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Abstract 
 

This thesis is made up of three empirical essays on obesity and chronic disease risk in the United States. 

Specifically, it examines health effects of trans fat reduction policies, the relationship between commuting 

and body mass index (BMI), and commuting and physical activity tradeoffs among individuals with 

differing levels of BMI. 

 

Chapter 2 examines the effects on individual-level measures of health from trans fat reduction policies in 

commercially prepared foods. Difference-in-difference estimation is used to identify changes in blood 

cholesterol levels prior to and after implementation of a series of related policies among restaurant meal 

consumers and non-consumers. Individuals with higher levels of consumption were found to have 

healthier cholesterol levels following implementation of the policies, while non-consumers saw less 

marked declines in cholesterol. Results remained robust to testing other obesity-related health measures 

less affected by trans fat consumption. 

 

Chapter 3 examines the relationship between active and sedentary commuting and BMI. Contrary to 

recent literature, this work finds little evidence of a relationship between increased sedentary commuting 

and higher BMI; instead this work suggests the link between commuting and poor health in the literature 

may be explained by a strong relationship between active commuting and lower BMI. These findings 

suggest further work is needed disentangle active and sedentary commuting choices. 

 

Chapter 4 revisits the relationship between sedentary commuting and physical activity to examine two 

issues. First, to find evidence of causality in this relationship and second, to examine whether this 

relationship varies by heterogeneity in health status. This work uses a two-part model of time use to 

examine both physical activity participation and duration decisions. Among healthy-weight and 

overweight individuals, commuting is associated with a decrease in participation, but not with duration 

of physical activities. However, among the obese, no significant relationship is observed. Results for non-

obese males are robust to an instrumental variables approach (IV), however the instrument is not 

predictive of commuting behavior among obese males or among women, suggesting that determinants 

of commuting may be different for groups with differing health status.  
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Chapter 1 

1.1. Introduction 

Obesity rates have been on the rise in the United States since the 1960’s, when roughly 13% of adults 

over the age of twenty were clinically obese. Recent data shows that 34.9% or 78.6 million US adults 

are currently considered to be clinically obese (Burkhauser et al., 2009; Flegal et al., 2010; Ogden and 

Carroll, 2010; Ogden CL et al., 2014). Increases in obesity have been widespread among the US adult 

population, with increases occurring in both sexes, all ages, all races, all education levels, and all 

smoking levels (Mokdad et al., 2003). The World Health Organization (WHO) and the US Centers for 

Disease Control and Prevention (CDC) have defined obesity as having a body mass index (BMI) greater 

than or equal to 30, in adults (USDHHS, 2010; WHO, 2000). Obesity is commonly used as an indicator 

of increased risk of chronic disease. Major diseases strongly associated with obesity are type II 

diabetes, high blood pressure, high cholesterol, stroke, hypertension, myocardial infarction, cancer, 

osteoarthritis, asthma, and depression; however this list is not exhaustive (Must et al., 1999; Wang et 

al., 2011). Estimated annual medical costs of obesity in the US were $147 billion in 2008 dollars and 

annual medical costs for obese individuals were estimated to be $1,429 higher than for normal weight 

individuals (Finkelstein et al., 2009).  

 

Aside from genetic factors, lifestyle choices and health behaviors are key determinants of obesity and 

chronic disease risk (Mokdad et al., 2003). Specifically, sedentary behavior, physical activity, diet, and 

nutrition, smoking, and alcohol consumption play a role in determining obesity and chronic disease 

risk. Because of the high costs and increased health risk and because obesity is largely preventable 

through modification of behavior and lifestyle, obesity prevention and reduction has been the focus 

of a large body of research and numerous public health policies put into place by governments, school 

districts, institutions, and companies (Cawley, 2015).  

 

This dissertation contributes to the obesity and chronic disease literature by applying economic theory 

and methods to understand two of these behaviors: nutrition and physical activity. Specifically, 

Chapter 2 contributes to the literature on trans fat reduction policies and other types of obesity- and 

lifestyle-related public health policies and regulations such as sugar-sweetened beverage bans, salt 

reduction regulations, by providing support that these policies are in fact effective in improving health 

among consumers of otherwise unhealthy foods. Additionally, this work uses clinically measured 

intermediate health outcomes which are directly affected by trans fat consumption; this is less 

common in health economics research, where disease diagnosis, mortality, or self-reported health 
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status are more common outcome variables. Chapters 3 and 4 contribute to the literature on 

commuting and health. Findings from Chapter 3 suggest that care is needed in identifying commuting 

behavior; specifically, active modes of commuting and sedentary modes of commuting should be 

treated separately when considering their effects on health and health behaviors. Public health 

policies and urban planning policies based on research which does not account for different types of 

commuting behaviors may be misguided. Chapter 4 contributes to the literature by re-examining the 

relationship between sedentary commuting and physical activity using a two-part model of time-use 

and by examining heterogeneity in this relationship by health status. This work finds some evidence 

of causality among non-obese males, however the key contribution of this work provides evidence 

that policies targeted at particular at-risk groups should consider research which focuses on these 

groups specifically.  

 

The remainder of this chapter provides an introduction of subsequent chapters and presentation of 

an economic framework within which those chapters fit.  

 

Chapter 2 uses measured health indicators from the 1999 through 2010 National Health and Nutrition 

Examination Survey (NHANES) dataset, which provides 2-year waves of repeated cross-sectional data. 

Using a difference-in-difference methodology this work measures the health effects of the 

implementation of a series of closely-related public health policies aimed at reducing trans fat 

consumption in commercially prepared foods. Trans fat consumption has been shown to directly 

affect low-density lipoprotein (LDL) cholesterol levels, so this is the outcome of interest (Mozaffarian 

et al., 2004). A continuous treatment group of restaurant-meal consumers is identified and grouped 

into categories based on the frequencies; these individuals are the most likely to be affected by the 

trans fat reduction policies. Individuals who consume fewer than one restaurant meal per week are 

identified as the baseline. Controlling for a variety of demographic, socioeconomic, and other health 

behaviors, this analysis finds restaurant-meal consumers had healthier changes cholesterol levels 

following implementation of the policies, while non-consumers saw less marked declines in 

cholesterol measures. Specifically, the treated group saw reductions in LDL levels of nearly 3 mg/dL 

lower than the lesser-exposed groups. Other obesity-related health measures less affected by trans 

fat consumption saw little or no change when the policy was enacted, giving evidence that the trans 

fat policy was driving the change rather than other health-related changes in the population. 

 

Chapter 3 uses time-use diary data from the 2006 through 2008 waves of the American Time Use 

Survey (ATUS) and uses a linear regression model to examine the relationship between active and 
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sedentary commuting behaviors and BMI among US adults. In the fields of health economics and 

urban economics, many papers have examined this relationship using different datasets and 

specifications for commuting and health outcomes; much of this literature suggests sedentary 

commuting and urban sprawl are associated with obesity (Eid et al., 2008; Ewing et al., 2014; Frank et 

al., 2004; Hansson et al., 2011; Hoehner et al., 2012; Lopez, 2004; McCormack and Virk, 2014; Zhao 

and Kaestner, 2010). While very few papers have found contradictory  results (Jilcott et al., 2011; Kelly-

Schwartz et al., 2004) this chapter, finds little evidence of a relationship between increased sedentary 

commuting time and higher BMI. After examining methods used in another recently-published work 

(Yang and French, 2013), this chapter finds that the link between sedentary commuting and obesity 

described in the literature could possibly be explained instead by the tradeoff between sedentary 

commuting and active commuting, and by the strong relationship between active commuting and 

lower BMI. These findings suggest further work is needed in disentangling the behaviors of active and 

sedentary commuting choices. 

 

Chapter 4 also uses time-use diary data from the 2006 through 2008 ATUS dataset and revisits the 

relationship between sedentary commuting and physical activity behaviors to examine three issues. 

First, this work uses a two-part model of time use to separately examine physical activity participation 

and duration decisions. This type of model has previously been used with self-reported survey data 

on commuting and physical activity; however this work is the first to explore that relationship by 

applying this method to time-use data.  Second, this work attempts to find evidence of causality in 

this relationship, by using an instrumental variables approach where commuting behavior is 

instrumented by historical housing prices. And third, this work examines whether this relationship 

varies by heterogeneity in health status. This work finds that among healthy-weight and overweight 

individuals, commuting is associated with a decrease in participation, but not with duration of physical 

activities. However, among the obese, no significant relationship is observed for either decision. 

Results for non-obese males are robust to the instrumental variables approach (IV); however the 

instrument is not predictive of commuting behavior among obese males or among women, supporting 

previous evidence that determinants of commuting behavior differ by sex and also suggesting that 

determinants of commuting may be different for groups with differing health status. 

1.2. Economic Framework 

Cawley (2004) presents a rational choice framework for understanding and addressing why individuals 

may choose behaviors which lead to obesity and poor health. This framework is rooted in the 

economics question of understanding how individuals allocate their scarce resources of time and 
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money in order to maximize their lifetime utility or happiness. Health, itself, can contribute to utility, 

however individuals may choose to make tradeoffs between health and other things with give them 

utility.  

Individuals face financial constraints which can affect their choice of foods. In an industrialized food 

system like the US, energy-dense foods, which contain larger amounts of fats and sugars, are relatively 

cheap while foods like fresh fruits and vegetables, which are less energy dense, are more expensive 

(Drewnowski, 2004; Drewnowski and Darmon, 2005). Considering a two-good model where 

individuals can purchase food and all other goods, individual consumers face the trade-off of buying 

cheap high-fat food and more of all other goods or buying expensive healthier foods and less of all 

other goods. Related specifically to Chapter 2, where the focus is on trans fat regulation, the molecular 

structure of trans fatty acids allows certain foods which are made with trans fats to be produced more 

cheaply than if they were produced with butter or other types of oils. This means that manufacturers 

and sellers of foods are also making tradeoffs between using trans fat which can lower food 

production and storage costs and increase profit margins or use another healthier type of fat which 

often means increased production and storage costs and lowered profit margins. Similarly, but not 

within the scope of this work, time constraints also play a role in an individual’s food choices; packaged 

and processed foods, restaurant and carry-out meals can save time over cooking meals from scratch, 

allowing individuals with scarce amounts of time to have time for other activities such as working, 

commuting, childcare, and leisure activities.  

All individuals face the time constraint of having only 24 hours in a day and must decide how to allocate 

time between working for pay, working in the household, physically-active commuting, sedentary 

commuting, doing physically active leisure, and doing sedentary forms of leisure. Choosing to spend 

time in one activity reduces time available for other activities. Chapters 3 and 4 use this framework to 

examine the role that time constraints play in an individual’s involvement in physical activity outside 

of paid work. These chapters specifically examine how variations in the time constraint of working 

adults may arise through time spent in commuting to and from work and how this variation may affect 

an individual’s choice to engage in physical activity. While not the focus of this work, individuals also 

face financial constraints which can affect the choice of their participation in physical activity 

behaviors. 

Cawley’s framework incorporates elements from the model of labor and leisure choice presented by 

Becker (1965) which assumes that individuals derive utility from the consumption of “basic 

commodities” such as meals and leisure activities and that they are able to produce these basic 

commodities through time and market commodities. This model also builds on Grossman’s (1972) 
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model of health production where individuals are both producers and consumers of health, which 

itself is a sort of capital, or a stock which can decline over time in the absence of investments in health. 

In Grossman’s model, health is both a consumption good, which yields direct utility, and also an 

investment good, which yields utility to consumers indirectly through increased market productivity, 

fewer sick days, and higher wages. People can combine time (such as to get exercise or cook meals) 

with market goods they purchase (such as food, a gym membership, healthcare, tobacco, or alcohol) 

in order to improve, maintain, or damage their health (Grossman, 1972).  When making these 

decisions of whether or not to eat a high-fat fast food meals, be sedentary, use drugs and alcohol, or 

engage in other risky behaviors, individuals weigh the utility received from enjoyment these behaviors 

against the losses in health and welfare caused by these behaviors. Similarly, Cawley’s framework, 

also known as the SLOTH model, attempts to understand how individuals allocate their resources of 

time and money in order to maximize their lifetime utility, subject to three constraints: time, budget, 

and biology. In this framework, individuals to maximize the following utility function: 

(1.1) 𝑈𝑈 (𝑆𝑆, 𝐿𝐿,𝑂𝑂,𝑇𝑇,𝐻𝐻,𝐹𝐹,𝑊𝑊(𝑆𝑆, 𝐿𝐿,𝑂𝑂,𝑇𝑇,𝐻𝐻,𝐹𝐹),𝐻𝐻(𝑆𝑆, 𝐿𝐿,𝑂𝑂,𝑇𝑇,𝐻𝐻,𝐹𝐹,𝑊𝑊),𝑌𝑌). 

Here, utility is a function of SLOTH, where S, L, O, T, and H are vectors of variables that represent the 

number of hours spent in sleeping, S, leisure, L, occupation or paid work, O, transportation, T, and 

home production or unpaid work, H, respectively. Each of these pursuits directly affects a person’s 

utility, however they can also affect utility indirectly, by affecting one’s weight, W, and one’s health, 

H. An example would be that sedentary forms of leisure, transportation, and other discretionary 

activities, may lead to higher weight and worse health in the future for an individual.  

The exact relationship between utility and weight varies widely between individuals, but generally is 

nonlinear. Individuals are not able to choose their weight directly but they can affect it through 

physical activity and caloric intake.  F represents caloric intake, or food, and can have a direct impact 

on utility through taste and an indirect impact on utility through weight and health. Health, is affected 

by weight, by food intake and by the allocation of time or physical activity across SLOTH. Physical 

activity can affect health directly or indirectly through weight.  

Finally, Y represents a composite or bundle of all goods other than food.  

In this framework, individuals face three constraints:  

(1.2) 𝑌𝑌 +  𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑤𝑤 ∗ 𝑂𝑂, 

(1.3) 𝑆𝑆 + 𝐿𝐿 + 𝑂𝑂 + 𝑇𝑇 + 𝐻𝐻 = 24, 

(1.4) ∆𝑊𝑊 = 𝑐𝑐(𝐹𝐹) − 𝑓𝑓(𝑆𝑆, 𝐿𝐿,𝑂𝑂,𝑇𝑇,𝐻𝐻,𝐺𝐺) −  𝛿𝛿(𝐺𝐺)𝑊𝑊. 
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The first of these is a budget constraint: money spent on food and all other goods must add up to 

one’s wage earnings. The second constraint simply states that hours engaged in each of the 

components of SLOTH must add up to exactly 24 for each day. The third is a biological constraint: 

changes in weight are determined by caloric intake through food, c(F), caloric expenditure through 

various activities, f(S, L, O, T, H, G), and through the metabolic rate, δ, which is a function of one’s 

genes, G, as is the amount of energy expended. Making suitable assumptions about constraints 1.2 

and 1.4, which are implied in Cawley (2004), we arrive at the first order condition that in optimality, 

the marginal utility of any one activity is equal to the marginal utility of other activities. 

Within this framework, individuals may rationally decide to accept a higher body weight in exchange 

for the utility associated with eating or with sedentary forms of leisure. People will exercise when it is 

the best use of their scarce time (even though public health advocates may encourage them to do it 

as long as it increases health). People will consume foods within their budgets that provide the highest 

net benefit. Gross benefits include immediate pleasure of taste plus any current and future health 

benefit. Gross costs include financial cost, discounted utility of adverse health impacts, and discounted 

utility of any future weight gain. 

In a multi-period version of this framework, individual’s decisions about eating and time allocation in 

each period will reflect both the immediate and the future marginal costs and benefits. Individuals 

generally assign less importance to outcomes in the distant future than to those in the present. Cawley 

points out that in a dynamic framework, the length of life could be made a function of health and 

weight.  

To summarize, this framework assumes that individuals divide their monetary spending between a 

variety of foods and all other goods, and assumes that individuals divide their time between sleep, 

leisure, unpaid work in the household, paid work in the labor market, and transportation, in order to 

maximize their utility. While people do not choose their weight directly, their choices of time 

allocation and consumption affect weight indirectly. This framework does not examine how individual 

utility may vary with health, weight, food consumption or other activities, but does provide a means 

of understanding the trade-offs that individuals face. 

In terms of using this framework to understand the problems of obesity, it is useful to consider the 

marginal benefit of participating in any particular activity. For example, if the marginal utility provided 

by an hour of a sedentary leisure activity, like playing video games, increased and the marginal utility 

from all other activities remained the same, then the framework predicts that an individual would re-

allocate time to play more video games and do less of other activities.  
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Chapter 2 examines the effects of public health policies of trans fat reduction on cholesterol levels 

among consumers of restaurant meals, focusing on the biological constraint in this model and how 

public health policy may affect it. Applying this framework to understand how these policies may have 

affected individual’s food choices raises some concerns about the effectiveness of such policies. In 

particular, if reduction of trans fat improves the healthiness of fast food, restaurant meals, and 

packaged foods, then individuals who derive utility from consuming healthy foods may find that the 

marginal utility of these foods has increased relative to the marginal utility of other foods, and thus 

increase consumption of processed foods formerly containing large amounts of trans fat and decrease 

consumption of other healthier and possibly more expensive foods. This chapter addresses these 

concerns through a unique robustness check examining whether other health measures which are 

affected by consuming unhealthy foods but not particularly through trans fat have changed as well. 

Chapters 3 and 4 both rely heavily upon this framework to understand how individual time use relates 

to health and focus on the second constraint in this model. Chapter 3 focuses on how time spent 

involved in commuting may be related to BMI, as a measure of health. In this chapter, a sample of 

individuals has a time constraint of 24 hours, in which at least seven hours are spent working and 

some number of minutes may be spent in commuting, or getting to and from work. In this framework, 

the amount of time spent commuting reduces the overall amount of time available for other activities, 

including physical activity. This chapter explores how individual-level variation in the time constraint 

due to variation in commuting relates to health. Similarly, Chapter 4 focuses on how variations in an 

individual’s time constraint may affect their participation in physical activity on a given day, and how 

these relationships may vary across individuals of differing health status. 
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Chapter 2 

2.1. Introduction 

 

Industrially produced trans fats are typically found in fast foods, restaurant and bakery foods, and pre-

packaged foods. Their consumption has been strongly linked to an increased cardio-metabolic risk, yet 

Americans have been increasing their consumption of both restaurant meals and pre-packaged foods 

(Fryar and Ervin, 2013). The World Health Organization, the Institute of Medicine, The American Heart 

Association, the US Department of Agriculture, and other leading health organizations recommend 

minimizing the amount of trans fat in the diet (Mozaffarian et al., 2006; Teegala et al., 2009). Two key 

policies have given food manufacturers incentives to reduce or remove artificial trans fats; the FDA 

required trans fats to be listed on the mandatory nutrition label of all processed foods beginning in 

2005, and the New York City Department of Health and Mental Hygiene passed a regulation banning 

the use of artificial trans fat in all restaurant foods beginning in 2007. During the time that these 

policies were being implemented, a series of notable class-action lawsuits against food producers 

Kraft, McDonalds, and KFC in 2003, ’05, and ’06 provided incentives for food producers to remove or 

reduce trans fat fats (Tarrago-Trani et al., 2006; Unnevehr and Jagmanaite, 2008).  

 

This chapter investigates whether trans fat reductions in food prepared away from home (FAFH) due 

to these policies has had any effect on intermediate health measures. It examines whether there is a 

causal effect of decreased trans fat consumption in restaurant meals on cardio-metabolic risk factors, 

specifically blood cholesterol levels. This study is among the first to isolate the specific effect of trans 

fat regulation on cholesterol levels and cardiovascular health at the population level. The work helps 

to fill a gap in the literature pointed out by Angell et al. (2012) and these findings lend support to 

recent work which has found evidence of reduced mortality from cardiovascular events following the 

NYC trans fat ban (Restrepo and Rieger, 2016). 

 

The main outcome variable in this work is serum low density lipoprotein (LDL) cholesterol; this is in 

line with causal pathways indicated by the medical literature – trans fat consumption directly affects 

LDL levels and causes greater changes in LDL levels, relative to high-density lipoprotein (HDL) and 

triglyceride levels (Mozaffarian et al., 2006). High levels of LDL are the main source of cholesterol 

buildup and blockage in the arteries, leading to cause of heart disease (National Heart, Lung, and Blood 

Institute (NHLBI), 2005). Using population-level, repeated cross-sectional data, this work is able to 

control for demographic and socioeconomic factors as well as health behaviors. Using information 
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about the frequency of eating out, this work identifies the magnitude of the change in health 

indicators due to trans fat reduction in restaurant meals.  

 

This chapter proceeds as follows: Section 2.2 provides background information on what trans fats are, 

and why they have become a part of the food supply. This section presents literature on the effects of 

trans fats on health outcomes, on trans fat consumption levels prior to the policy, and on the effects 

of policies related to trans fat reduction and removal. The data and changes in restaurant foods 

created by trans fat reduction policies are discussed in section 2.3. Section 2.4, explains the 

methodology and Section 2.5 presents key results and tests for robustness and treatment 

heterogeneity. This includes examining the effects on other health indicators: HDL cholesterol, total 

cholesterol, and triglyceride levels, BMI, and waist circumference. These indicators have seen 

consistent changes over the past decade, due in part to many changes in food consumption patterns 

and health behaviors, and serve as placebo tests to show the robustness of the main result. Section 

2.5 also discusses implications and limitations of the main findings. Finally, Section 2.6 closes with a 

summary of the main findings and suggestions for further research. 

 

2.2. Background 

2.2.1 trans fat in the food supply 
 

Trans fat is a shorthand term for trans fatty acids, which are named for the trans configuration of the 

double bond in the fat molecule. In contrast, naturally occurring unsaturated fats have a cis 

configuration in the double bond and saturated fats have no double bond at all.  

 

There are two different types of dietary trans fatty acids, one which occurs naturally and another 

which is industrially produced. Naturally occurring trans fats, or ruminant produced trans fatty acids 

(RP-TFA), are found in all meat and dairy products from ruminant animals and make up less than 0.5% 

of total energy intake in the US (Micha and Mozaffarian, 2008). RP-TFA are made up of vaccenic acid 

and conjugated linoleic acid and have a trans fatty acid concentration of about 6%, whereas 

industrially produced trans fats are made up of elaidic acid and can have a concentration of trans fatty 

acids as high as 60% (Stender et al., 2008). The structure of the trans fatty acid molecules in ruminant-

produced fat is significantly different from industrially-produced trans fatty acids, and as a result they 

have different effects on health (Chardigny et al., 2008; Remig et al., 2010). Specifically, moderate 

consumption of RP-TFA is found to have no adverse effect on coronary heart disease (CHD) risk and 
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some research has found possible beneficial effects on lipid levels and CHD risk (Bassett et al., 2010; 

Jakobsen et al., 2008; Stender et al., 2008).  

 

The focus of this chapter then, is strictly on the industrially-produced trans fatty acids, which are 

simply referred to here as either trans fat, IP-TFA, or TFA. Industrially produced fats make up the major 

source of dietary trans fats in the US and contribute to roughly 2-3% of total energy intake in the US 

(Micha and Mozaffarian, 2008). IP-TFA is created through the industrial process of partial 

hydrogenation of unsaturated vegetable oils. This process uses a metal catalyst, usually nickel, and 

high temperatures or pressure to hydrogenate, or saturate, the carbon-carbon double bonds which 

exist in vegetable oils. If hydrogenation is completed, as is the case in fully hydrogenated oils, the 

resulting product is a saturated fat and does not have the trans-double-bond. When the hydrogenated 

process is not fully completed, as is the case in partially hydrogenated vegetable oils (PHVO), the 

resulting product is a mixture of cis- and trans- fatty acids (Mozaffarian et al., 2006). The percentage 

of trans isomers can vary depending on the level to which vegetable oils have been hydrogenated; for 

example, tub margarine typically has a lower proportion of trans fat than stick margarine (Ascherio et 

al., 1994). The hydrogenation process was developed in the 1890’s and used primarily for industrial 

processes; it was patented and first applied to food production in 1903. The structural differences 

resulting from partial hydrogenation result in a number of features which make trans fats more 

amenable to industrial food production. Trans fats have a more rigid configuration of molecules which 

results in a melting point somewhere between the melting points of saturated fats and cis unsaturated 

fats. This means that they are solid at room temperature, while unsaturated fats are liquid. This 

provides desirable characteristics such as texture and mouthfeel. The molecular structure of trans fats 

also makes them more stable when exposed to oxygen, which means that they are less prone to 

oxidation and becoming rancid than cis unsaturated fats. When used to prepare foods, trans fats 

extend product shelf life, increase the lifespan of frying oils, and decrease refrigeration requirements. 

Trans fats are often cheaper to produce than saturated and unsaturated fats because they are often 

produced using byproducts of soybean meal production and other vegetable oil production processes 

(Kodali, 2014). In the US, they are typically found in margarines, shortenings, spreads and are also 

used in bakery items, deep fried foods, frozen foods, and pre-packaged snacks (American Heart 

Association, 2010; Stender et al., 2007, 2006). When trans fats had initially entered the food supply, 

they were treated as “generally recognized as safe” (GRAS) and were not initially evaluated for health 

effects in humans (Ascherio and Willett, 1997). Because of their commercial advantages over non-

hydrogenated vegetable oils, trans fat usage has increased steadily from their development in the 

early 1900’s until the late 1960’s. Usage of trans fats became more pronounced during the Great 
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Depression and World War II period primarily because margarine acted as a cheaper substitute during 

times of butter rationing. Another reason for their increased usage is that medical research from the 

1950’s and ‘60’s associated high levels of blood cholesterol and saturated fat intake with increased 

mortality from heart attacks and medical professionals recommended that Americans decrease their 

consumption of saturated fats. Following this advice, margarines made from partially hydrogenated 

vegetable oils were generally regarded as a healthier alternative to saturated fats like butter 

(American Heart Association, 2010). This increased usage of trans fats has contributed to the modern 

obesogenic food environment and the built environment by contributing to the lowered cost and thus 

increased the accessibility and availability of pre-packaged and fast foods. These in turn can contribute 

to overconsumption of food and increased sedentary activity. (Kirk et al., 2010; Lee et al., 2011; 

Swinburn et al., 2011). 

 

Medical research on trans fats has been extensive; early studies on the negative health effects of trans 

fat intake began appearing in the 1970’s however scientific consensus was not reached. By the 1990’s 

medical research established links between trans fatty acid intake and poor heart and circulatory 

health (Ascherio and Willett, 1997). Early research on dietary trans fat from the landmark Nurses’ 

Health Study followed a subsample of 80,095 female registered nurses from 1980 onwards to assess 

risk factors for cancer and cardiovascular disease. Trans fat intake was calculated from dietary 

questionnaires from women with no diagnosis of diabetes, stroke, CHD, or hypercholesterolemia at 

baseline. These subjects were followed for eight years, during which there were 431 new cases of 

CHD. Controlling for demographic, health, and dietary characteristics, researchers found that intake 

of trans fats were directly associated with risk of CHD, more so for those women whose margarine 

consumption over the previous ten years had been stable(Willett et al., 1993). Similar results were 

observed in the Boston Health Study, which uses a case-control design and studied the relationship 

between trans fatty acid intake and first myocardial infarction in a sample of 239 patients admitted to 

the intensive care units of one of six hospitals in the Boston area between 1982 and 1983, as well as 

282 population control subjects. Trans fat consumption was estimated using a food frequency 

questionnaire, where trans fat intake estimates were previously assessed against proportion of trans 

fatty acids found in aspirates of adipose tissue of respondents. Again, after adjusting for age, sex, 

energy intake, CHD risk factors, and diet, researchers found trans fat consumption, particularly in the 

form of margarine, to be directly and significantly related to risk of myocardial infarction (Ascherio et 

al., 1994).  
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Following early research linking trans fat consumption with CHD risk, later research identified 

numerous causal pathways between consumption and increased CHD risk. Compared to consumption 

of an equal number of calories from saturated fat or cis unsaturated fat, trans fatty acid (TFA) 

consumption was found to raise LDL cholesterol, reduce HDL cholesterol, increase blood levels of 

triglycerides, and increase systemic markers of inflammation, each of which contribute to an increase 

in coronary heart disease (CHD) risk (Mozaffarian et al., 2006). Another study estimated trans fat 

intake of about 5 grams per day is associated with a 25% increase in the risk of ischemic heart disease 

(Oomen et al., 2001). Even at very low levels of consumption, dietary intake of artificial trans fatty 

acids increases the risk of coronary heart disease, more so than consumption of any other 

macronutrient on a per calorie basis (Ascherio and Willett, 1997; Mozaffarian et al., 2006). The 

relationship between TFA consumption and incidence of CHD in prospective observational studies is 

greater than the predicted changes in CHD risk from the changes in blood cholesterol levels alone, 

which the literature suggests is caused by TFA consumption influencing other CHD risk factors as well 

(Ascherio et al., 1994). For example, increased trans fat consumption has also been associated with 

increased levels of inflammatory biomarkers and endothelial cell dysfunction (Baer et al., 2004; Lopez-

Garcia et al., 2005; Mozaffarian et al., 2006, 2004). Trans fat consumption has also been found to be 

associated with an increased risk of type-II diabetes. A meta-analysis of four prospective cohort 

studies finds that a 2% increase in total energy intake from TFA, roughly 4.5 grams, is associated with 

a 23% increase in the incidence of CHD. Further, the effect of replacing trans fat varies depending on 

the type of fatty acid or other macronutrient that it is replaced with – for example exchanging 2.2 

grams (1% of total energy intake) of TFA with an equal amount saturated fat results in a reduction of 

LDL of 0.4 mg/dL and raises HDL by 0.5 mg/dL whereas making the same exchange with 2.2 grams of 

a cis polyunsaturated fat results in a reduction of LDL of 2.3 mg/dL and a rise in HDL of 0.3 mg/dL 

(Mozaffarian et al., 2006). So, the true effect of a reduction in trans fat consumption on CHD outcomes 

should then be somewhere between the minimum estimate based on the effect of TFA consumption 

on LDL and the maximum estimate that seen in observational studies (Katan, 2006). These findings 

suggest that the use of trans fats as a healthier alternative to saturated fats is not justified. 

 

Also relevant to the research question presented here, the medical literature addresses how long 

dietary changes involving trans fat intake can take to affect health outcomes. Findings from studies 

where subjects were given different diets over three to four weeks suggest that effects of trans fat 

consumption on cholesterol levels can be seen relatively quickly. In one study, subjects were fed diets 

for three weeks at a time, in which the nutrient content was similar save for ten percent of calories 

which came from three different sources of fat: oleic acid (unsaturated fat), trans isomers of oleic acid 
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(trans fat), and saturated fatty acids. Effects on LDL levels were identified within the three-week period 

that subjects were on a particular diet (Mensink and Katan, 1990). In another study, subjects were fed 

six different diets for periods of 35 days each; effects on cholesterol levels from variations in fatty acid 

composition of the diets were seen within 28 days from the start of each diet (Lichtenstein et al., 

1999).  

 

Another aspect of trans fat consumption relevant to this research is to understand how Americans are 

consuming trans fats. The Dietary Guideline for Americans recommends keeping total daily fat 

consumption under 70 grams, saturated fat consumption under 20 grams, and trans fat as low as 

possible (US Department of Agriculture, 2010). Using data from food intake surveys and a 1995 USDA 

database of fatty acid content of selected foods, researchers estimated mean TFA consumption from 

1989-1991 was approximately 5.3 grams per day (Allison et al., 1999). Between 1999 and 2002, using 

the same USDA database, the average American consumed 2.5% of total calories per day from trans 

fats – this is roughly 5.5 grams of trans fats per day, based upon the average recommended 2,000 

calorie diet (Kris-Etherton et al., 2012). Considering that average daily caloric intake for US adults was 

estimated to be 2,200 calories in 2003, 2.5% of total calories from trans fat would be about 6.1 grams 

of trans fats per day (Ng et al., 2014). While this estimate of daily caloric intake does not appear to be 

particularly excessive, it is worth noting that survey respondents, particularly those who are 

overweight or obese, often underreport dietary intake; this would suggest that this calculation of trans 

fat consumption is an underestimate (Lichtman et al., 1992; Macdiarmid and Blundell, 1998). The 

authors note that while consumption in the 1999-2002 period was similar to that in the 1989-1991 

period, the striking difference between the two periods was that TFA intake increased among the 90th 

percentile. This group was made up of males, aged 12-19 and their trans fat consumption was 

estimated to be alarmingly between 11.8 and 92.4 grams per day. The authors emphasize that the 

range of trans fat consumption varies greatly; individuals in the lowest quintile of trans fat intake 

consume between 1.3 to 2.0 grams per day while individuals in the highest quintile average 9.6 to 16.5 

grams per day (Kris-Etherton et al., 2012). Since the 1980’s roughly 80% of caloric intake from trans 

fat has come from partially hydrogenated vegetable oils. The majority of these are found in 

commercial baked goods, yeast breads, and commercial French fries, as shown in Figure 2.1, which 

has been reproduced from the original paper. With the exception of stick margarine, shortening, 

mayonnaise, and liquid butters, all of these items can be considered to be within the category of “food 

away from home” or  FAFH, which encompasses table-service restaurants, fast-food restaurants, take-

out meals, delivery meals, and any other commercially prepared foods, meals and snacks (Lin and 
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Guthrie, 2012). Most trans fats are found in the categories of pre-packaged or commercially prepared 

foods, restaurant meals, and fast food. 

 

Figure 2.1: Top 25 Food Categories Contributing to Dietary TFA Intake 

1 

 

Another other major source of trans fat consumption comes in the form of fast foods. While average 

fast food consumption in US adults has gone down slightly in recent years, certain groups are still 

consuming a large percentage of daily calories from fast foods; 2007-2010 NHANES data show that 

non-Hispanic black males in the 20-39 age group are consuming over 20% of their daily calories from 

fast food, obese individuals in the 20-39 age group consume 18% of daily calories from fast food, and 

lower income individuals in the 20-39 age group consume 16.1% of daily calories from fast food (Fryar 

and Ervin, 2013; Kris-Etherton et al., 2012). High TFA consumption is also associated with higher 

consumption of total fat, indicating that food choices and dietary patterns differ for the higher-TFA 

consumption groups. For example, one study points out that it is easily possible to consume 25 grams 

of trans fats in a single fast food meal consisting of a large serving of chicken nuggets with French fries 

and 100 grams of cookies (Stender et al., 2008).  

 

 

                                                           
1 Reprinted from “Trans Fatty Acid Intakes and Food Sources in the U.S. Population: NHANES 1999-2002” by 
P.M. Kris-Etherton, M. Lefevre, R.P. Mensink, B. Petersen, J. Fleming, and B.D. Flickinger, 2012, Lipids, Volume 
47 (10), pp 931-940. Copyright (2012) by Springer International Publishing. 
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2.2.2 Trans Fat Reduction Policies 
 

Following on the research of Ascherio & Willet (1997) and with pressure from consumer interest 

groups, in 1999 the US government proposed a law requiring manufacturers to list trans fat amounts 

on food nutrition labels, which have been mandatory on all packaged foods since 1994, but did not 

previously include trans fat content. Initially, this law failed to pass, however a series of public lawsuits 

over trans fats and growing attention to trans fats as a public health issue created incentives for 

manufacturers to reduce trans fat content in food (Unnevehr and Jagmanaite, 2008). In 2003, the US 

Food and Drug Administration (FDA) passed a similar law, and manufacturers were given three years, 

until January 1, 2006, to comply with the trans fat labeling law, which allowed products that contain 

less than 0.5 grams of trans fat per serving to be labeled as “zero grams trans fat”. In response, many 

large-scale food manufacturers voluntarily removed or reduced trans fats in their products so that 

front-of-packaging labeling could make the advertising claim of “zero grams trans fat” in time for the 

rollout of the law on January 1, 2006 (American Heart Association, 2010). A paper documenting the 

various approaches food manufacturers use to reduce trans fats from food products notes that by 

2005, manufacturers of spreads and margarines significantly reduced or eliminated trans fats and that 

some restaurant and food service organizations had already begun using non-hydrogenated oils for 

frying (Hunter, 2005). Another paper documents numerous changes in product formulation in 2006 

which include low trans fat shortenings and margarines supplied to the commercial food industry 

(Tarrago-Trani et al., 2006). The authors note that many of the technologies implemented to create 

replacements for trans fats were actually developed and have been available to the food industry 

since as early as the mid-1990’s; however, prior to the mandatory labelling policy, firms had no 

regulatory incentive to alter their high trans fat formulations.  

 

Advocates of further legislation point out that while nutrition labeling can allow some consumers to 

make choices to avoid trans fats in pre-packaged foods, roughly one third of daily calories come from 

restaurant foods where trans fat information was not generally disclosed at that time (Angell et al., 

2012; Fryar and Ervin, 2013; Guthrie et al., 2002; Powell et al., 2012). The process of legislating the 

reduction of trans fats in restaurant foods began in 2005; the New York City Department of Health 

and Mental Hygiene added assessment of the presence of artificial trans fats to the routine of 

inspecting and regulating restaurants and retail food outlets. Inspectors surveyed a random sample of 

restaurants to evaluate the use of trans fat in oils, shortenings, and spreads used for frying, baking, or 

cooking and found that where it could be measured, half of restaurants used artificial trans fats in 

food preparation (Angell 2009, NYC DHMH 2008). Following these findings and subsequent 

intermediate policies focused on public education and voluntary removal of trans fats in restaurants, 
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in 2006 New York City became the first US city to pass a regulation limiting trans fats in restaurants. 

All licensed food establishments, including restaurants, bakeries, caterers, street-food vendors, school 

cafeterias, and senior centers, could only serve foods with less than 0.5 grams of trans fat per serving 

– this applied only to fried foods in 2007 and was extended to baked goods and all other foods by 

2008. One key element of the trans fat reduction policies that Angell and colleagues (2012) illustrate 

is the gradual nature of compliance to the regulations. Specifically, they show the percentage of food 

establishments randomly surveyed in New York City that use artificial trans fats and how this 

percentage increases gradually across time as more stringent policies are implemented.  

 

Given the success of these policies in New York City and growing consumer awareness and activism, 

health departments in many other jurisdictions such as cities, counties, and even states in the US have 

passed similar laws limiting or removing trans fats from menu items in restaurants, bakeries and 

institutions. In response, more than 50 major national chain restaurants announced that they would 

voluntarily remove trans fats from their menu items nationwide, and by 2007 most had already done 

so (Associated Press, 2007; Dorfman et al, 2008). Many other hotel groups, food manufacturers, 

grocery retailers, and other firms have also announced the removal of trans fats. One paper in 

particular highlights the spillover effects onto restaurants for food industry reformulations to reduce 

trans fat content (Unnevehr and Jagmanaite, 2008). These incentives are compliance with the 

nutrition labelling law, high-profile product liability charges and lawsuits of major food companies 

such as Kraft and McDonald’s, and compliance with the New York City trans fat ban. In response, major 

food service companies replaced trans fat-containing frying oils with trans fat free alternatives, 

makers of packaged foods reformulated products, and farm-level suppliers developed oil crops which 

provided substitute options for trans fats. Mozaffarian et al. use FDA food-composition databases and 

news articles to identify 1993 through 2006 as the pre-policy period, and 2008 through 2009 as the 

post-policy period for trans fat-reduction policies (2010).  

 

As an assessment of whether trans fat reductions were occurring at the national level in chain 

restaurants, I collected news articles and press releases for the top twenty firms using the 2011 annual 

Quick Service Restaurant industry rankings for quick-serve and fast-casual restaurants in the US 

(Oches, 2011). I have put together a dataset of the top 50 quick service and fast casual chain 

restaurants and the dates of each restaurant’s implementation of trans fat reduction policies. Table 

2.1 shows data from the top 20 firms. I found that 17 restaurant chains of the QSR Top 20, had 

removed trans fat from menu items at the national level during the period between 2006 and 2008. 

A majority (74%) of these restaurants made trans fat reductions in 2007. To illustrate the extent of 
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these changes at the national level, Table 2.1 shows the top twenty restaurants in the QSR rankings 

list, representing roughly 85% of the quick service and fast casual market share in the US, and whether 

or not they have removed trans fats from menu items at the nationwide level. 

  

Table 2.1: Trans Fat Reduction among Top Twenty Quick Service and Fast Casual Restaurants (US) 

QSR 
Rank Company 

2011 US Sales 
(Millions) 

% of     
QSR 50  
by Sales Reformulated Menu Items 

Year 
Enacted 

1 McDonald’s $34,172.00 22.86% All fried menu items (2007); all 
baked goods (2008) 

2007 

2 Subway $11,400.00 7.63% All items on the "core menu" 2007 

3 Starbucks $9,750.00 6.52% All food and beverage items 2007 
4 Wendy’s $8,500.00 5.69% Zero-trans fat oil 2006 
5 Burger King $8,400.00 5.62% Zero-trans fat oil 2007 
6 Taco Bell $7,000.00 4.68% All menu items 2007 
7 Dunkin’ Donuts $6,500.00 4.35% All menu items 2007 
8 Pizza Hut $5,500.00 3.68% Each ingredient <0.5 g per SVG 2007 
9 KFC $4,500.00 3.01% All menu items, excl. biscuits 2007 
10 Chick-fil-A $4,051.00 2.71% All menu items 2007 
11 Sonic Drive-In $3,692.80 2.47% No removal of trans fat N/A 
12 Domino’s Pizza $3,437.90 2.30% Each ingredient <0.5 g per SVG N/I 
13 Panera Bread $3,400.00 2.27% All menu items 2006 
14 Arby’s $3,021.90 2.02% Zero-trans fat oil 2007 
15 Jack in the Box $2,946.30 1.97% Zero-trans fat oil 2008 
16 Dairy Queen $2,660.00 1.78% Zero-trans fat oil 2008 
17 Chipotle Mexican Grill $2,270.00 1.52% All menu items N/I 
18 Papa John’s $2,213.60 1.48% N/I N/I 
19 Hardee’s $2,100.00 1.40% Zero-trans fat oil 2008 
20 Popeye’s Louisiana Kitchen $1,720.00 1.15% Trans fat-free biscuits only 2006 

Source: QSR Magazine Ranking, 2012 
 

There are two primary concerns about reducing trans fats in prepared foods. The first is that foods 

formerly containing trans fats are among those that should have limited intake, however if these foods 

are being advertised as “trans fat free,” it may give consumers the illusion of making a healthy choice, 

or a halo effect, similar to the halo effect of earlier “low fat” claims. In response, consumers may either 

increase consumption of these foods or decrease consumption of other healthy foods. Research 

examining food purchasing patterns conducted by the USDA using Nielsen Homescan data show that 

percentage of food spending on fruits and vegetables fell while packaged and processed foods rose 

from 1998 to 2006 (Okrent, 2012). Restaurant meals and meals away from home increased between 

the 1970’s and the 1990’s and between the 1990’s to the 2000’s, suggesting a general upward trend 

(Guthrie et al., 2002). Whether or not trans fat reduction has exacerbated over-consumption of 
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unhealthy meals and meals away from home has yet to be seen and may be another area of future 

research. The second concern is that trans fats may be replaced by some other unhealthy ingredient, 

perhaps by saturated fats or by some new oil formulations for which the effects on health are still 

unknown. Much of the research on product reformulations shows efforts from industry, based on 

economic incentives, to reduce trans fat without increasing saturated fat content (Mozaffarian et al., 

2010; Stender et al., 2009; Unnevehr and Jagmanaite, 2008; Van Camp et al., 2012). Instead of 

saturated fat, many new processes and oils have been developed (Eckel et al., 2007; Ratnayake et al., 

2008; Tarrago-Trani et al., 2006; Wang et al., 2016). Some early evidence suggests that substitutions 

of palm oil and interesterified fat may contribute to obesity in animal studies, however little is known 

about specific effects on cardiovascular health in humans (Magri et al., 2015).  

 

Very recent research on the health effects of trans fat reductions finds evidence of an effect on CVD 

mortality rates one year after bans were implemented from the New York City trans fat ban (Restrepo 

and Rieger, 2016). Medical literature suggests that effects from dietary changes can be seen in 

cholesterol levels within weeks, while changes in mortality rates would not be seen for about a year 

following changes in diet. The authors use a synthetic cohort approach to examine pre- and post-

policy aggregate CVD and stroke mortality rates. Synthetic control counties were selected from 

metropolitan statistical areas (MSAs) with populations of one million or more throughout the US. For 

the counties implementing the ban, the authors find CVD mortality rates decline relative to the 

synthetic control after the ban is implemented. The authors do check for the possibility that changes 

in CVD rates may be driven by the financial crisis, which coincided with the ban, or by changes in other 

CVD risk factors. However, the authors do not test if CVD rate decline started before the ban was 

implemented. This chapter, on the other hand, addresses trans fat reduction policies at the national 

level, which includes changes in trans fat content of both restaurant and pre-packaged foods and 

examine whether they played a role in improving intermediate health measures prior to the NYC trans 

fat ban.  

 

Understanding the health effects of trans fat consumption and the policy change has motivated the 

research question on whether or not trans fat reduction policies in restaurant and packaged foods 

have affected consumers in a way that improves measures of intermediate health. Information on 

pre-packaged food consumption spanning the years of the policy are not available in this data, 

however I can show that the consumption of pre-packaged foods is highly correlated with restaurant 

meal consumption and that both contribute to FAFH, thus making average weekly restaurant meal 

consumption an appealing proxy for consumption of all commercially prepared foods affected by 
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these policies. Comparing a measured health outcome such as LDL in individuals exposed to higher 

levels of FAFH to those who are consume less FAFH both before and after the trans fat reduction 

policies provides a natural experiment. In this work, I use restaurant meal consumption frequency as 

a proxy for all FAFH consumption. An experiment like this allows us to look at whether and to what 

extent these policies have had the desired effect of improving health amongst consumers of affected 

foods. To do this, data which includes measured health outcomes, measures of FAFH consumption, as 

well socio-economic and health behavior data are needed. This would allow for use of a difference-in-

difference method to compare how LDL levels have changed amongst the treated, consumers of FAFH, 

with the untreated, those who consume less or no FAFH. This research is the first to show that at the 

population-level, there is a positive health effect of these policies on the most important intermediate 

risk factor relating trans fat consumption and CVD, LDL cholesterol levels. 

 

2.3. Data 

This work uses data from the 1999 through 2009 Continuous National Health and Nutrition 

Examination Survey (NHANES), which is a program of the National Center for Health Statistics (NCHS). 

NHANES is a series of repeated cross-sectional surveys designed to assess the health and nutritional 

status of adults and children in the United States. NHANES uses a complex multistage probability 

sampling design to select participants representative of the civilian, non-institutionalized US 

population. Certain population subgroups are oversampled in order to increase the reliability and 

precision of estimates of health measures for these groups. Appropriate sampling weights and sample 

design variables are used in all analyses. The Continuous NHANES has been collected continuously 

since 1999. Data is collected in two-year waves or cycles, so the 1999 wave represents data collected 

both in 1999 as well as in 2000. The dataset is unique within a US context in that it combines household 

interviews with physical examinations by trained medical personnel. The survey consists of separate 

questionnaires covering demographic, socioeconomic, dietary, and health-related questions, 

conducted in respondent’s homes by NHANES staff and is followed by standardized medical 

examinations conducted in NHANES Mobile Examination Centers (MEC) by physicians and health 

technicians. All survey participants visit the physician at a MEC facility to receive physical examinations 

which include dietary interviews and body measurements. This includes measures of height and 

weight from which BMI is calculated. No changes have been made to the NHANES body measurement 

protocol since the Continuous NHANES began in 1999. All participants over the age of one have a 

blood sample taken; measures of total cholesterol and high-density lipoprotein cholesterol (HDL) are 

taken from this sample. One half of all participants were randomly assigned to attend morning 
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examination sessions and the other half attend afternoon examination sessions. Of participants aged 

12 and over, half of those scheduled for morning sessions were randomly assigned to fast for nine 

hours prior to their scheduled appointment time to allow for measures of fasting plasma glucose, two-

hour glucose, serum insulin, triglycerides, to be taken. Because the LDL and triglycerides measures are 

only available for the fasting subsample of participants, sampling weights specific to this group are 

applied. 

 

The period from 1999/2001 through 2009/2010 starts with a sample size of 62,160 observations. This 

work limits the sample to individuals aged 20 years or older; interpretation of cholesterol levels and 

other health indicators are different for youths than for adults. This leaves 32,464 observations. The 

sample is further reduced to 30,020 after removing individuals who do not provide an annual 

household income in the questionnaire. Individuals who do not answer the question about highest 

education level achieved are also removed, decreasing the sample to 29,971. Individuals who lack 

information on country of birth are excluded, leaving 29,966 observations. Individuals for whom 

smoking behavior is not available are excluded, reducing the sample to 29,945, and individuals for 

whom drinking behavior information is not available are excluded, reducing the sample further to 

26,117. Exclusion of individuals for whom no information on alcohol consumption reduces the sample 

size by nearly 14%. While existing literature finds the response rate for the alcohol consumption 

component of NHANES to be acceptable in terms of representativeness of the US population, there is 

a possibility that losing so many observations introduces bias (Guenther et al., 2010; Taylor et al., 

2016). One concern is that if individuals with unhealthy levels of alcohol consumption are not be 

providing information on their drinking behavior, this could bias results, depending on whether or not 

individuals also have patterns of unhealthy eating because alcohol consumption does affect 

cholesterol levels. Compared to 2014 estimates of heavy drinking and binge drinking prevalence 

among adults aged 18 and up, 7% and 25% respectively, these data show only a slightly higher 

percentage of heavy drinkers (10%), and a much lower percentage of binge drinking behavior (13%) 

(National Institute on Alcohol Abuse and Alcoholism (NIAAA), 2016). Two possible reasons for the 

difference in binge drinking prevalence may be because binge drinking is more common among 

younger drinkers and this paper looks at a sample where age is 20+ while the NIAA estimates look at 

individual aged 18 and up; a second reason for the discrepancy is that binge drinking behavior has 

been increasing over time (Dwyer-Lindgren et al., 2015). Finally, individuals for whom there is no 

information on whether or not they eat meals prepared outside of the home are excluded, leaving 

26,112 observations. Of these, 11,569 observations have valid measures of LDL, which is the main 

outcome of interest. From here, 564 observations have survey sampling weights equal to zero, so this 
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results in a final sample of 11,005. Later on, this work estimates the preferred model using other 

health measures such as triglycerides, total cholesterol, HDL cholesterol, C-reactive protein (CRP), 

BMI, and waist circumference as outcome variables; each of which has a slightly different number of 

observations; appropriate sampling weights are used.  

 

The main outcome variable of interest is LDL cholesterol. Values for LDL cholesterol in NHANES data 

are calculated from measured values of triglycerides, total cholesterol, and HDL cholesterol according 

to the Friedewald calculation where: 

 

(2.1) 𝐿𝐿𝐿𝐿𝐿𝐿 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶ℎ𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜𝑇𝑇𝑜𝑜𝑜𝑜𝑇𝑇𝑇𝑇 − 𝐻𝐻𝐿𝐿𝐿𝐿 − 𝑇𝑇𝑜𝑜𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑐𝑐𝑜𝑜𝑜𝑜𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜/5 

 

This calculation is valid for triglyceride levels less than or equal to 400 mg/dL, so observations with 

triglycerides above 400 mg/dL are missing LDL cholesterol data (Centers for Disease Control and 

Prevention (CDC), 2002). For reference, cholesterol levels are measured in milligrams of cholesterol 

per deciliter of blood, or mg/dL. High cholesterol is a major risk factor for heart disease. Total 

cholesterol levels below 200 mg/dL are considered desirable and contribute a low risk for heart 

disease. Total cholesterol is considered borderline high for levels between 200 mg/dL and 239 mg/dL, 

and high for levels at 240 mg/dL and above (National Heart, Lung, and Blood Institute (NHLBI), 2005). 

Similarly high LDL cholesterol cut-points are shown in Table 2.2: 

 

Table 2.2: LDL Cholesterol Categories 

LDL Cholesterol Level LDL-Cholesterol Category 
Less than 100 mg/dL Optimal 

100-129 mg/dL Near optimal/above optimal 
130-159 mg/dL Borderline high 
160-189 mg/dL High 

190 mg/dL and above Very high 
Source: National Heart, Lung, and Blood Institute, 2005 

 

High levels of triglycerides can also raise heart disease risk; levels of 150 mg/dL to 199 mg/dL are 

considered borderline high and levels of 200 mg/dL and above are considered to be high. Conversely, 

HDL cholesterol has a protective effect against heart disease, so higher levels of HDL are preferred. 

HDL levels below 40 mg/dL are low and are considered to be a risk factor for heart disease. HDL levels 

of 60 mg/dL or higher lower the risk for heart disease (National Heart, Lung, and Blood Institute 

(NHLBI), 2005). 
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Sociodemographic data from the study include age, gender, race, immigrant status, household size, 

household income, and education. NHANES age data is top-coded at 80. Data includes a dummy 

variable which equals zero if female, one if male. Dummy variables for five racial/ethnic groups are 

included: white, black, Mexican-American, other Hispanic, and all other races which includes Asians, 

Pacific Islanders, Native Americans and Alaska natives. A dummy variable for immigrant status is 

included, which equals zero if the individual was born within the US and one otherwise. Literature 

suggests that FAFH eating habits of immigrants vary greatly from the eating habits native-born citizens 

(Antecol and Bedard, 2006). Another dummy variable for individuals who live in large households, 

defined as having four or more household members, is included. A dummy variable for education 

status is included, which equals zero for individuals who have not completed high school and equals 

one if the individual has a high school degree. Dummy variables for income quintile were created using 

a categorical variable for household income. NHANES reports household income not as a continuous 

variable, but as 15 different categories or bands; some literature suggests inaccuracy exists in 

categorical household income variables, as compared to other measures of income (Micklewright and 

Schnepf, 2010). Dummy variables for income quintile are created by grouping these bands into 

quintiles. The lowest quintile (n = 6,075) includes incomes from $0 to $19,999, the second (n = 6,309) 

includes incomes from $20,000 to $34,999, the third (n = 6,595) includes incomes from $35,000 to 

$64,999, the fourth (n =1,301) includes incomes from $65,000 to $74,999, and the fifth (n = 5,526) 

includes incomes of $75,000 and above. The median income in the sample is around $45,000; so an 

alternate specification for income is a dummy variable which equals zero if household income is below 

$45,000 and equals one otherwise. In the CAPI interview, individuals who refuse or don’t know their 

income are prompted to answer whether their income is below or above $20,000 and are coded in a 

separate category. The “below $20K” incomes are included in the first quintile and the “$20K+” 

incomes in the second quintile; as such both categories are coded as a zero in the $45K dummy 

variable. The inclusion of income as a control does not greatly affect these estimates, nor does the 

choice of coding for these individuals. 

 

Indicator variables are also created to control for an individual’s health characteristics and behaviors: 

pregnancy status, smoking status, alcohol consumption status, exercise behaviors, lipid-lowering 

medication use, and anti-hypertensive medication use. NHANES provides a variable for pregnancy 

status at the time of interview; this equals zero for all non-pregnant individuals, including males, and 

one for pregnant individuals. To identify smokers, two questions from the NHANES home interview 

about smoking behavior are used: “Have you smoked at least 100 cigarettes in your entire life?” and 

“Do you now smoke cigarettes?” Individuals who answered negatively to both questions are coded as 



25 
 

nonsmokers while those who answer yes to either question are coded as smokers. This method of 

classifying smokers could misclassify infrequent, former, and very recent smokers as non-smokers; 

however a more precise measure of smoking/non-smoking status is not available with this data. 

Similarly, dummy variables are created for alcohol consumption. NHANES asks adults the question “In 

any one year, have you had at least 12 drinks of any type of alcoholic beverage?” Individuals who 

respond negatively to this question receive the follow-up question of “In your entire life, have you had 

at least 12 drinks of any type of alcoholic beverage?” Individuals who respond negatively to this 

question are coded as never-drinkers. Individuals who answered positively to either question then 

receive the follow-up questions of “In the past 12 months, how often did you drink any type of 

alcoholic beverage?”, “In the past 12 months, on those days that you drank alcoholic beverages, on 

the average, how many drinks did you have?”, and “On how many days in the past 12 months did you 

have 5 or more drinks of any alcoholic beverage in a single day?” These responses are used to calculate 

an individual’s number of drinks per week and to categorize individuals as moderate and heavy 

drinkers, as to identify well as binge-drinking behavior, as defined by the NIH (National Institute on 

Alcohol Abuse and Alcoholism (NIAAA), n.d.). Two indicator variables are created for identifying an 

individual’s participation in physical activity at home and on the job, based on a series of questions 

about physical activity. I categorize individuals who engage in exercise as those who answer yes to 

questions asking if they walked or bicycled, did vigorous activity, moderate activity, or muscle 

strengthening activities over the past 30 days. Individuals are categorized as having a physically-

demanding job or doing manual work if they indicate that they do light lifting often, climb stairs or 

hills often, or do heavy work or carry heavy loads either as a part of their usual daily activities or part 

of their work activities. During the NHANES home interview, respondents are asked if they have used 

any prescription drug within the past month; those who answer affirmatively were asked for the 

name, duration and main reason each product was used. In roughly 84% of cases, the interviewer 

recorded exact product names from the label on the medication container; otherwise they used the 

information that was verbally reported by the respondent. To identify individuals using cholesterol-

lowering and blood pressure-lowering medications, this prescription drug data is used to create 

indicator variables for each individual that equals one if the respondent is taking any drug grouped 

under “statins” or “anti-hyperlipidemic agents” class (for cholesterol-lowering medications) or the 

“metabolic drugs” class (for blood pressure-lowering medications) in the National Center for Health 

Statistics Lexicon Plus database of Therapeutic Drug Categories and equals zero otherwise (Tattersall 

et al., 2011).  
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A key set of variables in this work has to do with where people eat meals. In all years used in this work, 

the Diet Behavior and Nutrition component of NHANES asks individuals how many meals they eat in 

restaurants or outside of the home – this is the variable I use to identify FAFH consumption. The way 

in which this question was asked has changed slightly over time. In the years 1999, 2001, and 2003, 

the question was worded as how many times per week, on average, the respondent eats meals that 

were prepared in a restaurant, which includes eat-in restaurants, carry-out restaurants, and 

restaurants that deliver food to one’s house. In 2005, 2007, and 2009, the Diet Behavior and Nutrition 

questionnaire asks respondents how many meals per week are eaten that were not prepared at home. 

In this question, away from home is defined to include meals from dine-in and carry-out restaurants, 

restaurants that deliver food to the home, cafeterias, fast food places, food courts, food stands, meals 

prepared at a grocery store, and meals from vending machines. In 2007 and 2009, an additional 

sentence is added to remind respondents not to include meals that were eaten in a school or 

community meal program, as these were reported in previous questions. Although the change in the 

wording of this question appears to be associated with an increase in the mean number of meals 

consumed outside of the home, I do not find any appreciable difference in the mode or in the 

distribution of the number of these meals, which is discussed further in Appendix A. This matches 

research done by the USDA Economic Research Service, which shows that money spent on food away 

from home had been increasing sharply between 2004 and 2005, relative to slower growth in 

surrounding years (Todd and Mentzer Morrison, 2014). A categorical variable is created for meals out 

per week; this equals zero for individuals who eat out less than once per week, equals one for those 

who eat out one to three times per week, equals two for those who eat out four to six times per week, 

and equals three for those who eat out seven or more times per week. This grouping is intuitively 

appealing; data from 1999-2000 NHANES show US adults consumed 2.8 commercially prepared meals 

per week on average, so one to three meals per week captures the average consumer (Kant and 

Graubard, 2004). The category of four to six meals per week groups consumers who eat more 

frequently than average but still less than an average of once per day. The seven meals or more 

grouping identifies consumers who eat out at least one meal per day or more.  
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Table 2.3: Summary Statistics of Socio-Economic and Health Behavior Covariates 

  (1) (2) (3) (4) (5) 

 
All 

Groups 

<1 
Meals/    
Week 

1-3 
Meals/        
Week 

4-6 
Meals/        
Week 

7+ 
Meals/       
Week 

Socio-Economic Variables:      
Male 0.48 0.46 0.45 0.53 0.63 
Age 20-29 0.17 0.11 0.17 0.24 0.24 
Age 30-39 0.17 0.11 0.18 0.19 0.22 
Age 40-49 0.17 0.14 0.17 0.19 0.17 
Age 50-59 0.14 0.13 0.14 0.16 0.16 
Age 60-69 0.16 0.21 0.16 0.11 0.11 
Age 70+ 0.19 0.30 0.18 0.11 0.10 
White 0.52 0.43 0.53 0.56 0.57 
Black 0.18 0.21 0.17 0.18 0.17 
Mexican Am. 0.20 0.23 0.20 0.17 0.15 
Other Hispanic 0.06 0.09 0.06 0.05 0.06 
Other Race 0.04 0.04 0.03 0.04 0.04 
Immigrant 0.22 0.32 0.21 0.16 0.15 
Large Household 0.34 0.33 0.35 0.34 0.29 
High School Grad 0.71 0.56 0.73 0.81 0.83 
HH Income 45K+ 0.43 0.26 0.45 0.54 0.57 
Health Behavior Variables:      
Exercise 0.64 0.55 0.65 0.69 0.68 
Manual Work 0.30 0.26 0.30 0.33 0.38 
Cholesterol Meds 0.16 0.18 0.15 0.13 0.15 
Blood Pressure Meds 0.30 0.39 0.30 0.24 0.22 
Pregnant 0.04 0.03 0.05 0.04 0.02 
Smoker 0.21 0.23 0.20 0.21 0.22 
Moderate Drinker 0.76 0.73 0.77 0.77 0.81 
Heavy Drinker 0.10 0.09 0.09 0.12 0.12 
Binge Drinks 0.13 0.11 0.12 0.16 0.18 
No. of  Meals Out 2.84 0.20 1.82 4.76 10.15 
   SD (0.031) (0.005) (0.011) (0.016) (0.104) 

Observations 11,569 2,853 5,492 1,926 1,298 
% Meals Out Fast Food 0.48 - 0.50 0.48 0.43 
Observations  7,803 - 4,438 1,765 1,600 
Data: NHANES 1999-2010. 

 
    

Note: Unweighted means for indicator variables for all years are shown, except for % Meals Out Fast 
Food, for which data is only available for 2007 and 2009 waves of NHANES. Statistics are grouped 
into categories based on the number of meals out per week. The mean and standard deviation for 
the Number of Meals Out per week are also reported. 
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Table 2.3 shows unweighted summary statistics for socio-economic and health behavior covariates for 

the full sample and by restaurant meal frequency groups. These raw data show males, whites, younger 

individuals, individuals with higher income, with a high school education, physically demanding jobs, 

individuals who exercise, and binge drinking habits eat out more often. Conversely, older individuals, 

Mexican Americans, immigrants, individuals in large households, cholesterol and blood pressure 

medications, and moderate drinking behavior are correlated with eating meals out less frequently. In 

2007 and 2009, an additional question was asked about frequency of consumption of meals from fast 

food restaurants specifically per week; estimates of the percentage of meals out from fast food are 

presented at the bottom of Table 2.3. Across all eating groups, roughly half of meals out come from 

fast food, however, as the number of meals out increases, the percentage of meals from fast food 

establishments declines. 

  

Table 2. 4: Summary Statistics of Health Outcome Variables 

 (1) (2) (3) (4) (5) 

 All Groups 

<1 
Meals/    
Week 

1-3 
Meals/      
Week 

4-6 
Meals/        
Week 

7+ 
Meals/       
Week 

 N Mean Mean Mean Mean Mean 
Health Measures:       
LDL 11,569 117.92 118.86 118.22 117.54 115.18 

SD  (0.334) (0.700) (0.479) (0.812) (0.950) 
Triglycerides 12,126 144.96 149.11 145.00 142.37 139.46 

SD  (1.142) (2.307) (1.608) (3.119) (3.175) 
Total Cholesterol 24,909 200.15 202.38 200.53 198.70 195.82 

SD  (0.272) (0.568) (0.390) (0.663) (0.774) 
HDL 24,908 52.88 53.37 53.26 52.24 51.23 

SD  (0.103) (0.211) (0.150) (0.248) (0.288) 
CRP 25,010 0.47 0.53 0.46 0.44 0.39 

SD  (0.006) (0.014) (0.007) (0.013) (0.015) 
BMI 25,657 28.77 28.50 28.86 28.85 28.86 

SD  (0.041) (0.081) (0.060) (0.102) (0.121) 
Waist Circumference 25,357 98.42 98.28 98.39 98.43 98.79 

SD   (0.098) (0.192) (0.142) (0.246) (0.303) 
Data: NHANES 1999-2010. 

Note: Unweighted means and standard deviations are shown for all health measure variables. Statistics are 
grouped into categories based on the number of meals out per week.  

 

Table 2.4 presents unweighted means of different health outcome variables for the full sample, as 

well as by restaurant meal frequency groups. LDL, triglycerides, total cholesterol, and CRP levels are 

lower among the higher-frequency meals prepared away from home group than the lower-frequency 
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groups. This can be explained by the positive correlation between eating meals prepared away from 

home and income combined with the negative correlation between income and cholesterol levels. 

Another factor that explains this is that the number of meals of away from home increases over time 

while cholesterol levels decline over time. These trends are not present for BMI and waist 

circumference. 

 

Figure 2.2 shows an unweighted distribution of LDL values across the sample. LDL exhibits some 

characteristics of a normal distribution, but has a very long right tail and is truncated at zero. The 

distribution is very similar across restaurant meal frequency. To account for the long tail on the right-

hand side, I consider dropping observations with LDL values of 300 or above and also values of 200 or 

above. In both cases, the conclusions were not affected by leaving out the high-LDL observations. 

 

Figure 2.2: Distribution of LDL by Restaurant Meal Consumption, 1999-2010 

 
 

During the period of analysis, LDL-cholesterol and total cholesterol levels declined in the US, due in 

part to a decrease in TFA consumption, an increase in the percentage of adults taking lipid-lowering 

medications, and an increase in other healthy lifestyle changes (Carroll, et al. 2012). A negative trend 
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is also seen in those adults not taking lipid-lowering medications. Figure 2.3 presents these trends in 

the US population from 1976 through 2010.  

 

Figure 2.3: Age-Adjusted Trends in Prevalence of High LDL Cholesterol Levels, Use of Cholesterol-
Lowering Medications, and Low Saturated-Fat Intake among US Adults Age 40-74. 

2 

Given this, part of the empirical challenge in this chapter is to identify the policy effect of lowering 

trans fat consumption while a general decreasing trend in health indicators is already present. The 

data also show that on average, more frequent consumers of FAFH actually have lower cholesterol 

levels. Wealthier individuals having lower cholesterol levels is consistent with the literature (Adler and 

Ostrove, 1999; Kraus et al., 1980; Luepker et al., 1993).  

 

2.4. Empirical Strategy 

This work seeks to identify the effect on LDL cholesterol levels from trans fat reduction policies in 

commercially prepared foods. To do this, difference-in-difference specifications are estimated where 

                                                           
2 Reprinted from “Trends in high LDL cholesterol, cholesterol-lowering medication use, and dietary saturated-
fat intake: United States, 1976–2010” by Kuklina EV, Carroll MD, Shaw KM, Hirsch R. NCHS Data Brief No. 117. 
Hyattsville, MD: National Center for Health Statistics. 2013. < http://www.cdc.gov/nchs/products/databriefs/ 
db117.htm > 
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the difference between LDL levels in periods before and after the trans fat legislation is contrasted 

between high-frequency consumers of restaurant meals and lower-frequency consumers of 

restaurant meals. I use a reduced form model based on a general economic framework for 

understanding health. This reduced form is based on structural models relating health behaviors and 

utility derived from good health (Cawley, 2004; Cawley and Ruhm, 2011; Grossman, 1999). The main 

estimating equation is the following difference-in-difference model which explores the variation in 

cholesterol levels across both time and restaurant meal frequency: 

 

(2.2)  𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 =  𝛽𝛽0 + 𝛽𝛽1𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑐𝑐𝑇𝑇𝑃𝑃𝑃𝑃𝑜𝑜𝑇𝑇𝑇𝑇𝑜𝑜𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑃𝑃𝑜𝑜𝑇𝑇𝑇𝑇𝑜𝑜𝑖𝑖𝑖𝑖 + 𝛽𝛽3𝑃𝑃𝑖𝑖𝑖𝑖 + 𝛾𝛾𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 

 

In this model, low-density lipoprotein (LDL), measured in mg/dL for each individual, is the outcome 

variable. The coefficient 𝛽𝛽1 provides the difference-in-difference estimate of the effect of the policy. 

PolicyXMeals is an interaction between the dummy variable Policy, which equals one for the year 2005 

and beyond and a zero for previous years, and the categorical variable Meals which equals zero for 

individuals who eat out less than once per week, equals one for those who eat out one to three times 

per week, equals two for those who eat out four to six times per week, and equals three for those 

who eat out seven or more times per week. Individual level socioeconomic characteristics and health 

behaviors are included in the matrix X. These include: age, age squared, race, immigrant status, 

household size, high school graduate, income quintile, exercise during leisure time, physical activity 

on the job, eating out at restaurants, smoking, drinking behavior, and use of lipid-lowering and blood 

pressure medications. The model includes two-year period fixed effects, 𝛾𝛾𝑖𝑖, to control for factors that 

may affect the outcome variable across all meals out groups equally, such as changes in the process 

or methods of collecting and measuring the outcome variable and secular decline in LDL cholesterol 

levels over time. An error term is included and standard errors are clustered to allow for random 

correlation of observations within the strata and primary sampling unit (PSU) level.  

 

A difference-in-difference model, such as this, relies on the same standard assumptions of the OLS 

model and additionally assumes a parallel trend assumption. This assumption is violated when 

something other than the treatment changes in one group but not in the other at the same time as 

the treatment. Section 2.5.1 presents pre- and post-policy trends and tests for violations of these 

assumptions. 

 

Both the policy examined and the dataset used lend themselves to a number of identification issues. 

One of which is the identification of the pre- and post-policy periods. As outlined in Section 2.2, a few 
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different policies were implemented between approximately 2003 and 2008; these include the 

labelling requirement on processed foods in 2003, the New York City restaurant trans fat ban of 2006, 

high profile class-action lawsuits against Kraft, McDonalds, and KFC in 2003, 2005, and 2006, as well 

as a number of smaller legislative actions in different localities in the US. This work, and much of the 

literature on trans fat content in processed foods, proposes that the overall effect of these policies 

could be seen as early as 2005, with effects of additional reductions in trans fats occurring later. The 

robustness section addresses this issue in more detail by looking at the effect of the policy on the 

treatment groups in individual years, by examining pre-2005 and post-2005 trends of the restaurant 

meal consumer groups, and also by examining the relationship between restaurant meal consumption 

and consumption of other types of commercially prepared foods which were also affected by these 

policies.  

 

Another identification issue is identification of clear treatment and control groups. Consumption of 

meals away from home identifies those individuals who are affected by the trans fat reduction 

treatment. To consider different specifications of identifying the control and treatment groups, Table 

2.6 in the robustness section compares models using different specifications of the Meals variable. 

Another concern is endogenous self-selection in the control group; that individuals who identify as 

eating less than one restaurant meal per week may be significantly different from the treatment 

groups, those who do eat at least one meal per week away from home. Particularly, they may have 

healthier behaviors than the restaurant meal consumers. The robustness section addresses this 

concern by examining trends in other health outcomes in the pre- and post-policy periods, focusing 

on those outcomes which are not shown to be as heavily influenced by TFA consumption as LDL levels.  

2.5. Results 

Table 2.5 presents the main result, the estimation of Equation (2.2), which suggests that the trans fat 

reduction policies led to a statistically significant improvement in the intermediate health measure of 

LDL cholesterol level among those individuals most affected by the treatment. First, Column 1 

estimates a basic version of Equation (2.2) that controls for two-year period fixed effects and no other 

controls. The coefficient on PolicyXMeals in Column 1 shows that trans fat reduction policies reduce 

the effect of eating meals away from home on LDL by roughly 2.2 mg/dL. This estimate can be used to 

estimate how much TFA was removed from diets by this policy. From the literature, exchanging 2.2 

(1% of total energy intake) grams of TFA with an equal amount saturated fat results in an estimated 

reduction of LDL of 0.4 mg/dL while making the same exchange with 2.2 grams of a cis polyunsaturated 

fat results in an estimated reduction of LDL of 2.3 mg/dL (Mozaffarian et al., 2006), thus this estimate 
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is consistent with a reduction of daily TFA consumption of between 2.2 grams and 13.2 grams. This 

represents a significant reduction in TFA consumption, as the pre-policy median TFA consumption 

averaged 6 grams per day. 

 

Table 2.5: The Influence of Restaurant Meal Consumption on LDL-Cholesterol among US Adults 

  (1) (2) (3) (4) (5) 

 
basic 

model 
demographic 

controls 

health 
behavior 
controls 

education 
controls 

income 
controls 

            
Policy X Meals -2.172** -2.065** -2.466** -2.487** -2.545** 

 (0.994) (0.997) (0.977) (0.973) (0.980) 
Meals 0.290 0.535 0.980 1.034 1.280 

 (0.810) (0.832) (0.792) (0.790) (0.799) 
2001 FE -5.061** -4.843** -3.891* -3.838* -3.792* 

 (1.930) (2.136) (2.087) (2.090) (2.059) 
2003 FE -8.431*** -8.958*** -7.430*** -7.375*** -7.366*** 

 (1.739) (1.876) (1.898) (1.887) (1.832) 
2005 FE -7.688*** -8.104*** -6.179*** -6.094*** -5.871** 

 (2.137) (2.332) (2.297) (2.266) (2.238) 
2007 FE -6.914*** -7.417*** -5.099** -5.019** -4.757** 

 (1.927) (2.167) (2.116) (2.103) (2.089) 
2009 FE -6.106*** -6.612*** -4.092* -3.999* -3.716 

 (2.076) (2.265) (2.270) (2.256) (2.246) 
Age  1.639*** 1.795*** 1.799*** 1.848*** 

  (0.0866) (0.0882) (0.0883) (0.0877) 
Age Squared  -0.0229*** -0.0211*** -0.0213*** -0.0221*** 

  (0.00129) (0.00124) (0.00124) (0.00124) 
Male  2.913*** 3.823*** 3.793*** 3.881*** 

  (0.748) (0.780) (0.782) (0.778) 
Mexican American  -0.185 -0.671 -1.090 -1.591 

  (1.325) (1.375) (1.401) (1.362) 
Other Hispanic  -2.959 -3.378* -3.639* -4.254** 

  (1.969) (1.985) (1.996) (1.992) 
Black  -1.627 -1.635 -1.803* -2.209** 

  (1.041) (1.046) (1.054) (1.070) 
Other Race  -3.835* -2.900 -2.851 -3.153 

  (2.113) (2.014) (2.006) (1.999) 
Immigrant  2.801** 2.473* 2.349* 2.475* 

  (1.268) (1.338) (1.331) (1.337) 
Large Household  -0.900 -1.532* -1.591* -1.178 

  (0.906) (0.891) (0.887) (0.918) 
Smoker   1.227 1.068 0.645 

   (0.925) (0.909) (0.915) 
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Table 2.5, Continued      
Moderate Drinker   0.396 0.492 0.752 

   (1.249) (1.257) (1.265) 
Heavy Drinker   -2.216 -2.137 -1.813 

   (2.159) (2.165) (2.182) 
Binge Drinks   0.000108 -0.0410 -0.0392 

   (1.898) (1.901) (1.893) 
Exercise   -0.525 -0.379 -0.175 

   (0.815) (0.839) (0.829) 
Manual Work   2.261** 2.259** 2.203** 

   (0.936) (0.936) (0.937) 
Cholesterol Meds   -21.34*** -21.33*** -21.23*** 

   (1.415) (1.419) (1.427) 
Blood Pressure Meds   -6.375*** -6.397*** -6.547*** 

   (0.955) (0.956) (0.961) 
Pregnant   8.435*** 8.406*** 8.481*** 

   (2.532) (2.526) (2.529) 
High School Graduate    -1.320 -0.698 

    (1.028) (1.085) 
Income Quintile 1     2.671** 

     (1.259) 
Income Quintile 2     0.152 

     (1.075) 
Income Quintile 3     1.743 

     (1.556) 
Income Quintile 4     -1.514 

     (1.163) 
Constant 125.2*** 102.4*** 97.75*** 98.70*** 96.82*** 

 (1.586) (2.142) (2.382) (2.536) (2.587) 

      
Observations 11,005 11,005 11,005 11,005 11,005 
R-squared 0.012 0.060 0.110 0.111 0.112 
Data: NHANES 1999-2010 

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Note: Results from OLS regression estimating Equation (2.2). LDL-cholesterol measured in mg/dL is the outcome variable in 
each column. Meals is a categorical variable, equal to 0 if the consumer eats at restaurants less than one time per week on 
average, equal to one if 1-3 meals are eaten per week, equal to 2 if 4-6 meals are eaten per week, and equal to 3 if 7 or more 
restaurant meals are eaten per week. PolicyXMeals is an interaction term between the variable Policy, which equals zero in 
years before 2005 and equals one in 2005 and after.  Column 1 includes two-year period fixed effects and no other controls. 
Column 2 adds controls for the following demographic characteristics: age, age squared, sex, race categories (Mexican 
American, other Hispanic, black, and other non-white races), immigrant/foreign-born status, and large household size. 
Column 3 adds controls for health characteristics: smoking status, drinking behavior (moderate drinking, heavy drinking, and 
binge drinking), exercise participation, physically demanding job, use of cholesterol medications, use of blood pressure 
medications, and pregnancy status. Column 4 adds an indicator for high school graduate status as a control for education. 
Column 5 adds controls for income quintiles. Each column includes the controls used in the previous column. 

 

The coefficient on PolicyXMeals is greater in magnitude than the coefficient on Meals. This indicates 

that after the policy goes into effect, eating at restaurants is no longer found to be correlated with 
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higher LDL-cholesterol. However, this does not mean that restaurant meals are healthier on average 

than meals eaten at home, nor that eating at a restaurant has a particularly protective effect on 

consumers’ overall health. Indeed, later on in Table 2.10, I estimate the influence of restaurant meal 

frequency on BMI and find the both the coefficient on Meals and on PolicyXMeals to be positive, 

indicating poorer health. Further, the 95% confidence interval for total effect of Meals after 2005 

estimated by the sum of Meals and PolicyXMeals includes zero. 

 

Column 2 of Table 2.5 adds demographic controls to this model; these include age, age squared, sex, 

race, immigrant status, and a dummy variable for large household. Marital status is not used as a 

control variable because the missingness in this variable was correlated with time; the missingness 

increased in the post-policy years. Column 3 controls for a number of health and behavioral variables. 

Columns 4 and 5 add additional indicator variables for high school education and income quintiles 

respectively. Because education and income are highly correlated with each other, controlling for both 

often results in a smaller estimated effect than controlling for each separately. 

 

While the focus of this chapter is not to estimate all determinants of LDL cholesterol, it is worth noting 

from this table, that some control variables appear to have a more important relationship with LDL 

than others. The effect of age and age squared on LDL are statistically significant; this suggests that 

increases in age are associated with increases in LDL, but at a declining rate. Being male, black, other 

Hispanic, and foreign-born are all associated significantly with higher LDL. Working in a physically 

demanding job is associated with higher levels of LDL, and may be capturing an additional socio-

economic effect. Pregnancy is also significantly associated with higher levels of LDL; this is in line with 

medical literature. Taking either blood pressure or cholesterol-reducing medications is also very highly 

and significantly associated with lower levels of LDL. Of the income and education controls, being in 

the lowest income quintile, income lower than $20,000, is significantly associated with higher levels 

of LDL. 

 

Overall, the main result remains consistent as additional controls are added, suggesting that while the 

control variables are important in understanding the underlying level of blood cholesterol levels, they 

do not detract from the effect found in the basic model. This is strong evidence in support of the 

hypothesis that trans fat reduction has had a significant effect on the influence of restaurant meals on 

cholesterol levels. 
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2.5.1 Robustness  
 

This section explores whether there is evidence that the effect found in the main result, Table 2.5, is 

due to the trans fat reduction policies implemented around the beginning of 2005. First, Figures 2.4 

and 2.5 address the issue of parallel trends. Figure 2.6 presents an estimate of the effect of LDL on 

Meals for each year as evidence that the change occurred in 2005, when the trans fat reduction 

policies were beginning to go into effect. The preferred specification in the main estimation uses a 

categorical specification that I’ve defined for the frequency of eating meals out. Table 2.6 considers 

alternative specifications for average weekly restaurant meal consumption and shows robustness to 

these different specifications. In this work, consumption of restaurant meals serves as somewhat of 

a proxy for consumption of other types of commercially prepared foods containing trans fats and 

affected by the policies discussed in this work. Data on consumption of all types of FAFH does not 

exist in this dataset across both pre- and post-policy years, precluding replication of Table 2.5 using 

all FAFH consumption in place of restaurant meals. To justify use of the Meals variable as a proxy for 

all FAFH consumption, Table 2.7 shows evidence that people who eat restaurant meals also consume 

more ready-to-eat and frozen meals which are more likely to contain trans fat and would be affected 

by the trans fat policies considered in this work. To consider whether Meals is also indicative of 

other health behaviors that may somehow be affected by the trans fat policies, Table 2.8 estimates 

the main model for outcomes other than LDL. The effect of trans fat on LDL cholesterol is clearly 

indicated in medical literature as being different from the effect of trans fat on other health 

indicators. These results match what one would expect if the effect of the policy is in fact through a 

change in trans fat consumption rather than through a change in some other health behavior. 

 

First, I consider the parallel trends, or common trends, assumption in the difference-in-difference 

model. This assumption is violated when something other than the treatment changes in one group 

but not in the other at the same time as the treatment. One assumption to ascertain the accuracy of 

the DID estimate is that the composition of individuals in the two groups remains unchanged over 

time.  

 

To show common trends in the pre-policy period, Figure 2.4 shows mean LDL levels for the treated 

group, individuals who consume at least one meal away from home, and the control group, those who 

report eating less than one meal away from home per week. Although the trend is somewhat noisy 

and is not precisely parallel, the figure shows that both groups have similarly declining levels of LDL 

levels prior to the policy. A possible explanation for the similar, but not parallel, trend is that because 

the data are repeated cross-sections, there is a greater degree of individual-level variation or noise 
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than is typically found in panel data. Another source of variation may be explained by changes in the 

instrument in 1999. An explanation for the overall declining secular trend is the increased use of 

statins during this period (Gu et al., 2014; Mann et al., 2008), which is not accounted for in this figure, 

but is controlled for in the regression estimates. This figure clearly shows that the post policy period 

LDL increases for both groups, but less so for the food away from home consumers, suggesting that 

some difference between these two groups has an effect on their LDL levels in the post-policy period. 

Changes in measurement caused by changes in the survey instrument over time should affect all 

groups equally and should not contaminate the main result. I attribute the difference in the two 

groups in the post-policy period to the policy itself.  

 

Figure 2.4: Mean LDL by Restaurant Meal Consumption, 1999-2009 

 
 

Figure 2.5 shows mean LDL levels for the treated group and the control group among only those 

individuals who are not taking cholesterol-lowering medications which include statins. This graph 

shows a larger divergence between restaurant meal consumers and non-consumers among individuals 

not using cholesterol-lowering medications following the policy period. The pattern present in this 

figure reinforces the hypothesis that a difference-in-difference approach is appropriate to estimate 

the effect of trans fat regulation over this period. 
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Figure 2.5: Mean LDL by Restaurant Meal Consumption Among Individuals Not Prescribed 
Cholesterol-lowering Medications, 1999-2009 

 
 

One possible cause for a rising trend in LDL in the post-policy period would be if health behaviors or 

eating habits changed during this time. The Great Recession occurred in 2007 and 2009 in the US, 

during the post-policy period, and may provide an explanation for the rise in LDL. A number of papers 

examine FAFH and restaurant meal consumption during this period, with somewhat mixed results 

(Smith et al., 2014; Todd and Mentzer Morrison, 2014). If more individuals who were previously eating 

restaurant meals replace restaurant meals with meals prepared at home, then it could change the 

composition of the group of individuals who consume restaurant meals. If unhealthier individuals 

decrease restaurant meal consumption, that could explain why LDL increases so much more for the 

No Restaurant Meals group. On the other hand, if healthier individuals decrease restaurant meal 

consumption, we would expect to see much more of a drop in LDL among non-consumers of 

restaurant meals and much higher LDL levels among the restaurant meal consumers. Similarly, the 

recession could have affected the quality of food; both food manufacturers and individuals preparing 

meals at home may have replaced more expensive, healthy, ingredients with cheaper, unhealthier, 

alternatives this could explain why LDL levels increase during the recession period. As an attempt to 

control for relationships between macroeconomic variables and LDL levels, statin usage, and eating 

behaviors, I include year fixed effects in all regressions.  

 

As another check to support the use of 2005 as the policy year, I consider the timing of the policies 

whose effects I estimate. In order to understand the timing, the following equation is estimated:  
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(2.3) 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 =  𝛽𝛽1𝑡𝑡𝑌𝑌𝑜𝑜𝑇𝑇𝑜𝑜𝑃𝑃𝑃𝑃𝑜𝑜𝑇𝑇𝑇𝑇𝑜𝑜𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑃𝑃𝑖𝑖𝑖𝑖 + 𝛾𝛾𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖. 

 

This is similar to Equation (2.2), but the interaction of the policy dummy and the meals frequency 

variable, PolicyXMeals has been replaced with an interaction of a dummy for each two-year period in 

the data with the meals frequency variable, 𝑌𝑌𝑜𝑜𝑇𝑇𝑜𝑜𝑃𝑃𝑃𝑃𝑜𝑜𝑇𝑇𝑇𝑇𝑜𝑜 and the intercept has been dropped. This 

specification shows an estimate of the effect on LDL of a change in Meals for each year. Figure 2.6 

plots the estimated coefficients of the interaction terms, with 95% confidence intervals of the 

estimate for each year. This plot suggests that 2005 serves as a transition between a negative effect 

of Meals before the policy change and a non-negative or positive effect of Meals after the policy was 

fully implemented. In this figure, I see that only estimates from 2001 and 2009 are significantly 

different from zero and that the other three estimates may not be significantly different from each 

other. However, it does seem consistent with the data presented in Figure 2.4 to pool 2001 and 2003 

as pre-policy years and 2005, 2007, and 2009 as post policy years. This confirms the choice of years to 

use for the Policy variable which is used in the main result in Table 2.5. Pooling years reduces the 

uncertainty around the estimate of PolicyXMeals in Table 2.5 compared to the error bars in the 

coefficient plot in Figure 2.6. 

 

Figure 2.6: Estimated Yearly Change in LDL as Restaurant Meal Frequency Group Changes 

 
Another concern with properly identifying the policy period has to do with the data collection and 

examination dates. The dataset does not include date of interview or examination; instead, a variable 
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indicating which six-month period in which the respondent’s examination was conducted is available. 

There are two data-collection periods in each two-year cycle: November 1 of the first year through 

April 30 of the second year – which I call winter, and May 1 of the second year through October 31 of 

the second year – which I refer to as summer (Johnson et al., 2013). About 45% of examinations are 

conducted in winter periods and the remaining 55% occur in the summer. Focusing on the policy year, 

or the 2005 data cycle, only two months’ data are from 2005, and the remaining ten months data is 

collected in 2006. Because of this, I use data from the 2005 cycle as the beginning of the post-policy 

period for the trans fat labelling policy change that occurred January 1, 2006. 

 

Another potential limitation present in this data is the issue of seasonality in nutrition and eating meals 

away from home. In order to keep MEC operations running smoothly, certain geographic areas are 

avoided during winter months (Johnson et al., 2013). This would potentially decrease statistical 

efficiency for variables affected by seasonal and regional variation, such as cholesterol measures, diet, 

nutrition, and other health behaviors (Gordon et al., 1987; Joshi et al., 2014; Matthews et al., 2001; 

Ockene IS et al., 2004). While it is possible to only look at summer exams to avoid geographic 

heterogeneity in the data due to seasonality, this would reduce the sample size by nearly half and no 

longer be representative of the population. Instead, I add a dummy variable for winter examinations 

to account for regional seasonal variation in the preferred specification. Controlling for winter 

examinations, the estimates on all coefficients did not change significantly. The estimate of the 

coefficient of interest, PolicyXMeals, declined by 0.05 and statistical significance did not change.  

 

One concern we may have is whether there is heterogeneity in the effect on cholesterol levels for 

individuals with different exposures to the trans fat regulations, via their frequency of restaurant meal 

consumption. One way to test this to use an empirical strategy similar to one that Autor (2003) 

presents for a difference-in-difference analysis where treatment varies across the treatment category 

and across time. In his specification, he includes dummy variables for the different treatment 

categories and additional interaction terms between time periods and each treatment category. 

Similarly, in this work, it is quite possible that treatment may vary across the different treatment 

categories (Meals). To consider this possibility, and use a model like that suggested in Autor (2003) in 

Table 2.6, I model the following equation, which is similar to Equation (2.2) but also includes four 

additional interaction terms, (<1Meals)XYear, (1-3Meals)XYear, (4-6Meals)XYear, and 

(7+Meals)XYear. In this equation, I also replace the Meals categorical variable in the model with 

dummy variables for each of the four Meals categories. When estimating Equation (2.4), the 

(<1Meals)XYear, (<1Meals), and 1999 are omitted as the reference groups. 
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(2.4) 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 =  𝛽𝛽0 +  𝛽𝛽1𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑐𝑐𝑇𝑇𝑃𝑃𝑃𝑃𝑜𝑜𝑇𝑇𝑇𝑇𝑜𝑜 +  𝛽𝛽2(< 1𝑃𝑃𝑜𝑜𝑇𝑇𝑇𝑇𝑜𝑜)𝑃𝑃𝑌𝑌𝑜𝑜𝑇𝑇𝑜𝑜𝑖𝑖𝑖𝑖 + 𝛽𝛽3(1− 3𝑃𝑃𝑜𝑜𝑇𝑇𝑇𝑇𝑜𝑜)𝑃𝑃𝑌𝑌𝑜𝑜𝑇𝑇𝑜𝑜𝑖𝑖𝑖𝑖 +

 𝛽𝛽4(4− 6𝑃𝑃𝑜𝑜𝑇𝑇𝑇𝑇𝑜𝑜)𝑃𝑃𝑌𝑌𝑜𝑜𝑇𝑇𝑜𝑜𝑖𝑖𝑖𝑖 +  𝛽𝛽5(7 + 𝑃𝑃𝑜𝑜𝑇𝑇𝑇𝑇𝑜𝑜)𝑃𝑃𝑌𝑌𝑜𝑜𝑇𝑇𝑜𝑜𝑖𝑖𝑖𝑖 +  𝛽𝛽6(< 1𝑃𝑃𝑜𝑜𝑇𝑇𝑇𝑇𝑜𝑜) + 𝛽𝛽7(1− 3𝑃𝑃𝑜𝑜𝑇𝑇𝑇𝑇𝑜𝑜) +

𝛽𝛽8(4− 6𝑃𝑃𝑜𝑜𝑇𝑇𝑇𝑇𝑜𝑜) +  𝛽𝛽9(7 +𝑃𝑃𝑜𝑜𝑇𝑇𝑇𝑇𝑜𝑜) +  𝛽𝛽10𝑃𝑃𝑖𝑖𝑖𝑖 + 𝛾𝛾𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖  

 

Table 2.6: Estimated impact of trans fat regulation on LDL levels, considering variations across time 
periods and among different restaurant meal consumption frequencies 

  (1) (2) (3) 

 
Preferred 

Model 

Meals 
Dummy 

Variables 
Meals X Time 

Trend  
        
Policy X Meals -2.545** -2.263** -0.782 

 (0.980) (1.008) (2.389) 
1-3 Meals X Year   0.987 

   (1.841) 
4-6 Meals X Year   0.293 

   (1.177) 
7+ Meals X Year   -0.921 

   (0.908) 
Constant 96.82*** 96.05*** 94.82*** 

 (2.587) (2.582) (2.893) 
Year dummies Yes Yes Yes 
Meal dummies No Yes Yes 
Observations 12,299 12,299 12,299 
R-squared 0.112 0.113 0.113 
Data: NHANES 1999-2010 

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Note: Results from OLS regression estimating Equation (2.4). Outcome variable is LDL 
cholesterol, in mg/dL. Column 1 shows preferred model from Table 2.5. Column 2 replaces 
the Meals categorical variable with dummy variables for each of the four Meals categories. 
Column 3 includes the same Meals dummy variables as the previous column and also includes 
interaction terms between Year and each of the Meals categories, following Autor (2003).  All 
columns include the full set of control variables used in Column 5 of Table 2.5. 

 

In this table, Column 1 is repeated from Column 5 of Table 2.5 for comparison as the preferred model. 

Column 2 replaces the Meals categorical variable with four separate binary variables for each Meals 

category: less than one meal per week, one to three meals per week, four to six meals per week, and 

seven or more meals per week. This change results in very little difference from the previous column. 

Column 3 uses the Meals specification from the previous column and additionally includes four 

interaction terms between Year and each of the four binary Meals categories, as shown in Equation 

(2.4) and following Autor (2003). Inclusion of these four interaction terms results in a loss in statistical 
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significance and a sizeable reduction in the coefficient of interest. One possible explanation is that this 

model is over-specified.  

 

Because the 2005 data cycle is assumed to be the change in policy for all meal groups, this paper uses 

an indicator for the policy period, so I suggest replacing the four interaction terms between the 

treatment intensity and the year trend, <1MealsXYear, 1-3MealsXYear, 4-6MealsXYear, and 

7+MealsXYear with four interaction terms between each of the binary Meals categories and the policy 

year, 2005. This will capture the effect of the 2005 policy on each of the treatment categories 

separately. In Table 2.7, I model the following equation: 

 

(2.5) 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 =  𝛽𝛽0 +  𝛽𝛽1(< 1𝑃𝑃𝑜𝑜𝑇𝑇𝑇𝑇𝑜𝑜)𝑃𝑃𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑐𝑐𝑇𝑇𝑖𝑖𝑖𝑖 +  𝛽𝛽2(1 − 3𝑃𝑃𝑜𝑜𝑇𝑇𝑇𝑇𝑜𝑜)𝑃𝑃𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑐𝑐𝑇𝑇𝑖𝑖𝑖𝑖 +  𝛽𝛽3(4 −

6𝑃𝑃𝑜𝑜𝑇𝑇𝑇𝑇𝑜𝑜)𝑃𝑃𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑐𝑐𝑇𝑇𝑖𝑖𝑖𝑖 +  𝛽𝛽4(7 + 𝑃𝑃𝑜𝑜𝑇𝑇𝑇𝑇𝑜𝑜)𝑃𝑃𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇𝑐𝑐𝑇𝑇𝑖𝑖𝑖𝑖 +  𝛽𝛽5(< 1𝑃𝑃𝑜𝑜𝑇𝑇𝑇𝑇𝑜𝑜)𝑖𝑖𝑖𝑖 + 𝛽𝛽6(1− 3𝑃𝑃𝑜𝑜𝑇𝑇𝑇𝑇𝑜𝑜)𝑖𝑖𝑖𝑖 +  𝛽𝛽7(4 −

6𝑃𝑃𝑜𝑜𝑇𝑇𝑇𝑇𝑜𝑜)𝑖𝑖𝑖𝑖 +  𝛽𝛽8(7 +𝑃𝑃𝑜𝑜𝑇𝑇𝑇𝑇𝑜𝑜)𝑖𝑖𝑖𝑖 +  𝛽𝛽9𝑃𝑃𝑖𝑖𝑖𝑖 + 𝛾𝛾𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖  

 

Table 2.7: Estimated impact of trans fat regulation on LDL levels, considering variations in weekly 
restaurant meal consumption 

  (1) (2) 
 Preferred Model Policy X Meal Trends 

      
Policy X Meals -2.545** - 

 (0.980) - 
< 1 Meal X Policy - -3.060 

 - (2.638) 
1-3 Meals X Policy - -6.225*** 

 - (2.032) 
4-6 Meals X Policy - -12.03*** 

 - (2.459) 
7+ Meals X Policy - -7.304** 

 - (2.844) 
Constant 96.82*** 95.48*** 

 (2.587) (2.623) 
Observations 12,299 12,299 
R-squared 0.112 0.113 
Data: NHANES 1999-2010 

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Note: Results from OLS regression estimating Equation (2.5). Outcome variable is LDL cholesterol, 
measured in mg/dL. Column 1 shows the preferred model from Table 2.5. Column 2 replaces the 
Meals categorical variable with dummy variables for each of the four Meals categories. Column 2 
replaces the Policy X Meals interaction term with four separate interaction terms between Policy and 
each of the Meals categories, following Autor (2003).  All columns include the full set of control 
variables used in Column 5 of Table 2.5. 
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For comparison, results from the preferred model are presented in Column 1 of Table 2.7. Column 2 

shows results from estimating Equation (2.5); the effects of the policy appear to have no significant 

effect on LDL for the lowest-frequency restaurant meal consumers, and larger and significant effects 

among individuals in the other three meal consumption categories. The greatest affect among 

consumers who eat 4-6 meals per week. That this group has a larger coefficient than the fewer than 

one meal per week group and the 1-3 meals per week group is in line with the idea that the more an 

individual eats out, the more they are exposed to the policy, so holding all else constant, we would 

expect to see a greater effect among this group. Following this, we would expect to see an even larger 

effect amongst the largest frequency consumers, however we do not find this. Some reasons we don’t 

see the greatest effect among the highest-frequency consumers may be because these individuals are 

engaging in other unhealthy behaviors not captured in the model, or simply that at a certain amount 

of restaurant meals, the other unhealthy aspects of these meals outweighs the benefits of trans fat 

reduction in these foods. 

 

Next, I consider the treatment of the estimate of the Meals variable, in order to test whether results 

are driven by the choice of identification of the treatment group. The choice of grouping the variable 

Meals, which measures average consumption of restaurant meals and meals prepared away from 

home per week, is intuitive but is not the only possible grouping. Table 2.8 presents three possible 

alternate specifications, which are to use the count of meals directly (Column 2), to use the square 

root of the count of meals to allow for decreasing marginal effects of additional meals (Column 3), or 

to think of the data in a binary fashion (Column 4). As a binary variable, zero identifies low frequency 

consumers, those who consume less than one meal away from home per week; a value of one 

identifies consumers who eat one or more meals per week. The coefficient on PolicyXMeals that is 

estimated in each of these models will have a different interpretation and the magnitude of the 

coefficients is not directly comparable because in each model, a one unit change in the value of Meals 

represents a different change in the number of meals eaten in restaurants per week. However, in each 

case the estimate is consistently negative and meaningful.  
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Table 2.8: Alternate specifications of Meals Predictor Variable 

  (1) (2) (3) (4) 

 
Meals: 

Grouping 
Meals: 
Count 

Meals:           
Sq. Root 

Meals: 
Binary 

          
Policy X Meals -2.545** -0.519* -2.640** -4.911** 

 (0.980) (0.289) (1.126) (2.235) 
Meals 1.280 0.210 1.250 3.420** 

 (0.799) (0.259) (1.000) (1.609) 
Constant 96.82*** 97.85*** 96.56*** 95.53*** 

 (2.587) (2.588) (2.904) (2.630) 

     
Observations 11,005 11,005 11,005 11,005 
R-squared 0.112 0.111 0.112 0.112 
Data: NHANES 1999-2010 

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Note: Results from OLS regression estimating Equation (2.2) with different 
specifications of the Meals variable. LDL-cholesterol measured in mg/dL is the outcome 
variable in each column. In Column 1 Meals is a categorical variable, equal to 0 if the 
consumer eats at restaurants less than one time per week on average, equal to one if 
1-3 meals are eaten per week, equal to 2 if 4-6 meals are eaten per week, and equal to 
3 if 7 or more restaurant meals are eaten per week. In Column 2, Meals is a count of 
the number of restaurant meals per week. Meals in Column 3 uses the square root of 
the number of restaurant meals per week. And in Column 4, Meals is a binary variable 
which equals 0 if the consumer eats restaurant meals fewer than once per week and 
equal to 1 otherwise. PolicyXMeals is an interaction term between the variables Meals 
and Policy, which equals zero in years before 2005 and equals one in 2005 and after. 
All Columns include the full set of control variables used in Column 5 of Table 2.5. 

 

An important aspect of this comparison is that it explores non-linearity in the effect of eating out. The 

literature suggests that even moderate levels of trans fat consumption can have a large adverse effect 

on health, and an alternative is to estimate a specification which assumes a diminishing marginal 

health cost to eating out. This can explain why the binary, grouping, and square root estimates show 

more significance than the estimates where Meals is specified to represent the untransformed count 

of meals eaten in restaurants.  

 

Table 2.9 presents estimates of the relationship between the variable Meals and consumption of two 

other types of FAFH, specifically ready-to-eat prepared meals and frozen prepared meals. This 

estimation deals with the issue of identification, that the variables Meals and PolicyXMeals correctly 

identify those individuals who would be most affected by TFA reductions in commercially prepared 

foods. One assumption that I test is whether individuals who eat more restaurant meals are more 

likely to be affected by trans fat regulation in other parts of the food system, particularly in pre-

processed and pre-packaged foods. FAFH typically includes not only restaurant meals, but other foods 

that have been commercially prepared, such as packaged and processed foods, frozen meals. For the 
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full pre- and post-policy periods, data are only available on restaurant meal consumption, Meals, but 

not on these other components of FAFH. However, in the 2007 and 2009 data cycles, NHANES added 

questions on monthly pre-packaged and prepared foods consumption, on monthly frozen meals and 

frozen pizza consumption, and on weekly fast food and pizza meals out. So, while I cannot directly test 

the effect of the policy on these two groups, I can show that FAFH is positively correlated with the 

consumption of other foods affected by the policy. Data from these two years are examined using the 

following equation: 

 

(2.6) 𝑂𝑂𝑇𝑇ℎ𝑜𝑜𝑜𝑜 𝐹𝐹𝐹𝐹𝐹𝐹𝐻𝐻 𝐶𝐶𝑇𝑇𝐶𝐶𝑜𝑜𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶𝑖𝑖𝑖𝑖 =  𝛽𝛽0 +  𝛽𝛽1𝑃𝑃𝑜𝑜𝑇𝑇𝑇𝑇𝑜𝑜𝑖𝑖𝑖𝑖 +  𝛽𝛽2𝑃𝑃𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖 

 

Two different specifications for Other FAFH Consumption are tested: a count of pre-packaged and 

prepared foods consumed in the past 30 days and a count of frozen meals and frozen pizza consumed 

in the past 30 days. Because these outcome variables are count data and the conditional distribution 

of the variable is over-dispersed, I perform a negative binomial regression using prepared foods 

consumption and frozen meals consumption as the outcome variables of interest. Meals are regressed 

against the number of ready-to-eat meals consumed per month; in Column 1 Meals is a count variable, 

and in Column 2, the Meals grouping variable is used. Similarly, in Columns 3 and 4, Meals, as a binary 

variable and as a categorical variable respectively, is regressed against the number of frozen meals or 

frozen pizza consumed per month. In both of these regressions the full set of controls from the 

preferred model are included. The estimate of the natural log of the dispersion parameter, α, is 

reported for each regression. When α is significantly greater than zero, then the data are over 

dispersed and are better estimated using a negative binomial model than a Poisson model. Estimation 

of these models confirm the significant positive association between eating meals in restaurants and 

eating pre-packaged and frozen meals. This relationship implies that using 2005 is correctly identified 

as the policy year when trans fat content of foods consumed by people who eat frequently at 

restaurants declined. 

 

 

 

 

 

 



46 
 

Table 2.9: Relationship between restaurant meals and other FAFH meal consumption 

  (1) (2) (3) (4) 

 

Ready-to-
Eat Meals 
in 30 days 

Ready-to-
Eat Meals 
in 30 days 

Frozen 
Meals in 
30 days 

Frozen 
Meals in 
30 days 

          
Meals Category  0.448***  0.142*** 

  (0.0379)  (0.0325) 
Meals per Week 0.103***  0.0310***  

 (0.00955)  (0.00819)  
     

Constant -3.529*** -3.809*** -1.806*** -1.893*** 

 (0.177) (0.184) (0.149) (0.149) 
ln α 1.681*** 1.668*** 1.271*** 1.269*** 

 (0.0497) (0.0496) (0.0391) (0.0393) 

     
Observations 10,097 10,097 10,100 10,100 
Data: NHANES 1999-2010 

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Note: Results from OLS regression estimating Equation (2.6). Outcome variable in 
Columns 1 and 2 are the number of ready-to-eat meals in 30 days; in Columns 3 and 4 
are the number of frozen meals consumed in 30 days. Independent variable of interest 
in Columns 1 and 3 are the count of restaurant meals per week, and in Columns 2 and 4 
categorical Meals variable which is equal to 0 if the consumer eats at restaurants less 
than one time per week on average, equal to one if 1-3 meals are eaten per week, equal 
to 2 if 4-6 meals are eaten per week, and equal to 3 if 7 or more restaurant meals are 
eaten per week. Columns include the full set of control variables used in Column 5of 
Table 2.5. 

 

Interpretation of the Meals coefficient in Columns 1 and 3 is that for a change of one restaurant meal 

per week, the difference in the logs of expected counts of the number of ready-to-eat for frozen meals 

per month is expected to change by the value of the coefficient. Similarly, the coefficient on Meals in 

Columns 2 and 4 estimates the effect of moving from one restaurant frequency category to another.  

Consumption of food from restaurants is strongly and significantly correlated with consumption of 

other types of pre-packaged, ready-to-eat, and frozen meals. This supports the idea that the trans fat 

reduction in all commercially processed foods, not just in restaurants, plays a role in the improvements 

in health that are estimated when modeling the effect of eating meals away from home on health. 

 

Another concern with using Meals to identify treatment and control groups is endogenous self-

selection into the control group; that individuals who identify as eating less than one restaurant meal 

per week may be significantly different from the treatment groups, those who do eat at least one meal 

per week away from home. One approach to testing this is to examine whether the policy has effects 

on other health indicators, particularly those that are not as strongly linked with trans fat 
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consumption, but are linked to other healthy behaviors like diet and exercise. Table 2.10 estimates 

the preferred model, using other indicators of health as the outcome variable of interest. Total 

cholesterol, HDL cholesterol, and triglycerides, in Columns 1, 2 and 3, respectively, are additional 

indicators of cardiovascular disease; C-reactive protein, Column 4, is an indicator of metabolic risk and 

inflammation. To varying degrees, these indicators are affected by TFA consumption, most particularly 

Total Cholesterol. The remaining columns show measures of body mass and body fat composition and 

are indicators of obesity and metabolic risk: BMI, in Column 5, and waist circumference, in Column 6.  

 

Table 2.10: Influence of Restaurant Meal Consumption on Other Health Indicators among US Adults 

  (1) (2) (3) (4) (5) (6) 

 
Total 

Cholesterol HDL Triglycerides CRP BMI 
Waist 

Circumference 
              
Policy X 
Meals -2.590*** -0.384* 2.804 0.0210 0.114 0.283 

 (0.837) (0.221) (3.263) (0.0133) (0.102) (0.224) 
Meals 1.669** -0.201 -0.718 -0.0122 0.217*** 0.468*** 

 (0.731) (0.180) (2.927) (0.00943) (0.0780) (0.171) 
Constant 164.5*** 48.43*** 95.20*** 0.455*** 26.84*** 86.43*** 

 (2.164) (0.824) (9.634) (0.0378) (0.360) (0.935) 

       
Observations 24,909 24,908 11,278 25,010 25,657 25,357 
R-squared 0.118 0.206 0.056 0.037 0.120 0.190 
Data: NHANES 1999-2010 

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Note: Results from OLS regression estimating Equation (2.2) with different outcome variables. Outcome variables for Columns 
1 through 4 are: total cholesterol, HDL cholesterol, triglycerides, and C-reactive protein levels, measured in mg/dL. BMI is the 
outcome variable in Column 5 and waist circumference, measured in centimeters, is the outcome variable in Column 6. Meals 
is a categorical variable, equal to 0 if the consumer eats at restaurants less than one time per week on average, equal to one 
if 1-3 meals are eaten per week, equal to 2 if 4-6 meals are eaten per week, and equal to 3 if 7 or more restaurant meals are 
eaten per week. PolicyXMeals is an interaction term between the variable Policy, which equals zero in years before 2005 and 
equals one in 2005 and after. All columns include the full set of control variables, used in Column 5 in Table 2.5. 

 

This analysis isolates trans fat policy as the likely cause of the health effects shown in the main result. 

As outlined in the medical literature, trans fat consumption shows the largest and most immediate 

effects on LDL and total cholesterol, and diminished effects on HDL, triglycerides, and both diminished 

and delayed effects on abdominal adiposity (measured here as waist circumference), and BMI. Effects 

on blood lipids show up more quickly than on measures of body fat composition. So, if trans fats are 

reduced and no other health-improving changes are made, one would expect to see improvements in 

LDL and total cholesterol, possibly smaller improvements in HDL and triglycerides, depending on the 

amount of trans fat reduced, and likely no improvement in BMI or waist circumference. This is in line 
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with estimates shown in Table 2.10. In fact, this table shows that across all indicators other than total 

cholesterol, no improvements in health are related to eating at restaurants after the intervention.  

 

One concern with these findings is that HDL, Column 2, and triglycerides, Column 3, should have 

shown some improvements in health, even if small, however the lack of improvement could be due in 

part to documented changes in measurement of HDL, or it could be that trans fat reductions were not 

significantly large enough to outweigh other trends in unhealthy eating, or even that newer trans fat 

substitutes may not be as healthy as the cis unsaturated fats and saturated fats which were used as 

comparisons in clinical trials. The results for BMI and waist circumference Columns 5 and 6 are in line 

with medical literature, as any effects of from reduction in trans fat consumption on body fat 

composition are smaller and show up more slowly than changes in blood lipid levels.  

 

These results provide some evidence that improved LDL and Total Cholesterol after the policy are not 

due to some other overall increase in good health. Similarly, these results provide some evidence that 

the change in the wording of the FAFH question in the survey is not driving the result. This supports 

the assertion that the changes found in both LDL and total cholesterol levels are, in fact, due to the 

reduction of trans fat in the diet and that these changes are more pronounced in those who frequent 

restaurants than in those who do not. 

 

2.5.2. Heterogeneity in Treatment Effect  
 

To explore heterogeneity in the treatment effect, I test whether similar or even stronger effects are 

found among certain groups known to have higher consumption of FAFH, which includes restaurant 

meals, fast food, pre-packaged, prepared, and frozen foods. 

 

If a particular demographic is strongly affected by this policy because they frequently eat fast-food 

and pre-packaged foods affected by the regulations, then one would expect to find greater health 

benefits in these groups. This would indicate that prior to the policy this group has higher cholesterol 

levels due to the larger proportion of FAFH in their diet and that after the policy, the reduction of trans 

fat in FAFH leads to a lowering of cholesterol levels, controlling for demographics, income, education, 

and health behaviors. However it could be the case that because secular rates of FAFH consumption 

are increasing, even among the higher-frequency consumers, expected improvements in health from 

decreased trans fats in these foods may be diminished by increases in FAFH consumption over 

consumption of home-cooked meals.  



49 
 

 

The literature on FAFH consumption asks two similar questions about the demographic groups who 

frequently consume commercially prepared foods and fast foods and finds two different answers. 

Research on commercially prepared foods finds that Americans aged 45 and under, non-Hispanic 

whites, individuals with a high school education, and with higher income are groups that report a 

higher mean frequency of consumption of commercially prepared foods (Kant and Graubard, 2004). 

To examine the effects of the policy among higher-frequency consumers, Table 2.11 estimates the 

preferred model for those particular subgroups of the population who eat more FAFH: younger adults, 

non-Hispanic whites, and those with higher income and higher education. While the magnitudes of 

the estimate of the effect vary somewhat, that difference is not statistically significant; I do not find a 

heterogeneity of the effect for these particular subgroups. 

 

Table 2.11: Influence of Restaurant Meal Consumption on LDL among High-Frequency FAFH 
Subgroups 

  (1) (2) (3) (4) 

 White Under 40 
Income 

45K+ 
High School 

Grad 
          
Policy X Meals -2.324* -3.728*** -3.232** -2.759** 

 (1.187) (1.177) (1.551) (1.073) 
Meals 0.568 1.438 0.998 1.433 

 (0.899) (0.964) (1.421) (0.890) 
Constant 97.63*** 91.41*** 96.14*** 96.66*** 

 (3.353) (4.357) (4.542) (2.657) 

     
Observations 5,696 3,785 4,790 7,870 
R-squared 0.123 0.087 0.115 0.118 
Data: NHANES 1999-2010 

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Note: Results from OLS regression estimating Equation (2.2) for different 
subgroups. Outcome variable is LDL cholesterol, measured in mg/dL. Meals is a 
categorical variable equal to 0 if the consumer eats at restaurants less than one 
time per week on average, equal to one if 1-3 meals are eaten per week, equal to 
2 if 4-6 meals are eaten per week, and equal to 3 if 7 or more restaurant meals are 
eaten per week. PolicyXMeals is an interaction term between the binary variable 
Policy, which equals 0 for years before 2005 and equals 1 for 2005 and later, and 
the variable Meals. All columns include the full set of control variables used in 
Column 5of Table 2.5. Column 1 samples only individuals whose race is white, 
Column 2only those who are under age 40, Column 3only those whose income is 
45,000 or above, and Column 4only those who have at least a high school degree. 

 

Similarly, the literature identifies subgroups which consume a higher proportion of calories from fast 

food in particular. Specifically, Non-Hispanic black adults consume a higher percentage of total meals 
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out from fast food establishments, when compared to non-Hispanic white and Hispanic adults, with 

the disparity being greater in the 20-39 age group. Additionally, when comparing by weight status, 

obese adults consume the highest percentage of total calories from fast food (Fryar and Ervin, 2013). 

For these groups, I expect that the type of restaurant may be more likely to be fast food than in other 

groups. Thus, I expect the effect on LDL of increasing the number of meals eaten out to be higher in 

these groups – and consequently the effect of the policy in mitigating the effect of these meals to be 

higher. Table 2.12 presents estimates for those subgroups who consume a greater portion of their 

FAFH calories from fast food in particular: males, non-Hispanic blacks, and the obese. Looking at 

subgroups reduces the sample size and increasing standard errors. In this particular case, the 

anticipated increase in the effect is not observed among the subgroups. 

  

Table 2.12: Influence of Restaurant Meal Consumption on LDL among High-Percentage Fast Food 
Subgroups 

  (1) (2) (3) (4) 

 Male Black BMI 25+ 
Abdominal 

Obesity 
          
Policy X Meals -1.746 -3.565 -2.152 -1.144 

 (1.602) (2.376) (1.339) (1.477) 
Meals 0.0734 3.523* 1.699 1.210 

 (1.327) (1.984) (1.159) (1.238) 
Constant 103.5*** 90.15*** 104.9*** 105.3*** 

 (4.097) (4.762) (3.311) (4.003) 

     
Observations 5,308 1,974 7,704 5,959 
R-squared 0.131 0.070 0.108 0.115 
Data: NHANES 1999-2010 

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Note: Results from OLS regression estimating Equation (2.2) for different 
subgroups. Outcome variable is LDL cholesterol, measured in mg/dL. Meals is a 
categorical variable equal to 0 if the consumer eats at restaurants less than one 
time per week on average, equal to one if 1-3 meals are eaten per week, equal 
to 2 if 4-6 meals are eaten per week, and equal to 3 if 7 or more restaurant 
meals are eaten per week. PolicyXMeals is an interaction term between the 
binary variable Policy, which equals 0 for years before 2005 and equals 1 for 
2005 and later, and the variable Meals. All columns include the full set of 
control variables used in Column 5of Table 2.5. Column 1 samples only males, 
Column 2only those whose race is Black, Column 3only those whose BMI is 25 
or above, and Column 4only those classified as having abdominal obesity. 
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An explanation for these findings could be that the groups with a larger percentage of FAFH coming 

from fast food may be making more unhealthy choices, which counteract or outweigh the 

improvements in LDL that one would expect to see following the policy change. 

 

These findings suggest an area for potential further work to properly identify consumers of FAFH and 

compare them to the average population. Potentially, these are the groups which have the most to 

gain from trans fat reducing policies. Yet, if effects from the policy are driven by an income effect and 

those with the lowest income are not seeing improvements in health, then these could be troubling 

findings. Further research could explore whether the benefits found here are distributed evenly across 

groups of higher risk and lower risk and explore whether there are disparities in the policy effect across 

socioeconomic status. 

 

2.6. Discussion and Conclusions 

This research examines the health effects of trans fat reduction policies at the population level. This 

work seeks to identify whether the suite of trans fat nutrition labelling laws, city- and state-specific 

trans fat bans, and legal actions against major food manufacturers has improved levels of serum LDL, 

an intermediate measure of health which is directly affected by trans fat consumption, among 

consumers of food prepared away from home at the population level. Unlike recent research 

examining the health effects from only New York City trans fat ban, this work suggests that due to the 

extent of reformulations throughout all levels of commercially prepared foods, disentangling the 

effects of one particular ban may not be feasible.  

 

This work finds an average decrease in LDL by 2.75 mg/dL by consumption of meals away from home 

after the policy was introduced.  This work also found a declining marginal ill-health effect from eating 

meals away from home. Consistent with the literature on the relationship between trans fat 

consumption and LDL, this work does not find significant effects of the policy on other health outcome 

variables such as triglycerides, HDL cholesterol, BMI, and waist circumference. A positive relationship 

between eating meals out and eating frozen or pre-packaged meals is found, suggesting that 

restaurant meal consumers also consume other types of FAFH which were affected by the trans fat 

reduction policies. These findings also support the idea that the NYC trans fat ban in 2006 did have an 

effect on trans fat levels and health measures at the national level, but that these effects did not occur 

in isolation, but rather were built on top of effects from a number of policies.  
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Since the start of this research, on June 16, 2015, the US FDA has proposed removal of the GRAS status 

of partially hydrogenated oils, which will in effect, result in an outright banning of trans fats in all 

restaurant and processed foods within the US (US Food and Drug Administration, 2015). Supporters 

of this proposal expect that these changes will result in an increase in general health in the population, 

including but not limited to, reduction in CHD risk and in the number of CHD cases. Even more recently, 

following implementation of the Affordable Care Act (ACA), the FDA has issued a ruling requiring all 

restaurants with at least 20 locations to provide a clearly visible calorie count on all menu items by 

December of 2016 (Goldman, 2015). While this regulation may not directly affect trans fat content in 

restaurant meals, it may be difficult to disentangle the health effects from these closely-timed policies.  

This research provides a first look at the population-level effects of nation-wide trans fat reduction in 

restaurant and commercially prepared foods and suggests these policies can play a significant role in 

reducing CHD risk. This work finds both a general trend in the population of decreasing cholesterol 

levels (LDL and total cholesterol) and finds that individuals who consume restaurant meals regularly 

show significant and larger decreases in LDL and total cholesterol as compared to individuals who 

rarely or never eat restaurant meals. This effect becomes more concentrated for higher-frequency 

consumers of restaurant meals and is robust to demographic, socioeconomic, and health controls.  

 

While this work attempts to control for various health behaviors, further research may be needed in 

order to disentangle the specific effects of trans fat removal from fast food, other restaurant foods, 

and from pre-packaged foods. Most importantly this work suggests that more care is needed to target 

the effects in those groups whose consumption of fast food and other FAFH is highest. Three particular 

concerns, going forward, are identifying the health effects of trans fat substitutes, identifying the 

health effects among the most at-risk groups, and identifying whether improvements in health from 

these policies have outweighed any negative compensatory health behaviors. Nonetheless, these 

findings suggest that a voluntary reduction of trans fats from restaurant and other commercially 

prepared foods has had a significant effect on population health and that any proposed policies to 

further reduce trans fats from the food supply could be effective in further lowering CHD risk. 
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Chapter 3 

3.1. Introduction 

Commuting to work is a part of people’s daily routine and makes up the largest share of annual vehicle 

miles traveled per household in the US (Santos et al., 2011). Average commuting times have been 

increasing from just under 22 minutes each way since 1980, when the US Census started collecting 

data on travel times, and after plateauing in the 2000’s are at their highest now, with an average 

commute time of about 26 minutes each way (Ingraham, 2016; Mckenzie and Rapino, 2011). The 

majority of this commuting, over 90%, is done through sedentary means, such as driving, being a 

passenger in a vehicle, or using some form of public transportation.  

 

Sedentary lifestyles have been linked with obesity, increased chronic disease risk, and type II diabetes 

(Allison DB et al., 1999; Lakdawalla and Philipson, 2009; Manson JE et al., 2004; Rössner, 2002). In the 

SLOTH framework presented in Chapter 1, individuals can spend their time in sleeping, leisure, 

occupation, transportation, and home production. With the exception of sleep, these activities can be 

sedentary or active in nature. Most sedentary behavior occurs during work and leisure time, however 

commuting by motor vehicle, as a form of transportation is also a contributing factor to sedentary 

behavior (Cawley, 2004). Sedentary commuting has been linked to measures of poorer subjective 

health and well-being in a variety of contexts (Roberts et al. 2011; van Ommeren and Gutiérrez-i-

Puigarnau 2011; Hansson et al. 2011; Dickerson et al. 2014; Künn-Nelen 2015).  

 

This chapter examines associations between commuting and health, specifically between time that 

individuals spend engaged in active and sedentary modes of commuting and body mass index (BMI), 

as an indicator of health status. The following questions are asked: what is the relationship between 

time spent commuting and BMI? Is more time spent in sedentary commuting associated with an 

increase in BMI? Is more time spent in active commuting associated with lower BMI? These questions 

are important because the role of commuting on health is studied in the literature and commuting is 

often associated with poor health. However, BMI depends on many factors, primarily healthy eating 

and exercise. This work finds evidence contrary to the commonly found relationship between 

increased commuting and poor health indicators. Instead, this work finds that more time spent in 

sedentary commuting is not necessarily associated with increased BMI, leaving room in the lives of 

sedentary commuters to eat well, exercise, or use whatever means at their disposal to maintain a 

healthy weight. On the other hand, this work does find that more time in active commuting is related 

to lower BMI. This may be due not only to the exercise active commuting provides, but also to the fact 
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that people who active commute may be more committed to maintaining a healthy lifestyle in other 

ways. A key component of this work focuses on reconciling these findings against those presented in 

a recently published paper which uses similar methods and data but finds a negative relationship 

between sedentary commuting and BMI. These results suggest that previously found associations 

between ill health and commuting may be largely explained by the positive health effects of active 

commuting. 

 

This chapter is structured as follows: Section 3.2 provides a review of literature, Section 3.3 presents 

data and sample characteristics, Section 3.4 proposes a model of commuting behavior and BMI and 

Section 3.5 presents estimation results from this model and includes sections examining 

heterogeneity and robustness of the main model and as well as a section replicating results from a 

similar model presented recently in the literature and comparing against these results. Section 3.6 

concludes with a discussion of these findings, their limitations and implications. Appendix B provides 

additional comparisons of the Yang and French paper which is discussed in Section 3.5. 

 

3.2. Literature Review 

The relationship between commuting and obesity is closely related to the relationship between urban 

structure, particularly urban sprawl, and obesity. Some papers find that urban sprawl is linked with 

lower commuting times, as such, the relationship between sprawl and obesity is worth considering 

when examining the relationship between commuting time and obesity, as a potential mechanism 

through which sprawl is associated with obesity (Crane and Chatman, 2003; Reid Ewing et al., 2003; 

Zolnik, 2011). Issues such as endogeneity and reverse causation arise in the sprawl-obesity literature 

as well as in the commuting-obesity literature, and similar approaches are used in both contexts. For 

these reasons, before examining the literature on the relationship between commuting and obesity, I 

present a number of papers examining the relationship between urban structure and obesity.  

 

In particular, Ewing et al. (2003, 2014) look at the relationship between an index of urban sprawl and 

BMI as well as other indicators of health and health behaviors among adults at the national level. The 

authors develop an index of sprawl based on four measures of population density and two measures 

of street block size.  They find that the probability of being overweight or obese, and also to a lesser 

extent being physically active, is significantly associated with the overall urban form of an individual’s 

county of residence. Due to data limitations and missing data, they did not control for income; this 

may bias their results because average income is associated both with obesity and the built 
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environment. A larger limitation of the work is that they use county-level characteristics of the built 

environment; other papers have pointed out that walkability of the built environment can vary 

considerably from one street to the next in a given neighborhood, so a more localized measure of 

urban structure may better explain the relationship between urban form and individual health. Lopez 

(2004) develops a measure of urban sprawl from the 2000 US Census data and individual-level data 

and uses data from the national-level cross-sectional 2000 Behavioral Risk Factor Surveillance System 

(BRFSS) dataset. The data includes BMI calculated from self-reported height and weight. Controlling 

for socioeconomic and demographic characteristics, Lopez uses logistic regression to examine the 

relationship between urban sprawl and likelihood of being overweight or obese and finds an 

association between increased risk of overweight and increase in urban sprawl. 

 

Plantinga and Bernell (2007) point out that policies based on these earlier studies assume that urban 

form is exogenous to an individual’s weight, and that urban form plays a role in affecting BMI. They 

consider instead the possibility that BMI affects an individual’s choice of residential location and find 

that causality runs in both directions. They use longitudinal data on a nationally representative sample 

of 12,686 men and women aged 14 to 22 years from the National Longitudinal Survey of Youth 1979 

(NLSY). Participants were interviewed annually through 1994 and biennially since then. The authors 

use data from the 1996, 1998, and 2000 surveys, when respondents were between the ages of 31 and 

43 and they use a county sprawl index developed by McCann and Ewing (2003). They examine a 

sample of individuals who move residences to test whether an individual’s BMI prior to a move affects 

their choice of a low- or high-sprawl county. In doing this, they assume that the individual’s new 

residential location cannot influence their BMI prior to moving there. From this, they find BMI is a 

significant factor in determining whether residence choice is in a dense or a sprawling county, with 

higher BMI individuals choosing less dense locations. They also test a second sample of movers to test 

whether changes in locational characteristics influence later changes in BMI, as this is a case where 

one’s weight change after moving to a new residence cannot affect the change in residence. From 

this, they find that individuals who move to denser counties decrease their BMI; additionally, the 

greater the change in density, the greater the change in BMI. Their work suggests that more work is 

needed in determining the direction of causation in the relationship between urban form and health. 

Limitations of their work are that they only consider those individuals who move; there could be 

endogenous selection in reasons why an individual moves which may also affect other health 

behaviors that in turn affect BMI; moving often results in or results from these financial or economic 

changes, for example moving to a new job can mean a change in salary and change in the cost of living 

– this could affect both choice of residential location and health behaviors affecting BMI. Second, as a 
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result of this focus, they did not observe how urban form might affect BMI of individuals who do not 

move to a new residence. They also do not control for any sort of regional variation in location which 

may play a role in individual health behaviors. Eid et al. (2008) also use longitudinal data from the 

NLSY to estimate models similar to those presented by Ewing et al. (2003). One limitation to the 

generalizability of their findings is the rather narrow age range in the selected sample; individuals aged 

23-36. They suggest that the previous findings failed to properly control for the influence of an 

individual’s health status in their choice of residential location. Their results show no statistically 

significant associations between urban sprawl and BMI.  

 

Zhao and Kaestner (2010) use changes in population density as a measure of urban sprawl and an 

instrumental variables approach as an attempt to establish a causal relationship between urban 

sprawl and obesity through the use of predicted population densities derived from historical Interstate 

Highway System plans as an instrument for changes in population density. They use individual-level 

demographic, socioeconomic, self-reported height and weight data on from the National Health 

Interview Survey (NHIS) from 1976 to 2001. Data on population, highway infrastructure and MSA-level 

characteristics were obtained from the Neighborhood Changing Database, the General Location of 

National System of Interstate Highways, and the Current Population Survey (CPS), respectively. First 

they predict population density from 1947 planned highway rays, showing that more highway plans 

are significantly associated with a decrease in population density over time, and that planned highway 

rays are uncorrelated with observed MSA-level time-varying characteristics. They find no effect of 

population density on BMI, but do find a significant association between population density and 

obesity.  

 

Testing multiple hypotheses, Wojan and Hamrick (2015) build on this literature by suggesting that the 

choice of active commuting is not explained by unobserved characteristics that may be the source of 

a lower BMI. Their findings do not support previous literature which finds associations between sprawl 

and higher BMI. Instead, they find that compact or dense urban structure is not associated with higher 

levels of physical activity than occurs in more sprawling urban areas. These findings suggest that urban 

structure does not indicate preference for physical activity; specifically residents of compact cities are 

not more likely than residents of sprawling cities to engage in physical activity. They use data from the 

2006-08 American Time Use Survey (ATUS) and its Eating and Health Module and sample adults who 

report working at their workplace on the diary day, 12,405 observations. The authors use the 

metropolitan statistical area (MSA) murder rate, MSA-level college enrollment rates of 18 to 24 year 

olds, number of historical sites in an MSA, adverse weather conditions on the diary day, and whether 



57 
 

major cities in an MSA had received a Bicycle Friendly Community certification from the League of 

American Bicyclists to predict whether the active commuting or other unobservable characteristics 

were responsible for reductions in BMI. The two key assumptions of an instrumental variable model 

are that the instrument must be correlated with the endogenous explanatory variable, commuting 

behavior in this case, and that the instrument must not be correlated with the error term in the 

explanatory model. While these variables are shown to be correlated with active commuting behavior, 

the authors do not provide a clear discussion of whether these variables would affect other health 

behaviors related to BMI. In particular, characteristics such as the murder rate, college enrollment 

rates, number of historical sites, and Bicycle Friendly certification are functions of the economic 

conditions in a city and thus are likely to be related to health behaviors of its inhabitants. Weather 

conditions on diary day may be indicative of overall climate conditions, which are regional 

characteristics and may be capturing some level of regional variation in BMI.  

 

Martin et al. (2014) provide a review of the literature on the relationship between the built 

environment and obesity in the US. In this review, they examine whether results from papers using 

more advanced analytic techniques, such as matching, regression adjustment, propensity scores, 

difference in differences, instrumental variables, and regression discontinuity find weaker associations 

than presented by studies using single-equation techniques. The authors suggest that this would be 

expected if reverse causation or endogeneity explained the associations found between obesity and 

commuting in single-equation studies using cross-sectional data. They find the use of more advanced 

methods of analysis does not appear to undermine observed strength of association between the 

urban built environment and obesity. 

 

When considering the relationships between urban form and BMI or other health outcomes, the 

primary concern is often with a particular causal pathway; perhaps urban sprawl represents a lack of 

walkability or perhaps urban sprawl allows for shorter sedentary commutes. There might be other 

pathways between low urban density and high BMI. On the other hand, urban sprawl and high BMI 

may be co-determined by other unobservable factors. This chapter focuses on one particular pathway, 

the relationship between individual-level commuting behavior and individual-level health. This is a 

different approach from the literature focusing on urban sprawl as it explicitly includes time associated 

with commuting and relies on a time-use framework for understanding tradeoffs between commuting 

time and time available for other health-producing activities.  
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Two recent papers examine the relationship between commuting behavior and BMI within the UK 

context. Flint et al. (2014) use cross-sectional data from the UK Household Longitudinal Study and find 

people who use either active modes of commuting or public transportation have lower BMI than 

people using private transport; in fact they find that active commute and public transportation 

commutes have roughly equal effects, and suggest that these findings may be driven by a socio-

economic effect for which commuting mode serves as a proxy. Martin et al. (2015) use panel data 

from three waves of the British Household Panel Survey (BHPS) to examine how an individual’s 

changes in mode of travel relate to changes in BMI. Controlling for health-related and socioeconomic 

factors, they find that changing from commuting by car to either an active mode of commute or public 

transportation was associated with significant reductions in BMI, when compared against no change 

from car commuting; effect sizes were larger among active commuters and those with longer 

commutes. Similarly, they find that changing from active modes of commuting to either public 

transportation or car commuting was associated with increases in BMI. Use of panel data allows the 

authors to follow individuals over time and possibly reduces the risk of bias which may exist in 

between-individual comparisons, however other key determinants of BMI, such as other physical 

activity and dietary behavior were unobserved in this data. Most recently, Künn-Nelen (2015) argues 

that using an individual fixed effects model with panel data from the BHPS allows her to estimate a 

causal relationship between long sedentary commute times and lower levels of subjective health. 

Contrary to evidence found using cross-sectional data, this work finds objective health and health 

behaviors remain relatively unaffected by longer sedentary commutes. These results are 

heterogeneous across gender and commuting mode and findings persisted when only considering a 

subsample of observations with no change in residential location, job or mode of commute. Most 

notably, women who face longer sedentary commutes are found to have a higher BMI than those with 

shorter commutes. Car commuting is associated with more negative health effects while commuting 

via public transportation has no association between commuting time and the health measures tested 

in the study. This could be due the fact that users of public transportation often engage in some 

amount of active commuting, walking or biking, in order to reach train or bus stations, while those 

who commute by car are able to do so with almost no active commuting. While these findings help in 

understanding the relationship between commuting and health, commuting behavior is different 

between the UK and the US, most notably, distances tend to be shorter in the UK, options for public 

transportation fewer and less commonly used in the US, and a smaller percentage of workers 

commute by biking or walking in the US (Giuliano and Dargay, 2006; Giuliano and Narayan, 2003).  
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Similarly, US research looks at the relationship between commuting and BMI. Frank et al. (2004) use 

data from a cross-sectional travel survey of 10,878 adults in the Atlanta, Georgia region to evaluate 

the relationship between the built environment, self-reported travel patterns (walking and time spent 

in a car), BMI and obesity. Their analysis is able to control for many individual-level covariates that 

were unaccounted for in previous research in this area and they consider heterogeneity by ethnicity 

and sex. They find that each additional hour spent in a car per day is associated with a 6% greater 

likelihood of obesity and conversely each additional kilometer walked in a day is associated with a 

4.8% reduced likelihood of obesity; additionally, they find that higher levels of mixed land use (which 

in a broad sense, is when a combination of residential, commercial, cultural, institutional, or industrial 

uses are blended together in one area and these functions are physically and functionally integrated)  

are associated with a 12.2% reduction in the likelihood of obesity across gender and ethnicity. A key 

limitation to these findings is that they are restricted to the city of Atlanta and its suburbs; due to 

regional variation and a limited range of urban forms, their results may not be generalizable at the 

national level. Nonetheless, their findings suggest that the relationship between urban form and 

obesity varies across heterogeneous groups in the population and that this may extend to the 

relationship between commuting behavior and obesity as well.  

 

Lopez-Zetina et al. (2006) provide a preliminary analysis on obesity and vehicle travel. They use data 

from the California Health Interview Survey, the California Department of Transportation and the US 

Census to looking at average county-level vehicle miles of travel (VMT) and commuting times and how 

they relate to county-level obesity status for adults over the age of 18. They find obesity to be related 

to indicators of increased automobile usage. Similarly, Jacobson et al. (2011) examine the relationship 

between trends in VMT per licensed driver and adult obesity rates six years later at the national level. 

They justify the six-year lag by suggesting that it would take time for an effect to emerge at the 

national level. While these studies each come with a number of limitations, they do address a need 

for further understanding of the relationship between commuting behaviors and health, particularly 

overweight and obesity. 

 

Gordon-Larson et al. (2009) use cross-sectional data from 2,364 participants in the Coronary Artery 

Risk Development in Young Adults study to associations between active commuting and a variety of 

measured health indicators among adults who worked outside of the home. The strengths of their 

study include measured health indicators and biomarkers, detailed active commuting data, and 

additional controls for adiposity and leisure-time physical activity. Limitations of their study are similar 

to those occurring in this work; data is cross-sectional, which makes it difficult to examine causality, 
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and second self-selection of active commuting means that individuals who are more inclined to choose 

healthy lifestyles may be more likely to use active forms of transportation. Other limitations of their 

study are possible misreporting of commuting, physical activity, and other lifestyle factors. 16.7% of 

their sample self-reported some amount of active commuting; they found associations between 

improved health indicators among both males and females who active commute. Their findings 

suggest more work is needed to understand the amount of active commuting needed for positive 

health benefits – work presented in this chapter attempts to address this issue.  

 

Using data from the 2006 ATUS, Dunton et al. (2009) examine the interaction between time spent in 

different types of physical activity and sedentary behaviors on BMI. General transportation and 

commuting are not separately identified and the authors classify sedentary travel into three categories 

(fewer than 30 minutes, 30 to 79 minutes, and 80 minutes or more),  and active transportation into 

two categories, (zero minutes and one or more minutes). The results are somewhat exploratory and 

the authors find that only sedentary transportation of 80 minutes or more is associated with higher 

BMI, and no effect is found from active transportation. Further, they find that spending less time in 

sedentary transport is associated with lower BMI for specifically those individuals who engage in some 

active transportation; this leads the authors to conclude that more work is needed to identify the 

interaction between time spent in active transportation with sedentary behaviors. 

 

Hoehner et al. (2012) find longer sedentary commuting distance to be associated with measured 

indicators of poor health, including higher BMI, waist circumference, blood pressure, and lower levels 

of physical activity and cardio-respiratory fitness. They use cross-sectional data from 4,297 adults in 

metropolitan counties in the state of Texas, from 2000 through 2007; this data includes measured 

health outcomes and geocoded home and work addresses. Commuting distance is measured as the 

shortest distance along the road network between individuals’ home and work. Control variables 

include sociodemographic characteristics, smoking, alcohol intake, family history of diabetes and high 

cholesterol, BMI, and MET-minutes of self-reported physical activity. One limitation of this study is in 

the measurement of commuting; information about time spent commuting and the validity of the 

network route to actual distance traveled was not available to the authors. The study population is 

limited to predominantly white, mostly male, well-educated, healthier adults of middle-to-upper 

socioeconomic status mostly in the Dallas-Fort Worth-Arlington Metropolitan Statistical Area, a region 

ranked among the top five most congested metropolitan areas in the US; while this homogeneity may 

improve internal validity of the study, these findings may not be generalizable at the population level.  
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Yang and French (2013) add to the literature by framing the commuting-BMI relationship within the 

context of time-use and energy expenditure; they examine how individual travel and commuting 

relate to BMI among individuals who report involvement in sedentary travel or commuting, using data 

from 2006 and 2007 waves of the ATUS and its Eating and Health Module. They find increased levels 

of commuting to be associated with higher BMI but increased levels of general travel had no 

association with BMI; this can be explained by the relatively inflexible nature of commuting, in which 

individuals choice in origin, destination, and time of day of travel are more limited than in other types 

of travel. This lends support to work showing that commuting can have negative effects on stress and 

other subjective measures of health and wellbeing. A key limitation of their work is their choice of 

model, which relies on the percentage of travel (or commute) time spent in a vehicle as a predictor of 

interest. Interpretation of their results is somewhat unclear because one would expect that 

percentage of total travel time spent in a vehicle would have different interpretations depending on 

the amount, in minutes, of total travel. Section 3.5.2 discusses in detail the shortcomings of this model 

and proposes a simpler and easier-to-interpret variation of their model.  

 

3.3. Data and Summary Statistics  

This chapter uses data from the American Time Use Survey (ATUS). ATUS samples individuals who 

have completed the eighth (final) interview for the Current Population Survey (CPS), which is a 

nationally-representative monthly household labor force survey administered by the US Census 

Bureau. Households are selected for the ATUS to ensure that estimates will be nationally 

representative. From each household, a “designated person” aged 15 or over is randomly chosen for 

a telephone interview. The designated person is pre-assigned a day of the week about which to report. 

In the interview, survey respondents are asked to report activities sequentially from 4 a.m. on the day 

prior to the interview until 4 a.m. on the day of the interview. Respondents are also asked how long 

each activity lasted. Other than personal care activities, respondents also report how where and with 

whom they did the activity. The ATUS also includes updated household composition questions from 

the last CPS interview and employment status of the respondent and the respondent’s spouse or 

unmarried partner. All primary activities are given a single six-digit code from the ATUS Coding Lexicon 

(Bureau of Labor Statistics, U.S. Census Bureau, 2015). 

 

Because time-use, or time-diary, data ask respondents to account for all activities in a given time 

period rather than asking specific questions about a few select activities, data are relatively free of 

social desirability bias compared with other types of household surveys (Ploeg et al., 2010). Another 
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feature of the ATUS data is that the recall period is restricted to the previous day; this results in reports 

that are often more accurate than surveys with longer recall periods. On the other hand, a drawback 

of this short reference period can lead to questions about the interpretation of results, and whether 

or not an activity in the short run can impact long-run outcomes (Frazis and Stewart, 2012). In 

particular, can one infer that an activity done on one particular day will be able to impact an 

individual’s BMI? Generally, whether or not a single activity was performed or for how long would not 

lead to a change in a long-run outcome such as BMI. However, commuting behavior occurs not just 

on one day but is repeated throughout the weeks and months while an individual is employed. Other 

than when a person moves the location of their job or residence or changes their work schedule, 

commuting behavior is generally the same on a day-to-day basis, with little variation, particularly in 

terms of mode of transportation (Wojan and Hamrick, 2015). In this case, even though time use on an 

individual day has little effect on BMI, it can be considered a proxy for the long-run average time use 

for an individual (Frazis and Stewart, 2012). So in effect, this work measures the relationship between 

what could be considered an individual’s average commuting behavior with their BMI. A key limitation 

of this work to note is that no causal inference can be made in this relationship. 

 

The ATUS specifically asks questions about respondent’s height and weight in the Eating and Health 

Modules, which were administered in 2006, 2007, and 2008. Self-reported height and weight 

responses were used to calculate BMI, where weight in kilograms is divided by the square of height in 

meters. BMI measures the mass of the body and is often used to classify individuals into different 

weight statuses based on commonly accepted cut points. BMI between 18.5 and 25 is classified as 

normal weight, between 25 and 30 is classified as overweight, and BMI of 30 and above is classified 

as obese (National Institutes of Health 1998). Figure 3.1 presents a distribution of BMI values, which 

exhibits some characteristics of a normal distribution and is truncated at 18.5, which is the lower cut 

point for normal-range BMI. 
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Figure 3.1: Unweighted Distribution of Body Mass Index 

 
 

Figure 3.2 presents a map of the unweighted proportion of obese individuals in the selected sample, 

by state. It is worth noting that this map presents unweighted data so is not representative at the 

population level, but instead it represents the data available in the selected sample. All analyses are 

performed with appropriate sample weights to ensure representativeness at the national level.  

 

Figure 3.2: Unweighted Proportion of Individuals with BMI ≥ 30 by State 
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ATUS provides an aggregate of commuting time for each individual, coded as “travel related to work,” 

and defined as strictly any travel occurring immediately before work and any travel occurring 

immediately after work, provided that the next activity takes place at one’s home. This particular 

method of calculating commute time can underestimate the amount of commuting in situations 

where an individual does not go home directly after work, but instead makes other trips between 

work and home. Use of this calculated commute time variable is expected to decrease the size of the 

relationship found between BMI to a small degree for individuals with those commuting habits, so 

estimates may in fact be conservative. However, because the same commute time variable is used, 

results should be consistent with those presented in Yang and French (2013) for comparison. 

Commuting is categorized as either active, which includes walking or cycling, or sedentary, which is 

defined as via any other mode of transportation. Figure 3.3 presents unweighted mean commute 

times among by state, among the selected sample and Figure 3.4 presents an unweighted proportion 

of individuals who do any active commuting by state.  

 

Figure 3.3: Unweighted mean sedentary commute time by State 
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Figure 3.4: Unweighted Proportion of Active Commuters by State 

 
 

The ATUS has 148,345 respondents in the entire 2003-2013 sample; however this work uses the 2006 

through 2008 Eating and Health Module, which has a total of 37,914 observations. Because the focus 

is on commuting behavior, the sample is restricted to working-age adults, aged 21 through 65 (n = 

28,710), who live in urban labor markets, specifically who live in a metropolitan area as defined by the 

2000 Census, (n = 23,811). In order to only consider individuals who face a strong time constraint, the 

sample is limited to individuals who are employed (n = 17,602) and have worked at least seven hours 

(420 minutes) on the diary day; this brings the sample size down to 7,216 observations. Only 

individuals who report weekly earnings are included (n = 6,549). For the main analyses, only those 

individuals with a valid BMI are included (n = 6,190). Because BMI of pregnant individuals have 

different health implications, pregnant individuals are excluded from the sample. Also excluded are 

underweight individuals, whose BMI is less than 18.5, as the literature suggests that being 

underweight might be caused by factors other than time-use, such as genetics and age (Yang and 

French, 2013). The final sample then is 6,121 observations. Summary statistics for the sample are 

presented in Table 3.1.  

 

  



66 
 

Table 3.1: Sample Characteristics by BMI Category 
  (1) (2) (3) (4) 
  All Normal Overweight Obese 
Commute 0.92 0.93 0.93 0.92 
Sedentary Commute 0.90 0.90 0.91 0.90 
Active Commute 0.07 0.09 0.07 0.05 

Bike Commute 0.01 0.01 0.01 0.00 
Walk Commute 0.07 0.08 0.06 0.05 

Any Travel 0.99 0.99 0.99 0.98 
Any Sedentary Travel 0.97 0.97 0.98 0.98 
Any Active Travel 0.12 0.14 0.12 0.10 

Any Bike  Travel 0.01 0.01 0.01 0.00 
Any Walk Travel 0.12 0.14 0.11 0.10 

BMI 27.64 22.47 27.21 34.67 

 (0.07) (0.04) (0.03) (0.11) 
Age <=25 0.07 0.10 0.06 0.05 
Age 26-35 0.23 0.26 0.22 0.23 
Age 36-45 0.31 0.31 0.31 0.32 
Age 46-55 0.29 0.25 0.30 0.31 
Age 56+ 0.13 0.11 0.14 0.13 
Male 0.55 0.41 0.65 0.57 
Spouse or Unmarried Partner in Household 0.59 0.56 0.61 0.59 
Spouse is Employed 0.45 0.44 0.46 0.44 
Has a Child in Household 0.53 0.53 0.53 0.53 
Child Under Age 2 in Household 0.13 0.13 0.13 0.12 
White 0.65 0.69 0.65 0.60 
Black 0.14 0.09 0.14 0.19 
Hispanic 0.16 0.13 0.16 0.17 
Asian 0.04 0.08 0.03 0.02 
Other Race 0.02 0.01 0.02 0.02 
First-generation Immigrant 0.18 0.19 0.19 0.14 
No High School 0.07 0.05 0.08 0.09 
High School Graduate 0.24 0.20 0.24 0.29 
Some College 0.18 0.16 0.18 0.21 
College Graduate 0.36 0.40 0.36 0.32 
Advanced Degree 0.14 0.19 0.14 0.09 
Weekly Income <$400 0.14 0.15 0.12 0.14 
Weekly Income $400 - $700 0.28 0.26 0.26 0.32 
Weekly Income $700 - $1250 0.33 0.33 0.33 0.34 
Occupation with Physical Activity 0.21 0.19 0.22 0.22 
Region: Northeast 0.17 0.18 0.17 0.15 
Region: Midwest 0.24 0.24 0.24 0.25 
Region: South 0.36 0.33 0.37 0.39 
Region: West 0.23 0.24 0.23 0.22 
Weekend or Holiday 0.17 0.16 0.17 0.19 
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Table 3.1, Continued     
Winter 0.35 0.35 0.34 0.37 
Spring 0.17 0.17 0.16 0.17 
Summer 0.24 0.21 0.26 0.23 
Autumn 0.25 0.26 0.24 0.23 
Observations 6,121 2,082 2,361 1,678 
Data: ATUS 2006-2008 
Note: Unweighted proportions for indicator variables are shown; except for BMI, for which 
unweighted mean and standard deviation in parenthesis are reported. Statistics are grouped 
by BMI category.  

 

Table 3.1 presents unweighted summary statistics of the selected sample. This table shows a slightly 

greater percentage of whites and Asians in the normal-range BMI group than in other BMI groups and 

a slightly greater percentage of blacks, Hispanics, and other races in the overweight and obese groups. 

More education, specifically having a college or advanced degree, is observed to be associated with 

belonging to a lower BMI group. However there is a fairly even dispersion of income levels across the 

different BMI categories. These data exhibit regional variation in BMI; the Midwest and South have 

slightly greater proportion of overweight and obese individuals while the Northeast and the West have 

a relatively larger proportion of normal weight individuals. For the remaining demographic 

characteristics, there is a fairly even distribution across BMI categories.  

 

Table 3.2 shows the mean of minutes spent in various types of commuting and physical activity, for 

only those individuals reporting that they took part in each particular activity on the diary day. 
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Table 3.2: Average Travel and Exercise in Minutes, by BMI Category 

    (1) (2) (3) (4) 
  N All Normal Overweight Obese 

      
All Active Commuting 434 17.56 17.69 17.35 17.68 

  (0.97) (1.33) (1.78) (2.20) 
Commuting by Bike 32 37.84 30.00 40.87 59.33 

  (7.03) (7.95) (11.85) (30.78) 
Commuting by Walking 404 15.87 16.61 14.87 16.02 

  (0.84) (1.26) (1.39) (1.88) 
Sedentary Commuting 5,539 45.11 44.47 45.66 45.12 

  (0.49) (0.82) (0.80) (0.93) 
Total Commuting 5,654 45.54 45.01 46.03 45.51 

  (0.49) (0.84) (0.80) (0.95) 
Active Travel 761 19.68 22.18 18.32 17.58 

  (0.81) (1.29) (1.30) (1.72) 
Sedentary Travel 5,960 76.10 75.03 77.13 75.97 

  (0.62) (1.03) (1.03) (1.17) 
Total Travel 6,040 77.57 76.82 78.50 77.20 

  (0.63) (1.05) (1.04) (1.18) 
Leisure Physical Activity 2,228 69.57 68.99 71.04 68.14 
    (1.25) (2.12) (2.01) (2.45) 
Data: ATUS 2006-2008 
Note: Unweighted mean of minutes spent in each activity and standard deviations in 
parentheses are shown for only those individuals who indicated engaging in the 
activity on the diary day are shown. Of the 6,121 observations in the sample, N 
indicates the number of observations which reported participation in each activity on 
the diary day. Statistics are grouped by BMI category. 

 

This table shows average travel or commute times are much longer in duration in sedentary modes 

than in active modes. Because travel speed is generally faster in sedentary modes than active, this 

would suggest that active travel may be used for shorter distance trips than are typically possible with 

sedentary modes. This may restrict effectiveness of policies to promote active commuting for 

individuals who reside geographically far from the workplace. These data also show that other than 

Commuting by Bike, which has a very small sample of individuals who participated in the activity, 

minutes spent in each of these activities shows homogeneity across BMI categories. This suggests that 

associations with BMI, or health, may be more a function of participation in a particular activity than 

the time spent in that activity. The robustness section considers alternative specifications of the 

preferred model to further explore this issue. 
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3.4. Methods 

This work seeks to examine the relationship between sedentary commuting, active commuting and 

BMI as an indicator of health. Cawley (2004) presents an economic framework for understanding the 

contribution of physical activity and other health behaviors to obesity, based on Becker’s (1965) model 

of on choice of allocation of time in non-work activities and Grossman’s (1972) extension of this model 

to investment in health capital.  

 

The implications of this constrained maximization model are that within the framework, individuals 

may rationally decide to accept a higher body weight in exchange for the utility associated with eating, 

leisure activities, or time saved in sedentary travel modes. People will exercise when it is the best use 

of their scarce time (even though public health advocates may encourage them to do it as long as it 

increases health). People will consume foods within their budgets that provide the highest net benefit. 

Applying this framework to the context of sedentary and active commuting, gross benefits include 

immediate pleasure of getting from home to work (or vice versa) quickly plus any current and future 

health benefit from possibly having more time available for other income-generating or health-

producing activities. Gross costs include financial cost, discounted utility of adverse health impacts, 

and discounted utility of any future weight gain. 

 

One way to understand the choice of active or sedentary commuting is to assume that the different 

modes of commuting, active and sedentary commuting, are substitute goods, and that marginal 

benefits and marginal costs of each affect the individual’s choice between these two modes. Sallis et 

al. (1985) find accessibility or proximity to physical activity facilities affects frequency of physical 

activity; similarly, it is expected that accessibility to active modes of commuting plays role in 

determining whether an individual would choose active commuting over sedentary. Accessibility to 

active commuting could be determined by a number of factors including distance between home and 

workplace, availability of bicycle paths or lanes, walking paths, or sidewalks, perception of safety of 

neighborhoods between home and workplace, showering facilities and bicycle storage at or near the 

workplace. On the other hand, for many people, there may be greater accessibility to sedentary 

commuting, particularly commuting by car. The dispersed urban forms of most American cities and 

existing road and highway infrastructure encourage automobile dependency (Newman and 

Kenworthy, 1996). Considering the time cost of active commuting versus sedentary commuting, again 

due to the built environment sedentary commuting allows individuals to travel at greater speeds than 

active commuting, particularly for greater distances between home and work, reducing the time cost 

of sedentary commuting. Similarly, monetary costs may play a role in the commuting mode decision. 
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Gasoline prices, vehicle maintenance and licensing, and vehicle purchase costs can be significantly 

greater than costs associated with bicycling and walking. Considering that for the same distance, time 

costs can be greater while monetary costs are less for active commuting than for sedentary 

commuting, one could suggest that individuals with a lower income or lower cost of their time may 

engage in more active commuting than individuals who place a greater value on their time. However, 

because active commuting essentially combines two actives, commuting and physical activity, it could 

be the other case that individuals who place a high value on their time may be more drawn to active 

commuting. This suggests the possibility of the relationship between active commuting and lower BMI 

being driven by unobservable relative preferences of time vs. money and not by active commuting 

directly. This also supports controlling for income in analyses of this relationship.  

 

Keeping this framework in mind, this work estimates the following model: 

 

(3.1) 𝐵𝐵𝑃𝑃𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 =  𝛼𝛼 +  𝛽𝛽1𝑆𝑆𝑜𝑜𝑇𝑇𝑜𝑜𝐶𝐶𝑇𝑇𝑇𝑇𝑜𝑜𝑇𝑇 𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖 +  𝛽𝛽2𝐹𝐹𝑐𝑐𝑇𝑇𝑇𝑇𝐴𝐴𝑜𝑜 𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖 

      + 𝛽𝛽3𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛾𝛾𝑖𝑖 + 𝜃𝜃𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖, 

 

where Sedentary Commute and Active Commute are measured in minutes and an individual may 

spend time in either, both, or neither activity. The matrix of individual control variables X includes age, 

sex, race, household composition, education, and income. State-level fixed effects, 𝛾𝛾𝑖𝑖, are included to 

capture time-invariant state-level variation in factors such as culture, economic conditions, climate, 

the built environment, and unobservable factors, all of which may affect BMI. Year-Season fixed 

effects, 𝜃𝜃𝑖𝑖, are also included to account for variation across seasons in factors such as diet and 

nutrition, exercise behavior, commuting behavior and other factors which may affect BMI but vary by 

season and by year. Inclusion of these fixed effects accounts for both across-state variation and across-

time variation that otherwise may have resulted in omitted variable bias. This allows the results to 

capture within-state and within-season variation.  

 

Additional analysis in Section 3.5.1 explores issues of heterogeneity by gender and robustness of this 

model to controlling for other types of physical activity, such as having a physically demanding job and 

time spent on leisure-time physical activity. Another check of robustness is to examine the relationship 

with BMI of commuting biking and walking separately, as some research suggests that biking may be 

more associated with measures of good health than walking.  
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3.5. Results 

Table 3.3 presents the estimation of Equation (3.1), starting with a basic model using no control 

variables in Column 1. In Column 2, demographic controls are added; these include age, sex, race, 

presence of children and spouse or unmarried partner in the household, and spouse’s employment 

status. A control for individual’s income is added in Column 3, and level of education in Column 4. In 

Column 5, results from the full model are presented, which includes all controls in the previous model 

as well as state fixed effects and year-season fixed effects.  

 

Table 3.3: The Relationship between Sedentary Commuting, Active Commuting, and BMI 

  (1) (2) (3) (4) (5) 

 
Basic 

Model 
Demographic 

Controls 
Income 
Controls 

Education 
Controls 

Preferred 
Model 

            
Active Commute (minutes) -0.0374*** -0.0370*** -0.0383*** -0.0332*** -0.0313*** 

 (0.0106) (0.0105) (0.0106) (0.00996) (0.00993) 
Sedentary Commute (minutes) 0.00345 0.00172 0.00330 0.00324 0.00409 

 (0.00307) (0.00311) (0.00314) (0.00311) (0.00303) 
Age <=25  -1.340*** -1.684*** -1.716*** -1.781*** 

  (0.398) (0.394) (0.394) (0.387) 
Age 26-35  -0.648** -0.722** -0.661** -0.692** 

  (0.291) (0.290) (0.289) (0.282) 
Age 36-45  0.306 0.346 0.388 0.372 

  (0.283) -0.28 (0.277) (0.274) 
Age 46-55  0.246 0.261 0.232 0.190 

  (0.259) (0.257) (0.254) (0.251) 
Male  1.075*** 1.289*** 1.105*** 1.111*** 

  (0.186) (0.189) (0.193) (0.187) 
Black  2.151*** 1.960*** 1.938*** 2.091*** 

  (0.293) (0.292) (0.289) (0.291) 
Hispanic  1.681*** 1.430*** 1.189*** 1.263*** 

  (0.303) (0.308) (0.305) (0.317) 
Asian  -0.874* -0.796* -0.594 -0.540 

  (0.468) (0.463) (0.465) (0.464) 
Other Race  1.199* 1.209* 1.047 0.935 

  (0.659) (0.638) (0.655) (0.634) 
First-generation Immigrant  -1.380*** -1.513*** -1.454*** -1.387*** 

  (0.274) (0.278) (0.281) (0.283) 
Spouse/Partner in Household  0.293 0.417 0.393 0.307 

  (0.286) (0.284) (0.282) (0.281) 
Spouse is Employed  -0.282 -0.283 -0.211 -0.177 

  (0.245) (0.244) (0.241) (0.241) 
Has a Child in Household  -0.0277 -0.0430 -0.121 -0.114 

  (0.203) (0.203) (0.201) (0.202) 
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Table 3.3, Continued      
Child Under Age 2 in HH  0.354 0.358 0.418 0.389 

  (0.275) (0.274) (0.273) (0.272) 
Log Weekly Earnings   -0.806*** -0.356** -0.292* 

   (0.148) (0.161) (0.162) 
High School Graduate    -0.186 -0.274 

    (0.384) (0.383) 
Some College    -0.182 -0.229 

    (0.419) (0.416) 
College Graduate    -1.137*** -1.180*** 

    (0.386) (0.384) 
Advanced Degree    -2.003*** -1.968*** 

    (0.420) (0.416) 
Constant 27.53*** 26.81*** 32.03*** 29.89*** 29.77*** 

 (0.148) (0.290) (1.011) (1.077) (1.293) 
State FE     x 
Year-Season FE     x 

      
Observations 6,121 6,121 6,121 6,121 6,121 
R-squared 0.003 0.050 0.058 0.069 0.092 
Data: ATUS 2006-2008 
Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
Note: Results of OLS regression estimating Equation (3.1). Self-reported BMI, measured in kg/m2, is the 
outcome variable in each column. Active Commuting and Sedentary Commuting are reported in minutes 
spent on the diary day. Column 1 includes no control variables. Column 2 adds demographic control 
variables, which include age grouping, sex, race categories (Black, Hispanic, Asian, and other non-white 
races), immigrant/foreign-born status, whether a spouse or partner lives in the household, whether the 
spouse/partner is employed, whether there is a child in the household, and whether there is a child 
under age 2 in the household. Column 3 additionally controls for the log of reported weekly earnings. 
Column 4 additionally controls for education, whether the respondent is a high school graduate, has 
some college, is a college graduate, or has an advanced degree. Column 5 includes all of these controls 
as well as state fixed effects and year-season fixed effects. Each column includes controls in previous 
column. 

 

The coefficient on Active Commute in Column 5 can be interpreted as, holding all else constant, a ten-

minute increase in active commuting time is associated with 0.3 point lower BMI and is statistically 

significant. Similarly, the coefficient on Sedentary Commute can be interpreted as a ten-minute 

increase in sedentary commuting time is associated with a 0.04 point higher BMI, but is not statistically 

significant. Estimated coefficients on the two predictors of interest, minutes spent in active and 

sedentary commuting, remain robust to addition of control variables. These results indicate that a 

number of socio-economic and demographic variables play important roles in determining BMI. In 

particular, age less than 35, being a first-generation immigrant, having higher earnings, and having a 

college or advanced degree are all significantly associated with lower levels of BMI. Conversely, higher 
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levels of BMI are associated with being male, black, and Hispanic. These coefficients on individual 

control variables have the expected signs and are consistent with findings in previous literature.3 

 

One issue of concern with these findings is that they may be biased upward if the relationship between 

commuting and BMI is determined by some unobserved factors which are unaccounted for in the 

model, such as preferences or motivation for healthy behaviors. Considering sedentary commuting in 

particular, if high-BMI individuals choose residential locations with longer sedentary commutes 

because these individuals do not have any particular preference or motivation for extra time for 

exercising or for living close enough for active commuting, then more individuals with higher BMI will 

have longer sedentary commute times. This would result in an overestimate of 𝛽𝛽1, the coefficient on 

sedentary commute time. How unobserved factors would affect the estimate of 𝛽𝛽2, the coefficient on 

active commuting time, is less clear. If the same assumption that healthy, low-BMI, individuals who 

choose residential location based on their preference for having a short commute to allow for active 

commuting or to allow more time for other healthy behaviors, then then the predicted value of 𝛽𝛽2 

would be an overestimate of the relationship between active commuting and BMI. On the other hand, 

if only very health-conscious, and possibly low-BMI, individuals are involved in longer active 

commutes, and more high-BMI individuals who active commute have shorter active commute times, 

then the estimate of 𝛽𝛽2 could be underestimated. It is likely that the relationship between sedentary 

commute and BMI may be overestimated, but it is unclear in which direction the relationship between 

active commute and BMI is biased. More research is needed in disentangling the effects and drivers 

of active commuting.  

 

3.5.1 Heterogeneity and Robustness of Results 
 

Both BMI and commuting behavior exhibit heterogeneity by sex; to account for this, Equation (3.1) is 

estimated in Table 3.4 for males and females separately. Females are found to have a higher BMI on 

average. Between males and females, the sign on the point estimates on the sedentary commute 

variable are different. However, using a Wald chi-squared test to test the difference between 

coefficients in these two estimates finds that these differences are not statistically significant and they 

are very small, particularly when compared to the point estimates on active commute. Results indicate 

                                                           
3 Data includes observations from 263 counties. This result is robust to using county-level fixed effects along 
with Year-Season fixed effects. In this case, the coefficient on Active Commute is -0.0268 with a standard error 
of 0.0130. The coefficient on Sedentary Commute is 0.00312 with a standard error of 0.00473.  
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no statistically significant difference in the relationship between sedentary and active commuting 

variables and BMI between the two groups. 

 

Table 3.4: Relationship of Active and Sedentary Commuting and BMI, for Males and Females 

  (1) (2) (3) 

 
Preferred 

Model 
Males Females 

        
Active Commute (minutes) -0.0313*** -0.0317** -0.0260* 

 (0.00993) (0.0127) (0.0147) 
Sedentary Commute (minutes) 0.00409 0.00490* 0.00115 

 (0.00303) (0.00290) (0.00647) 
Constant 29.77*** 30.01*** 31.43*** 

 (1.293) (1.805) (1.923) 

    
Observations 6,121 3,351 2,770 
R-squared 0.092 0.073 0.151 
Data: ATUS 2006-2008 
Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
Note: Results of OLS regression estimating Equation (3.1). Outcome variable 
is self-reported BMI, measured in kg/m2.  Column 1 presents the preferred 
model for both males and females, as originally presented in Column 5 of 
Table 3.3. Column 2 presents estimates of this model for males only and 
Column 3for females only. All columns include the full set of control variables 
used in Column 5 of Table 3.3. 

 

Table 3.5 compares the estimate of the preferred model to an alternate specification where biking 

and walking to work are considered separately, and to a specification where additional controls are 

added to account for time spent in leisure physical activity and for having a physically-demanding 

occupation, as specified in Equation (3.2):  

 

(3.2) 𝐵𝐵𝑃𝑃𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 =  𝛼𝛼 +  𝛽𝛽1𝑆𝑆𝑜𝑜𝑇𝑇𝑜𝑜𝐶𝐶𝑇𝑇𝑇𝑇𝑜𝑜𝑇𝑇 𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖 +  𝛽𝛽2𝐹𝐹𝑐𝑐𝑇𝑇𝑇𝑇𝐴𝐴𝑜𝑜 𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖 + 

  𝛽𝛽3𝐿𝐿𝑜𝑜𝑇𝑇𝑜𝑜𝐶𝐶𝑜𝑜𝑜𝑜 𝐹𝐹ℎ𝑇𝑇𝑜𝑜𝑇𝑇𝑐𝑐𝑇𝑇𝑇𝑇 𝐹𝐹𝑐𝑐𝑇𝑇𝑇𝑇𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽𝛽4𝐹𝐹ℎ𝑇𝑇𝑜𝑜𝑇𝑇𝑐𝑐𝑇𝑇𝑇𝑇 𝑂𝑂𝑐𝑐𝑐𝑐𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 +  𝛽𝛽5𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 +  𝛾𝛾𝑖𝑖 + 𝜃𝜃𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖. 

 

Because cycling generally burns more calories per minute than walking, and the average cycling 

commute is longer than the average walking commute, this work also examines the relationship with 

BMI of commuting biking and walking separately. Using data from the UK, Foley et al. (2015) 

investigated whether participation in active travel is associated with compensatory decreases in other 

types of physical activity. Contrary to the idea that active commuting and leisure-time physical activity 

are substitute goods, they found that commuting by walking in particular was associated with 
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increased levels of total physical activity; however, commuting by cycling was associated with small 

decreases in leisure-time physical activity. Sahlqvist et al. (2012) report similar findings when looking 

at the relationship between recreational physical activity and active modes of commuting and non-

commuting travel in the UK: 

 

(3.3) 𝐵𝐵𝑃𝑃𝐼𝐼𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽1𝑆𝑆𝑜𝑜𝑇𝑇𝑜𝑜𝐶𝐶𝑇𝑇𝑇𝑇𝑜𝑜𝑇𝑇 𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑜𝑜𝑖𝑖 + 𝛽𝛽2𝐵𝐵𝑇𝑇𝐵𝐵𝑜𝑜 𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑜𝑜𝑖𝑖 +  𝛽𝛽3𝑊𝑊𝑇𝑇𝑇𝑇𝐵𝐵 𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑜𝑜 +  

  𝛽𝛽4𝑃𝑃𝑖𝑖 +  𝛾𝛾𝑖𝑖 + 𝜃𝜃𝑖𝑖 + 𝜀𝜀𝑖𝑖. 

 

Column 2 of Table 3.5 shows associations with lower BMI for both cycling to work and walking to work, 

suggesting that the relationship between lower BMI and involvement in active commuting is not 

driven solely by mode of active commuting. These effects remain robust to additional controls for time 

spent in leisure-time physical activity and for having a physically demanding job, shown in Column 3. 

While cycling burns more calories per minute than walking, the similarity in coefficients on these two 

activities may be explained by the findings of Foley et al. (2015) that those who walk also engage in 

other forms of physical activity. 
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Table 3.5: Relationship between Modes of Active Commute, Other Physical Activity, and BMI 

  (1) (2) (3) (4) 

 
Preferred 

Model 
Bike & 
Walk 

Other PA 
Controls 

Sedentary 
Omitted 

         
Active Commute (minutes) -0.0313***   -0.0315*** 

 (0.00993)   (0.00997) 
Sedentary Commute (mins.) 0.00409 0.00402 0.00384  
 (0.00303) (0.00305) (0.00305)  
Bike Commute (minutes)  -0.0389*** -0.0379***  
  (0.0128) (0.0125)  
Walk Commute (minutes)  -0.0279** -0.0285**  
  (0.0128) (0.0128)  
Time spent in Physical Activity   -0.00389**  
   (0.00161)  
Occupation with Physical Activity   -0.497**  
   (0.229)  
Constant 29.77*** 29.78*** 30.30*** 29.71*** 

 (1.293) (1.293) (1.307) (1.291) 

     
Observations 6,121 6,121 6,121 6,121 
R-squared 0.092 0.092 0.094 0.091 
Data: ATUS 2006-2008 
Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
Note: Outcome variable is self-reported BMI, measured in kg/m2. Column 1 presents the 
preferred model from Column 5 of Table 3.3. Columns 2 and 3 estimate Equation (3.3), where 
coefficients on biking and walking commuting are estimated separately. Columns 1, 2, and 4 
include the full set of control variables used in Column 5 of Table 3.3 and Column 3 additionally 
controls for reported minutes spent in non-commuting physical activity and having an 
occupation with high amounts of physical activity. Column 4 estimates the preferred model, but 
omits Sedentary Commuting. 

 

Time spent in active commuting is expected to have diminishing marginal returns to lowering BMI; 

walking for five additional minutes should have a greater effect if a person does no walking than if a 

person has walked for an hour. To test this, a squared term is added to the estimation, as shown in 

Equation (3.4), which is estimated in Column 2 of Table 3.6: 

 

(3.4) 𝐵𝐵𝑃𝑃𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 =  𝛼𝛼 +  𝛽𝛽1𝑆𝑆𝑜𝑜𝑇𝑇𝑜𝑜𝐶𝐶𝑇𝑇𝑇𝑇𝑜𝑜𝑇𝑇 𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖 +  𝛽𝛽2𝑆𝑆𝑜𝑜𝑇𝑇𝑜𝑜𝐶𝐶𝑇𝑇𝑇𝑇𝑜𝑜𝑇𝑇 𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖2 +  

  𝛽𝛽3𝐹𝐹𝑐𝑐𝑇𝑇𝑇𝑇𝐴𝐴𝑜𝑜 𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖 +  𝛽𝛽4𝐹𝐹𝑐𝑐𝑇𝑇𝑇𝑇𝐴𝐴𝑜𝑜 𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖2 +  𝛽𝛽5𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 +  𝛾𝛾𝑖𝑖 + 𝜃𝜃𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖. 

 



77 
 

Equation (3.4) attempts to identify whether the main result is driven by the decision to do active 

commuting itself rather than by the time an individual regularly spends in active commuting. One 

concern is that active commuting is a proxy for other healthy behaviors, that by identifying a 

correlation between lower BMI and active commuting, what is actually being identified is individuals 

who are making other healthy choices, one of which is active commuting, which are responsible for 

lowered BMI. To examine this issue, an indicator variable for whether or not an individual does any 

sedentary commuting or does any active commuting is used to identify the decision to active 

commute. I use two separate specifications, in Columns 3 and 4 of Table 3.6. Column 3 estimates: 

 

(3.5)  𝐵𝐵𝑃𝑃𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽1𝑆𝑆𝑜𝑜𝑇𝑇𝑜𝑜𝐶𝐶𝑇𝑇𝑇𝑇𝑜𝑜𝑇𝑇 𝐼𝐼𝐶𝐶𝑇𝑇𝑇𝑇𝑐𝑐𝑇𝑇𝑇𝑇𝑇𝑇𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖 +  𝛽𝛽2𝐹𝐹𝑐𝑐𝑇𝑇𝑇𝑇𝐴𝐴𝑜𝑜 𝐼𝐼𝐶𝐶𝑇𝑇𝑇𝑇𝑐𝑐𝑇𝑇𝑇𝑇𝑇𝑇𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖 

      + 𝛽𝛽3𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛾𝛾𝑖𝑖 + 𝜃𝜃𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖. 

 

And Column 4 estimates: 

 

(3.6) 𝐵𝐵𝑃𝑃𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛼𝛼 +  𝛽𝛽1𝑆𝑆𝑜𝑜𝑇𝑇𝑜𝑜𝐶𝐶𝑇𝑇𝑇𝑇𝑜𝑜𝑇𝑇 𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖 +  𝛽𝛽2𝑆𝑆𝑜𝑜𝑇𝑇𝑜𝑜𝐶𝐶𝑇𝑇𝑇𝑇𝑜𝑜𝑇𝑇 𝐼𝐼𝐶𝐶𝑇𝑇𝑇𝑇𝑐𝑐𝑇𝑇𝑇𝑇𝑇𝑇𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖 + 

  𝛽𝛽3𝐹𝐹𝑐𝑐𝑇𝑇𝑇𝑇𝐴𝐴𝑜𝑜 𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽𝛽4𝐹𝐹𝑐𝑐𝑇𝑇𝑇𝑇𝐴𝐴𝑜𝑜 𝐼𝐼𝐶𝐶𝑇𝑇𝑇𝑇𝑐𝑐𝑇𝑇𝑇𝑇𝑇𝑇𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽𝛽5𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 +  𝛾𝛾𝑖𝑖 + 𝜃𝜃𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖. 

 

In both of these specifications, the omitted group is a group that does not report any type of 
commuting on the diary day. These individuals worked from home or telecommuted and make up 
roughly 8% of the sample. In Equation (3.6), both the time and indicator variables equal zero when 
zero minutes are spent in that activity; likewise the indicator equals one when the time variable is 
non-zero.   
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Table 3.6: Variations in measuring Time Spent in Active and Sedentary Commuting 

  (1) (2) (3) (4) 

 
Preferred 

Model 

Time 
Squared 
Model 

Time 
Indicator 

Model 

Time 
Indicator 

+ 
Minutes 
Model 

          
Sedentary Commute (mins.) 0.00409 -0.00684  0.00571* 

 (0.00303) (0.00686)  (0.00334) 
Sedentary Commute squared  0.000073   

  (0.000052)   
Active Commute (minutes) -0.0313*** -0.0715***  -0.0151 

 (0.00993) (0.0214)  (0.0132) 
Active Commute squared  0.000519**   

  (0.000229)   
Sedentary Commute Indicator   -0.206 -0.501 

   (0.277) (0.314) 
Active Commute Indicator   -1.091*** -0.853* 

   (0.367) (0.489) 
Constant 29.77*** 29.91*** 29.85*** 30.20*** 

 (1.293) (1.303) (1.301) (1.329) 

     
Observations 6,121 6,121 6,121 6,121 
R-squared 0.092 0.094 0.092 0.093 
Data: ATUS 2006-2008 
Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
Note: Outcome variable is self-reported BMI, measured in kg/m2. Column 1 presents the 
preferred model from Column 5 of Table 3.3. Column 2 estimates the Equation (3.4), 
Column 3 estimates Equation (3.5) and Column 4 estimates Equation (3.6). Note that the 
omitted group in Columns 3 and 4 are individuals who worked but did not commute on 
the diary day. All columns include the full set of control variables used in Column 5 of 
Table 3.3. 

 

Column 2 of Table 3.6 is consistent with diminishing marginal returns to active commuting, which is 

not a trivial result. This contradicts a suggestion that a person with a twenty-minute-per-day active 

commute is only slightly healthier than a person with no active commute, but that a person with a 

forty-minute-per-day active commute is much healthier than the person with a twenty-minute-per-

day active commute. In other words, people who have very long active commutes and very healthy 

BMI are not driving the main result. Columns 3 and 4 can be interpreted two ways: because the 

amount of time spent on active commuting is not as strongly related to BMI in the presence of an 

indicator representing participation in active commuting, this suggests that active commuting may be 

an indicator of healthy lifestyles more broadly. In this interpretation, the number of minutes spent 
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active commuting is not contributing greatly to lower BMI. However, an indicator variable can also 

play a role similar to a function illustrating diminishing marginal returns.  

 

3.5.2. Discussion of Yang and French Paper 
The relationship between sedentary commuting and BMI found in this work are in contrast to the 

results of Yang and French, who found that automobile-based travel, particularly commuting in a 

motorized vehicle, is significantly associated with increased BMI. This section reconciles results from 

this chapter against those put forth by Yang and French (2013), using the sample selection criteria in 

their paper. In particular, this section discusses how the preferred model presented here is an 

improvement on the model presented in Yang and French, and allows for disentangling the association 

between active commuting and BMI specifically. Results from this work are compared to Yang and 

French because it is the most recent research on the relationship between travel/commuting and 

obesity using US time-use data. Additional details on the comparison to sample selection criteria from 

the Yang and French paper are presented in Appendix B. 

 

There are three fundamental differences between the approach to measuring the relationship 

between BMI and commuting behavior presented here and that presented by Yang and French. The 

first is the sample selection used. Yang and French include in their sample only those individuals for 

whom commute time (or travel time) is not zero and not missing and those individuals for whom BMI 

is greater than or equal to 25 and is not missing. So, they exclude all but those who commute (or 

travel) and the overweight and obese. The specification that they use, percentage of commute in a 

vehicle, restricts their sample to those who do commute, by definition a percentage of zero is 

undefined. The sample selection presented in this work does include individuals who do not commute 

but restricts the sample to employed individuals who worked at least seven hours on the diary day, in 

order to fully capture variation in commuting behavior. Because commuting time in metropolitan and 

rural areas has a different meaning in terms of commuting distance, the sample is also limited to 

individuals living in metropolitan areas. The sample is also restricted to those individuals who provide 

weekly earnings data. Normal weight individuals are included in the sample to fully capture the 

variation in BMI, however Yang and French exclude this group, on the argument that they find that 

determinants of BMI in their data are different for the normal weight and underweight groups than 

for the overweight and obese.  Specifically, they claim that for these groups BMI is determined not by 

health behaviors but more so by factors such as genetics, illness, and age. This is supported in the 

medical literature for the underweight, but not for those in the normal-, overweight, and obese 

categories. Yang and French do not exclude any individuals on the basis of age however, because this 
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work examines commuting and health, individuals under the age of 20 and over 65 are excluded. In 

these groups, age, illness, and genetics play a larger role in determination of BMI than the in-between 

age group. They use data for only the 2006 and 2007 Eating and Health Modules, while this work uses 

all three years, 2006-08 for the sample. In Table 3.7, the original results published in Yang and French 

(2013) are copied to Column 1. This chapter approximates their model and sample selection and 

replicates their results in Column 2. And in Column 3, their model is estimated using the preferred 

sample selection in this chapter with the added restriction of including only the overweight and obese; 

in Column 4, the Yang and French model is estimated using the preferred sample selection identified 

in this work, which includes normal weight, overweight, and obese individuals.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



81 
 

 

Table 3.7: Replication of Yang and French Results with Variations in Sample Selection 

  (1) (2) (3) (4) 

  
Y&F 

original 
Y&F 

replication 

Preferred 
Sample, 

Overweight 
Preferred 
Sample 

         
% of Commute in Vehicle 1.35*** 1.363*** 1.012* 2.122*** 

 (0.43) (0.441) (0.544) (0.509) 
Total Commute (minutes) 0.00*** 0.00261 0.00740** 0.00238 

 (0.00) (0.00260) (0.00367) (0.00332) 
Constant 26.95*** 28.41*** 28.10*** 23.71*** 

 (0.73) (0.629) (0.737) (0.663) 

     
Observations 4,625 4,688 3,725 5,654 
R-squared 0.031 0.033 0.040 0.055 
Data: ATUS 2006-2008 
Column 1: Standard errors from published t-statistics. Columns 2-4: Robust 
standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
Note: Outcome variable is self-reported BMI, measured in kg/m2. All columns 
control for age, sex, race, spouse or unmarried partner in household, household 
children, education, income, metropolitan status. Column 1 shows published 
coefficients from Yang & French (2013). Column 2, presents results from 
replication of the Yang & French model using their sample selection. Column 3 
shows a replication of their model using my preferred sample selection criteria 
and restricting the sample to only overweight and obese individuals. Column 4 
presents a replication of the Yang & French model using my preferred sample 
selection, which includes normal weight, overweight and obese individuals. We 
use a Wald chi-squared test to test the difference between on the coefficient on 
percentage of commuting time in a vehicle between the three columns. 
Comparing Columns 2 and 3 gives a p-value of 0.24, comparing Columns 2 and 4 
gives a p-value of 0.24 and comparing Columns 2 and 4 gives a p-value of 0.007. 

 

From this table, the biggest difference between the preferred sample, and that presented in Yang and 

French occurs when normal weight individuals are included. The results suggest that increasing the 

variation in BMI increases the estimated coefficient on percentage of commuting time in a vehicle. A 

Wald chi-squared test is used to test the difference between the coefficient on percentage of 

commuting time in a vehicle between the three columns. Comparing this coefficient from Columns 2 

and 3 gives a p-value of 0.24, and comparing Columns 2 and 4 give a p-value of 0.21, indicating that 

these differences are not statistically significant. Comparing this coefficient from Columns 3 and 4 

gives a p-value of 0.006, indicating that when the obese and overweight groups are examined 
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separately from the normal weight group the difference in the relationship between percentage of 

commuting in a vehicle and BMI is statistically significant.  

 

The second, and a more minor, source of difference between the two papers are the choice of control 

variables included. In their paper, Yang and French use dummy variables to control for age groupings, 

sex, race, married or living with partner, whether there is a child in the household, educational status, 

weekly income category, and metropolitan status. In the preferred model presented here, these 

control variables are used as well, but the following additional controls are added to the model: 

whether there is a child under age two in the household, whether the spouse/partner is employed, 

and immigrant status; all of these factors are also associated with variation in BMI. State-level and 

seasonal fixed effects are also included to account for seasonal and regional variation in both BMI and 

commuting habits. These differences suggest that to compare results presented here to Yang and 

French, sample selection cannot be ignored. However, when using a close approximation of their 

model and sample selection, results are very similar to theirs.  

 

The third source of difference between the two papers is the model specification itself. Yang and 

French present the following model, where BMI is determined by time spent commuting and the 

percentage of the commute which is sedentary: 

 

(3.7)  𝐵𝐵𝑃𝑃𝐼𝐼𝑖𝑖 = 𝛼𝛼 +  𝛽𝛽1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑜𝑜𝑖𝑖 +  𝛽𝛽2 % 𝑆𝑆𝑜𝑜𝑇𝑇𝑜𝑜𝐶𝐶𝑇𝑇𝑇𝑇𝑜𝑜𝑇𝑇 𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑜𝑜𝑖𝑖 +  𝛽𝛽3𝑃𝑃𝑖𝑖 + 𝜀𝜀𝑖𝑖. 

 

The coefficient 𝛽𝛽1 estimates the effect of minutes spent commuting on BMI and 𝛽𝛽2 measures the role 

that sedentary commuting plays in BMI by estimating the effect of the percentage of total commuting 

time that is spent in any type of vehicle.  

 

There are two concerns about this specification. First, using this specification suggests that the 

relationship between percentage of commute time in a sedentary mode of transportation and BMI 

does remains constant regardless of total amount of time an individual is commuting. In other words, 

this specification suggests that, holding all else constant, 𝛽𝛽2 would be the same for an individual who 

has a 10 minute commute with 80% sedentary as for another individual who has a 100 minute 

commute where 80% is sedentary. This raises questions about the interpretation of the coefficient 𝛽𝛽2. 

One would expect that 𝛽𝛽2 would vary in some way as total commute time varies. A second issue is 

that percentage sedentary commuting and percentage active commuting are mutually exclusive, so 

estimating the effect of percentage sedentary commuting in this way creates an identification 
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problem. Time spent in the total commute is made up of time spent in any type of vehicle, which is 

referred to here as sedentary commuting, and time spent walking or cycling, which is referred to as 

active commuting. This means that for each individual, the percentage of commuting time in a vehicle 

is equivalent to one minus the percentage of commute that is spent walking or cycling. 

Mathematically, the Yang and French model can be re-written as: 

 

(3.8) 𝐵𝐵𝑃𝑃𝐼𝐼𝑖𝑖 = (𝛼𝛼 + 𝛽𝛽2) + 𝛽𝛽1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑜𝑜𝑖𝑖 + (−𝛽𝛽2)(1− % 𝑆𝑆𝑜𝑜𝑇𝑇𝑜𝑜𝐶𝐶𝑇𝑇𝑇𝑇𝑜𝑜𝑇𝑇 𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑜𝑜𝑖𝑖) 

  + 𝛽𝛽3𝑃𝑃𝑖𝑖 + +𝜀𝜀𝑖𝑖. 

 

Which would, in effect be the same as: 

 

(3.9) 𝐵𝐵𝑃𝑃𝐼𝐼𝑖𝑖 = (𝛼𝛼 + 𝛽𝛽2) + 𝛽𝛽1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑜𝑜𝑖𝑖 + (−𝛽𝛽2)(%𝐹𝐹𝑐𝑐𝑇𝑇𝑇𝑇𝐴𝐴𝑜𝑜 𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑜𝑜𝑖𝑖) + 𝛽𝛽3𝑃𝑃𝑖𝑖 + +𝜀𝜀𝑖𝑖, 

 

where (𝛼𝛼 + 𝛽𝛽2) serves as the constant and (−𝛽𝛽2) estimates the relationship between percentage 

active commuting and BMI. This shows that using the Yang and French specification, one is unable to 

discern between the positive association between percentage sedentary commute and BMI, (𝛽𝛽2) 

from Equation (3.8), and the negative association between percentage active commute and BMI, 

(−𝛽𝛽2) from Equation (3.9). 

 

In the preferred model presented in this work, both the time spent in active commuting and time 

spent in sedentary commuting are considered, in order to provide a straightforward interpretation of 

coefficients of interest and to disentangle the effect of sedentary commuting from active commuting. 

Appendix B presents alternate specifications that were considered, as ways to improve upon the issues 

that were found with the Yang and French model. 

 

Table 3.8 shows estimates of the Yang and French preferred model, Equation (3.7), in Column 1; note 

that these estimates were shown previously in Table 3.7, Column 2. Column 2 of Table 3.8 estimates 

the Yang and French model using their sample selection and the preferred set of control variables in 

this chapter. Column 3 estimates the preferred model in this chapter, Equation (3.1), using the Yang 

and French sample. Finally, Column 4 estimates the preferred model in this chapter, using the 

preferred set of control variables and sample in Column 4; note that Column 4 estimates were shown 

previously in Table 3.3, Column 5.  
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Table 3.8: Discussion of Results from Yang and French (2013) 

 (1) (2) (3) (4) 

 Model: Y&F Model: Y&F Model: Pref. Model: Pref. 

 
Controls: 

Y&F 
Controls: 

Pref. 
Controls: 

Pref. Controls: Pref. 
  Sample: Y&F Sample: Y&F Sample: Y&F Sample: Pref. 

         
% of Commute in Vehicle 1.363*** 1.512***   

 (0.441) (0.483)   
Total Commute (minutes) 0.00261 0.00403   

 (0.00260) (0.00307)   
Active Commute (minutes)   -0.0372*** -0.0313*** 

   (0.0142) (0.00993) 
Sedentary Commute (minutes)   0.00497 0.00409 

   (0.00315) (0.00303) 
Constant 28.41*** 30.81*** 32.26*** 29.77*** 

 (0.629) (1.046) (0.976) (1.293) 

     
Observations 4,688 4,129 4,129 6,121 
R-squared 0.033 0.044 0.044 0.092 
Data: ATUS 2006-2008 
Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
Note: Outcome variable is self-reported BMI, measured in kg/m2. Column 1 presents a replication 
of the Yang and French (2013) model, using their control variables and sample selection criteria. 
Column 2 estimates the Yang and French model with the full set of control variables used in 
Column 5 of Table 3.3 and the Yang and French sample selection. Column 3 estimates Equation 
(3.1) using the full set of control variables used in Column 5 of Table 3.3 and the Yang and French 
sample selection. Column 4 estimates the preferred model, Equation (3.1), with the preferred 
sample and full set of control variables.  

 

These results are shown side by side for the purposes of comparison of the interpretation of the 

coefficients of interest. Yang and French discuss a model very similar what is estimated in Columns 1 

and 2 (which are repeated here from Table 3.7 for clarity). Their interpretation of the significant, 

positive coefficient on the percentage of minutes of commute in a vehicle is that increasing an 

individual’s sedentary commute increases their BMI. However, as shown above, a coefficient of 1.4 or 

1.5 in Equation (3.7) is equivalent to a coefficient of -1.4 or -1.5 in Equation (3.8) and Equation (3.9). 

Thus, it is not clear if this coefficient implies that an increase in an individual’s sedentary commute 

increases their BMI or if an increase in an individual’s active commute decreases their BMI. Columns 

3 and 4 of Table 3.8 are based on Equation (3.1); Column 3 using the replication of Yang and French’s 

sample and Column 4 using the preferred sample (Column 4 is repeated from Column 5 of Table 3.3). 

This illustrates the point that while Yang and French do find commuting has a significant association 

with BMI, a specification similar to Equation (3.7) makes it unclear what that role is. The specification 
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from Equation (3.1) makes it clear that the role of commuting in BMI is likely dominated by active 

commuting. 

 

 

3.6. Discussion and Conclusions 

This study presents new estimates on the relationship between both active and sedentary commuting 

behavior and BMI. Results support earlier research that active commuting is associated with better 

health, where lower BMI indicates better health. However, unlike previous research, this work does 

not find associations between sedentary commuting and higher BMI. Instead these findings suggest 

that previous associations between increased sedentary commuting and high BMI were likely driven 

by active commuting being strongly associated with lower levels of BMI. Because this work finds that 

active commuting is, in fact, associated with higher levels of leisure-time physical activity, this would 

suggest that active commuting itself plays a smaller role in BMI, and instead may be an indicator of 

greater preference for good health.   

 

A key limitation in this work, like much of the literature in this area, is endogenous selection in 

sedentary and active commuting behavior and health. First, the issue of reverse causality arises; it is 

not possible to disentangle whether having a lower BMI pushes individuals to choose active modes of 

commuting or whether walking or cycling to work itself is resulting in healthier body weight. In fact, 

BMI is driven by a variety of factors related to both genetics and health behaviors; active commuting 

can be a part of those health behaviors contributing to healthier BMI, but at the same time having a 

healthy BMI may make active commuting a more comfortable or accessible option for individuals. I 

would expect that reverse causality would bias these results toward zero. Second, active commuting 

and BMI may be co-determined by some unobserved factors that cannot be accounted for with this 

data, resulting in omitted variable bias. For instance, if individuals have an increased preference for 

good health or have a high level of motivation, this may affect whether they choose active modes of 

commuting, but this also affects whether they make other healthy choices related to diet and exercise; 

this in turn may also affect their health outcomes, so that they may be more likely have lower BMI as 

a result of their preference for healthy behaviors. While I do control for physical activity in the 

robustness section, which includes exercise, if other healthy behaviors which are correlated with 

active commuting and are not captured by this variable, I would expect that omitted variable bias 

would also bias these results toward zero. As an attempt to explore these issues of endogeneity, an 

instrumental variables approach is presented in the following chapter.   
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Further work is needed to disentangle the relationships between using public transportation versus 

commuting in a private vehicle and health. Because users of public transportation often have a 

component of active commuting in their journey, and this combination may be more accessible to 

individuals who live too far from work to make an entirely active commute feasible, more work is 

needed to understand the role of active commuting for those individuals in particular. Understanding 

whether a small amount of active commuting, in conjunction with a sedentary mode of commuting, 

has the same relationships with health outcomes and health behaviors as entirely active commuting 

journeys may direct policies to encourage the most health-promoting types of commuting. 

 

These results raise questions about the effectiveness of policies targeted at reducing obesity through 

reducing sedentary commuting. While long sedentary commutes are associated with lower 

productivity and lower levels of well-being, this work suggests that there may be other factors 

determining the relationship between long sedentary commutes and increased BMI. This work shows 

that even small amounts of active commuting are associated with lower BMI, and active commuting 

is associated with lower BMI even after controlling for other types of physical activity. However, there 

is some evidence of omitted variable bias, that active commuting may be an indicator of other health 

choices not captured in this survey, as the decision to active commute may be more important than 

the amount of time spent active commuting. For this reason, further research in the behaviors of 

active commuters may uncover other healthy habits that drive these results or whether participation 

in active commuting itself influences involvement in other health-seeking behaviors which result in 

lower BMI. Similarly, this work supports further investigation into the determinants of active 

commuting and identifying the causal relationships between active commuting and good health. 
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Chapter 4 

4.1. Introduction 

 

Physical inactivity and sedentary lifestyles have been identified as the sixth leading cause of disease 

burden in the US and are associated with an increased risk for chronic diseases (Institute for Health 

Metrics and Evaluation (IHME), 2013; Lee et al., 2012). Numerous studies in the US, Canada, and the 

UK find increased usage of healthcare services and increased direct medical costs among physically 

inactive individuals, as compared to active individuals (Katzmarzyk and Janssen, 2004; Pratt et al., 

2000; Sari, 2009). Regular exercise, even small increases in activity for inactive individuals, reduces the 

risk of chronic disease, for which the obese are at greater risk (Sattelmair et al., 2011; Wen et al., 

2011). In an effort to encourage individuals to fit exercise into their schedules, the US Centers for 

Disease Control and Prevention emphasize that any 10-minute episode of physical activity can count 

towards reaching the goals outlined in their 2008 Physical Activity Guidelines, which serve as the 

current recommendations for adult physical activity. Adults between the ages of 18 and 65 are 

recommended to engage in moderate-intensity activity for 150 minutes per week or vigorous-

intensity activity for 75 minutes per week. Nonetheless, fewer than half of US adults meet these 

guidelines and just over one quarter of adults report spending no time at all on physical activity 

(USDHHS, 2008). More recent research using 22 years of data from the National Health and Nutrition 

Examination Survey finds that a lack of exercise and physical activity is more strongly correlated with 

the rise in obesity in the US population than an increase in caloric intake (Ladabaum et al., 2014). A 

subset of research has demonstrated both correlational and causal links between urban sprawl and 

obesity (R. Ewing et al., 2003; Lindström, 2008; Lopez, 2004; Sallis et al., 2012).  

 

This chapter builds upon the existing literature, which finds a negative relationship between physical 

activity and commuting, by focusing on how this relationship varies across individuals with differing 

health status and by exploring the causal nature of the relationship. In particular, this work focuses on 

the variation by body mass index (BMI) categories and asks the question “Is the trade-off between 

physical activity participation and commuting time different for obese individuals than for individuals 

in the healthy- and over-weight categories, who have a lower chronic disease risk?” This work 

examines this relationship on both the extensive and intensive margins; both the likelihood that an 

individual will exercise and the change in time spent exercising as commuting time varies. To address 

the issue of endogenous selection of commuting time, this work presents an instrumental variables 
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approach from the urban economics and labor economics literature (Baum-Snow, 2007; Giménez and 

Molina, 2011).  

 

These results indicate a negative relationship between commuting and physical activity participation, 

which is significant for both men and women. However when examining this relationship among obese 

individuals separately, a particular subgroup with greater chronic disease risk, no significant 

relationship between commuting and physical activity participation is found. Amongst physical activity 

participants, again no significant relationship at the intensive margin is found. These results are robust 

to a variety of definitions of both commuting and physical activity. Using an instrumental variables 

approach, with past housing prices as an instrument, this work provides evidence that the results are 

not simply correlative but represent a potentially causal path between time saved and exercise 

participation that is not present in at-risk weight groups. This work finds a similar pattern of a negative 

relationship between commuting and physical activity participation for non-obese males and no 

significant relationship for obese males in the sample. Housing prices are not a very good predictor of 

women’s commuting behavior; this might reflect differences in determinants of residential and work 

locations for men and women. Research into differing determinants includes the “tied mover” and 

“overeducation” hypotheses, originating in work from Mincer (1978) and Frank (1978) respectively, 

and more recently reviewed by Leuven and Oosterbeek (2011).   

 

These findings indicate that policies aimed at increasing physical activity for obese individuals who do 

not already engage in physical activity may need to be different than policies aimed at increasing 

physical activity time for individuals with lower BMI or for individuals who already participate in some 

physical activity. In particular, these policies may need to provide some additional incentive rather 

than solely focusing on increasing access or providing more time for physical activity. Further, these 

results suggest that even increasing physical activity for those who already participate may not be a 

simple matter. 

 

4.2. Literature Review 

 

Previous medical research establishes a relationship between time spent commuting and a number of 

adverse health indicators and outcomes, particularly obesity and weight gain (Frank et al., 2004; 

Sugiyama et al., 2013). Both the transportation and medical literature find a potential mechanism 

between urban sprawl and obesity through sedentary behaviors such as commuting and traveling, and 



89 
 

through commuting by car specifically (Dunton et al., 2009; Frank et al., 2004; Jacobson et al., 2011; 

Lopez-Zetina et al., 2006). This work examines the relationship between sedentary modes of 

commuting and physical activity as a possible pathway to the unhealthy outcomes linked with 

commuting.  

 

Recent work on commuting and obesity implements an instrumental variables approach to establish 

a causal relationship between commuting and obesity. This chapter uses these approaches to inform 

an attempt to understand the relationship between commuting and physical activity behavior. 

Specifically, Zhao and Kaestner (2010) explore causality in the relationship between urban sprawl and 

obesity by using predicted population densities derived from historical Interstate Highway System 

plans in two-step instrumental variables approach. They use changes in population density as a 

measure of urban sprawl, and use an instrumental variables approach to estimate the relationship 

between urban sprawl and obesity through the use of predicted population densities derived from 

historical Interstate Highway System plans as an instrument for changes in population density. They 

use individual-level demographic, socioeconomic, and self-reported height and weight data from the 

National Health Interview Survey (NHIS) from 1976 to 2001. Data on population, highway 

infrastructure and MSA-level characteristics were obtained from the Neighborhood Changing 

Database, the General Location of National System of Interstate Highways, and the Current Population 

Survey (CPS), respectively. First they predict population density from 1947 planned highway rays, 

showing that more highway plans are significantly associated with a decrease in population density 

over time, and that planned highway rays are uncorrelated with observed MSA-level time-varying 

characteristics. They find no effect of population density on BMI, but do find a significant association 

between population density and obesity status.  

 

Another recent paper uses instrumental variables as a means to correct for endogeneity in the 

relationship between time use and BMI. Using cross-sectional data from the American Time Use 

Survey (ATUS) years 2006 and 2007, Zick et al. (2011) examine the issue of reverse causality in this 

relationship. They discuss how observed associations between time use and BMI may either be a result 

of time use behaviors affecting BMI or vice versa, that individual health or BMI affects which activities 

individuals engage in and how much time they spend in these activities. In order to address this issue 

and attempt to understand in which direction the causal pathway lies, they use a model of time use 

where BMI and time use are simultaneously determined. They describe their model where BMI is 

determined by time use, biological (i.e. health status, age, sex, race/ethnicity), and socio-economic 

characteristics (i.e. education, employment status, marital status, and number of children). And time 
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spent in particular activities is determined by household roles (i.e. primary meal preparer or grocery 

shopper), structural factors (i.e. season of interview, weekend/weekday diary day, rural/urban status, 

geographic region, age, sex, race/ethnicity, marital status, and number of children), prices (such as 

wage rate and grocery prices), and income. The authors estimate an instrumental variables (IV) model, 

using instruments which they suggest are correlated to time-use but unrelated to the error term in 

the BMI estimation. They categorize time use into seven categories: primary eating time, secondary 

eating time, secondary drinking time, food preparation time, physical activity time, sleep time, and 

television/video time. They treat each of these as endogenous in a model with multiple endogenous 

independent variables. They use eight instruments to predict time-use: self-identification as the 

primary meal preparer in the household, self-identification as the primary grocery shopper in the 

household, whether the diary day was a weekend, whether the diary day was in the summer, whether 

the diary day was in the year 2007, the grocery price index, the respondent’s wage rate, and the 

household’s annual non-wage income. They then use these predicted time-use variables as regressors 

in the BMI model. The authors do not argue that the test they use for the strength of their instruments 

is appropriate when multiple endogenous variables are modelled, and instead test the strength of the 

full set of instruments on each of the seven first-stage models individually. Also, they provide minimal 

discussion of the exclusion restriction; it is entirely plausible that many of these variables can jointly 

influence both time-use and BMI. Nonetheless this work highlights a need for understanding the 

direction of causality in the relationship between commuting and health outcomes and behaviors. For 

instance, the direction of causality would have implications for what types of policies may help 

individuals improve their health. 

 

Recently, a literature has developed in economics that also examines the relationship of how 

commuting time correlates with time spent in health-producing activities and how time use relates to 

obesity. Much of this literature builds upon time allocation and human capital frameworks established 

by Becker in 1965 and Grossman in 1972. Because total time is fixed, the relationship between 

commuting and physical activity will generally be negative – more time commuting will lead to less 

time spent in other activities.  

 

Mullahy and Robert (2010) use this framework to examine whether time spent in physical activity is 

determined by education and also whether education determines how time is spent in all other 

activities. They use data on adults aged 25-64 from the 2005 and 2006 waves of ATUS data. They 

model six mutually exclusive and exhaustive categories of time use: sleep, household and personal 

activities, care for others, work (labor), non-exercise leisure activities, and physical activity. Their 
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definition of physical activity includes any activity coded within the ATUS-defined category of “Sports 

and Exercise” with the exclusion of a few sub-codes which are less active, such as billiards, boating, 

bowling, fishing, hunting, and vehicle touring/racing. They include time spent in travel and commuting 

under the category of household and personal activities. Rather than comparing time spent in PA to 

time in all other categories, they use a multivariate fractional regression model to simultaneously 

compare time spent in PA to time spent in each of the other categories of time-use, focusing on how 

time spent engaged in these activities varies for individuals with differing levels of human capital 

(education). This method allows them to implicitly include other forms of time use in their model by 

including the restriction that the sum of estimated time-use categories for each individual is set equal 

to the total amount of time in a day. They find that individuals with higher human capital, and 

therefore a higher opportunity cost of time, exercise more on weekend and holidays, when their 

opportunity cost of time is lower. These groups also exercise more overall. To compensate for 

spending more time on exercise, these individuals also report less time spent sleeping. The policy 

relevance of this result is limited because this paper does not argue for the exogeneity of their 

predictor of interest, not does it use an instrument.  

 

Hoehner et al. (2012) find that longer distances between work and home are correlated with less 

frequent participation in physical activity as well as decreased cardiorespiratory fitness, greater body 

mass index, waist circumference, and higher blood pressure. They use cross-sectional data from adults 

living and working in metropolitan counties in the state of Texas, from 2000 through 2007. Their work 

adds to the literature by using measured biomarkers to provide a more accurate measure of individual 

health status. Using respondent’s work and home addresses, they calculate commuting distances as 

the shortest distance along the road network between these two locations. They control for 

socioeconomic and demographic characteristics, smoking, alcohol intake, family history of diabetes 

and high cholesterol, BMI, and MET-minutes of self-reported physical activity. Their work provides 

support to existing literature that identifies increased commuting with decreases in physical activity 

participation and health status through the use of measured biomarkers; there are some limitations 

in their assessment of commuting and physical activity. Time spent in physical activity is self-reported 

and actual commuting time is unknown. While distance between work and home may provide a 

reasonable proxy, the measurement could be more an artefact of individual choice of residence 

location or income than a measure of actual time spent commuting. Another limitation is that the 

sampled population is fairly homogenous, so population subgroups are not well-represented and 

results may not be generalizable to other groups. Nonetheless, this work suggests evidence of a 
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relationship between commuting, physical activity, and poor health outcomes; this provides support 

for further work to disentangle these relationships. 

 

Based on Cawley’s SLOTH framework of determining physical activity choices, Humphreys and Ruseski 

(2011) develop and estimate an economic model examining the effect of income and opportunity cost 

on physical activity behavior. Their model is novel in that it separately distinguishes between the 

decision to participate (the extensive margin) and the duration of participation decision (the intensive 

margin). They find that individuals with higher income are more likely to participate in physical activity, 

but conditional on participation these individuals spend less time being physically active than those 

with lower income. They use cross-sectional data from the 1998, 1999, and 2000 Behavioral Risk 

Factor Surveillance System (BRFSS) survey and sample employed adults between the ages of 25 and 

54. Respondents are asked if they participated in physical activities in the past month, which two types 

of physical activity did they spend the most time doing, and how much time did they spend in these 

activities. Because of the large number of zeros observed in measures of physical activity in their data, 

the authors estimate a two-part model of participation and time spent in physical activity. I adapt their 

approach to this work, and note that it has not previously been applied to understanding physical 

activity using time-use data. Their work goes further by also estimating an instrumental variables 

estimator, with county-level unemployment rate in each year used to instrument individual income 

on physical activity decisions. Some limitations of their work come from the data source: first, income 

and wage data at the individual level are not available; instead they use county-level economic 

conditions and education as proxies for individual wage and income. Another limitation of their data 

is that the measure of physical activity is based on self-reported responses about poorly-defined 

physical activity over the past month. Such data may be subject to measurement error, physical 

activity may mean different things to different individuals, and certain individuals may be likely to 

over-report both participation and duration of physical activities. Finally, while the authors present 

results showing that their instrument, county-level unemployment rate explains variation in individual 

income and argue that the instrument is uncorrelated with individual-level factors that affect 

participation in physical activity, it is unclear that this is the case. Particularly, county-level 

unemployment rates represent county-level economic conditions which can affect county-level 

characteristics such as crime, litter, vandalism, number and condition of parks and green space, 

sidewalks, and bicycle lanes, which do impact physical activity (Giles-Corti and Donovan, 2002; Robert 

Wood Johnson Foundation, 2008; Sallis et al., 2012). 
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Most recently and closely related to this chapter, Christian (2012) examines trade-offs between 

commuting time and health-related activities and finds that individuals who spend more time 

commuting compensate primarily by reducing time spent sleeping, but also by decreasing time 

engaged in physical activity. Christian uses data from the 2003 through 2010 ATUS, and samples 

employed adults aged 21 through 65 who live in urban areas. Physical activity is defined as any activity 

classified by ATUS as “Sports and Exercise” as well as any other activity which exerts a moderate level 

of exertion. Unlike other research on commuting behavior using this data, Christian defines 

commuting as “all travel time for any purpose from the time the respondent leaves home until arrival 

at work and vice versa,” regardless of the length or number of stops an individual makes along the 

way (p. 748). Other work comparing methods of calculating commute time in the ATUS suggests that 

this definition likely substantially overestimates commuting time, particularly for individuals who 

make other stops along their travel from home to work and vice versa. It is unclear in which direction 

this overestimation would bias the results, because it is not known whether commute time is 

overestimated for individuals who exercise more or who exercise less. This method also disregards 

commuting mode, so that commuting by car, public transportation, biking and walking are all counted 

as part of commuting time. While participation in active commuting makes up a very small share 

(roughly 7% of respondents) of overall commuting, this treatment could bias results relating to 

physical activity upwards if individuals treat active commuting as a substitute for other physical 

activity or it could bias results toward zero if active commutes are generally shorter in duration and 

active commuters are more motivated to engage in healthy behaviors than non-active commuters. 

Christian notes that this work likely only establishes an upper-bound on commuting trade-offs.  

 

Christian (2012) uses a seemingly unrelated regression (SUR) model, which is a type of simultaneous 

equations model consisting of several regression equations, each with its own dependent variable, 

with potentially different sets of exogenous explanatory variables, and with its own error term which 

is assumed to be correlated with error terms in the other equations. Each individual model can be 

estimated equation-by-equation using the standard OLS method. SUR uses the feasible generalized 

least squares estimation method and provides a more efficient estimation of a system of equations 

when the error terms of each equation are correlated with error terms in the other equations (Zellner, 

1962). As such, predicting time-use behavior would be an appropriate application of SUR because time 

spent in all activities sum to the total amount of time in the survey period, so error terms across 

equations are correlated. However, there are two cases where SUR estimation is equivalent to 

equation-by-equation estimation by OLS: 1) when the error terms are actually uncorrelated between 

equations and 2) when each equation in the system contains exactly the same set of regressors on the 
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right-hand-side (Amemiya, 1985; Greene, 2011). One issue with estimating a series of models that 

predict time spent in a variety of different activities is that time-use behaviors are co-determined by 

the same predictors, namely the demographic and socioeconomic characteristics, season and region 

fixed effects, as well as time spent in all other activities. There is no clear justification to exclude any 

one predictor from any individual model when estimating time-use. In fact, Christian uses the same 

explanatory variables across all models. An additional limitation of this work is that self-selection in 

commuting time may result in biased estimates; Christian notes this and suggests additional work is 

needed to disentangle preferences for health and location which may drive the results in this work. 

 

This chapter builds upon existing literature, which establishes a relationship between commuting and 

physical activity, through using time-use data to separately examine both the participation and 

duration decisions of physical activity, by examining the heterogeneity of this relationship across 

groups with different health status, and by applying an instrumental variables approach from the 

urban economics and labor economics literature to address issues of endogenous selection in the 

effects of commute time and healthy behaviors such as physical activity(Baum-Snow, 2007; Giménez 

and Molina, 2011).  

 

4.3. Data and Sample Selection 

 

This work uses data from the American Time Use Survey (ATUS) and the ATUS Eating and Health 

Modules from 2006, 2007, and 2008. The ATUS provides repeated cross-sectional data from 

households that have recently completed the eighth and final monthly interview of the US Census 

Bureau’s Current Population Survey. Any eligible household member aged 15 or older is randomly 

selected to be the ATUS respondent. Households with minorities, households with children, and 

weekend diary days are oversampled to improve the reliability of estimates for these particular 

subgroups. Sampling weights are provided by ATUS and used in this work to compensate for 

oversampling of these groups and maintain representativeness at the national level.  

 

This work also uses county-level median value of single-family homes in 1970 as an instrument for 

commuting behavior. This data was obtained from a dataset developed by Baum-Snow (2007), where 

county-level data was obtained from the County and City Data Books (CCDB) report of decennial 

census data and aggregated to counties and cities of at least 25,000 inhabitants(U.S. Bureau of the 
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Census, n.d.). This data was made available upon request from the author, and further details are 

available in Baum-Snow (2007). 

 

ATUS respondents provide a chronological diary of all primary activities they engaged in from 4 a.m. 

on the previous day until 4 a.m. on the day of the interview; these activities are reported in per-minute 

durations with start and end times recorded and are classified into different numerical activity 

categories. The entire day is accounted for and activities are mutually exclusive, meaning that multi-

tasking is not reported. The sample is split evenly between weekdays and weekends and evenly across 

the weeks in a year. This results in 10% of the sample that report their activities on each weekday and 

25% of the sample that report their activities on each day of the weekend. The 2006 to 2008 Eating 

and Health Modules include additional questions on perceived health status, self-reported height and 

weight, food preparation activities, and secondary eating activities.  

 

The ATUS has 148,345 respondents in the entire 2003-2013 sample; however this work uses the 2006 

through 2008 Eating and Health Module, which has a total of 37,914 observations. Because the focus 

is on commuting behavior, the sample is restricted to working-age adults, aged 21 through 65 (n = 

28,710), who live in urban labor markets, specifically who live in a metropolitan area as defined by the 

2000 Census, (n = 23,811). In order to only consider individuals who face a strong time constraint, the 

sample is limited to individuals who are employed (n = 17,602) and have worked at least seven hours 

(420 minutes) on the diary day; this brings the sample size down to 7,216 observations. Only 

individuals who report weekly earnings are included (n = 6,549). For the main analyses, only those 

individuals with a valid BMI are included (n = 6,190). Because BMI of pregnant individuals have 

different health implications, pregnant individuals are excluded from the sample. Also excluded are 

underweight individuals, whose BMI is less than 18.5, as the literature suggests that being 

underweight might be caused by factors other than time-use, such as genetics and age (Yang and 

French, 2013). This leaves 6,121 observations; because this work controls for state fixed effects, 

individuals residing in states where all males or all females within that particular sate have the same 

physical activity participation outcome are removed. The final sample then is 6,107 observations, in 

which analysis for males (n = 3,341) and females (n = 2,766) are performed separately. This is for two 

reasons: medically, BMI has different health implications and health behaviors have differing effects 

on BMI for the two groups and secondly, determinants of commuting behavior for males and females 

differ and health outcomes related to commuting are also found to differ (Hemmingsson and Ekelund, 

2006; Li et al., 2006; Madden, 1981; Roberts et al., 2011; White, 1977). Summary statistics for the 

sample are presented below, split by males and females in Table 4.1 and 4.2, respectively.   
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Table 4.1: Summary Statistics for Male Respondents by Commute Time Category 

 Categories of Commuting Times (in Minutes) 
  Overall 0 mins  1-29 mins 30-59 mins 60 + mins 
Sample Size 3,341 325 972 1,038 1,006 
Age 41.45 42.87 41.11 41.39 41.37 

 (10.51) (10.59) (10.72) (10.25) (10.53) 
White 0.66 0.71 0.67 0.67 0.64 
Black 0.11 0.10 0.10 0.10 0.12 
Hispanic 0.17 0.14 0.16 0.18 0.18 
Asian 0.04 0.04 0.05 0.04 0.05 
Other Races 0.02 0.02 0.02 0.01 0.01 
Less than HS Graduate 0.08 0.07 0.08 0.08 0.09 
High School Graduate 0.25 0.28 0.27 0.24 0.22 
Some College 0.18 0.17 0.19 0.18 0.16 
College Graduate 0.35 0.32 0.33 0.36 0.38 
Advanced Degree 0.14 0.17 0.13 0.13 0.15 
Income 0 - 24,999 0.10 0.12 0.12 0.09 0.09 
Income 25K - 49,999 0.24 0.27 0.27 0.24 0.19 
Income 50K - 99,999 0.34 0.30 0.33 0.36 0.36 
Income 100,000 + 0.21 0.17 0.18 0.21 0.25 
Household Receives Food stamps 0.02 0.02 0.02 0.02 0.02 
Has Child in Household 0.54 0.47 0.50 0.56 0.57 
Child Age 0 - 2 0.15 0.11 0.16 0.14 0.16 
Household Spouse 0.65 0.58 0.59 0.66 0.73 
Spouse Works Full-Time 0.31 0.26 0.29 0.32 0.33 
Weekend/holiday 0.18 0.25 0.22 0.15 0.14 
Winter 0.34 0.37 0.35 0.32 0.35 
Spring 0.17 0.17 0.16 0.16 0.19 
Summer 0.24 0.25 0.24 0.26 0.23 
Autumn 0.24 0.21 0.25 0.26 0.23 
Region: Northeast 0.17 0.19 0.15 0.15 0.21 
Region: Midwest 0.24 0.24 0.27 0.24 0.20 
Region: South 0.35 0.30 0.33 0.36 0.36 
Region: West 0.25 0.27 0.25 0.25 0.23 
Resp. is Primary Meal Preparer 0.37 0.47 0.43 0.35 0.30 
Meal Preparation is shared in HH 0.15 0.13 0.15 0.16 0.16 
Does any Leisure Physical Activity 0.25 0.26 0.26 0.26 0.24 
Does any PA (Leisure & Non-leisure) 0.39 0.42 0.41 0.40 0.36 
Has Physically-demanding Occupation 0.26 0.28 0.28 0.26 0.23 
Normal- and Overweight 0.72 0.74 0.71 0.72 0.71 
Obese 0.28 0.26 0.29 0.28 0.29 
Body Mass Index 28.04 28.03 28.07 27.95 28.12 
  (4.82) (5.10) (4.65) (4.69) (5.01) 
Data: ATUS 2006-2008 

 
    

Note: Unweighted means for indicator variables are shown; additionally, standard errors in parentheses are 
reported for Body Mass Index (BMI) and Age variables.  Statistics are grouped based on time spent commuting.  
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Table 4.2: Summary Statistics for Female Respondents by Commute Time Category 

 Categories of Commuting Times (in Minutes) 
  Overall 0 mins  1-29 mins 30-59 mins 60 + mins 
Sample Size 2766 255 1043 885 583 
Age 42.34 43.73 41.55 42.21 43.35 

 (11.09) (11.46) (11.22) (11.00) (10.71) 
White 0.62 0.61 0.65 0.64 0.55 
Black 0.17 0.17 0.16 0.17 0.21 
Hispanic 0.14 0.17 0.14 0.13 0.15 
Asian 0.04 0.04 0.03 0.04 0.06 
Other Races 0.02 0.01 0.02 0.02 0.02 
Less than HS Graduate 0.06 0.09 0.06 0.06 0.06 
High School Graduate 0.23 0.22 0.24 0.22 0.23 
Some College 0.19 0.24 0.20 0.18 0.17 
College Graduate 0.37 0.27 0.37 0.41 0.37 
Advanced Degree 0.14 0.18 0.13 0.12 0.16 
Income 0 - 24,999 0.14 0.12 0.16 0.14 0.09 
Income 25K - 49,999 0.26 0.23 0.27 0.27 0.24 
Income 50K - 99,999 0.32 0.33 0.30 0.31 0.36 
Income 100,000 + 0.16 0.18 0.15 0.16 0.19 
Household Receives Food stamps 0.05 0.04 0.06 0.05 0.03 
Has Child in Household 0.52 0.48 0.57 0.51 0.49 
Child Age 0 - 2 0.11 0.12 0.12 0.09 0.10 
Household Spouse 0.51 0.51 0.50 0.51 0.52 
Spouse Works Full-Time 0.41 0.41 0.41 0.41 0.40 
Weekend/holiday 0.16 0.24 0.17 0.16 0.13 
Winter 0.36 0.35 0.35 0.37 0.37 
Spring 0.16 0.13 0.17 0.16 0.16 
Summer 0.23 0.24 0.23 0.21 0.26 
Autumn 0.25 0.29 0.26 0.26 0.22 
Region: Northeast 0.16 0.15 0.15 0.18 0.19 
Region: Midwest 0.24 0.24 0.25 0.26 0.21 
Region: South 0.38 0.39 0.38 0.38 0.38 
Region: West 0.21 0.22 0.22 0.19 0.22 
Resp. is Primary Meal Preparer 0.76 0.77 0.78 0.75 0.75 
Meal Preparation is shared in HH 0.11 0.13 0.11 0.12 0.10 
Does any Leisure Physical Activity 0.19 0.21 0.21 0.18 0.18 
Does any PA (Leisure & Non-leisure) 0.40 0.50 0.42 0.36 0.38 
Has Physically-demanding Occupation 0.15 0.16 0.14 0.16 0.13 
Normal- and Overweight 0.74 0.71 0.74 0.74 0.75 
Obese 0.26 0.29 0.26 0.26 0.25 
Body Mass Index 27.14 27.64 27.12 27.09 27.03 
  (6.15) (6.35) (5.89) (6.31) (6.27) 
Data: ATUS 2006-2008 
Note: Unweighted means for indicator variables are shown; additionally, standard errors in parentheses are 
reported for BMI and Age variables. Statistics are grouped based on time spent commuting. 
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To examine heterogeneity by health status in the preferred model, the sample is split by BMI category 

and compared across the different groups. BMI measures the mass of the body in relation to height 

and weight and is used to classify individuals into different weight statuses based on commonly 

accepted cut points. ATUS data provides a calculation of BMI from respondent’s self-reported height 

and weight. This type of self-reported BMI has been used in previous studies; some researchers have 

found modest underestimations of overweight and obesity rates while others have found BMI 

calculated from self-reported height and weight to be both reliable and a valid way to measure BMI 

for non-elderly adults (Burkhauser and Cawley, 2008; Kuczmarski et al., 2001; Pinkston and Stewart, 

2009). BMI between 18.5 and 25 is classified as normal weight, between 25 and 30 is classified as 

overweight, and BMI of 30 and above is classified as obese. Using BMI classifications, obese individuals 

are at an elevated risk for chronic disease, especially heart diseases, and are an important target of 

many health interventions (Must et al., 1999). Although other measures, such as waist circumference, 

waist to hip ratio, and waist to height ratio, percentage body fat, lipid and lipoprotein levels, have 

been suggested as superior to BMI in predicting risk for chronic disease, BMI has been traditionally 

used as a predictor for chronic disease risk and is still often used when studying populations, simply 

because it can provide an estimate of risk levels in the population and is less invasive and less costly 

to obtain than other measures (Huxley et al., 2009). Because the medical literature suggests that a 

BMI of 30 and above is associated with an elevated risk for coronary heart disease and diabetes, 

Individuals with a BMI less than 30 are compared against those with BMI 30 or more in this work 

(Harris et al., 1993; Hubert et al., 1983; WHO Expert Committee, 1995). Table 4.3 presents summary 

statistics of participation rates and time spent in a variety of commuting and physical activities, split 

by sex and by BMI status.  
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Table 4.3: Summary Statistics by BMI Status 

 Males Females 

 All BMI BMI < 30 BMI 30+ All BMI BMI < 30 BMI 30+ 

  
% or 

mean 
% or 

mean 
% or 

mean 
% or 

mean 
% or 

mean 
% or 

mean 
Does No Commuting  0.08 0.07 0.08 0.08 0.07 0.09 
Does Any Sedentary Commuting 0.90 0.90 0.91 0.91 0.91 0.90 

Mean Commute Time 49.15 49.11 49.23 40.34 40.55 39.72 
SD (38.22) (38.21) (38.28) (33.45) (33.70) (32.75) 

Does Any Active Commuting 0.07 0.08 0.05 0.07 0.07 0.06 
Mean Commute Time 18.56 18.79 17.52 16.29 15.82 17.84 
SD (21.24) (21.58) (19.80) (18.83) (17.96) (21.62) 

Physically Demanding Occupation 0.26 0.26 0.25 0.15 0.14 0.17 
Does Any Physical Activity 0.41 0.43 0.38 0.42 0.44 0.36 

Mean PA Time  70.16 69.76 71.30 56.36 57.77 51.51 
SD (62.73) (63.03) (61.93) (53.89) (54.59) (51.23) 

Does any Leisure-Only PA 0.25 0.26 0.23 0.20 0.21 0.15 
Mean PA Time  76.47 76.41 76.64 61.28 61.29 61.23 
SD (53.88) (53.11) (56.23) (44.83) (45.20) (43.49) 

Number of Observations 3,341 2,391 950 2,766 2,045 721 
Data: ATUS 2006-2008 
Note: Unweighted means for indicator variables and time variables are shown; additionally, standard errors for 
time spent in various activities are shown in parentheses. Statistics are grouped by sex and BMI status. 

 

This table shows that the percentage of individuals involved in different types of commuting behavior 

is fairly even across BMI categories, as is the time spent in these activities. Among men, distribution 

of occupations with physical activity is fairly even, but among women, a slightly higher percentage of 

obese women are in these types of occupations. Physical activity participation is lower among obese 

males and females as compared to the normal and overweight groups, however average time spent 

in physical activity among participants is quite similar across BMI status. 

 

The set of explanatory variables in this analysis allow us to explore how the relationship between 

commuting behavior may affect physical activity while controlling for a number of covariates which 

may themselves have an effect on physical activity. All analyses control for respondent age and age 

squared because there may be non-linear relationships between age and physical activity behavior.  

Controls for socioeconomic and demographic variables such as race, education, log of weekly 

earnings, food stamp recipient status are also included; previous literature has found that a number 

of these factors are related to individual physical activity participation (Powell et al., 2004; Trost et al., 

2002). Controls are also included for individual household composition characteristics such as whether 

or not there is a child in the household, whether there is a child under age two in the household, 
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respondent’s marital status, spouse’s employment status, and participation in household meal 

preparation. Existing literature has shown that individuals who are married, have children, particularly 

young children, or are involved in non-market labor, such has household duties, may have more time 

commitments compared with single respondents, those without children, and those with fewer 

household responsibilities (Brown and Roberts, 2011; Humphreys and Ruseski, 2009; Popham and 

Mitchell, 2006).  

 

This work uses a quite broad definition of physical activity with the motivation that any physical 

activity can affect an individual’s health outcomes, including non-leisure physical activity (Arrieta and 

Russell, 2008). This is done by using metabolic equivalent (MET) values to quantify the intensity of 

physical activity; a MET is defined as the ratio of energy expenditure in a particular activity to energy 

expenditure while at rest. Activities with a MET value of 3.00 to 6.00 are defined as moderate-intensity 

physical activity and those with a MET value greater than 6.00 are classified as vigorous-intensity; both 

count towards the CDC’s Physical Activities Guidelines (Ainsworth et al., 2000; USDHHS, 2008). 

Following the work of Tudor-Locke et al. (Tudor-Locke et al., 2009) who have linked the ATUS activity 

lexicon with MET values from the Compendium of Physical Activities, physical activity is defined here 

as any activity in the ATUS activity lexicon that generates MET value of 3.00 or more. These include 

activities classified as sports and recreation, lawn and garden work, home maintenance and repair, 

exterior house cleaning and playing sports with children. In the definition of physical activity in this 

work, any non-commuting travel that is undertaken by walking or cycling is also included as physical 

activity. Because specific activities an individual undertakes while at work are not identifiable in this 

data, activities during an individual’s working hours are excluded from the measure of physical activity 

in this work. Instead, MET values linked to the 2002 Census Occupational Classification System codes 

are available and broadly identify the physical demands of different occupations (Tudor-Locke et al., 

2011). To account for physical activity individuals do on the job all analyses include a control variable 

for having a physically demanding occupation that equals one if the main activities of an individual’s 

primary occupation are at least three METs, and a zero otherwise.  
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Figure 4.1: Unweighted Distribution of Physical Activity Time among PA Participants 

 
 

Figure 4.1 presents a histogram of unweighted number of minutes spent in physical activity among 

those individuals who participate in physical activity on the diary day, males and females shown 

separately. As expected, PA time is truncated at 0 and has characteristics of an exponential 

distribution, but there is bunching at five- and ten-minute intervals.  
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Figure 4.2: Unweighted Proportion of Physical Activity Participants by State 

 
 

Figure 4.2 presents a map of the unweighted proportion of individuals who participate in physical 

activity by state, and Figure 4.3 presents mean time spent in physical activity among those individuals 

who do participate in physical activity on the diary day, by state. Because these figures present 

unweighted data, they are not representative of the US population, but instead represent the selected 

sample in the ATUS data; all analyses use appropriate sample weights to insure representativeness at 

the national level. 
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Figure 4.3: Unweighted Mean Physical Activity Time Among PA Participants, by State 

 
 

Using time-use data, the literature suggests a variety of methods to define and calculate commuting 

time. This analysis uses the ATUS definition of “travel related to work,” which is defined strictly as any 

travel occurring immediately before work and any travel occurring immediately after work, provided 

that the next activity takes place at one’s home (Kimbrough, Gray, 2015). This definition can 

underestimate the amount of commuting in situations where an individual does not go home directly 

after work but instead makes other trips between work and home. Using this definition of commuting 

time, I expect this to decrease the size of the effects found to a small degree, so estimates may be 

conservative. I make a distinction between active commuting, which is commuting by walking or 

cycling, and sedentary commuting, which is defined as commuting via any other mode of 

transportation. There is a literature that highlights the differences in health outcomes from active 

commuting and sedentary commuting (Gordon-Larsen et al., 2009; Hartog et al., 2010). Active 

commuting is associated with improved measures of health and well-being, whereas increased 

sedentary commuting is associated with lower levels of health and well-being. Including active 

commuting as part of physical activity would have the effect of negatively biasing the coefficient on 

commuting behavior if individuals engaged in active commuting treat it as a substitute for sedentary 

commuting. On the other hand, including active commuting in the calculation of (sedentary) 
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commuting time would positively bias the coefficient on commuting, especially if individuals who 

engage in active commuting substitute it for time spent in physical activity. Because of this, active 

commuting is not being included in the definitions of either commuting or physical activity in this 

work; going forward all references to commuting will specifically be referring to sedentary commuting 

and focusing on the relationship between sedentary commuting and physical activity. To consider the 

effect of whether or not an individual commutes, an indicator variable, dCommuting is used. As with 

the indicator for participation in physical activity, this equals zero when the length of the commute is 

less than ten minutes and equals one for commutes of at least ten minutes.  

 

Figure 4.4: Distribution of Time Spent Commuting among Commuters 

 
 

Figure 4.4 presents unweighted time spent in sedentary commuting among those individuals who do 

commute, with males and females shown separately. The distribution of sedentary commuting times 

is truncated at zero, with a very long right tail.  
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Figure 4.5: Unweighted Mean Sedentary Commute Time (in Minutes) by State 

 
 

Figure 4.5 presents unweighted mean time spent in sedentary commuting among sedentary 

commuters by state. Again, because these data are unweighted, they are not representative at the 

national level, however appropriate sampling weights are used to ensure representativeness in all 

subsequent analyses. Nonetheless, these commute times by state are fairly close to the other, 

nationally representative, statistics on mean commute times by state (U.S. Census Bureau, n.d.).  

4.4. Methods 

 

Initially, this work models differences in commuting time as an exogenous variation in the amount of 

time available for other activities such as physical activity, the variable of interest. The motivation is 

that by looking at variation in commuting time for a set of individuals who otherwise face 

approximately similar time constraints, one can understand how individuals might respond to 

variation in the amount of time available in the day by making trade-offs between time engaged in 

health-producing behaviors, such as physical activity and time spent commuting.  

 

Because individuals face a time constraint of 24 hours and this work examines a sample of individuals 

who work at least seven hours during that time, increases in commuting time are expected to reduce 

time available for other discretionary activities such as leisure and physical activity. For this reason a 
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negative and significant relationship between commuting time and physical activity is expected. With 

time-use data, a large number of zeros exist when individuals do not participate in a particular activity 

and there are different methods to deal with this (Frazis and Stewart, 2012). When the zeros in time-

use data come from a mismatch between the period of interest (such as a long-term health outcome) 

and the period of the data (such as an individuals’ activities in a single day) OLS is suggested as the 

most appropriate estimation technique; however that approach is not taken here because the period 

of the outcome of interest, individual engagement in physical activity on a single day, matches the 

period of the predictor, individual commuting behavior on a single day (Frazis and Stewart, 2012). 

Instead, this work follows literature that suggests a two-part model is appropriate for first identifying 

the extensive margin and then the intensive margin for those who do participate (Cragg, 1971; Jones, 

2000; Cawley and Liu, 2007; Humphreys and Ruseski, 2011). To examine the extensive margin, or 

whether or not an individual participates in physical activity, a Probit model is used to estimate the 

change in probability of physical activity participation dependent upon whether or not the individual 

commutes. That is, the following reduced-form model is estimated: 

 

(4.1) 𝐹𝐹𝑃𝑃(𝑇𝑇𝐹𝐹𝐹𝐹𝑖𝑖 = 1|𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝑇𝑇𝑖𝑖,𝑃𝑃𝑖𝑖) = ϕ(𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝑇𝑇𝑖𝑖 + 𝛽𝛽2𝑃𝑃𝑖𝑖 + 𝜀𝜀𝑖𝑖), 

 

where dPA is an indicator variable which is equal to one if the respondent spends  at least ten minutes 

of physical activity on the diary day, which is the minimum amount of time for any one episode of 

activity, as suggested by the CDC Guidelines for Physical Activity (USDHHS, 2008). In this model 

dCommuting is a similarly defined indicator variable for commuting4. This model gives us an estimate 

of the likelihood of participating in physical activity dependent on the likelihood an individual spends 

at least ten minutes of their day commuting. - 

 

A similar specification to this model provides an alternate way to examine the extensive margin. In 

Equation (4.2) the probability of participation in physical activity as dependent upon the amount of 

time the individual commutes. This second model estimates the probability an individual would spend 

                                                           
4 Note: The ten-minute threshold for dummy variables on commuting and physical activity result in 
conservative estimates. However, results remain robust to using other specifications where these dummy 
variables equal one for a one-minute duration and five-minute duration of physical activity and sedentary 
commuting. Coefficients increase slightly as durations decrease. Keeping dPA at the ten-minute threshold and 
reducing dCommuting to a five-minute threshold gives a coefficient of -0.0879, and a one-minute threshold 
results in a coefficient of -0.0946, both statistically significant at the p<0.05 level. Similarly, holding 
dCommuting at the 10-minute threshold and reducing dPA to a five-minute threshold results in a coefficient of 
-0.0645, statistically significant at the p<0.10 level and reducing dPA to a one-minute threshold coefficient of -
0.0682, statistically significant at the p<0.05 level.  



107 
 

at least ten minutes engaged in physical activity using an equation of the same form but define instead 

Commuting as the total number of minutes the respondent spends commuting on the diary day: 

 

(4.2) 𝐹𝐹𝑃𝑃(𝑇𝑇𝐹𝐹𝐹𝐹𝑖𝑖 = 1|𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝑇𝑇𝑖𝑖,𝑃𝑃𝑖𝑖) = ϕ(𝛽𝛽0 + 𝛽𝛽1𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝑇𝑇𝑖𝑖 + 𝛽𝛽2𝑃𝑃𝑖𝑖 + 𝜀𝜀𝑖𝑖). 

 

I expect the coefficient on commuting behavior to be larger in the estimation of Equation (4.1) than 

in Equation (4.2) because the effect of whether or not an individual meets some minimum amount of 

commuting would influence time for physical activity much more than any one-minute increase in the 

total commuting time would have.  

 

To examine the intensive margin, or how much time the physically active individuals spend in these 

activities, the sample is limited to only those individuals who actually do any physical activity on the 

diary day. An OLS model is used to regress the time these individuals spent engaged in physical activity 

on the time they spend commuting:  

 

(4.3) 𝐹𝐹𝐹𝐹𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝑇𝑇𝑖𝑖 + 𝛽𝛽2𝑃𝑃𝑖𝑖 + 𝜀𝜀𝑖𝑖. 

 

In all models, X is the set of control variables and all analyses are carried out separately for males and 

females. Results of non-linear Probit models (4.1) and (4.2) are reported as the average marginal 

effects for all non-binary variables and can be interpreted as the average change in probability of 

participating in physical activity as the variable increases by one unit. For the binary commuting 

indicator, the effect is the change in probability as the indicator changes from zero to one in Equation 

(4.1). All estimates are made clustering at the county-month-year level so that standard errors are 

robust to non-independence of observations from the same county-month-year. This is especially 

necessary when including instrumental variables, as the instruments are constant for all observations 

within the same county.  

 

The decision to commute is represented by the variable, dCommuting. One concern is that this 

decision may be co-determined with the decision to engage in physical activity. In particular,  

individuals who are more likely to be physically active may choose residential locations nearer to their 

jobs or choose a commuting time with less congestion in order to allow for either active commuting 

or for a shorter commute which then allows them more time for participation in physical activity. In 

other words, if these individuals who are more likely to be physically active are also more time-

sensitive than sedentary individuals, then this could bias the coefficient upward or it result in reverse 
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causality, where involvement in physical activity is causing the individual to find a way to shorten their 

commute time. If this is the case, the commuting variable is correlated with the error term, 𝜖𝜖. One 

way to deal with this is to identify an instrument which is correlated with the explanatory commuting 

variable but is not correlated with the physical activity outcome variable.  

 

An instrumental variables approach is commonly used to establish causality in situations of 

endogenous selection like this (Wooldridge, 2010). A valid instrument must satisfy two conditions: 

first, an instrumental variable must be strongly correlated with the endogenous explanatory variable, 

conditional on other covariates, and second, the instrument cannot be correlated with the error term, 

meaning essentially that the instrument cannot have the same issue of endogeneity as the original 

predicting variable. This second condition is often called the exclusion restriction. Previous research 

has presented instrumental variables as a means of disentangling the causal effects of urban sprawl 

or sedentary commuting on health, health behaviors, and labor market outcomes; however no valid 

instruments have been identified for predicting the effect of active commuting choices at the 

individual level on BMI (Giménez and Molina, 2011; Hymel, 2009; Schauder and Foley, 2015; Wojan 

and Hamrick, 2015; Zhao and Kaestner, 2010). The instrumental variables approach proposed in 

Schauder and Foley (2015) most closely relate to the estimation in this chapter; the authors use season 

in which the survey was administered and rent as an instrument to predict active commuting 

participation. Although the authors show their instruments are strongly correlated with active 

commuting, they may still suffer from endogenous selection. In particular, both seasonal and regional 

variations occur in BMI as well as in other health behaviors which co-determine BMI (Visscher and 

Seidell 2004; Pivarnik et al. 2003; Ma et al. 2005; Plasqui and Westerterp 2004; Scott et al. 2009; Ford 

et al. 2005; Reis et al. 2004; Dutton and McLaren 2011). The authors also point out that renting (versus 

owning) a home is a choice individuals make that could be co-determined by unobserved factors that 

affect health outcomes. Similarly, fuel prices are also ruled out as an instrument for commuting time 

on health outcomes because while changes in fuel prices may affect commuting behavior, when 

individuals are faced with higher prices, they may substitute spending on cheaper, less nutritious, 

energy-dense foods (Gicheva et al. 2010), which can then affect their BMI.  

 

In an attempt to address this issue, this work uses lagged housing prices as an instrument for sedentary 

commuting behavior. Brueckner and Fansler (1983) suggest that lagged real estate prices can meet 

these criteria in that real estate prices strongly determine urban sprawl, a determinant in the 

commute time. Similarly, Baum-Snow (2007) and Hymel (2009) use historic highway infrastructure 

plans as a source of exogenous variation in highway development, to estimate a causal effect of 
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highway infrastructure on suburban development, using the rationale that original highway networks 

were planned to link faraway places and not to facilitate commuting from central cities to suburbs, so 

original infrastructure plans would not be co-determined with current patterns in commuting and 

suburban development. Giménez and Molina (2011) use single-period lags of housing prices as well as 

future-period housing prices to predict current period labor supply; their identification strategy being 

that the combination of past-period and future-period housing prices may predict labor market 

outcomes where current-period housing prices may be co-determined with labor market outcomes. 

Following similar reasoning as in these papers, this work proposes that housing prices from earlier 

periods are predictive of urban infrastructure, and thus commuting behavior today, and also would 

not be endogenous to an individual’s current period choice of physical activity participation on a given 

day. However, there are a number of weaknesses in using past county-level housing prices as an 

instrument for commuting behavior. First, this work uses mean county-level house prices, this does 

not take into account the degree of county-level variation in urban structure, so predictive power is 

limited (Glaeser et al., 2008). Also because the lagged housing price variable is constant at the county 

level, geographic county-level or MSA-level fixed effects are not included in regressions which use 

these instruments. Previous literature suggests that males’ and females’ commuting behavior is very 

different and decisions are made based on differing criteria, and I find in the first-stage regressions 

that lagged housing prices do not accurately predict women’s commute behavior, despite the fact that 

they do so for men (Madden, 1981; Roberts et al., 2011; Sermons and Koppelman, 2001; White, 1977). 

Another limitation is that past housing prices are only predictive of commuting behavior among males, 

so the instrument variables model is only estimated for males in the sample.  

 

To estimate Equation (4.1) using an instrumental variables approach, I estimate the model using a 

recursive bivariate Probit method, which is recommended in situations where the outcome and an 

endogenous predictor of interest are both binary variables (Wooldridge, 2010). This method is 

presented as: 

  

(4.4) 𝑇𝑇𝐹𝐹𝐹𝐹𝑖𝑖 = 1[𝑧𝑧1𝑖𝑖𝛿𝛿1 +  𝛼𝛼 𝑇𝑇𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝑇𝑇𝑖𝑖 +  𝐶𝐶𝑖𝑖 > 0] 

(4.5) 𝑇𝑇𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝑇𝑇𝑖𝑖 = 1[𝑧𝑧𝑖𝑖𝛿𝛿2 + 𝜐𝜐𝑖𝑖 > 0], 

 

where z1 is the matrix of all control variables, z2 is the matrix of the instrumental variables, in this case 

1970 county-level housing prices, and z is the matrix of all control variables and instrumental variables, 

(z1, z2). This method estimates Equations (4.4) and (4.5) simultaneously, and also estimates another 

parameter, 𝜌𝜌, which is equal to the correlation of the error terms, (𝐶𝐶, 𝐴𝐴). If 𝜌𝜌 is not equal to zero, then 
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the error terms of Equations (4.4) and (4.5) are correlated and estimating Equation (4.4) alone is 

inconsistent for the coefficient on dCommuting, 𝛼𝛼. Using the joint distribution of 

(𝑇𝑇𝐹𝐹𝐹𝐹,𝑇𝑇𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶𝑇𝑇𝑇𝑇𝐶𝐶𝑇𝑇) to estimate both of these equations simultaneously gives a consistent estimate 

for 𝛼𝛼 which uses the instrument from Equation (4.5) to account for endogeneity. On the other hand, 

when ρ equals zero, the error terms are not correlated and it would be sufficient to estimate Equation 

(4.4) alone, as in the non-instrumented in Equation (4.1). For this analysis, weakness of the instrument 

is tested by using a χ2-test to compare the first-stage regression to a regression of participation in 

sedentary commuting on control variables alone.  

 

To interpret the Probit and recursive bivariate Probit results, average marginal effects are calculated 

for each coefficient. In the case of binary predictors, such as the binary commute variable, average 

marginal effects are estimated by first estimating from the model a fitted probability of participating 

in physical activity for each individual assuming the binary predictor for that individual is equal to one. 

Second, I estimate from the model a fitted probability of participating in physical activity for each 

individual assuming the binary predictor for that individual is equal to zero. Then I estimate a marginal 

effect for each individual which is the difference between those two estimates. From this, the average 

marginal effect for the population can be estimated. 

 

This instrument is weak when used to predict the total time spent commuting as in Equations (4.2) 

and (4.3). Baum-Snow (2007) also uses a historic measure of highway infrastructure as an instrument 

for urban sprawl, but this is also weak when used as an instrument with the data used in this chapter.  

 

4.5. Results 

 

Table 4.4 presents the estimates of Equation (4.1) for males, applying different sets of control 

variables: demographic controls in Column 2, education in Column 3, income in Column 4, and meal 

preparation in Column 5. The full model, including state fixed effects is presented Column 6. 
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Table 4.4: Sedentary Commuting Indicator and Physical Activity Participation for Males 

  (1) (2) (3) (4) (5) (6) 

 

No 
Controls 

Demo- 
graphic 
Controls 

Education 
Controls 

Income 
Controls 

Meal 
Prep 

Controls 

Full 
Model, 

FE 

              
Sedentary Commute 
Indicator  -0.0608* -0.0569* -0.0608* -0.0641** -0.0639** -0.0500* 

 (0.0322) (0.0316) (0.0324) (0.0319) (0.0320) (0.0295) 
Respondent Age  -0.00449    -0.00978 

  (0.00744)    (0.00736) 
Respondent Age Squared  0.0000533    0.000116 

  (0.0000882)    (0.00009) 
Black  -0.0272    -0.0183 

  (0.0330)    (0.0319) 
Hispanic  -0.0762***    -0.0492 

  (0.0290)    (0.0336) 
Asian  0.0257    0.0148 

  (0.0458)    (0.0461) 
Other Race  -0.141*    -0.136* 

  (0.0846)    (0.0801) 
Spouse/Partner in HH  0.0364    0.0382 

  (0.0355)    (0.0394) 
Spouse is Employed  0.0377    0.0412 

  (0.0270)    (0.0267) 
Has a Child in Household  0.0138    0.0263 

  (0.0260)    (0.0252) 
Child Under Age 2 in HH  0.106***    0.107*** 

  (0.0299)    (0.0296) 
High School Graduate   0.0921**   0.0782* 

   (0.0396)   (0.0408) 
Some College   0.0873**   0.0706 

   (0.0404)   (0.0441) 
College Graduate   0.143***   0.101** 

   (0.0374)   (0.0441) 
Advanced Degree   0.127***   0.0679 

   (0.0433)   (0.0528) 
Log Weekly Earnings    0.0471***  0.0213 

    (0.0161)  (0.0193) 
HH Receives Food Stamps    0.0260  -0.0130 

    (0.0734)  (0.0712) 
Occupation with PA    -0.0347  -0.0174 

    (0.0249)  (0.0250) 
Resp. Primary Meal 
Preparer     -0.0215 0.0201 

     (0.0219) (0.0269) 
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Table 4.4, Continued.       
Shared Meal Preparation     0.0114 -0.0150 

     (0.0272) (0.0259) 
State Fixed Effects      X 

       
Observations 3,341 3,341 3,341 3,341 3,341 3,341 
Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
Note: Results from Probit regression estimating Equation (4.1). The outcome variable in each column is the 
binary indicator of whether or not an individual spends at least ten minutes in physical activity on the diary day; 
Average marginal effects are reported. Column 1 includes no control variables. Column 2 controls for the 
following demographic characteristics: age, age squared, race categories (Black, Hispanic, Asian, and other non-
white races), whether a spouse or partner lives in the household, whether the spouse/partner is employed, 
whether there is a child in the household, and whether there is a child under age 2 in the household. Column 3 
controls for education, whether the respondent is a high school graduate, has some college, is a college graduate, 
or has an advanced degree. Column 4 controls for the log of reported weekly earnings, whether the household 
received food stamps, and whether the respondent has an occupation that is physically demanding. Column 5 
controls for household food preparation tasks: whether the respondent is the primary meal preparer and 
whether meal preparation is shared in the household. Column 6 includes all controls and Column 7 includes all 
controls as well as state fixed effects. In all columns, sampling weights are applied and standard errors are 
clustered at county-month-year level. 

 

Similarly, Table 4.5 presents estimates of Equation (4.1) for females, building the model by 

controlling for different sets of variables, column by column. 

 

Table 4.5: Sedentary Commuting Indicator and Physical Activity Participation for Females 

  (1) (2) (3) (4) (5) (7) 

 No 
Controls 

Demo- 
graphic 
Controls 

Education 
Controls 

Income 
Controls 

Meal Prep 
Controls 

Full Model, 
FE 

              
Sedentary Commute 
Indicator  -0.0760** -0.0660** -0.0779** -0.0786** -0.0745** -0.0742** 

 (0.0308) (0.0302) (0.0305) (0.0307) (0.0310) (0.0296) 
Respondent Age  0.00978    0.00385 

  (0.00861)    (0.00834) 
Respondent Age Squared  -0.0000919    -0.0000266 

  (0.0000995)    (0.0000967) 
Black  -0.0812***    -0.0503 

  (0.0301)    (0.0313) 
Hispanic  -0.0310    -0.0170 

  (0.0321)    (0.0374) 
Asian  0.0515    0.0472 

  (0.0664)    (0.0654) 
Other Race  0.0918    0.0957 

  (0.0954)    (0.0905) 
Spouse/Partner in HH  -0.0409    -0.0296 

  (0.0517)    (0.0538) 
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Table 4.5, Continued.       
Spouse is Employed  0.0279    0.0199 

  (0.0499)    (0.0511) 
Has a Child in Household  -0.00807    -0.00787 

  (0.0289)    (0.0290) 
Child Under Age 2 in HH  0.280***    0.274*** 

  (0.0357)    (0.0349) 
High School Graduate   0.0107   0.0201 

   (0.0553)   (0.0584) 
Some College   0.0440   0.0556 

   (0.0541)   (0.0570) 
College Graduate   0.0805   0.0674 

   (0.0528)   (0.0601) 
Advanced Degree   0.102*   0.0672 

   (0.0584)   (0.0695) 
Log Weekly Earnings    0.0469**  0.0233 

    (0.0202)  (0.0217) 
HH Receives Food 
Stamps    0.0812  0.0680 

    (0.0600)  (0.0606) 
Occupation with PA    -0.0434  -0.0301 

    (0.0310)  (0.0322) 
Resp. is Primary Meal 
Preparer     0.0397 0.0335 

     (0.0344) (0.0326) 
Shared Meal Preparation     0.0408 0.0202 

     (0.0511) (0.0471) 
State Fixed Effects      X 

       
Observations 2,766 2,766 2,766 2,766 2,766 2,766 
Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
Note:  Results from Probit regression estimating Equation (4.1). The outcome variable in each column is the binary 
indicator of whether or not an individual spends at least ten minutes in physical activity on the diary day; Average 
marginal effects are reported. Column 1 includes no control variables. Column 2 controls for the following 
demographic characteristics: age, age squared, race categories (Black, Hispanic, Asian, and other non-white races), 
whether a spouse or partner lives in the household, whether the spouse/partner is employed, whether there is a child 
in the household, and whether there is a child under age 2 in the household. Column 3 controls for education, 
whether the respondent is a high school graduate, has some college, is a college graduate, or has an advanced degree. 
Column 4 controls for the log of reported weekly earnings, whether the household received food stamps, and whether 
the respondent has an occupation that is physically demanding. Column 5 controls for household food preparation 
tasks: whether the respondent is the primary meal preparer and whether meal preparation is shared in the 
household. Column 6 includes all controls and Column 7 includes all controls as well as state fixed effects. In all 
columns, sampling weights are applied and standard errors are clustered at county-month-year level. 
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Although the coefficient on the sedentary commuting indicator remains consistently between -0.05 

and -0.07 across all models and is equal to -0.0500 for males and -0.0742 for females when all control 

variables are included, it shows there is some variation for when different controls are used and that 

variation is not uniform between genders. This can be interpreted as implying that someone who 

commutes at all in a given day will expect a decrease in their probability of participating in physical 

activity on that day of 5.0 percentage points for males and 7.4 percentage points for females. The 

probability of participating in any type of physical activity in the data is about 39% for males and 40% 

for females, so this represents a decrease of about 12.7% for males and of 18.4% for females.5 

 

Table 4.6: Relationship between Sedentary Commuting Participation and Physical Activity 
Participation by BMI Group 

  (1) (2) (3) 
Probit All BMI  BMI < 30 BMI 30+ 
Males       
Sedentary Commute Indicator  -0.0500* -0.102*** 0.0620 

 (0.0295) (0.0377) (0.0462) 

    
Observations 3,341 2,386 939 
Females    
Sedentary Commute Indicator  -0.0742** -0.114*** 0.0340 

 (0.0296) (0.0362) (0.0444) 

    
Observations 2,766 2,044 709 
Robust standard errors in parentheses.  

*** p<0.01, ** p<0.05, * p<0.1 
Note: Results from Probit regression estimating Equation (4.1). The outcome variable in 
each column is the binary indicator of whether or not an individual spends at least ten 
minutes in physical activity on the diary day; Average marginal effects are reported. All 
columns include the full set of controls and state fixed effects from Column (7) of Tables 
4.4 and 4.5. Sampling weights are applied and standard errors are clustered at the county-
month-year level. Column (1) estimates Equation (4.1) for the full sample, Column (2) for 
individuals with BMI less than 30, and Column (3) for individuals with BMI greater than or 
equal to 30, where BMI status is a proxy for health. 

 

Table 4.6 focuses only on the coefficient on the sedentary commuting indicator as estimated by 

Equation (4.1) and uses BMI as a proxy for health status, comparing the normal and overweight 

individuals (those with BMI greater than or equal to 18.5 and less than 30) against the obese (BMI 

greater than or equal to 30). Making this distinction reduces the number of observations in each 

                                                           
5 In these results, physical activity and commuting indicators use a ten-minute threshold. This threshold results 
in conservative estimates. Using a five-minute and a one-minute minimum threshold in either variable 
increases magnitude of estimated effect sizes and t-statistic of results. 
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estimation and therefore increases the standard errors. More interestingly, though, these results 

show a difference in the physical activity behavior of the two BMI groups. The decrease in the 

probability of participating in physical activity for an individual who does sedentary commuting as 

compared to someone who does not is larger for normal and overweight individuals than it is for obese 

individuals. But for obese individuals, that coefficient is no longer significantly different from zero and 

is, in fact, estimated to be positive. In order to test whether these differences are statistically 

significant, I estimate these two regressions simultaneously and test the null hypothesis that the 

coefficients on the commuting indicators are equal across the two groups. The χ2 statistics that the 

coefficient on normal and overweight males is equal to the coefficient on obese males is 6.38 (p value 

of 0.0116). The same test comparing normal and overweight females to obese females has χ2 statistic 

of 5.12 (p value = 0.0236). So, for both males and females the null hypothesis can be rejected and the 

difference between the normal and overweight group against the obese group is found to be 

statistically significant.  

 

Table 4.7: Relationship between Sedentary Commuting Time Spent and Physical Activity 
Participation by BMI Group 

 (1) (2) (3) 

Probit All BMI Groups BMI < 30 BMI ≥ 30 
Males    
Minutes Spent Sedentary Commute -0.000976*** -0.000975*** -0.00105** 

 (0.000260) (0.000309) (0.000422) 
Observations 3,341 2,386 939 
Females    
Minutes Spent Sedentary Commute -0.00133*** -0.00158*** -0.000736 

 (0.000329) (0.000386) (0.000537) 
Observations 2,766 2,044 709 
Robust standard errors in parentheses.  

*** p<0.01, ** p<0.05, * p<0.1 
Note: Results from Probit regression estimating Equation (4.2). The outcome variable in each 
column is the binary indicator of whether or not an individual spends at least ten minutes in 
physical activity on the diary day; Average marginal effects are reported. All columns include the full 
set of controls and state fixed effects from Column (7) of Tables 4.4 and 4.5. Sampling weights are 
applied and standard errors are clustered at the county-month-year level. Column (1) estimates 
Equation (4.1) for the full sample, Column (2) for individuals with BMI less than 30, and Column (3) 
for individuals with BMI greater than or equal to 30, where BMI status is a proxy for health. 

 

Table 4.7, presents the time commuting coefficient estimated from Equation (4.2) comparing normal 

and overweight individuals to obese individuals. The coefficient for normal and overweight males, -

.000975, indicates that an increase in commute time of ten minutes decreases the probability of 

participating in physical activity by nearly 0.10 percentage points or about 0.26% (=0.10/38) at mean 



116 
 

activity levels for males. The coefficient is only slightly larger, -0.00105, for obese men and this 

difference is not significant (χ2 = 0.11, p value = 0.7440). For normal and overweight women the 

coefficient is similar, -0.00158, implying an increase in commute time of ten minutes decreases the 

probability of participating in physical activity by 0.16 percentage points or about 0.42% (=0.16/38) at 

mean activity levels for females. In this case the coefficient is smaller and, as is the case for males, I 

cannot reject the hypothesis that this coefficient is the same for the two BMI groups (χ2 = 0.98, p value 

= 0.3221). 

 

Table 4.8: Time Spent in Sedentary Commuting and Time Spent in Physical Activity by BMI Group 

 (1) (2) (3) 
OLS All BMI Groups BMI < 30 BMI ≥ 30 
Males       
Sedentary Commuting (minutes) 0.0468 0.0265 0.120 

 (0.0577) (0.0655) (0.147) 

    
Observations 1,379 1,019 360 
R-squared 0.108 0.142 0.231 
Females    
Sedentary Commuting (minutes) -0.0335 -0.0885 0.145 

 (0.0542) (0.0622) (0.107) 

    
Observations 1,164 901 263 
R-squared 0.091 0.100 0.396 
Robust standard errors in parentheses.  

*** p<0.01, ** p<0.05, * p<0.1 
Note: Results from Probit regression estimating Equation (4.3). The outcome variable in each 
column is the number of minutes an individual spends engaged in physical activity on the diary 
day. All columns include the full set of controls and state fixed effects from Column (7) of Tables 
4.4 and 4.5. Sampling weights are applied and standard errors are clustered at the county-
month-year level. Column (1) estimates Equation (4.1) for the full sample, Column (2) for 
individuals with BMI less than 30, and Column (3) for individuals with BMI greater than or equal 
to 30, where BMI status is a proxy for health. 

 

Table 4.8 examines the time commuting coefficient estimated from Equation (4.3) assuming that the 

individuals do participate in some physical activity. This greatly reduces the number of observations 

and as a result, standard errors are relatively high and the coefficients are no longer statistically 

significant. The relationship that this estimation shows suggests that for those individuals who do 

commute, there is almost zero trade-off in minutes between different time uses. The coefficients are 

positive with confidence intervals centered near zero for all males and for obese females. Even though 

these coefficients are not themselves statistically significant, I do test if the difference between the 

coefficients for obese individuals against normal and overweight individuals is significant. For males, 
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the χ2 distributed test statistic for this difference is 1.58, and for females the test statistic is 2.65, 

which corresponds to a p value of 0.1038, implying that I cannot reject the null hypothesis that these 

two coefficients are similar across BMI groups for both males and females. To test the robustness of 

these findings, I have also considered dropping individuals who engage in only active commuting. 

Doing this results in the signs of the coefficients staying the same, however some statistical 

significance is lost as the number of observations decreases and standard errors correspondingly 

increase.  

 

Table 4.9 shows the results from an instrumental variables approach using the recursive bivariate 

Probit method described above in Equations (4.4) and (4.5). This method estimates a maximum 

likelihood of a joint distribution, which is more complicated than a standard Probit model, and had 

convergence issues when the full set of control variables was included. Because the control variables 

do not play a significant role in determining the coefficient on the commute variable as shown in 

Tables 4.4 and 4.5, they are not included in this estimation.  

 

I have also estimated Equations (4.4) and (4.5) for women; however housing prices appear to be a 

very poor predictor of commuting behavior for women in the first stage. This may be due to 

differences in determinants of residential and job choices between men and women. (Turner and 

Niemeier, 1997; MacDonald, 1999). Appendix C includes an estimated model of the instrument 

predicting women’s commuting behavior. 
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Table 4.9: Relationship between Sedentary Commuting Participation and Physical Activity 
Participation for Males, by BMI Category; IV Approach 

 Males     

 (1) (2) (3) 

  All BMI Groups BMI < 30 BMI ≥ 30 
Equation (4.5): dependent variable: dCommute 
1970 House Price/$10,000 -0.0107*** -0.0139*** -0.00575 

 (0.00274) (0.00329) (0.00632) 
Equation (4.4): dependent variable: dPA 
Sedentary Commute Indicator -0.6105*** -0.6156*** 0.4035*** 

 (0.0127) (0.0147) (0.0243) 
ρ 0.9990*** 0.9994*** -0.9891*** 
P-value of χ2 of  ρ= 0 <0.001 <0.001 <0.001 

    
χ2 of instrument 15.40*** 18.21*** 0.83 
P-value <0.001 <0.001 0.363 

    
Sample Size 1,469 1,070 399 
Robust standard errors in parentheses.  

*** p<0.01, ** p<0.05, * p<0.1 
Note: Results from recursive Bivariate Probit regression estimating Equations (4.4) and (4.5). The outcome 
variable in each column is the number of minutes an individual spends engaged in physical activity on the 
diary day. Note: This table shows results of a recursive bivariate Probit model; the first two rows show 
coefficients and standard errors from estimation of Equation (4.5), and is the “first stage” regression, 
showing the effect of the instrument (past housing prices) on the endogenous predictor (participation in 
sedentary commuting). The second two rows show coefficients and standard errors from estimation of 
Equation (4.4); this is the estimate of the effect of the instrument (past housing prices) on the outcome of 
interest (physical activity participation). χ2 is a test of instrument strength in the first stage. All columns 
include the full set of controls and state fixed effects from Column (7) of Tables 4.4 and 4.5. Sampling 
weights are applied and standard errors are clustered at the county-month-year level. Column (1) 
estimates Equation (4.1) for the full sample, Column (2) for individuals with BMI less than 30, and Column 
(3) for individuals with BMI greater than or equal to 30, where BMI status is a proxy for health. 

 

Because these equations are estimated simultaneously, there is no first-stage regression in the 

recursive bivariate Probit method. However, instrument strength can be estimated from the Equation 

(4.5) model. Because the outcome variables are binary and a Probit model is used, instead of the 

standard F-test for instrument strength in the first stage, a likelihood ratio test with a χ2 distribution 

is typically used as a test for the predictive power of the instrument on the instrumented variable. In 

this case, the χ2 values of 15.40 and 18.21 indicate a strong instrument in the male pooled BMI sample 

and in the male normal and overweight sample, however, this test indicates the instrument is a weak 

predictor of commuting for the obese males, as well as for women, as noted above. The second 

assumption a valid instrument must meet is the exclusion restriction; that the instrument (lagged 

housing prices) does not predict the outcome (physical activity) through any means other than 

through the endogenous predictor (commuting behavior). While it is not possible to test this 
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empirically, the effect of lagged housing prices on current period physical activity may possibly be 

mediated through socioeconomic characteristics or characteristics of the built environment. With 

other data sources, future work could focus on disentangling these effects.  

 

The average marginal effects (61%) estimated in Columns 1 and 2 of Table 4.9 are six to ten times as 

large as the more reasonable estimates from the un-instrumented models estimated for males in 

Table 4.6, Columns 1 and 2. Estimates in Table 4.9 represent in part an estimate of a local average 

treatment effect (LATE), or an estimate of the effect on only the “compliers”, those individuals who 

commute when house prices are lower and who do not commute in areas where house prices are 

higher(Angrist and Pischke, 2009). The large magnitude of these estimates may be due to the large, 

positive value of the correlation of the error terms in the two models, ρ. The high value of ρ in Columns 

1 and 2 shows a high correlation between commuting and physical activity decisions, conditional on 

1970 housing prices. The high value of ρ allows for a tighter distribution in fitted estimates of the 

commute indicator variable than in the observed values of those indicator variables. If a tighter 

distribution of fitted estimates of dCommute affects Equation (4.4), it could inflate the estimated 

effect of that variable on the physical activity indicator. As a result, it may be best to interpret the 

coefficients of the commuting indicator in Table 4.9 by considering a scenario where an individual has 

a 10% increase in the probability of commuting; this would decrease the probability of participating 

in physical activity by about 6% for normal and overweight men. For obese men, the estimated effect 

is much noisier and the point estimate is much smaller. 

 

At first glance, this estimation continues to show a difference between normal and overweight group 

of men and the obese men; obese individuals continue to show less responsiveness to a change in the 

probability of commuting. However, when this model is estimated using only obese males, the 

instrument, housing prices from 1970, is no longer a good instrument for commuting behavior. This 

suggests the difference in the estimates of the effect of commuting on physical activity, as shown in 

Table 4.9, should not be used as evidence for the hypothesis that obese individuals respond to a 

change in commute time differently than overweight and normal weight individuals. On the other 

hand, the comparison of the estimate of the effect of housing prices from 1970 on commuting 

behavior between obese individuals and individuals who are overweight or normal weight suggests 

that the determinants of commuting behavior, and not just of physical activity, are different for obese 

individuals. However, this difference is not statistically significant. 
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The literature on commuting and physical activity examines men and women separately, but the 

obese and non-obese are typically pooled together. However, by not pooling them in Table 6, it is 

evident that lagged housing prices, which do predict commuting behavior for the pooled sample, are 

not predictive of commuting behavior for the obese group. These results suggest that perhaps the 

decisions related to commuting behavior, such as residential location, job choice, route and time of 

day of commute, may be different between not only women and men, but also between obese and 

non-obese individuals. This provides evidence that BMI, or health status, determines residential 

location and commuting behaviors, and supports the need for further examination of these 

relationships. 

4.6. Discussion and Conclusions 

 

Physical inactivity and overweight and obesity are important risk factors for chronic disease and, 

ultimately, for mortality. Fewer than half of US adults meet the US Center for Disease Control and 

Prevention recommendation of 150 minutes per week of moderate-intensity physical activity  or 75 

minutes per week vigorous-intensity physical activity (USDHHS, 2008). This chapter focuses on 

individual time-use to study the role of commuting in physical activity and pays particular attention to 

the overweight and obese, two groups of high risk. 

 

The paper shows a correlation between sedentary commuting and decreased physical activity 

participation in non-obese individuals, and that there is a significant difference in this relationship 

between the non-obese and the obese. This work finds no relationship between sedentary commuting 

and physical activity participation among the obese. These relationships are robust to a number of 

different specifications. However, to strengthen the argument for causality in this work, it would be 

necessary to identify a stronger instrument for variations in commuting time. Possible solutions would 

be to use a larger lag in the housing prices, following the rationale that a larger lag would be less likely 

to be endogenous with current period behaviors yet would still be predictive of the built environment 

which affects commuting time. In future extensions of this work, I would like to use recently developed 

race-specific BMI cut-points for obesity, which take into account race-specific variation in 

cardiovascular and metabolic health risks. An additional area of work involves refining and comparing 

the definitions and calculations of both commuting time and physical activity in the ATUS according 

to various methods recommended in the literature; this could provide a clearer understanding of 

these relationships (Brown and Borisova, 2007; Kimbrough, Gray, 2015). 
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There are some additional limitations with this work, which stem from the nature of the ATUS data. 

First, it is a repeated cross-section, so actual changes in commuting time or in the amount of free time 

for a given individual cannot be observed, which would be possible with panel data. Second, the 

understanding of how joint time investment in home production activities or spouse’s own 

participation in physical activity may affect an individual’s physical activity participation is limited as 

ATUS does not provide spouse’s and other family member’s time-use data. Third, analyses are based 

on a single diary day, so it is not possible to address whether or not individuals who do not do physical 

activity on long days of commuting and working may substitute physical activity on shorter working 

days or weekend days. If time spent in various activities on a given day deviate from an individual’s 

overall time-use patterns, then this would likely bias the coefficient estimates toward zero. Fourth, 

this work is unable to account for additional aspects of individual health behavior, such as food 

consumption behavior, alcohol consumption, and smoking behaviors. Finally, all data is self-reported 

and subject to some level of bias, although time-use diary data suffers less from this bias than other 

types of self-reported survey data, it is still possible that individuals with some level of health may 

under- or over-report various activities. More recent research has taken advantage of availability of 

accelerometer data for physical activity, mobile device data for transportation and commuting time, 

and measured health outcomes; however obtaining all of these measures in one dataset may be a 

challenge.  

 

Previous research has focused on the relationships between urban sprawl or commuting and health 

outcomes such as obesity, chronic disease risk, and subjective health and well-being. Few papers 

examine the relationship between commuting and physical activity as a mechanism through which 

commuting behavior may impact these other health outcomes. This work adds to the literature on 

commuting and physical activity by examining the extensive and intensive margins of physical activity 

decisions using more precise measures of commuting time and physical activity through time-use 

data. This work also provides evidence for a causal relationship; that commuting time affects time 

spent in physical activity. Further, this work examines how this relationship varies by obesity status. 

This prior research also does not address questions of how physical activity behavior in at-risk groups 

responds to variation in commuting. Policy makers proposing policies aimed at reducing obesity-

related diseases might wish to target at-risk groups to thereby increase effectiveness of their policies. 

Pooling all groups reduces the ability to understand the health outcomes implications of public policy. 

By estimating a relationship for normal-weight, overweight, and obese individuals separately, this 

work shows the value of dis-aggregating the role of commuting behavior on physical activity decisions. 

In doing so, these results suggest that low levels of physical activity among the obese are not due to 



122 
 

time constraints imposed by commuting; this raises questions about what is driving low levels of 

physical activity in this group. Table 4.3 shows the percentage of individuals involved in different types 

of commuting behavior is fairly even across BMI categories, as is the time spent in these activities, 

suggesting that the findings of differences in commuting and physical activity elasticities are not driven 

by differences in commuting patterns among the different BMI groups. This table also shows that the 

percentage of obese women in physically demanding jobs is slightly higher than the percentage of 

non-obese women in these types of jobs, suggesting a possibility that obese women in these 

occupations may be making more trade-offs between on-the-job activity and other types of physical 

activity. These results and summary statistics suggest that more research is needed to understand the 

factors leading to lower levels of physical activity among the obese. Existing literature shows that 

commuting time and health seeking behavior have an inverse relationship and suggest that urban 

planners include this in the design of transportation systems. This paper’s results agree that these two 

factors are inversely related, but our results caution that the obese and overweight individuals may 

not respond in a significant way to commute-time-based incentives to increase physical activity. 

Further research is necessary to understand effective ways to increase physical activity time use in at-

risk overweight and obese individuals. 
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Chapter 5  

5.1 Discussion and Conclusions 

5.1.1. Summary of Findings 
 

This dissertation contributes to existing knowledge in the health economics of obesity, chronic disease 

risk, commuting behaviors and health behaviors. Specifically, Chapter 2 examines the effects on 

individual LDL cholesterol levels from trans fat reduction policies and provides a first look at individual-

level effects of a nation-wide food regulation policy. This work finds significant improvements in LDL 

levels among more frequent restaurant meal consumers in the post-policy period. These findings 

suggest additional policies to further reduce trans fat at the national level should result in increased 

improvements in population cholesterol levels. 

 

Chapters 3 and 4 together give complementary perspectives on the role of commuting behavior in 

obesity. Chapter 3 shows that increasing sedentary commutes do not lead to increased BMI, but 

instead that active commuting specifically is associated with lower levels of BMI. These findings 

contradict previous work which finds strong associations between sedentary commuting and higher 

BMI. This work reconciles these findings with another recently published piece of work which uses the 

same data and similar methods, and finds that much of the previously established relationship 

between commuting and obesity may be driven instead by a strong relationship between active 

commuting and healthier BMI in a small subset of the population. This work raises questions for health 

and urban policies which aim to reduce obesity through targeting commuting infrastructure and 

behaviors.  

 

Chapter 4 examines physical activity participation and duration decisions and their relationship to 

commuting behavior. This chapter also explores heterogeneity by BMI status in this relationship. This 

work supports previous literature which shows a negative relationship between these two activities 

by showing that when facing less commuting, normal weight individuals respond with increasing their 

level of physical activity. However, this relationship does not persist among the obese; instead, obese 

individuals maintain low levels of physical activity regardless of commuting behavior. For normal- and 

overweight men, these findings are shown to be robust to an instrumental variables approach; 

however the instrument used does not explain commuting behavior for women or for obese men. 

This finding supports literature on differences in determinants of commuting behavior between sexes, 
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however, more importantly, this finding provides new evidence that commuting determinants may 

differ by health status, suggesting that health may be determining commuting behaviors. 

 

5.1.2. Policy Implications 
 

Policy implications that can be drawn from Chapter 2 are that trans fat reduction policies and 

regulations have been successful in improving population health among consumers of commercially 

prepared foods. This work provides evidence that early policies such as information campaigns have 

slightly improved cholesterol levels, but that gradually implemented more stringent regulations have 

further improved cholesterol levels. This suggests that the proposed removal of GRAS status of 

partially hydrogenated vegetable oils should result in further improvements in population cholesterol 

levels among consumers of commercially prepared foods. These findings support interventions to 

regulate the food industry in an effort to provide more healthy prepared foods, including interventions 

such as sugar-sweetened beverage taxes and bans and sodium reduction regulations. 

 

Policy implications suggested by Chapters 3 and 4 are primarily related to improvements in research 

from which public health policy and urban planning policy may be drawn. A growing area in public 

policy focuses on changing the urban structure or built environment to promote health. Many of these 

policies focus on increasing public transportation and active commuting; however findings from this 

work raise questions as to whether these policies would necessarily result in the desired level of 

improvements in population health. Specifically, both chapters highlight a need for further research 

to disentangle effects of different modes of commuting; this work separately considers active and 

sedentary modes of commuting and finds much of the relationship between poor health and 

commuting is driven by a strong relationship between active commuting and indicators of good health. 

While these findings support policies which promote active commuting, the work does not establish 

a causal relationship and active commuting itself may be an indicator of unobservable factors such as 

individual preference or motivation. So it is not clear whether promoting active commuting would 

necessarily then change other health behaviors which may themselves be contributing to the health 

benefits associated with active commuting. Both chapters highlight the complexity of the relationship 

between commuting choices and health and through this raise questions on the effectiveness of 

policies aimed at improving health through changes to the built environment and commuting 

behaviors. 
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5.1.3. Limitations and Future Work 
 

A number of limitations are noted here. First, Chapter 2 faces complications with identifying a clear 

pre- and post-policy period and therefore cannot disentangle effects of any one particular policy, but 

instead assesses the effects of the combination of trans fat reduction policies, all of which contributed 

to reductions in trans fat content of food prepared away from home. Because individuals consume 

foods from a variety of different sources outside of a laboratory setting, and because of the multitude 

of overlapping policies and changes in food formulation, this work suggests that research attempting 

to assess the effects on any one particular policy at the national level may possibly over-estimate its 

effects. A second limitation of this work is in identifying the treated group; consumers of restaurant 

meals are considered to be the most exposed to trans-fat-containing foods; this work shows these 

individuals are also more likely to consume other types of FAFH, however a clearer identification of 

overall food consumption provided by food diary data may provide an improved estimate of effects 

of trans fat reduction policies. Another key limitation of this data is the lack of geographic variables 

available – because many trans fat policies were implemented at the local level, a difference-in-

difference approach could be used to single out effectiveness of particular policies relative to changes 

in the overall food environment. At the national level, controlling for geographic variation might 

reduce noise in the estimates in this work because geographic variation exists in health and eating 

behaviors. This work does not attempt to assess cost-effectiveness of these policies, however with the 

addition of geographic data and food pricing or cost data, more work could be done to asses cost-

effectiveness of individual policies. 

 

Future work in this area could build upon this work by identifying health effects of the various trans 

fat substitutes, identifying health effects among the most at-risk groups, and assessing whether the 

improvements in health from these policies have outweighed any negative compensatory health 

behaviors. 

 

Limitations in Chapters 3 and 4 stem from the data available. First, general limitations of the data are 

that it is cross-sectional, so changes in commuting behavior for an individual cannot be observed; 

panel data would allow for such observations. Second, individual time-use may be co-determined by 

time-use of other individuals within the household; joint time investments in home production 

activities or spouse’s participation in physical activity may affect an individual’s physical participation 

and other health behaviors. However time diary data for only one individual within a household is 

collected in the ATUS, so it is not possible to take these important and interesting factors fully into 

account. Another general limitation of this data is that it is self-reported. It is argued that time-use 
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diary data suffers less from reporting bias and social desirability bias than other types of self-reported 

survey data, however it is still possible that individuals with differing levels of health may over- or 

under-report participation in various activities. Future research could examine whether this bias exists 

in time-use diary data. Two key determinants of BMI are diet and physical activity; while time-use data 

is arguably less prone to social desirability bias in physical activity measures than surveys which ask 

specific questions about physical activity participation, the dataset has minimal information from 

which to determine the types of food an individual consumes as well as and other health habits. 

Plausibly, healthfulness of foods eaten could be inferred from time spent in food preparation 

activities, however if a home-cooked meal was prepared by somebody other than the respondent, 

this information would not be captured. Similarly, data is available on where and with whom the 

respondent ate meals, however it is entirely likely that individuals could eat commercially prepared 

foods at home or with others and could plausibly take home-cooked meals elsewhere for 

consumption, so assumptions made about healthfulness of foods based on location could be biased. 

In the Eating and Health Module, additional data are available on eating as a secondary activity, or 

grazing as it is commonly known. While much of this data is useful in understanding eating behaviors, 

without any information on what is being eaten, this understanding remains limited. Other health 

behaviors not included in this data are smoking and alcohol consumption behaviors; both of these 

have impacts on BMI, so may limit findings of this work. There are also limitations in the measurement 

of commuting itself; while this measure is arguably a more accurate assessment of individual 

commuting behavior than simply using MSA-level or county-level indicators of sprawl, this measure 

of commuting introduces bias to the results. Specifically, this measure of calculating commute times 

in ATUS data fails to identify commuting trips for individuals who make stops along the way home 

from work. If individuals who make stops along the way represent a subset of individuals who are 

more time-sensitive or have a preference for reducing time spent running errands in an effort to leave 

more time for health-producing behaviors, then this would result in biased estimates. Particularly, if 

these individuals generally have lower BMI, then underestimating their commuting time would 

provide an overestimate of the relationship with BMI. Similarly, if these individuals are more likely to 

participate in physical activity, then underestimating their commute time could result in an 

overestimate of the effect of commuting behavior on physical activity behaviors. This work makes 

note of this limitation and possible bias. Future work could provide a better understanding of how this 

bias may affect health or health behaviors by comparing these results using different methods of 

calculating commuting times within the ATUS data.  
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Chapter 3 specifically faces the following limitations, first no causality can be inferred in this 

relationship; commuting may be affecting BMI or factors which affect BMI such as preferences for 

exercising or cooking and eating healthier foods might in turn be affecting factors related to 

commuting decisions such as residential location, job location, and time and mode of commuting to 

and from work. While the highlight of this chapter is identification of a strong relationship between 

active commuting and decreased BMI, this work is unable to identify whether active commuting itself 

is a proxy for preferences for healthy behaviors. Although among US commuters cycling and walking 

make up only 7% of commuting trips, this effect seems to be driving the results of unhealthy outcomes 

related to sedentary commuting. More work is needed to identify whether it is actually the walking 

and cycling itself which leads to improvements in health or, more likely, what other factors drive these 

individuals to choose healthier behaviors. Policies targeted at changing individual behavior, also 

known as “nudge” policies, are increasing in popularity, however their overall effectiveness, 

particularly for the most at-risk groups, may lie in improved understanding of what behaviors lead to 

better health and how to changes those behaviors among individuals who have the most to gain from 

those changes. 

 

In addition to those outlined above, Chapter 4 faces additional limitations: First, because the analysis 

is based on a single diary day, it is not possible to address whether individuals who do not do physical 

activity on long days of commuting and working are in fact substituting physical activity on shorter 

working days or non-working days; additional data may be needed for understanding such issues. 

Second, and perhaps of more concern, although this work attempts to identify a causal relationship 

between commuting behavior and physical activity; the fact that the instrument used to predict 

commuting behavior is predictive only for men with BMI less than 30 suggests that commuting 

behavior and health behaviors may be co-determined by some other unobservable factors or that BMI 

itself may be responsible to some degree for commuting decisions. Especially because of the recent 

emphasis on using urban design to affect health, more research is needed not only to disentangle 

these effects and identify direction of causality, but also to understand determinants of commuting 

and health behaviors among particularly at-risk groups like the obese. Similarly, determinants of 

commuting behavior are markedly different for men than women; more research is needed to 

understand determinants of women’s commuting behaviors and how they relate to engagement in 

health-producing behaviors like physical activity. 

 

This dissertation presents research on common health behaviors and choices people face. It has found 

that there is a role for careful, considered study of heterogeneity in choices and in outcomes. When 
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this heterogeneity is considered, positive outcomes of policy can be easier to see, as in Chapter 2, as 

can the difficulty of changing behaviors in at risk individuals as in Chapters 3 and 4. These results 

highlight a number of challenges remaining in using survey data to understand health behaviors 

related to obesity and chronic disease risk. Policies seeking to alter nutritional quality of food should 

seek research which targets subgroups with higher risk; similarly policies seeking to shape the built 

environment or promote healthy behaviors should consider the effects of these policies on specific 

at-risk groups. 
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Appendix A 
 

One concern with the measure of FAFH, or food away from home, in NHANES data is that the wording 

of the question changes in 2005. Initially the question asked how many meals are eaten in a restaurant, 

then later how many meals are eaten that were prepared outside of the home. This wording includes 

meals at restaurants but also includes meals from vending machines, grocery store delis and food 

counters, food trucks, and other establishments. Table A1 shows exact wording of the question 

associated with the Meals variable. 

 

Table A1: Changes in wording of question associated with Meals variable 

Year Question wording 

1999                     

2001                        

2003 

On average, how many times per week do you eat meals that were prepared in 

a restaurant? 

2005 I'm going to ask you about meals. By meal, I mean breakfast, lunch and dinner. 

On average, how many meals per week do you get that were not prepared at a 

home? Please include meals from both dine-in and carry out restaurants, 

restaurants that deliver food to your home, cafeterias, fast-food places, food 

courts, food stands, meals prepared at a grocery store, and meals from vending 

machines. 

2007                 

2009 

I'm going to ask you about meals. By meal, I mean breakfast, lunch and dinner. 

During the past 7 days, how many meals did you get that were prepared away 

from home in places such as restaurants, fast food places, food stands, grocery 

stores, or from vending machines? {Please do not include meals provided as 

part of the school lunch or school breakfast./Please do not include meals 

provided as part of the community programs you reported earlier.} 

Source: NHANES 1999-2010 Diet Behavior & Nutrition Data Documentation 

 

The concern here is that this change in wording has changed the meaning of the variable meals out 

and that this in turn changes the effect that one would expect to see on cholesterol and other health 

measures. Statistically, the effect of the change in the wording of the question is likely to be very small, 

because it did not change the mode of responses or the shape of the distribution of the responses, as 

shown in Figure A1. While the means did change, as shown in Table A2, the change is consistent with 

what one would expect given the upward trend in eating out over time.  



141 
 

 

 

Table A2: Average Number of Meals Out over Time 

Mean of Meals Variable Over Time 

 
1999 2001 2003 2005 2007 2009 

Mean 2.80 2.25 2.88 3.58 3.92 3.49 

Std. err. 0.10 0.07 0.07 0.14 0.16 0.09 

Data: NHANES 1999-2010 

 

 

The mean of meals out increases by 0.7 between the 2003 and 2005 survey cycles, when the survey 

question changed. However, relative to changes in other years, this change in means is not large.  

 

Figure A1 presents a kernel density plot, which shows how the distribution of Meals out changes 

across years and whether or not the mode of meals out changes. To make this plot, I use a bandwidth 

of 0.75 to allow for smoothing because Meals are reported in discrete quantities. I chose to use a 

kernel density plot instead of a histogram for ease of comparison across years. 

 

Figure A1: Density Plot of Meals Out per Week 

 
 

Data: NHANES 1999-2010 
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This plot shows the number of people reporting very few meals out is higher in 1999 through 2003 

than in the later three periods and the number of people reporting three or more meals out is higher 

in the later three years than in the earlier three. However, as with the means, the differences across 

years are small. 

 

Other than the change in the question’s wording, are there other causes for the increase in meals out? 

One might theorize that eating out is associated with economic fluctuations; however these data do 

not show any such correlation. The peak of the tech bubble was in 2001 and the housing bubble was 

in 2007. One would expect to see more eating out and less eating at home in the periods leading up 

to those peaks, in the 1995 and 2005/06 data, however this is not the case. Similarly, the recessions 

hit their lowest lows at the end of 2001 and April 2009. In the periods prior to these lows, coinciding 

with the 2001 and 2007/08 data, one would expect to see less eating out and more meals prepared 

at home and actually do see this trend with the 2001 data.  
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Appendix B 
 

This appendix provides additional information on the sample selection presented in Yang and French 

(2013) as well as a comparison of methods between this work and Yang and French, with all travel as 

the outcome variable of interest. Summary statistics of the commuting sample and the travel sample 

are presented in Tables B1 and B2, using an approximate replication of sample selection criteria 

from Yang and French.  

 

Table B1: Demographic and Socioeconomic Characteristics by BMI in Yang and French Sample 

 Y&F Travel Sample Y&F Commuting Sample 
  (1) (2) (3) (4) (5) (6) 

  
All 

BMI 
Over-

weight Obese All 
BMI 

Over-
weight Obese 

       
Age <=25 0.09 0.09 0.08 0.09 0.09 0.08 
Age 26-35 0.21 0.20 0.23 0.17 0.17 0.18 
Age 36-45 0.28 0.29 0.28 0.24 0.23 0.24 
Age 46-55 0.29 0.28 0.29 0.23 0.23 0.24 
Age 56+ 0.16 0.17 0.15 0.29 0.30 0.28 
Male 0.59 0.62 0.55 0.52 0.56 0.48 
Spouse or Unmarried Partner in HH 0.60 0.61 0.57 0.57 0.58 0.56 
Spouse is Employed 0.44 0.45 0.42 0.40 0.40 0.39 
Has a Child in Household 0.53 0.54 0.52 0.49 0.49 0.49 
Child Under Age 2 in Household 0.11 0.12 0.10 0.11 0.11 0.11 
White 0.66 0.69 0.63 0.67 0.70 0.63 
Black 0.15 0.13 0.18 0.14 0.12 0.18 
Hispanic 0.15 0.15 0.16 0.14 0.14 0.15 
Asian 0.02 0.02 0.02 0.02 0.02 0.01 
Other Race 0.02 0.02 0.02 0.02 0.02 0.03 
No High School 0.10 0.10 0.10 0.14 0.13 0.15 
High School Graduate 0.27 0.26 0.29 0.29 0.27 0.31 
Some College 0.20 0.18 0.23 0.19 0.18 0.21 
College Graduate 0.32 0.34 0.29 0.28 0.30 0.25 
Advanced Degree 0.11 0.12 0.09 0.10 0.11 0.08 
Weekly Income <$400 0.20 0.18 0.23 0.15 0.14 0.15 
Weekly Income $400 - $700 0.25 0.23 0.27 0.17 0.17 0.19 
Weekly Income $700 - $1250 0.26 0.25 0.27 0.19 0.18 0.19 
Metropolitan Status 0.82 0.83 0.81 0.81 0.82 0.80 
Region: Northeast 0.16 0.16 0.16 0.17 0.17 0.16 
Region: Midwest 0.26 0.26 0.27 0.26 0.26 0.26 
Region: South 0.37 0.36 0.38 0.37 0.35 0.38 
Region: West 0.21 0.22 0.20 0.21 0.22 0.19 
Weekend or Holiday 0.25 0.24 0.25 0.49 0.49 0.50 
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Table B1 continued.       
Winter 0.36 0.35 0.36 0.35 0.34 0.35 
Spring 0.17 0.17 0.17 0.17 0.18 0.17 
Summer 0.23 0.24 0.23 0.24 0.24 0.24 
Autumn 0.24 0.24 0.24 0.24 0.24 0.24 
Occupation with Physical Activity 0.25 0.25 0.25 0.47 0.46 0.47 
Commute 1.00 1.00 1.00 0.38 0.38 0.37 
Sedentary Commute 0.98 0.98 0.98 0.37 0.37 0.36 
Active Commute 0.07 0.07 0.05 0.02 0.03 0.02 
Bike Commute 0.00 0.01 0.00 0.00 0.00 0.00 

Walk Commute 0.06 0.07 0.05 0.02 0.03 0.02 
Any Travel 1.00 1.00 1.00 1.00 1.00 1.00 

Any Sedentary Travel 0.99 0.99 0.99 0.98 0.98 0.98 
Any Active Travel 0.12 0.13 0.11 0.13 0.14 0.12 
Any Bike  Travel 0.01 0.01 0.00 0.00 0.01 0.00 

Any Walk Travel 0.12 0.12 0.10 0.13 0.13 0.12 
BMI 30.14 27.19 34.38 30.32 27.16 34.69 

 (0.07) (0.03) (0.10) (0.04) (0.02) (0.07) 
Observations 4,688 2,761 1,927 12,388 7,191 5,197 
Data: ATUS 2006-2008 
Note: Unweighted means for indicator variables are shown; unweighted mean and standard error 
in parentheses are reported for BMI. Statistics are grouped by BMI status. 

 

Table B2 presents mean values of time spent in active and sedentary travel and commuting and 

leisure-time physical activity for only those individuals who participated in each of these activities on 

the diary day, using the Yang and French sample criteria. 

  



145 
 

 

 

Table B2: Average Travel and Exercise in Minutes, by BMI Category in Yang and French Sample 

  (1) (2) (3) (4) 
  N All  Overweight Obese 

     
All Active Commuting 305 15.77 15.82 15.67 

  (1.07) (1.40) (1.58) 
Commuting by Bike 16 38.44 39.07 34.00 

  (10.90) (12.50) (4.00) 
Commuting by Walking 289 14.52 14.11 15.30 

  (0.91) (1.11) (1.59) 
Sedentary Commuting 4,590 43.17 43.97 42.02 

  (0.67) (0.93) (0.92) 
Total Commuting 4,688 43.29 44.11 42.12 

  (0.67) (0.93) (0.93) 
Active Travel 1,599 19.83 20.40 18.93 

  (0.66) (0.82) (1.10) 
Sedentary Travel 12,089 84.68 85.63 83.38 

  (0.72) (0.94) (1.11) 
Total Travel 12,388 85.20 86.29 83.70 

  (0.71) (0.93) (1.10) 
Leisure Physical Activity 7,712 140.72 144.37 135.24 
    (1.51) (1.97) (2.34) 
Data: ATUS 2006-2008 
Note: Unweighted means and robust standard errors in parentheses are reported for participants 
of each activity. Statistics are grouped by BMI status. 

 

The preferred sample in this chapter includes only working-age adults, aged 21 through 65, while 

Yang and French include in their commuting analysis all ages from 15 upwards who report 

commuting on the diary day, and in their travel analysis, all ages from 15 upwards who report 

traveling (excluding normal- and underweight individuals. In their sample, total commuting makes 

up approximately half of total travel time.  
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In an effort to examine whether results from the comparison with the Yang and French work 

presented in this chapter would be similar if examining total travel time, Tables B3 and B4 are 

presented here.  

 

Table B3: Comparison of Samples using Yang and French estimation for All Travel 

  (1) (2) (3) (4) 

 
Y&F 
original 

Y&F 
replication 

Preferred 
Sample, 

excl. 
BMI<25 

Preferred 
Sample 

          
% of Travel in Vehicle 0.74** 0.818*** 1.353** 2.457*** 

 (0.185) (0.313) (0.557) (0.502) 
Total Travel (minutes) 0.00 0.000348 0.00325 0.00133 

 (0.00) (0.000806) (0.00248) (0.00218) 
Constant 28.90*** 30.27*** 28.00*** 23.58*** 

 (0.369) (0.392) (0.715) (0.629) 

     
Observations 12,208 12,388 3,984 6,040 
R-squared 0.029 0.026 0.038 0.054 
Data: ATUS 2006-2008 
Col. 1: Standard errors from previously published t-statistics. Col 2-4: Robust standard errors in 
parentheses. *** p<0.01, ** p<0.05, * p<0.1 
Note: Outcome variable is self-reported BMI, measured in kg/m2. All columns control for 
age, sex, race, spouse or unmarried partner in household, household children, 
education, income, metropolitan status. Column 1 shows published coefficients from 
Yang & French (2013). Column 2, presents results from replication of the Yang & French 
model using their sample selection. Column 3 shows a replication of their model using 
my preferred sample selection criteria and restricting the sample to only overweight 
and obese individuals. Column 4 presents a replication of the Yang & French model 
using my preferred sample selection, which includes normal weight, overweight and 
obese individuals.  

 

Table B3 is analogous to Table 3.7 in Chapter 3 and compares their main results using all travel as 

the predictor of interest, using a sample that matches theirs against the preferred sample presented 

in this chapter.  
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Table B4 is analogous to Table 3.8 in the paper; using all travel (not just commuting) as the predictor 

of interest, it compares the Yang and French model, sample selection, and choice of controls against 

those presented in the preferred model in this work. Column 4 of Table B4 estimates Equation 1 in 

the paper using all sedentary travel and all active travel as the predictors of interest. 

 

Table B4: Comparison of Models for All Travel 

  (1) (2) (3) (4) 

 Model: Y&F Model: Y&F Model: Pref. Model: Pref. 

 Controls: Y&F Controls: Pref. Controls: Pref. Controls: Pref. 

 Sample: Y&F Sample: Y&F Sample: Y&F Sample: Pref. 
          
% of Travel in Vehicle 0.818*** 0.876*   
 (0.313) (0.488)   
Total Travel (minutes) 0.000348 0.000453   
 (0.000806) (0.00107)   
Sedentary Travel (minutes)   0.000747 0.00172 

   (0.00107) (0.00211) 
Active Travel (minutes)  -0.0142** -0.0274*** 

   (0.00614) (0.00795) 
Constant 30.27*** 30.81*** 31.65*** 29.68*** 

 (0.392) (0.788) (0.681) (1.128) 

     
Observations 12,388 7,793 7,793 6,121 
R-squared 0.026 0.034 0.034 0.071 
Data: ATUS 2006-2008 
Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
Note: Outcome variable is self-reported BMI, measured in kg/m2. Column 1 presents a replication 
of the Yang and French (2013) model, using their control variables and sample selection criteria. 
Column 2 estimates the Yang and French model with the full set of control variables used in 
Column 5 of Table 3.3 and the Yang and French sample selection. Column 3 estimates Equation 
(3.1) using the full set of control variables used in Column 5 of Table 3.3 and the Yang and French 
sample selection. Column 4 estimates the preferred model, Equation (3.1), with the preferred 
sample and full set of control variables. 

 



148 
 

Appendix C 
 

Table C1 presents average marginal effects of a Probit estimate of county-level mean single-family 

housing price from 1970 on the sedentary commuting indicator variable. No control variables are 

included in the model. To improve readability of the estimates, 1970 price is divided by $10,000. This 

shows the relationship between historic housing prices and the commuting decision is statistically 

significant only in normal weight and overweight men. 

 

Table C1: Estimate of 1970 House Price Instrument on Sedentary Commuting Indicator 

  (1) (2) (3) (4) (5) (6) 
 All BMI < 30 BMI 30+ All BMI < 30 BMI 30+ 
Probit Males Males Males Females Females Females 
              
1970 Price/$10,000 -0.00962** -0.0114** -0.00280 0.00506 0.00201 0.0172* 
 (0.00419) (0.00521) (0.00815) (0.00604) (0.00721) (0.00932) 
       
Observations 1,475 1,072 403 1,227 906 321 
Data: ATUS 2006-2008 
Note: Results from Probit estimation of county-level mean single-family house price in 1970 on 
sedentary commuting indicator. Model is estimated without inclusion of control variables. Standard 
errors in parentheses. Standard errors are clustered at the county-month-year level.      
 *** p<0.01, ** p<0.05, * p<0.1 
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