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Abstract 

This paper considers the reflection and transmission characteristics of a Laguerre-Gaussian (LG) beam in a 

dielectric slab. The fields of the reflected and transmitted beams are described based on plane-wave angular 

spectrum representation. Using the generalized Fresnel amplitude reflectance and transmittance, the reflected and 

transmitted fields in each region are expressed. With the Taylor series approximation of reflectance and 

transmittance, the analytical expressions of the total reflected and transmitted fields in the input and output regions 

are derived. The effects of the beam-waist radius and topological charge on the reflected and transmitted field 

intensities are simulated and discussed in detail. The centroid shifts of the reflected beam are also presented. It is 

concluded that the distortion of the intensity distribution including the size of the intensity contour, is influenced by 

the beam-waist radius and the topological charge of the incident beam. The total intensity of the slab, in particular 

for the case of the transmitted field, is found to be distinguishable from the case of the single interface.  
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1. Introduction 

Since the Laguerre-Gaussian (LG) beam was demonstrated to possess orbital angular momentum(OAM) [1], the 

generation methods, propagation characteristics and application of electromagnetic beams with OAM [2-5] have 

been attracting the attention of many scholars and have been widely used in the fields of optical manipulation [6], 

quantum and optical information [7,8], optical detection [9], and object recognition[10]. 

The interaction of electromagnetic beams with different media [11-18] is an important topic that has been 

extensively studied in the past several decades. As early as the 1970s, the reflection and transmission of Gaussian 

beams in a dielectric interface have been developed by several methods [19-21]. For the vortex beams incident on a 
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dielectric interface, Bliokh predicted a novel vortex-induced Goos- Hänchen (GH) shift in the reflected and 

transmitted fields of polarized vortex beams [22, 23]. Petrov discussed the reflectance of a strongly focused vector 

beams at normal incidence [24]. Okuda discussed the deformations of reflected and transmitted fields from a 

dielectric interface as the LG beam was incident near critical angle, and compared the experimental and theoretical 

results [25]. With the full Taylor series expansion, the reflection of LG beams in a dielectric interface was presented 

by Ou [26], which held in both the paraxial and nonparaxial regimes. Therefore, profound research results have been 

achieved on the reflection and transmission of beams from a dielectric interface, not only in terms of the GH and 

Imbert-Fedorov (IF) shifts but also the intensity deformation properties. Generally, the angular spectrum method is 

one of the important methods to determine the reflection and transmission of beams. In these studies, Snell’s law, the 

Fresnel coefficients and the generalized Fresnel amplitude reflectance and transmittance of a plane wave are used. 

Regarding applications involving the propagation of beams, it is important to understand the effects that various 

media have on beams (such as Gaussian beams and LG beams). The reflection and transmission of a plane wave in 

media can be analyzed using the well-known Snell’s law and Fresnel formulas. However, for the propagation of 

beams with a finite width in media, the problem becomes complex. Riesz investigated three factors that affect the 

path of the peak of the reflected profile of a Gaussian beam from a dielectric slab [27]. The propagation of 

continuous wave (CW) Gaussian beams in a double negative metamaterial slab [28] was simulated using a 

two-dimensional finite-difference time-domain(FDTD) approach. Based on the Generalized Lorenz-Mie theory 

(GLMT) framework, the reflection and transmission of a Gaussian beam from a uniaxial anisotropic slab [29] were 

solved by using Vector Cylindrical Wave Functions (VCWFs) expansion of beams and boundary conditions of 

electromagnetic fields. Kong [30] studied the unique negative lateral shift of a Gaussian beam in the double negative 

slab. Galiatsatos [31] simulated the transmittance of a plane wave in a dielectric slab and discussed the 

electromagnetic force exerted on a dielectric sphere that was placed in the slab. For the inhomogeneous media, much 

work has been developed to investigate the propagation of beams in inhomogeneous media [32-36], such as the GH 

shifts of reflected beams for the inhomogeneous slab [32], the nonspecular phenomena of the reflected fields [33], 

the absorption and lateral shift of the beams in the lossy multilayered media [34], and the ultrasound beam 

propagation in inhomogeneous tissue geometries [35]. Although the reflection and transmission of a Gaussian beam 

in a slab have been studied by several different methods, the propagation characteristics of an LG beam in a 

dielectric slab has not been reported; reporting these characteristics is the purpose of this work.  
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In this paper, the reflection and transmission of LG beams in a dielectric slab are presented based on the angular 

spectrum expansion and the generalized Fresnel amplitude reflectance and transmittance of the plane waves. The 

reflected and transmitted fields in each region for LG beams incidence are expressed by the angular spectrum in 

Section 2.1. Considering an isotropic homogeneous dielectric slab, the analytical expressions of the reflected and 

transmitted fields are derived in Section 2.2. The numerical results of the reflected and transmitted field intensities 

for lossless and lossy slabs are provided, and a discussion of the effects of the beam-waist radius, the topological 

charge and the centroid shifts of the reflected beam is also given in Section 3. Finally, Section 4 presents a summary 

of the conclusion of our work.  

2. Theoretical Backgrounds  

We consider the reflection and transmission of an LG beam in a dielectric slab, which is shown in Figure 1. In the 

global coordinate ( , , )x y z of this system, the x y plane is situated on the first interface ( 0z  ), and the principal 

plane of incidence is the x z plane. The coordinate values z corresponding to each interface are
0 1,z z . The input 

and output planes are infinite half spaces, and the thickness of the slab is
1d . We are concerned with the LG beam 

incident upon the slab at an angle i  measured with respect to the z axis in the x z plane. The reflection and 

transmission directions are described by the angles r i     and t . The refractive index, dielectric constant 

and wave number of each region are jn  j  and jk , respectively. The magnetic susceptibility of each region is 

assumed to be unity. The x y   planes in the local coordinates ( , , )x y z   ,i r or t   define the transverse 

planes of the incident, reflected and transmitted beams, and the z axis is coincident with the geometric-optical axis 

of the corresponding beam.  

Supposing the origin of the coordinates ( , , )i i ix y z and ( , , )r r rx y z are located at ( 0, 0, 0)x y z   , then the 

transformations between the coordinates ( , , )i i ix y z , ( , , )r r rx y z and the global coordinates are

, , , ,cos sini r i r i r i rx x z   , ,i ry y  and , , , ,sin cosi r i r i r i rz x z    , respectively. The origin of the 

coordinates ( , , )t t tx y z is located at 0 0( , 0, )x x y z z   ; thus, we can obtain 0 cos sint t t tx x x z    ,

ty y  and 0 sin cost t t tz z x z    .  
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Meanwhile, the relationship between the wave number components ( , , )x y zk k k  and ( , , )ix iy izk k k  is given by 

2 2 2cos sinx ix i i ix iy ik k k k k     , y iyk k and 
2 2 2sin cosz ix i i ix iy ik k k k k      .  

 

Figure1 Coordinate system definition for the reflection and transmission of an LG beam incident on a dielectric slab. 

2.1 Electric field expressions of an LG beam incident on a dielectric slab based on the plane-wave angular 

spectrum  

Assuming that a linearly polarized LG beam is incident on a dielectric slab, when the focal plane of the incident 

beam is at =0iz , the complex electric field amplitude of the LG beam in the incident plane can be written as: 

   
2 2

0 2 2

0 0 0

2 2
, , 0 exp exp

l

li i i
i i i i p i

r r r
E r z E L il
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    
                     (1) 

In equation (1), the cylindrical coordinate system is chosen, and the relationship between  , ,i i ir z and 

( , , )i i ix y z is
2 2

i i ir x y  and atan( / )i i iy x  . The factor 0 02 ! ( )!E p p l w   is the amplitude 

constant, 0w is the beam-waist radius, and ( )
l

pL   is the associated Laguerre polynomial. p  and l represent the 

LG mode radial index and the topological charge, respectively. The time dependence of exp( )i t  is omitted.  

Using the two-dimension Fourier transform, the angular spectrum amplitude of the incident LG beam [26] in its 

focal plane can be written as: 
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 
       (2) 

where ik is the wave number in the incident space, and 0 01/f k w is the natural expansion factor [37]. The 
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coordinates  ,i ik   represent the spectrum space.  

Snell’s law, the Fresnel coefficients or the generalized Fresnel amplitude reflectance and transmittance can be 

applied to the plane wave angular spectrum elements of the beam directly. The electric field components can then be 

derived utilizing the integral of inverse Fourier transform from the angular spectrum of beam amplitude.  

The angular spectrum of incident and reflected waves above the first interface can be expressed as:  

      2

, 0 , 1 ,, e x p ( ) , , e x p ( )i ii i i z i i i r z rE k ik z r E k ik z                           (3) 

where
2

0,1r takes into account not only the reflection from the first interface, but also multiple reflections and 

transmissions from all deeper interfaces. 

In the internal region of the dielectric slab, the angular spectrum has the following forms:  

     1
1 1 11 1 1 1 1 1, 1 1 1,2 1 1 1, 1 1

ˆ ˆ, , , exp( ) , exp( )
i ii i i i i i i r r r

z zE k z E k ik z k r E k ik z k                   (4) 

where the first term represents the angular spectrum of the downward-going component, which includes the 

transmitted element from the first interface and all the reflected elements between the two interfaces, and the 

second term denotes all the reflected components from the second interface.   

In the transmitted region, there is only a transmitted wave and no reflected wave; therefore: 

   2
1 0,2 ,, , , exp( )

t

N it t t i i t z tE k z t E k ik z                                    (5) 

where 
2

0,2t  is the total amplitude transmittance. Making use of the generalized Fresnel amplitude reflectance and 

transmittance of plane wave in inhomogeneous media, the total angular spectrum in the slab is derived to be: 

 
 
 

 
1 1 1 1

1 1 1 1 1 1,2 1, 1 1, 1 1 1, 1

,
ˆ ˆ, , exp( ) , exp( )

,

i
i i

i r r i i r i i
iz z i i z

i i i

E k
E k z k r ik z ik z k E k ik z

E k


 


   
 

             (6) 

where     1 1 1
1 1 1 0,1 , 1, 0 1,0 1,2 1, 1, , exp( )exp( ) 1 exp( 2 )
i

i i i i
i i i i z i z zE k E k t ik z ik z r r i k d             , and

1 1 0d z z    . In equations (4)-(6), 

the local coordinates 1 1 1( , , )x y z   ,i r  , which are located at the second interface, are used to describe the 

incident and reflected beams in the slab. In the internal region of the slab, the positive direction of 1z
axis 

coincides with the geometric-optical axis of the corresponding beams. The unit vectors 1
ˆik and 1

ˆrk point to the 

positive directions of 1

iz and 1

rz  axes, respectively. 
0z  and 

1z  are the coordinate values of the first and second 

interfaces in the incident coordinates, respectively. 

With the inverse Fourier transformation of the expressions above, the corresponding complex electric field amplitude 
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in the dielectric slab can be derived as: 

     
2

11 1 1 1 1 1 1 1 1 1 1 1 1
0 0

1
, , , , exp cos

2
E r z E k z ik r k dk d


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



                     (7) 

Meanwhile, the reflected electric field in the local coordinate ( , , )r r rx y z above the first interface is: 

     
2

2

0,1 ,
0 0

1
, , , exp( )exp cos

2
ir r r r i i r z r r r r r r r rE r z r E k ik z ik r k dk d


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



                 (8) 

The transmitted electric field ( , , )t t tx y z in the output region is: 

     
2

2

0,2 ,
0 0

1
, , , exp( )exp cos

2
it t t t i i t z t t t t t t t tE r z t E k ik z ik r k dk d


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



                  (9) 

According to the boundary condition of electromagnetic fields, the generalized amplitude reflectance [38] for an 

N-layers media can be expressed with a recursive form, that is: 

1 1

, 1 1, 2 1, 1

, 1 1 1

, 1 1, 2 1, 1

exp( 2 )

1 exp( 2 )

N j

j j j j j z jN j

j j N j

j j j j j z j

r r i k d
r

r r i k d

 

    

  

    





, where:

, 1 0N Nr                     (10) 

The total amplitude transmittance is: 

0, , , 1
0

exp( )
N

N

N j z j j j
j

t ik d S 


                                    (11) 

where
1 1 1

, 1 , 1 1, 1, 2 1, 11 exp( 2 )N j

j j j j j j j j j z jS t r r i k d 

      
    . 

The 
1

, 1j jr 
and 

1

, 1j jt 
in equations (10) and (11) are the Fresnel reflection and transmission coefficients, respectively. 

For the parallel and vertical polarizations, they are given by[38]: 

2

( 1), , 1,1,

, 1 2

( 1), , 1,

, 1,1,

, 1

, 1,

( )

( )

j j j z j zp

j j

j j j z j z

j z j zs

j j

j z j z

n k k
r p polarization Parallel polarization

n k k

k k
r s polarization Vertical polarization

k k

 



 








 




 



            (12) 

1, 1,

, 1 , 1

1

1, 1,

, 1 , 1

cos
1 ( )

cos

1 ( )

jp p

j j j j

j

s s

j j j j

t r p polarization Parallel polarization

t r s polarization Vertical polarization




 



 

    

  

            (13) 

where 
2 2 2

, , ,j z j j x j yk k k k   and 
2 2 2

1, 1 1, 1,j z j j x j yk k k k       represent the longitudinal components of 

the wave vectors in the j
th
 and ( 1j  )

th
 layers, respectively. j and 1j  are the incident angles of the j th 

and 
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( 1)j  th
 interfaces, respectively. The p-polarization represents the direction of the incident electric field is parallel 

to the ix  axis, whereas the s-polarization denotes the incident electric field which is parallel to the iy axis. 

2.2 Approximate expressions of reflected and transmitted fields from a homogeneous dielectric slab 

Considering an s-polarized LG beam that is incident on a dielectric slab from a homogeneous media space and then 

leaves the slab into the other homogeneous media. The equation (8) shows the total reflected field. 
2

0,1r is the total 

generalized amplitude reflectance and can be expanded as the following expression (here, to reduce calculation, we 

retain the first two terms): 

1 1 1

0,1 1,2 1,0 1 12 1

0,1 0,1 1 1

1,0 1,2 1 1

1 1 1 1

0,1 0,1 1,2 1,0 1 1

exp( 2 )

1 exp( 2 )

exp( 2 )

z

z

z

t r t i k d
r r

r r i k d

r t r t i k d

r r

 


 

  

                               (14) 

Noticing
1 1

1,0 0,1r r  , we have
1 1 1

,10 1,0 0,11 1t r r    . 1d denotes the thickness of the slab. Using the Taylor series, 

considering the paraxial approximation [25], the Fresnel reflection coefficients
1

0,1r and 
1

1,2r  are expanded around 

the center angular component of the incident beam and only retained the zero and the first terms, that is, 

 1 1 1

0,1 0,1 0 0,1 0 0 0 0( ) ( )x x x rr r k r k k k Q      ,  1 1 1

1,2 1,2 1 1,2 1 1 1 1( ) ( )x x x rr r k r k k k Q      . The corresponding 

expansion of 
1

0,1t and
1

1,0t can also be obtained conveniently. 

Therefore, substituting 
1

0,1r and 
1

1,2r  into equation (14), r and r can be written as 

 
2

1 1 1

0,1 0 1,2 1 0,1 0 1 1( ) ( ) 1 ( ) exp( 2 )x x x zr r k r k r k i k d  
    
  

                           (15) 

 

   

1

0,1 0 0 0 0

2
1 1

1 1 1 0 0 0,1 0 0 1,2 1 1 1

= ( )

2 ( ) ( )exp( 2 )

x x r

x r x x r x z

r r k k k Q

k k Q k k r k Q r k i k d

  

     

  

        

          (16) 

where
0

1

0 0,1 0 0ln ( )
x

r k
Q r k k


    ,  

1

1

1 1,2 1 1ln ( )
x

r k
Q r k k


    .The symbol  in subscripts represents the 

perpendicular component.  

Substituting equations (15) and (16) into (8), the approximate analytical expression of reflected field can be 

obtained as 
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     

    

 

,

2
1 1 1

0,1 0 0 0 1,2 1 1 1 0,1 0 0 0 1 1 1

1 1 1
0,1 0 0 12 1 1 0,1

0

, , 1 exp( ) ( , ) exp

( ) 1 ( ) (1 ) ( ) (1 2 ) exp( 2 cos )

cos
( 1) exp( )exp ( ) ( ) 2

cos

p

r r r r r r p l r r r

x x r x x r x x r

p

r r r x r x r

E r z ik z r z il

r k k Q r k k Q r k k Q i k d

ik z il r k Q r k Q r

 








     

 

   

     
  

     

 
   

2
1

0 0 1 1 1

0 0
, , , 12

0

( ) exp( 2 cos )

cossin 2 2 2
( , ) cos , 1 ,

( ) ( )

x r

rr r
p l r r r p l r r p l r r

r r r r

k Q i k d

lk r r
l r z i r z p l r z

r R z r w z w z










  
  

  

      
               

       

   (17) 

where  2 2 2 2

, ( , ) 2 ! π( )! 2 ( ) exp ( ) 2 ( )
n

n

m n r r r r r r m r rr z m m n r w z r w z L r w z        
. The total 

amplitude transmittance is as follows: 

1 1

0,1 1,2 1, 12

0,2 1 1

1,0 1,2 1, 1

1 1 1 1 1 1

0,1 1,2 1, 1 0,1 1,0 1,2 1,2 1, 1

exp( )

1 exp( 2 )

exp( ) exp( 3 )

z

z

z z

t t ik d
t

r r i k d

t t ik d t r r t i k d

t t




 

  

                            (18) 

Using a similar process as that of the total generalized amplitude reflectance, the two parts t and t  are 

presented by: 

       1 1 1 1

0,1 0 1,2 1 1, 1 0,1 0 1,2 1 1, 1exp( ) 1 exp( 2 )x x z x x zt t k t k ik d r k r k i k d   
                     (19) 

     
        

1 1

0,1 0 1,2 1 1, 2 2 1 1 1 0 2 2 1 0 1

1 1

0,1 0 1,2 1 2 2 1 1 1 0 1 1 0 0 1,

= exp(i )

exp(i2 )

x x z x t x t x x t t

x x x t x t r r z

t t k t k k d k Q k Q k k Q Q

r k r k k Q k Q k Q k Q k d

   

 

     

     

    
 

   
 

          (20) 

where 1 1cos cos i   , 2 1cos cost   , 
0

1

0 0,1 0 0ln ( )
x

t k
Q t k k


    and 

1

1

1 1,2 1 1ln ( )
x

t k
Q t k k


    . 

After inserting the amplitude transmittance expressions (19) and (20) into the integral (9), the total transmitted 

electric field component can be written in the following form: 

 
 /2 /22 2 2

0 1 2

1 2
0 1 1 2 22 2

2 2
0 11 1 1 1 0 1

2
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1 1 1 1

2

l k kl l l k
lt l t t t t t

t t t t k kl k
kt t t t tt t

t t t

l k l k

tt t t t t

w k s Z X Z Y Y
E r z b H

n Z Z Z Zi Z Z

X X X t
t H t H

w ZZ Z Z Z w Z Z


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 


 

       
        
           

    
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1 1 1

t

l k

t t t

X
H

Z Z
 

  
  

    

  (21) 

where 
 

 
0

! ! 1
1 (1 )

2 !(p )! !

k
pl p l

k N k

N k k d
b

p l k d


 







   
 

, 2N p l  , 2/t tX ix w , 0/t tY iy w , 

1 /t t RxZ iz z , 2 /t t RyZ iz z , 
2

2 2Rx Rz z , 2Ry Rz z , 
2

2 0 / 2R tz k w , sgn( )ls l , and ( )nH x is the 

Hermite polynomial. In the process of solving the integral (9), the relationship between the transformation relation 

between LG modes and HG modes [25] was used. It should be noticed that in order to derive the approximate 
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analytical expressions of equations(17) and (21), we consider only the prompt reflection and transmission, plus the 

first delayed reflection and transmission rather than the entire infinite series of them. 

3. Numerical results and discussion 

According to the expressions for the reflected and transmitted fields presented above, the characteristics of an LG 

beam incident on a dielectric slab are simulated and discussed in this section. In the simulation, the wavelength of 

incident beam is 0.6328 m  (which is the wavelength of a He-Ne laser), the thickness of the slab is500 , and 

the distance from the beam waist center to the position of detector is10cm . 

Effects of beam-waist radius: 

The intensity distribution of reflected wave is shown in Figure2, which includes 8 panels. The panels (a1), (a2), (a3) 

and (a4) are reflected intensities from the first interface of the slab, and panels (b1), (b2), (b3) and (b4) are the total 

reflected intensities from the two interfaces of the slab. The radial index and topological charge of the incident 

beam are 0p  and 1l  , respectively. The refractive indices for the input region and output region are 1.57 and 

1.198, respectively. For the first three rows, the refractive index of the slab is1.20. To observe the effects of the 

lossy media, we assume that the refractive index of the slab in the last row is 1.2 0.01i . The incident angle is 

chosen to be 49.7 degrees, which is very close to the critical angle. 
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Figure2 Intensity distribution of the reflected beam. The first three rows are the results for a lossless slab, and the last row is the 

simulation for a lossy slab. The beam-waist radius of incident beams for (a1, b1), (a2, b2), (a3, b3) and (a4, b4) are100 , 200 ,

1000 and 200 , respectively. 

Figure2 obviously shows that the reflected intensity still roughly maintains its circular shape, which is similar to the 

incident LG beam. This result is consistent with the conclusion in reference [26]. Compared with the reflected 

intensity of the first interface, the distortion of the total reflected intensity is not apparent, because of the multiple 

reflections between the first and the second interface and the refraction of the first interface. A comparison of the 

first three rows leads to the conclusion that as the beam-waist radius increases, the contour size of intensity 

decreases firstly and increases afterwards, and the distortion of reflected beam becomes gradually weak. Compared 

the last row with the second row, the total intensity distortion is found to be more evident in the case of a lossy 

medium.  

With the same beam and media parameters, using the formula in equation (21), the intensity distribution of 

transmitted beam in the local coordinate ( , , )t t tx y z  is presented in Figure 3. The panels (a1), (a2), (a3) and (a4) 

represent the transmitted intensities from the first interface of the slab, and panels (b1), (b2), (b3) and (b4) illustrate 

the total transmitted intensities from the two interfaces of the slab.  
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Figure3 Intensity distribution of the transmitted beam. The first three rows are simulations for a lossless slab, and the last row presents 

the results for a lossy slab. The beam-waist radius of incident beams for (a1, b1), (a2, b2), (a3, b3) and (a4, b4) are100 , 200 ,

1000 and 200 , respectively. 

The shape of transmitted beam is no longer circular, and is somewhat similar to the diagonal Hermite beam mode. 

In the first and second row, compared with the distribution along the ty  axis, the intensity distribution is 

broadened greatly in the direction of the tx  axis. However, when the beam-waist radius reaches1000 , the 

broadening is more evident along the ty  axis. As the beam-waist radius increases, broadening along the tx  axis 

direction becomes less apparent whereas in the ty  axis direction it becomes larger. The regularity of contour size 

variation of transmitted intensity is similar to the case of reflected intensity. Compared the transmitted intensity of 

the first interface with the total transmitted intensity, we can find that the two parts of the intensity contour for the 

first interface have almost a symmetrical distribution, but the contour of the total intensity is no longer symmetrical 

as follows: as the beam-waist radius increases, the left part of the total intensity decreases gradually. When the 

refractive index of slab is 1.2 0.01i , a comparison of the results in the second row with that of the last row shows 

that, because of the absorption, the total transmitted intensity becomes zero, and the intensity contour size of the 

first interface is also smaller. 

Effects of topological charge: 

For the purpose of discussing the effects of topological charge l on the reflected and transmitted intensity 

distribution, the intensity distribution with different topological charge l is shown in Figure 4. The beam-waist 

radius is kept at1000 . A comparison of Figure 4 (a1) with Figure 4 (a2) suggests that an increase on topological 

charge l enlarges the diameter of the reflected intensity ring, but does not change its shape; this phenomenon is 

similar to the effects on the incident LG beam. For the same beam-waist radius, compared with Figure3 (b3), the 

transmitted intensity of 1p   , 1l   still has the very similar shape, whereas for the 1p  , 2l  case, the 
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division between the two independent parts of transmitted intensity disappears. 

   

    

Figure4 Variations of topological charge on intensity distribution, (a1) reflected intensity: 1, 1p l  ; (a2) reflected intensity: 

1, 2p l  ; (b1)transmitted intensity: 1, 1p l  ; (b2) transmitted intensity: 1, 2p l  . 

Centroid shifts of the reflected beam from a slab 

When a beam is incident on the interface, the centroid of reflected and transmitted beams will shift in both 

transverse and longitudinal directions [21-23]. It is worth noticing that the intensity shifts in the direction of rx

axis and ry axis in Figure 2 cannot be seen directly due to it is very small. Reference [26] provides a detailed 

discussion on the transverse and longitudinal shifts of reflected beam from one interface. To analyze the effects of 

the slab on the shift of reflected beam, the shift formulas must be derived. The centroid of a beam [39] can be 

determined by   

   

 

ˆ ˆ , ,
ˆ ˆ

, ,

x i y j I x y z dx dy
x i y j

I x y z dx dy

        

   

    


 




                       (22) 

where î and ĵ represent the unit vectors that point to the positive directions of x and y axes, respectively. 

Considering the beam intensity is proportional to
2

E , substituting the expression (17) into equation (22), the 

centroid shifts of the reflected beam from a dielectric slab are obtained as follows: 

 
2

2 0 0
10 11 12 13 10 12 13 14( ) (2 1) (3 3 2) ( )

2
r

r

R

r

total

w k z
w z A A A A p l A A p l A A p l

z
x

I

   
          

       (23) 
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 2

10 11 12 13( )r

r

total

w z A A A A l
y

I


                                     (24) 

where  
2

1 1

100 12 1 1 1 0 01 0 0( ) cos / cos 2 ( )x r x rB r k Q r k Q  
  
  
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1 1 1

100 12 1 01 0 1 1 0 0,1 0 0 1 1( ) 1 ( ) 2 ( ) exp( 2 )x x x r x x r zC r k r k k Q k r k Q i k d    
         

, 

 1
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1

11 01 0 0 100 1 1 1( ) sin(2 cos )x rA r k Q B k d
    , 

12 100 1 1 1sin(2 cos )A B k d , 13 100 1 1 1sin(2 cos )A C k d ,
1

14 01 0 0 100 1 1 1= ( ) cos(2 cos )x rA r k Q B k d
   . The 

denominator in equations (23) and (24) is  
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 (25) 

With the equations (23)-(25), variations of the centroid shifts of the reflected beam from a slab with incident angles 

are calculated and presented in Figure5. Using the expression in reference [40], the results of a single interface are 

drawn in blue in the same figure. Because of the effects of multiple reflections between two interfaces, the shift in 

the rx axis is smaller than the result of the single interface case, whereas in the ry axis they are very close. The 

effects of beam-waist radius on the shift in the rx axis are more apparent than the effects on the shift in the ry

axis. In the ry axis, the shift of the 0 100w  case almost coincides with that of the 0 200w  case.  

   

Figure5 Variations of the centroid shifts of the reflected beam in the direction of the (a) rx and (b) ry axis 
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After substituting equation (21) into equation (22), the centroid shifts of the transmitted field can be obtained. The 

similar conclusion applies to the transmitted field case. 

4.  Conclusion 

Based on the plane-wave angular spectrum representation and the generalized Fresnel amplitude reflectance and 

transmittance, the reflected and transmitted fields of an LG beam incident on a dielectric slab were presented. With 

the Taylor series expansion, the approximate analytical formulas of reflected and transmitted fields were derived. 

When the incident beams had different beam-waist radii and different topological charges, the distributions of 

reflected and transmitted intensities were simulated. The results for a lossy slab were also presented. It was 

concluded that the distortion of intensity distribution including the size of intensity contour was greatly influenced 

by the beam-waist radii and the topological charges. The effects of beam-waist radius on reflected intensity of a 

single interface were found to be more evident. The total transmitted intensity of two interfaces was distinguishable 

from the case of a single interface. The total reflected and transmitted intensities for a lossy slab are obviously 

distorted. An increase on topological charge l was found to increase the diameter of the reflected intensity ring, but 

did not change its shape, while greatly changing the distribution of transmitted intensity. The centroid shifts of 

reflected intensity can be obtained in our simulation. Expressions of the centroid shifts of reflected beams were 

presented, and the variation of shifts with incident angles was calculated and compared with the results of one 

interface. Although the beam-waist radius of incident beam had significant effects on the intensity distribution and 

shifts in the rx axis, its effects on the centroid shifts of reflected beams in the ry axis were not very obvious. With 

the help of transmitted field expression, similar predictions of the centroid shifts of transmitted beam can also be 

obtained. 

The derived formulas mentioned above can be applied to analyzing the propagation characteristics of LG beams 

with different topological charges l in isotropic inhomogeneous media, which is an important part of vortex beam 

communication. 
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Highlights 

 Reflection and transmission of LG beam incident on a dielectric slab are described on the basis of 

plane-wave angular spectrum representation. 

 Analytical expressions of total reflected and transmitted fields of a dielectric slab are derived. 

 Effects of beam-waist radius and topological charge on reflected and transmitted field intensities are 

simulated. 

 Centroid shifts of reflected beam of a dielectric slab are presented and discussed. 

 




