N∗ = 50.

Two additional subfigures are placed in Figure 17 due to page limit.
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(a) The local bi-spectrum fNL. (b) The local tri-spectrum gNL.

Figure 17: Parameter space for the hyperbolic tangent spectator with a saddle point

inflaton, followed from Figure 16.
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Although the second half of this chapter has been devoted to producing the CMB

fluctuations with the spectator scenario, it is merely a possibility for certain model

potentials under certain initial conditions. For this reason, spectator scenario does not

suffer from fine tuning in initial condition. Initial conditions that fail to allow the

spectator to end slow roll during inflation may instead lead to curvaton scenario or a

second phase of inflation, which can also seed the desired cosmological observables in

their own ways. Undesired spectator scenario may also appear in many-field inflation,

indicating another future direction of spectator studies.
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6 CMB power asymmetry from spectator fields

As discussed in Section 2.6, the power asymmetry of the CMB temperature fluctuations

should come from the inflationary epoch or other alternative scenarios. There have

been plenty of relevant analyses and proposals to explain the power asymmetry [5, 6,

125, 220, 227–242]. We first discuss the generic conditions for producing a large CMB

power asymmetry from inflation, showing the deficiency of CMB power asymmetry

from (nearly) scale invariant perturbations. We then demonstrate how a tachyonic

fast roll phase may enhance power asymmetry. Combining with other observational

constraints, we construct a minimal model for the observed CMB power asymmetry

based on spectator scenario.

6.1 Primordial origins of the CMB power asymmetry

6.1.1 Consistency relation for single-source perturbations

Single-source here indicates that the primordial perturbations originated from only a

single field. It can be single-field slow-roll inflation, where only one field is present,

but hybrid inflation, curvaton or spectator scenarios also count, as long as only one

field contributes to primordial perturbations. This is in contrast with the primordial

perturbations from multiple sources, which will be discussed in Section 6.1.2.

Using the separate universe approach [132,134], we can regard the opposite sides of

our Hubble patch as independent separate universes for the CMB power spectra. Assum-

ing the curvature perturbation is determined by only one field σ, (which may participate

in inflation,) the power spectrum of the curvature perturbation can be written as (at

the leading order) 28

Pζ = PδN = N2
σPδσ. (6.1)

28 Starting from here, all primordial variables would indicate their values at Hubble exit unless
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As an example, the σ field can be one of the inflatons, a curvaton, or a spectator.

As explained in Section 3.2, field perturbations, such as δσk, can exist on scales

which are even much larger than the size of our current Hubble patch. Such very

large scale perturbations can bring about a non-vanishing (vector) gradient29 ∇σ at the

Hubble exit of the pivot scales, which can be regarded as a constant in our observable

universe. Consider two opposite local patches on the CMB map, separated by 2rls

directed from one patch to the other, where rls = 1/a∗H∗ is our comoving distance

to the Last Scattering Surface, defined in Eq. (3.95). The gradient ∇σ then yields a

background field asymmetry between the two opposite local patches at the Hubble exit,

by the amount

∆σ = 2rls · ∇σ. (6.2)

Along the maximal direction, the field asymmetry is most significant by the amount

∆σ = 2rls|∇σ|. (6.3)

The background field asymmetry ∆σ can then result in the asymmetry in the cur-

vature perturbation. According to Eq. (6.1), on the opposite sides the power spectra of

curvature perturbation should differ by

∆Pζ
Pζ

=
∂Pζ
Pζ∂σ

∆σ =
2Nσσ

Nσ
∆σ, (6.4)

where we have neglected the possible change in Hubble rate due to ∆σ, because during

inflation H should remain almost constant. Since we are only interested in the absolute

amount of asymmetry, we can redefine ∆Pζ and ∆σ as their absolute values. This

otherwise specified.
29 ∇ ≡ (∂/∂x1, ∂/∂x2, ∂/∂x3) is the vector representation of the gradient operator for three spatial

dimensions.
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transforms Eq. (6.4) into

∆Pζ
Pζ

=

∣∣∣∣
2Nσσ

Nσ

∣∣∣∣∆σ. (6.5)

Since σ is the only field that creates cosmological perturbations, we can write Nσ

and Nσσ in terms of cosmological observables. This will create a link between the

asymmetries and other cosmological observables, such as

∆Pζ
Pζ

=
12

5

∆σ√Pδσ
|fNL|

√
Pζ , (6.6)

where ∆σ/
√Pδσ can be regarded as the relative strength of very large scale perturba-

tions, compared with those at the pivot scales. The CMB power asymmetry factor A

can then be related to

A =
∆P∆T

4P∆T
=

∆Pζ
4Pζ

=
3

5

∆σ√Pδσ
|fNL|

√
Pζ . (6.7)

From the latest Planck observations [11,26], we know Pζ = (2.142±0.0040)×10−9 and

A = 0.07±0.02. For simplicity, we can take their central values. The local fNL = 0.8±5.0

constraint at 1σ corresponds to |fNL| < 10.8 at over 95% CL. Putting together all these

constraints, Eq. (6.7) then leads to the lower bound for very large scale perturbations

∆σ√Pδσ
=

5A

3|fNL|
√
Pζ

> 233, (6.8)

at over 95% CL.

For compatibility with forthcoming sections, we also use expectation values as the

measure for the amount of asymmetry. The expectation versions of Eq. (6.7) and Eq.

(6.8) are

〈A2〉 =
9

25

〈
|∆σ|2

〉

Pδσ
f2

NLPζ , (6.9)

and
〈
|∆σ|2

〉

Pδσ
=

25〈A2〉
9f2

NLPζ
> 5.4× 104, (6.10)

where for simplicity, we have taken the observed central value A ≈ 0.07 as the standard

deviation of A.
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6.1.2 Consistency relation for multi-source perturbations

In the more generic scenario of multi-field slow-roll inflation, where perturbations of all

fields may contribute to curvature perturbation, Eq. (6.1) becomes

Pζ = PδN = Pδφ
∑

µ

N2
µ, (6.11)

where µ = 0, 1, . . . , n− 1 for the canonical slow-roll scalar fields φµ and n is the number

of φ fields. The very large scale perturbations then bring about the gradient ∇φµ, whose

maximum directions can differ for each field. By comparing the opposite local patches

on the CMB map along an arbitrary direction, which are separated by 2rls, we can find

the asymmetries in the background field evolutions by the amount

∆φµ = 2rls · ∇φµ. (6.12)

The asymmetry in the curvature perturbation can then be calculated as

∆Pζ
Pζ

=
4NµNµν∑

λN
2
λ

rls · ∇φν =
4rls∑
λN

2
λ

r̂ls ·
∑

µ,ν

NµNµν∇φν . (6.13)

The maximal asymmetry of curvature perturbation is achieved when the unit vector r̂ls

aligns with the vector it is multiplied with in Eq. (6.13). In the following calculations,

we are only interested in the direction with the strongest asymmetry signal, which has

∆Pζ
Pζ

=
4rls∑
λN

2
λ

∣∣∣∣∣
∑

µ,ν

NµNµν∇φν
∣∣∣∣∣ . (6.14)

where ∣∣∣∣∣
∑

µ,ν

NµNµν∇φν
∣∣∣∣∣ ≡

√√√√
3∑

i=1

(∑

µ,ν

NµNµν
∂φν

∂xi

)2

. (6.15)

In the simplest case where perturbative evolutions are identical for all the fields

φµ on very large scales, the expectation of the gradients of all the fields should be

independently Gaussian and isotropic, so they are all equal to

〈
∂φµ

∂xi
∂φν

∂xi

〉
= δµν

〈(
∂φµ

∂xi

)2
〉
, (6.16)
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and

〈
|∇φµ|2

〉
≡
〈

3∑

i=1

(
∂φµ

∂xi

)2
〉

=
〈
|∇φ|2

〉
, for any µ. (6.17)

These properties allow us to calculate with ease the expectation value of the absolute

in Eq. (6.14)

〈∣∣∣∣∣
∑

µ,ν

NµNµν∇φν
∣∣∣∣∣

2〉
=

〈
3∑

i=1

(∑

µ,ν

NµNµν
∂φν

∂xi

)2〉
(6.18)

=

3∑

i=1

∑

µ,ν,λ,η

NµNµνNλNλη

〈
∂φν

∂xi
∂φη

∂xi

〉
(6.19)

=
∑

µ,ν,λ

NµNµνNνλNλ

〈
3∑

i=1

(
∂φν

∂xi

)2
〉

(6.20)

= τNL

〈
|∇φ|2

〉
(∑

µ

N2
µ

)3

. (6.21)

Then we know the expectation of power asymmetry in the CMB perturbation spectrum,

according to Eq. (6.14), as

〈A2〉 =
〈∆P2

ζ 〉
16P2

ζ

(6.22)

= τNLr
2
ls

〈
|∇φ|2

〉∑

µ

N2
µ (6.23)

=
1

4
τNLPζ

〈
|∆φ|2

〉

Pδφ
, (6.24)

where

〈
|∆φ|2

〉
≡ 4r2

ls

〈
|∇φ|2

〉
(6.25)

is the expectation value of the field asymmetry along its maximal direction (see Eq.

(6.12)). Then Eq. (6.24) yields the lower bound of the strength of very large scale

perturbations
〈
|∆φ|2

〉

Pδφ
=

4〈A2〉
τNLPζ

> 3200, (6.26)

at over 95% CL.

Comparing it with Eq. (6.10), we find that in multi-source scenario, the applicable

non-Gaussianity parameter is instead τNL. This also states that the single-source sce-
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nario Eq. (6.10) is a special case of the multi-source version Eq. (6.26), because of the

consistency relation Eq. (3.119).

6.2 Lack of asymmetry from scale invariant perturbations

It still remains a question if Eq. (6.10) or Eq. (6.26) can be satisfied in order to explain

the CMB power asymmetry, especially for slow-roll scalar fields during inflation. In

this section, we will calculate the expectation of field gradient from very large scale

perturbations. The very large scale perturbations produce a non-vanishing gradient

along any arbitrary z direction, whose expectation can be calculated as

〈∣∣∣∣
∂δφ(x)

∂z

∣∣∣∣
2
〉

=

〈∫

k,k′≤k∗

d3kd3k′

(2π)3
kzk
′
zδφkδφ

†
k′e

i(k−k′)·x
〉

(6.27)

=

∫

k≤k∗
k2
zPδφ(k)d3k (6.28)

=
4π

3

∫ k∗

0
k4Pδφ(k)dk, (6.29)

where the upper bound of the integral

k∗ ≡ a∗H∗, (6.30)

is the comoving wavenumber of the pivot scale, only scales larger than which can make

a significant contribution to the overall gradient in our current Hubble patch. The lower

bound of the integral is treated as zero as an approximation, because a more careful

choice of the lower bound (that is � k∗) only changes the integral negligibly in most

cases. The vanishing lower bound does not indicate any past completeness for inflation.

We can then derive the expectation of field gradient

〈
|∇φ|2

〉
= 4π

∫ k∗

0
k4Pδφ(k)dk, (6.31)

and that of field asymmetry

〈
|∆φ|2

〉
= 16πr2

ls

∫ k∗

0
k4Pδφ(k)dk. (6.32)
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In the simplest case, if all the fields φµ are slowly rolling in the last several e-folds

before the Hubble exit of the CMB scales, we can obtain the (almost) scale invariant

field perturbations30

k3Pδφ(k) = k3
0Pδφ(k0) = 2π2Pδφ, for k . k∗. (6.33)

This greatly simplifies Eq. (6.32), yielding the relative strength of field asymmetry for

scale invariant perturbations:
〈
|∆φ|2

〉

Pδφ
= 16π3, (6.34)

which is insufficient, according to Eq. (6.26), to produce the observed CMB power

asymmetry. Also, Eq. (6.24) becomes

〈A2〉 = 4π3τNLPζ < 9× 10−4, (6.35)

at > 95% CL.

The statement still holds when the spectral index of field perturbations are non-

vanishing but small. The power spectrum of field perturbations can be parameterized

w.r.t the reference scale k0, as

k3Pδφ(k) = k3
0Pδφ(k0)

(
k

k0

)nδφ−1

, (6.36)

where nδφ ≈ 1 is the spectral index of field perturbations, defined similarly to ns in Eq.

(2.15) for curvature perturbation ζ. Eq. (6.34) then becomes (assuming nδφ 6= −1)

〈
|∆φ|2

〉

Pδφ
=

32π3

nδφ + 1

k2
0

a2
∗H

2
∗

(
k∗
k0

)nδσ+1

. (6.37)

Eq. (6.35) in the weak scale dependence case then becomes

〈A2〉 =
8π3

nδφ + 1

k2
0

a2
∗H

2
∗

(
k∗
k0

)nδσ+1

τNLPζ . (6.38)

30 We assume that perturbations in the infrared limit (k → 0) do not affect local physics, so any

possible deviation from scale invariance in the infrared limit would be negligible.
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As a good approximation for practical purposes, here we choose the reference scale

k0 = k∗, at the pivot scale. Eq. (6.38) is then simplified to

〈A2〉 =
8π3

nδφ + 1
τNLPζ . (6.39)

As we can see from Eq. (6.39), the weak scale dependence only introduces the ex-

tra factor 2/(nδφ + 1). This cannot change the order of magnitude for a nearly scale

invariant spectrum with nδφ ≈ 1. In the single-source case where Eq. (6.9) should be

applied, the inconsistency with the observed central value A = 0.07 is even stronger. We

therefore conclude that for canonical slow-roll scalar fields with nearly scale invariant

perturbations, any mechanism cannot produce the CMB power asymmetry with central

value A = 0.07, while satisfying the local non-Gaussianity constraints from fNL and τNL.

6.3 Enhancing very large scale perturbations from a tachy-

onic fast-roll phase

In the previous section, we have shown that canonical slow-roll scalars cannot produce

the observed CMB power asymmetry because of (near) scale invariant spectrum. This

suggests to us straightforwardly to violate scale invariance using non-slow-roll fields. It

is well known that perturbations can get enhanced during a tachyonic fast-roll phase

[6, 67, 243]. Therefore we wish to investigate how a tachyonic fast-roll phase before the

Hubble exit of the pivot scale may enhance CMB power asymmetry.

In the simplest case, let us consider a scalar field σ that acquires a tachyonic mass

for a brief period. The total effective action for the tachyonic phase is given by

S =

∫ √−g d4x

(
−1

2
∂µσ∂

µσ +
1

2
m2σ2 + Lelse

)
, (6.40)

where m is the effective tachyonic mass of σ during the tachyonic phase, which is re-

garded as a constant for simplicity. All other components of the universe are then
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contained in the Lelse term. For simplicity, we also assume that the Hubble rate H

remains almost constant, which may come from the Lelse term. Then the Hubble rate

H determines a unique energy scale, w.r.t which all the dimensional variables can be

expressed. As an example, the tachyonic mass m can be written as

m2 ≡ (e2Nm − 1)2H2, (6.41)

where Nm is defined as such.

Before or after the brief tachyonic fast-roll phase, we simply assume the scalar σ

becomes light and enters slow-roll phase. For perturbative calculations in slow-roll

phase, we can simply take m = 0 in Eq. (6.40), or Nm = 0 in Eq. (6.41), because the

effective mass is much smaller than the Hubble rate. Here we do not investigate how the

brief tachyonic fast-roll phase may be motivated in any specific particle physics theory,

but instead only discuss the phenomenological consequences. For simplicity, we will also

assume that the fast-roll phase (or the tachyonic mass) is switched on and off instantly.

During tachyonic fast-roll phase, we will not solve the perturbative evolutions exactly,

such as in Eq. (3.61). Instead and as an approximation, we can find the attractor

solutions for slow-roll and fast-roll phases and concatenate them. For this purpose, we

define the redshift damping rate for perturbation mode k as

αk(N) ≡ 1

2

∂ lnPδσ(k,N)

∂N
. (6.42)

Note here we have used N ≡ ln a
a0

, the past e-folds of the universe expansion w.r.t

a certain reference scale a0, as proper time31 . Also, Pδσ(k,N) is the realtime power

spectrum, i.e. a function of the e-folding N , instead of Pδσ(k) which is its late time value

after freezing. We can then write the power spectrum of the field perturbation at any

31 Note that N here has a different sign with the previous convention in this thesis.
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e-folding N w.r.t its value at a reference e-folding N0 as

Pδσ(k,N) = e
2
∫N
N0

αk(N)dN
Pδσ(k,N0). (6.43)

As an example, the slow-roll solution Eq. (3.65) of field perturbation yields the

redshift rate

αk(N) = − 2e2(Nk−N)

1 + 2e2(Nk−N)
, (6.44)

where Nk is the dimensionless relative wave number, defined as

k2 ≡ 2a2
0H

2e2Nk . (6.45)

Obviously then super-Hubble modes correspond to k2 � a2H2 or Nk < N , and for

sub-Hubble modes we have k2 � a2H2 or Nk > N .

With a brief tachyonic phase, the exact solution no longer holds. Any mode k or Nk

may experience three possible phases – the sub-Hubble, slow-roll, and tachyonic phases.

As an approximation, we can assume when any mode enters any phase, it immediately

behaves as the attractor solution of this phase. For simplicity, we also assume no energy

is lost during phase transitions. The evolutions of power spectra then follow Eq. (6.43),

where αk(N) can be a piecewise function for different phases.

Using the tachyonic action Eq. (6.40), we can write down the equation of motion for

the field perturbation δσ as

δ̈σk + 3H ˙δσk +

(
k2

a2
−m2

)
δσk = 0. (6.46)

The redshift rate αk(N) of the three phases can then be calculated as follows. (The

slow-roll phase is just the special case of Nm = 0.)

• For sub-Hubble modes, the momentum is much larger than the Hubble rate and

tachyonic mass combined, with k2 � a2(2H2 +m2). Therefore we can define τ and
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ψ according to Eq. (3.48) and Eq. (3.49). The equation of motion then transforms

into

ψ′′k +
[
k2 − a2(2H2 +m2)

]
ψk = 0, (6.47)

or

ψ′′k +
[
1− e2(N+Nm−Nk)

]
k2ψk = 0. (6.48)

Therefore, sub-Hubble modes correspond to Nk > N+Nm, which has the harmonic

oscillator solution ψk ∝ τ0 or δσ ∝ a−1. The damping rate is simply

αk(N) = −1, for Nk > N +Nm. (6.49)

• For tachyonic modes, the relatively small momentum (k � a2(2H2 +m2)) allows

us to define

ψk ≡ a
3
2 δσk. (6.50)

The equation of motion then becomes

ψ̈k −
(
m2 +

9

4
H2 − k2

a2

)
ψk = 0, (6.51)

or

ψ̈k −
[

1

4
+ 2

(
e2Nm − e2(Nk−N)

)]
H2ψk = 0. (6.52)

The attractor solution corresponds to the redshift rate

αk(N) = −3

2
+

√
1

4
+ 2

[
e2Nm − e2(Nk−N)

]
, for Nk < N +Nm. (6.53)

Combining the two phases, we arrive at the full expression for redshift rate (while

approximately applying the solutions near phase boundary)

αk(N) =





−1, for Nk ≥ N +Nm,

−3
2 +

√
1
4 + 2

[
e2Nm − e2(Nk−N)

]
, for Nk < N +Nm.

(6.54)
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Figure 18: The hierarchy of scales, and the timeline of the tachyonic fast-roll sce-

nario. The x axis is the number of e-folds of inflation as time measure, whose zero

point is chosen at the end of the tachyonic phase. The y axis is the effective mass

of the field of our concern. The tachyonic fast-roll phase lasts during Ni < N < 0,

with the mass m2 = (e2Nm − 1)2H2 where Nm ≤ N∗.

It can be verified that the piecewise solution is continuous at the boundary Nk = N+Nm

with αk = −1. During slow roll, we can take the m→ 0 or Nm → 0 limit, reducing Eq.

(6.54) to

αk(N)|sr =





−1, for Nk ≥ N,

−3
2 +

√
9
4 − 2e2(Nk−N), for Nk < N.

(6.55)

Outside the tachyonic phase, the field σ is always light, yielding Eq. (6.55) as the

solution for αk(N). In this case, we know already that the power spectrum of the field
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Figure 19: A demonstration of αk(N) and the enhancement rate ∆αk(N) for some

typical values of Nm. From bottom to top, black, green, yellow and red correspond

to Nm = 0, 1, 1.5, 2 respectively. Dashed curves represent αk(N), and solid ones

represent ∆αk(N).
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perturbation δσk is almost scale invariant. However when a brief tachyonic fast-roll

phase is present, as shown in Figure 18, the tachyonic phase will provide a different

redshift rate for field perturbations. The difference ∆αk(N) ≡ αk(N) − αk(N)|sr is

therefore defined as the relative enhancement rate, due to the tachyonic mass m. It can

be expressed as

∆αk(N) =





0, for Nk ≥ N +Nm,

√
1
4 + 2

[
e2Nm − e2(Nk−N)

]
− 1

2 , for N +Nm > Nk ≥ N,
√

1
4 + 2

[
e2Nm − e2(Nk−N)

]
−
√

9
4 − 2e2(Nk−N), for Nk < N.

(6.56)

This is plotted with some typical values of Nm in Figure 19, from which we see that the

enhancement can be quite significant (∆αk ∼ eNm). Also, from Eq. (6.56) we can see

that the scales with Nk ≥ N+Nm are not affected by the tachyonic phase. Remembering

that the tachyonic phase lasts from N = Ni < 0 to N = 0, the scales Nk ≥ Nm will be

totally unaffected, which is where we want the pivot scale to lie (N∗ ≥ Nm).

The relative enhancement from the fast-roll phase changes the CMB power asym-

metry by
〈
|∆σ|2

〉

Pδσ
=

∫ Nm

−∞
32π3e

(nδσ+1)(Nk−N∗)+2
∫ 0
Ni

∆αk(N)dN
dNk, (6.57)

where nδσ ≈ 1 is the spectral index of δσ in the absence of tachyonic enhancement,

as defined in Eq. (6.36). Here we have neglected the integral region Nm < Nk < N∗,

because it is not enhanced by the tachyonic fast-roll scenario, and has been shown in

Section 6.2 to generate only a small CMB power asymmetry. The inner integral of ∆αk

is performed for the tachyonic fast-roll phase Ni < N < 0 only. Eq. (6.57) can be recast

into
〈
|∆σ|2

〉

Pδσ
= 32π3e(nδσ+1)(Nm−N∗)

∫ Nm

−∞
e2βkdNk, (6.58)
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Figure 20: The enhancement βk is shown in the black solid curve, where its compo-

nents Nk − Nm and the integral in Eq. (6.59) are shown in the green and the red

dashed curves respectively. The blue shaded region is the number of e-folds of the

universe expansion during the fast-roll phase. We have taken the parameter values

Ni = −2, Nm = 1.2.

where we have defined

βk ≡
1

2
(nδσ + 1)(Nk −Nm) +

∫ 0

Ni

∆αk(N)dN. (6.59)

Since the mode dependence in Eq. (6.58) has been absorbed into βk, the scale kmax which

maximizes βk will contribute most to the CMB asymmetry. The overall exponential

coefficient in Eq. (6.58) simply means that a longer slow roll after the tachyonic phase

will stretch the initial perturbation modes, and lead to a weaker CMB power asymmetry.

We would like βk to peak at some scale Nkmax , or otherwise it is difficult to produce

sufficient CMB power asymmetry. The peak mode Nkmax can be solved from ∂βk/∂Nk =
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0. Noticing ∆αk(N) is only a function of N −Nk, this yields

∆αkmax(0) = ∆αkmax(Ni) +
1

2
(1 + nδσ). (6.60)

Since nδσ ≈ 1, there would be no peak if ∆αk(0) is always less than 1. The above

condition requires the tachyonic mass to be large enough. According to Eq. (6.56), we

obtain

m2 ≥ 2H2. (6.61)

The contribution to the CMB power asymmetry would then mostly come from

around the peak scale Nkmax . If we know the full width at half maximum (FWHM)

of the peak, namely ∆N , we can have a good estimation for the integral, hence writing

Eq. (6.58) as
〈
|∆σ|2

〉

Pδσ
≈ 32π3∆Ne(nδσ+1)(Nm−N∗)+2βkmax . (6.62)

A typical example of βk is shown in Figure 20, for nδσ = 1, Ni = −2, and Nm = 1.2,

in which βk peaks at about Nk ≈ −1, with βkmax ≈ 4.7. The half maximum lies at

βkmax − 1
2 ln 2 with ∆N ≈ 0.8. We do not want the pivot scale spectrum to be modified

by the fast-roll phase, so we require N∗ > Nm. As a consequence, we take N∗ = Nm+2.5.

Plugging these numbers into Eq. (6.62) will give

〈
|∆σ|2

〉

Pδσ
≈ 6.4× 104. (6.63)

This result satisfies both necessary conditions Eq. (6.10) and Eq. (6.26), yielding a much

stronger CMB power asymmetry than the slow-roll scenario.

We also have to make sure that the perturbations remain small throughout the dy-

namics. This typically requires the curvature perturbation from the σ field to have a

power spectrum k3Pζδσ(k) < 1. Since there can be other sources of curvature perturba-

tion, we define a ratio for σ at the pivot scale

R2(k) ≡ Pζδσ(k)

Pζ(k)
≤ 1. (6.64)

143



The constraint k3Pζδσ(k) < 1 then becomes

k3Pζδσ(k) = k3Pζδσ(k)
∣∣
sr
e

2
∫ 0
Ni

∆αk(N)dN

= k3
∗Pζ(k∗)R

2(k)e
2
∫ 0
Ni

∆αk(N)dN

= 2π2PζR2(k)e
2
∫ 0
Ni

∆αk(N)dN
< 1, (6.65)

where we have used the scale invariance k3Pζδσ(k)|sr = k3
∗Pζδσ(k∗) for any mode k. This

constrains the total amount of asymmetry enhancement, i.e. the height of the red dashed

curve in Figure 20, by

∫ 0

Ni

∆αk(N)dN < −1

2
ln 2π2Pζ − lnR, for any Nk < 0. (6.66)

Since R ≤ 1 and Pζ = 2.142 × 10−9, in the example of Figure 20 the red curve is

lower than −1
2 lnPζ ≈ 8.5, and therefore the condition Eq. (6.66) is well satisfied.

6.4 Other observational constraints

6.4.1 Quasars

Quasar observation [244] constrains the power asymmetry of the universe in the quasar

scale Nq > N∗. If we define rq as our physical distance to the farthest quasar, we can

write Nq, the length scale of our distance to the quasars as (see also Figure 21)

rq ≡
e−Nq

H
. (6.67)

The quasar observation finds no asymmetry, requiring A < 0.02 in the quasar scale

Nq; see [244]. From Eq. (6.9) and Eq. (6.24), we find that it may be accommodated

with the CMB scale power asymmetry A ∼ 0.07, if the non-Gaussianity parameter, fNL

or τNL, has a running32 . The amount of non-Gaussianity and its running depend very

much on the inflationary model, but many existing models can provide such a running.

32 The discussion of the running of the local non-Gaussianities, and how it may affect the scale
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Figure 21: A schematic figure on the power asymmetries of the CMB and quasars

spectrum. The outer sphere is the LSS and the inner one contains all the observed

quasars. Therefore, quasar observation can only constrain the asymmetry in the

distance scales smaller than rq, whilst the asymmetry in the distance scale rls can

be much larger. In this sense, we need running in the asymmetry factor A in order

to satisfy the quasar constraint.
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For example, in spectator scenario, a large running can be achieved if the effective mass

of the spectator field runs between the Hubble exits of the pivot and the quasar scales.

6.4.2 Quadrupole and octupole

The source of CMB power asymmetry should not generate any excessive quadrupole or

octupole in the CMB. Following the conventions in [249,250], we replicate their derived

constraints here, from Eq. (4), and Eq. (5) of [250]

(kxd)
2|Φ~k(τd) sinω| . 5.8Q, for quadrupole, (6.68)

(kxd)
3|Φ~k(τd) cosω| . 32O, for octupole, (6.69)

where Q = 1.8 × 10−5 and O = 2.7 × 10−5. We rephrase them with our convention,

with kxd|Φk(τd)| = 1
3 |∆ζ| =

√
Pζ |∆σ|

3
√
Pδσ∗

where kxd =
√

2eNkmax−N∗ . After neglecting

the sin and cos functions, these two inequalities become

Nkmax −N∗ . ln
17.4Q√

2Pζ

√
Pδσ∗
|∆σ| , for quadrupole, (6.70)

Nkmax −N∗ .
1

2
ln

48O√
Pζ

√
Pδσ∗
|∆σ| , for octupole. (6.71)

Therefore the quadrupole and octupole constraints put a lower bound on N∗, the

e-folding of the second slow-roll phase (see Figure 18). In the example shown in Figure

20, we have Nkmax ≈ −1. By plugging in the values of O, Q, Pζ , N∗ and |∆σ|/√Pδσ

from the example Figure 20 and Eq. (6.63), we can see that both the quadrupole and

the octupole constraints are satisfied.

dependence of the CMB power asymmetry, is beyond the scope of the thesis. Some of the relevant

discussions can be found in [245–248].
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6.5 CMB power asymmetry from spectator scenario

The tachyonic enhancement discussed in Section 6.3 in principle applies to any scenario,

by providing a large enough field asymmetry on the opposite sides of our Hubble patch,

while satisfying all the observational constraints such as quasars, quadrupole and oc-

tupole. In this section, we will however only discuss how to produce the observed CMB

power asymmetry with spectator mechanism, where the spectator field receives the en-

hanced field asymmetry from a brief tachyonic fast-roll phase. There are several reasons

for the consideration.

• When the tachyonic enhancement applies on an inflaton field, (or one or more of

the inflaton fields,) the newly introduced tachyonic fast-roll phase may change the

original behaviour of the inflaton, and hence inflation itself. The tachyonic fast-roll

phase may totally destroy inflation, change the dynamics or predictions of inflation

dramatically, etc. Therefore, the tachyonic fast-roll phase is preferably applied on

a field which does not participate in inflation, e.g. a curvaton or spectator field.

• When the tachyonic enhancement applies on an inflaton field, even if the cal-

culations have been adjusted to take into account the tachyonic phase, it still

remains a problem how to motivate the tachyonic potential (and the transitions)

within a well-established particle physics framework. This argument also applies

to curvaton scenario because it has to produce a significant amount of the current

universe components, according to non-Gaussianity and isocurvature perturbation

constraints. (See Section 5.1.)

Having all these said, in this thesis we would only seek an explanation of the observed

CMB power asymmetry from spectator scenario, on top of single-field slow-roll inflation.

The role of driving inflation and producing matter is then separated from producing the
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perturbations. The single-field slow-roll inflation can be chosen with a particle physics

foundation, while all the perturbations come from the spectator field and contain a

mild non-Gaussianity fNL. In principle, there can be more than one spectator field or

inflaton, but as a minimum we only consider one of them each.

We then combine the expressions of the CMB power asymmetry Eq. (6.9) and the

field asymmetry Eq. (6.62), with the inequalities Eq. (6.66) and Eq. (6.70). This gives

the upper bound of CMB power asymmetry 33

〈A2〉 < 9

25
× 17.4Q f2

NL

√
2∆N. (6.72)

After substituting in the values for Q . 1.8 × 10−5, ∆N ≈ 1 and fNL < 10.8, we find

the upper bound A . 0.14, which allows the observed central value A ≈ 0.07. The

parameter space for A and fNL is shown in Figure 22.

In another slightly more complicated scenario, we may suppose that the spectator

partially contributes to the curvature perturbation but is still the only field that receives

the tachyonic enhancement. The other source(s) of the curvature perturbation can be the

inflaton(s) or some other spectator/curvaton field(s). The upper bound then becomes

〈A2〉 < 8.7Q τNLR
−1

√
∆N

2
, (6.73)

where R is defined in Eq. (6.64). We substitute the values of Q . 1.8× 10−5, ∆N ≈ 1

and τNL < 2800, so the above equation yields

A < 0.56R−
1
2 . (6.74)

Therefore A = 0.07 is also allowed, and this model can generate a much stronger CMB

power asymmetry.

33 The quadrupole constraint is stronger than the octupole constraint in most cases. Therefore

we drop the octupole constraint in the discussion.
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Figure 22: The parameter space for the inflaton and spectator model in Section 6.5.

The blue line shows the maximum CMB power asymmetry that can be reached by

any given fNL. The vertical red bands indicate the latest Planck bounds for local

bi-spectrum fNL, for 1σ, 2σ and 3σ regions [117]. The horizontal blue bands indicate

the Planck observational bounds for CMB power asymmetry, also for 1σ, 2σ and 3σ

regions [108]. The neighbouring area of fNL ≈ 6 and A ≈ 0.06 is within 1σ C.L. for

both observables.
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To summarize, this chapter has provided an explanation for the observed CMB

power asymmetry with the spectator scenario. The (nearly) scale invariant and (almost)

Gaussian primordial fluctuation cannot produce the observed CMB power asymmetry.

We have proposed a viable solution through the violation of scale invariance on scales

much larger than the pivot scales, which can be realized with a tachyonic fast-roll phase.

In order to avoid disruptions in inflationary dynamics or in the production of visible

matter, the spectator scenario could be an ideal candidate.
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7 Conclusions

This thesis started from the observational aspects of the CMB, and investigated early

universe theories step by step from single-field slow-roll inflation, to multi-field inflation,

and then to the spectator scenario. During the investigation, we have compared cos-

mological predictions of relevant models with observations. The spectator scenario has

been found to be in agreement with cosmological observations, being able to produce

large or small local non-Gaussianity without any isocurvature perturbations. This the-

sis has also proposed an explanation for the CMB power asymmetry with the spectator

scenario.

To be specific, in Chapter 2, we have studied CMB temperature fluctuation. Its an-

gular power spectrum is consistent with a nearly scale invariant primordial perturbation.

Its angular bi-spectrum and angular tri-spectrum are compatible with zero, suggesting

a (mostly) Gaussian primordial perturbation. CMB observations have not yet detected

the primordial B mode and isocurvature perturbations, but the CMB power asymmetry

has drawn community interest.

The CMB favors a featureless, ordinary beginning of the universe. In Chapter 3,

single-field slow-roll inflation has been shown to agree well with observations. We have

demonstrated the slow-roll mechanism for single-field inflation. Single-field slow-roll in-

flation can attain a nearly scale invariant and almost Gaussian primordial perturbation.

It does not produce any isocurvature perturbation either. We have listed the observa-

tional constraints in Table 1. Models of single-field slow-roll inflation have been tested

against Table 1, such as power-law and inflection point potentials.

In Chapter 4, we have derived the generic observational predictions of multi-field

inflation. Multi-field inflation can provide richer features than single-field slow-roll in-

flation, for example a significant non-Gaussianity with nearly scale invariant spectrum.
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The generic predictions of multi-field inflation can be greatly simplified for two-field

inflation or scenarios with separable potentials. When an additional perfect fluid co-

exists during single-field inflation, we have found it may induce significant curvature

perturbation.

We started Chapter 5 by summarizing the cosmological predictions of the minimal

curvaton scenario. We then proposed the spectator scenario, and derived its evolution at

background and perturbation levels. The spectator scenario can produce large or small

non-Gaussianities, whilst not generating any isocurvature perturbations. As typical

examples of the spectator scenario, we have examined step function potentials, inflection

point potentials, and hyperbolic tangent potentials, all of which have demonstrated

satisfactory agreements with observations.

The spectator field is able to dominate cosmological perturbations without signifi-

cantly affecting inflationary dynamics or matter production. This advantage makes it

an ideal candidate for an explanation of the CMB power asymmetry. With a brief tachy-

onic fast-roll phase well before the Hubble exit of the pivot scales, the spectator scenario

has been shown to be capable of bringing about the observed CMB power asymmetry

in Chapter 6. This realization also agrees with other cosmic observations. On the other

hand, with a nearly scale invariant and Gaussian primordial perturbation, generation of

the observed CMB power asymmetry has been shown to be difficult.

In the future, we may expect the discovery of primordial B modes in the CMB

due to gravitational waves from inflation, which will surely bring about a great change

the field of cosmology. Potential discoveries in particle physics, by the Large Hadron

Collider or future particle accelerators, may change the way we understand High Energy

Physics. Dark matter observations are also trying to accumulate evidence for detection,

hopefully to expand the Standard Model in the near future. Broadly speaking, all
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the above knowledge we gain are vital towards a unified and deeper understanding of

particle physics and cosmology. Specifically, they will also further distinguish early

universe models including the spectator scenario.
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A Special functions

A.1 Spherical harmonic functions

Spherical harmonic functions form an orthogonal and complete base of spherical func-

tions, i.e.
∫

d2n̂Y ∗lm(n̂)Yl′m′(n̂) = δll′δmm′ . (A.1)

So any spherical function can be expanded in terms of spherical harmonics

f(n̂) =
∑

lm

flmYlm(n̂), (A.2)

where

flm ≡
∫

d2n̂Y ∗lm(n̂)f(n̂). (A.3)

We can also decompose the product of two spherical harmonics

Gm1
l1

m2
l2

m3
l3
≡
∫

d2n̂Yl1m1(n̂)Yl2m2(n̂)Yl3m3(n̂), (A.4)

So Gm1
l1

m2
l2

m3
l3

is called the Gaunt integral.

The spherical harmonics have other properties such as

Y ∗lm(n̂) = (−1)mYl−m(n̂), (A.5)

Ylm(−n̂) = (−1)lYlm(n̂), (A.6)

∑

m

Y ∗lm(n̂)Ylm(n̂′) =
2l + 1

4π
Pl(n̂ · n̂′). (A.7)

A.2 3j symbols

The 3j symbols are used to characterize the coupling between different angular momenta.

The reader can find the precise definition and properties in [113,251,252].
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1. Triangle conditions

The 3j symbol




l1 l2 l3

m1 m2 m3


 is nonzero if and only if all of the following

conditions are satisfied:

• 2l1, 2l2, 2l3 ∈ N0.

• |l1 − l2| ≤ l3 ≤ l1 + l2.

• mi = −li,−li + 1, . . . , li, for i = 1, 2, 3.

• m1 +m2 +m3 = 0.

2. Symmetries




l1 l2 l3

m1 m2 m3


 =




l2 l3 l1

m2 m3 m1


 , (A.8)




l1 l2 l3

m1 m2 m3


 = (−1)l1+l2+l3




l1 l3 l2

m1 m3 m2


 , (A.9)




l1 l2 l3

m1 m2 m3


 = (−1)l1+l2+l3




l1 l2 l3

−m1 −m2 −m3


 . (A.10)

3. Orthogonalities

∑

m1m2

(2l3 + 1)




l1 l2 l3

m1 m2 m3







l1 l2 l̃3

m1 m2 m̃3


 = δl3 l̃3δm3m̃3

, (A.11)

∑

l3m3

(2l3 + 1)




l1 l2 l3

m1 m2 m3







l1 l2 l3

m̃1 m̃2 m3


 = δm1m̃1

δm2m̃2
. .(A.12)

4. Other relations

Gm1
l1

m2
l2

m3
l3

=

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

×




l1 l2 l3

0 0 0







l1 l2 l3

m1 m2 m3


 , (A.13)
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


l1 l2 l3

0 0 0




2

=
1

2

∫ 1

−1
Pl1(x)Pl2(x)Pl3(x) dx

=





0, L odd,

(L− 2l1)!(L− 2l2)!(L− 2l3)!(L/2)!2

(L+ 1)!(L/2− l1)!2(L/2− l2)!2(L/2− l3)!2
, L even,

(A.14)

where L ≡ l1 + l2 + l3 in the above expression.

A.3 6j symbols

The 6j symbols can be defined from 3j symbols as





L1 L2 L3

l1 l2 l3




≡

∑

Mimj

(−1)l1+l2+l3+m1+m2+m3




L1 L2 L3

M1 M2 M3




×




L1 l2 l3

M1 m2 −m3







l1 L2 l3

−m1 M2 m3




×




l1 l2 L3

m1 −m2 M3


 , (A.15)

where i, j = 1, 2, 3. Its precise definition and properties can also be found in [113, 251,

252].
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