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Abstract 

 

This thesis consists of three essays on hospital quality of inpatient care for patients with acute 

myocardial infarction (AMI) in the United States. First, it explores issues in the measurement of quality, 

particularly through the estimation of risk-adjusted mortality rates (RAMRs) for hospitals. This work 

then examines the relationship between hospital quality for AMI patients and the volume of AMI 

patients. 

 

Chapter 2 proposes using machine-learning techniques, particularly random forests, for risk 

adjustment of patient severity to predict patient mortality. This work shows that these methods 

greatly outperform other commonly-used methods in precision of patient risk estimates and also that 

a facility’s estimated RAMR is sensitive to the underlying patient risk-adjustment model.  

 

Chapter 3 asks whether a model which aggregates patient mortality risk for AMI patients matters 

when estimating RAMRs. To do this, it creates a simulation based on realistic assumptions about how 

patient case mix can vary by hospital quality and how hospital quality can vary by hospital volume. 

Because different methods of estimating patient mortality risk have different degrees of precision, the 

simulation considers variation in this precision and further allows precision to vary by hospital. Again, 

the ranking of hospitals is sensitive to the method used and this paper finds that common methods 

are not preferred in many important contexts. Both of the first two chapters pay particular importance 

to applications of their results to pay-for-performance schemes. 

 

Chapter 4 examines the relationship between quality, measured by RAMR, and volume in hospital 

health provision for AMI inpatients. The main contribution of the paper is estimate the causal effect 

of volume on quality. To do this, it uses a novel instrument, the volume of shock and of trauma 

patients. Previous work has found mixed results and has primarily used the volume of patients with 

the same condition within a certain radius of the hospital as an instrument for volume within the 

hospital. This paper argues that this instrument has a number of shortcomings that its instrument does 

not. This paper tests various specifications used in other work and finds robust results for its 

conclusion.  
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Chapter 1 

1.1. Introduction 

The most important theme that this thesis considers is the role of empirical measurement in 

economics. Improving measurement has the obvious value of increased ability to learn about the 

world. Any foundation, any theory, any hypothesis will have parameters that need to be measured. 

Among the first questions explored by David Hume’s foundational empiricism was the regularity of 

the sun’s rising, but quickly questions faced by a social scientist require increased measurement and 

statistical sophistication, and measurement became fundamental to empiricism. The applicability of 

the Poisson distribution quickly became apparent when the number of equestrian accidents was 

accurately tabulated. Once those tabulations became available, it changed how we think of risk and 

diversification, for instance. 

An important aspect of precision in empirical measurement is the increased efficiency of estimating a 

statistic when more precise measurements are used. Efficiency is an important goal in econometrics 

as it plays a role in the reliability of an estimate. Improvements in measurement improve the efficiency 

of an estimator without sacrificing other properties of an estimator such as bias and consistency. Also, 

measurement error in a predictor in a regression context, called the errors-in-variables model, leads 

to biased estimates in the slope of a linear model of the relationship between the predictor and the 

outcome, known as attenuation bias. This bias can greatly mislead scientists, and should not be 

ignored. 

In applied studies of public policy, empirical measurement plays an important role in the concept of 

cost-effectiveness, a ratio which can play a role in determining optimal policy. It also is important 

when measured statistics are used to create incentives, especially in the provision of public goods 

where competition, price, and markets play a diminished role. An interesting issue arises when 

considering how measurement of a particular concept is used. It is possible, even likely, that different 

ways of measuring a concept will be most appropriate in different applications. This can be true at 

many levels, and an important factor in this consideration is the evaluation of a measurement; how 

can we determine if one measure is better than another. 

It is often possible to determine the value of a measure theoretically. An important case is the 

estimation of the slope of a linear model of a relationship between a predictor and an outcome in a 

regression. If an estimate is considered optimal if it is unbiased, then this is a situation where ordinary 
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least-squares estimation is optimal. However, bias may not be the most important consideration. 

Before hitting upon the idea of minimizing squared deviations, as is used in ordinary least squares 

regression, statisticians minimized least-absolute deviation, a procedure which is not unbiased. Even 

so, least-absolute deviation still has a place in statistics today, as it is more robust to outliers, and is 

known as median regression. More relevant to this thesis, machine learning techniques are not 

necessarily unbiased, but they do perform very well in other measures. 

In many situations, it becomes more difficult to theoretically differentiate between two different 

measures or two different statistics. Often a loss function is set up to determine an optimal statistic. 

In ordinary least squares, the loss function is the square of the residual error of the model. But in 

measurement, the loss function may be more complex. More interestingly, the loss function may not 

allow a theoretical determination of which measure to choose. This suggests a second important 

theme of this thesis; empirical evaluation of the usefulness of a measure or a statistic. Empirical 

evaluation is especially common when evaluating machine learning techniques. An important aspect 

of the empirical evaluation of any measure is the uncertainty in its estimate. 

Another theme of this thesis, which could have been listed first, is health and health provision. This 

thesis will pay particular attention to the application of large administrative data sets to measure 

hospital quality. Administrative data can be aggregated at very large levels; this thesis uses the New 

York and California State Inpatient Databases from 2005-2007 collected by the Healthcare Costs and 

Utilization Project, a part of the Agency for Healthcare Research and Quality in the US Department of 

Health and Human Services. The data set contains approximately 90% of the states’ inpatient 

discharges each year (HCUP 2014) totaling millions of inpatients, although most of the analysis in this 

paper is based on a subset of patients with acute myocardial infarction, numbering 425,322 inpatients. 

Data of this size is more possible in health than in other subfields of economics that focus more on 

private goods.  

Patient mortality risk is an issue that plays a central role in each of the chapters of this thesis. Not only 

are the data large, but there is less theoretical guidance on how to manage the relationships between 

a patient’s age, sex, morbidities, and mortality outcome than there might be in other areas of 

economics. Both the size of the data and the complexity of the relationships in the data suggest using 

non-parametric and machine learning techniques (these two terms are not mutually exclusive, 

machine learning techniques are often themselves non-parametric). Non-parametric techniques are, 

by their nature, difficult to theoretically evaluate. One important method used to evaluate these 

techniques and compare between them is to simulate data and compare estimations to simulated 
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true values. A second method is to randomly split the data into one or more training sets and one or 

more test sets, and then to use the training set to estimate models and statistics and then compare 

models based on training sets to results from the test set. In this way, it is possible to empirically 

evaluate different measures and statistics when computational complexity renders a theoretical 

evaluation difficult or even impossible. 

The final theme of this thesis is understanding quality, in particular quality of patient care by hospitals. 

This theme brings together issues in empirical measurement and methods in health economics. 

Economics, especially microeconomics, often focuses on the study of incentives, of scarcity, and of 

the firm – using monetary profit and output as main variables. Health care is a largely public good 

provided often by public or non-profit firms, and quality plays a similar role to monetary profit and 

output for private goods and private firms. The second and third chapters explore empirical 

measurement and modelling issues around quality and how important those issues are in the 

incentivizing of high quality hospitals. The final chapter explores the role economies of scale and 

learning-by-doing play in quality. This thesis was written as three separate chapters. However, the 

thematic bind between them is very strong. Keeping in mind these themes, the remainder of this 

introduction will introduce each chapter in more detail. 

 

1.2. Summary 

Hospital quality is commonly used for pay-for-performance schemes and in estimating cost-

effectiveness of hospital level health interventions. Improving the accuracy of estimation of hospital 

quality will improve the efficiency of these calculations and is an important goal in health economics 

and health policy research. Patient outcome, usually patient mortality, is an important measure of 

quality. Accurate interpretation of average patient mortality at a hospital requires the estimate to be 

adjusted for the case mix of the hospital. The second chapter considers how machine learning can be 

used to include more information in the model which will improve risk adjustment of hospital 

mortality rates. Current methods of risk-adjustment fail to fully incorporate all of the data available in 

the large administrative data sets used for this purpose. Current research reduces the dimensionality 

of these data sets by clustering similar comorbidities or selecting comorbidities which best predict 

mortality. This can cause omitted variable bias and reduces precision in patient mortality risk 

estimates. This chapter’s main contribution is proposing machine learning techniques whereby 

detailed patient morbidities can be used directly to predict patient mortality risk. Focusing on random 
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forests, this chapter uses a training set to create a number of different models of patient mortality 

risk. Compared with models commonly used, it shows that machine learning methods greatly 

outperform other methods in precision of patient risk estimates. The main application of patient risk 

is in risk-adjusted mortality rates, which is a statistic that compares a hospital’s actual mortality rate 

to an aggregation of expected patient mortality based on patient risk. The chapter finds that a facility’s 

estimated risk-adjusted mortality rate (RAMR) is sensitive to the underlying risk adjustment model 

and there is significant variation in the ordering of facilities by RAMRs across models. An important 

application of this is in the efficiency of pay-for-performance schemes in incentivizing quality. The 

United States Center for Medicare & Medicaid Services Hospital Value-Based-Purchasing plan is one 

of the largest pay-for-performance schemes currently in use and includes RAMRs with other quality 

measures. These rules withhold up to 3% of hospital reimbursements from all included hospitals and 

reallocate those payments according to the measure of hospital quality (Centers for Medicare & 

Medicaid Services, HHS 2014). 

The third chapter asks whether a model aggregating patient mortality risk among patients with acute 

myocardial infarction matters when estimating hospital RAMRs. This question is answered by creating 

a simulation based on realistic assumptions about how patient case mix can vary by hospital quality 

and how hospital quality can vary by hospital volume. Because different methods of estimating patient 

mortality risk have different degrees of precision, this simulation considers variation in this precision 

and further allows precision to vary by hospital. Common methods, including the method used in the 

2013 Affordable Care Act’s Hospital Value-Based Purchasing Program, start from an estimate of in-

hospital mortality or in-hospital predicted mortality where the prediction utilizes a model which 

includes hospital effects. This measure is standardized by multiplying actual (or predicted) hospital 

mortality by the ratio of population mortality to predicted mortality of a hospital’s patients when the 

prediction only includes patient risk and does not include hospital-specific effects. This study evaluates 

different methods of estimating RAMR, shows that the ranking of hospitals is sensitive to the method 

used and that common methods are not preferred in some contexts, and shows the sensitivity of 

goodness-of-fit of a RAMR to precision of patient mortality risk estimation. In particular, as precision 

decreases, standardizing risk adjustment decreases the quality of the estimated RAMR, particularly if 

the measure is to be used in a pay-for-performance scheme or in choosing the best facility. This paper 

shows a significant improvement in efficiency of quality estimation, which would improve the 

efficiency of estimating the determinants of quality, in measuring quality for pay-for-performance 

schemes, for choosing the best facility to attend as a patient, and for other purposes. This papers most 

important contribution is the use of a novel simulation framework to evaluate alternative formulae 

for RAMR. 



7 
 

The fourth chapter combines the patient mortality risk model developed in the second chapter and 

the hospital RAMR formula evaluated in the third chapter to study the relationship between three 

important concepts: quality, learning-by-doing, and economies of scale. This chapter looks particularly 

at provision of care for patients with acute myocardial infarction, which is an important measure used 

in estimating hospital quality. The main contribution of the paper is the introduction of a new 

instrument, the volume of shock and of trauma patients. Using this instrument, this paper argues that 

the between estimates of the relationship between volume and quality represent economies of scale 

and learning-by-doing. The findings show a much more precisely estimated between effect, when no 

fixed effects are included, but do give evidence for a within effect as well. This confirms much of the 

literature, but contradicts recent work by Kim et al. (2016) which did not find an effect in fixed effects 

models. 

These different chapters deal with themes that will be a part of the future of health economics: new 

tools of data analysis, issues in quality measurement that can shape policy, and how volume effects 

quality. All three chapters take advantage of large administrative data sets. The second chapter 

creates a new measure of patient mortality risk which is used in the other two chapters. The third 

chapter provides a unique evaluation of different methods for aggregating patient risk to hospital 

RAMRs, an important aspect of quality. While randomized experiments are a gold standard in 

understanding causal relationships, healthcare provision is an ongoing concern and many important 

questions cannot be addressed in a lab. This makes the use of data analysis, including instrumental 

variables as used in the fourth chapter, and other methods, extremely important, especially when 

discussing issues about quality, where lab conditions may not give appropriate inferences. 
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Chapter 2 

2.1. Introduction 

Since Arrow (1963), economists have recognized the difficulty faced by potential patients when 

judging the expected quality of medical care. In part, this reflects the inherent difficulties in measuring 

and incentivizing quality of hospital care for those involved in service delivery and for policy makers. 

Methods to incentivize hospitals to improve quality include pay for performance schemes and 

providing consumers with report cards on aspects of hospital performance. In the United States, 

report cards on hospital quality in the United States have been published and used since the mid-

1990s. Mortality is a key indicator in any measurement of quality, however comparisons between 

mortality rates across facilities is confounded by a range of factors, most notably variations in the 

underlying severity of their case-mixes. The standard approach to these problems is risk adjustment. 

This measures the composite mortality risk of a hospital’s patient case-mix and thereby creates a 

comparable estimate of hospital or other aggregate level mortality. The main complication faced by 

current approaches to risk adjustment is dimensionality. This issue results from the large number of 

potential comorbidities and leads to both model selection and computational problems.  

Inpatient data sets may include patient morbidity information that includes all diseases present in the 

patient during the stay. These are often used to determine reimbursements to the hospital for the 

patients care. Comorbidity information recorded often uses the International Classification of Disease 

(Volume 9 – Clinical Modification, used in this paper, is abbreviated ICD-9-CM) categorizations, 

providing over 15,000 possible comorbidities. Using this information directly creates a very large set 

of predictors. Sparse, high-dimensional models often do not converge and reducing dimensionality 

means losing information and leads to the potential for consequential omitted variable bias. The 

current approaches deal with the problem by grouping comorbidities into a limited number of 

categories in order to apply generalized least squares estimation of patient mortality likelihood. As a 

result of the information lost in these categorizations, these methods suffer from high variance and 

low predictive precision. Another method attempts to select a subset of diagnoses from recorded ICD-

9 codes for comorbidities (Pine et al. 2007). This approach will result in omitted variable bias and loss 

in precision due to the reduced information from reducing the set of comorbidities. This loss in 

precision results in an inefficient estimate of hospital quality, in effect, overestimating or 

underestimating quality of a significant number of facilities. Reducing modelling error in mortality 

prediction is key in establishing the usefulness of risk adjustment for both practical and academic 

purposes (Smith and Street 2012). 
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This paper uses machine learning to allow for the inclusion of all information in patient records 

databases that currently exist to adjust patient mortality risk and estimate hospital risk-adjusted 

mortality rates. In doing so, this paper demonstrates how this approach overcomes any need to 

reduce dimensionality and avoids theoretical bounds on convergence faced by logit and probit 

mortality models. It also shows that these measures are better estimates of hospital risk adjusted 

mortality rates and the implications of these differences on pay for performance schemes. Focusing 

on patients with acute myocardial infarction (AMI), this study uses the full detail available in 

administrative records, greatly increasing the number of included comorbidities. This work is the first 

to show that risk-adjustment using machine learning can be used with the full detail of patient 

comorbidities. This paper finds that this detail results in significantly more precise estimates of patient 

risk. 

The usefulness of the model to health economics is expressed with a simple application: the validity 

of pay-for-performance reimbursements when performance is judged using risk adjusted mortality 

rates. When these estimates of patient risk are used to estimate hospital risk-adjusted mortality rates, 

the paper also finds a significant change in how hospitals are ranked according to those rates. If 

grouped by risk-adjusted mortality rate into quartiles, about one third of hospitals in each quartile 

using competing methods are placed into a different quartile when using the new method, and about 

7% of hospitals in the highest quartile and 7% in the lowest quartile switch places. 

 

2.2. Background 

Risk-adjustment is based on comparing the predicted patient outcome with the actual patient 

outcome. There has been some research in health economics and policy focused on the ability of 

models to predict cardiovascular patient outcomes (for instance, Grieve et al. 2003), but less 

frequently with risk-adjustment as the primary goal. Two important aspects of the risk-adjustment 

process are that the variables used in adjustment have clinical coherence and validity and that the 

analytical approach takes into account the non-linearity and multilevel organization of the data 

(Krumholz et al. 2006a). Patient risk is commonly based on patient comorbidity data recorded in 

administrative discharge abstracts in which hospitals code doctor diagnoses of patients they see. 

These data can be processed based ICD-9-CM or the ICD 10 scheme associating patient diagnoses with 

a 3, 4, or 5 digit alpha-numeric code. In this system, multiple diagnoses may be present for a given 

patient: the first diagnosis coded is the primary diagnosis, and the following are secondary diagnoses. 
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The total number of secondary diagnoses allowed per patient varies by jurisdiction, but in the US, the 

payments system is generally structured so only the first eight are used, and thus all states report at 

least eight secondary diagnoses. 

A number of different methods have been used to address the issue of clinical coherence of sample. 

There are currently over 15,000 diagnoses using ICD-9-CM’s scheme, a total that has increased over 

time. Ellis (2000) suggests that it is intractable to classify individuals at this level of detail, and some 

effort has been put into reducing the number of possible diagnoses for the purpose of risk adjustment. 

Elixhauser comorbidity measures categorize the ICD-9-CM diagnoses codes into 30 categories. Logistic 

regression of mortality on Elixhauser comorbidity measures is a leading risk-adjustment strategy to 

account for patient-level characteristics in retrospective analyses (Elixhauser et al. 1998), which has 

been found to be superior to its precedent, the Charlson Comorbidity Index (17 Categories) by 

Southern et al. (2004), and in Taiwan by Chu et al. (2010). Others risk adjustment schemes include the 

Adjusted Clinical Groups (32 Categories), Diagnostic Cost Groups/Hierarchical Condition Categories 

(118+ Categories) used by Kromholz et al. (2006), Clinical Risk Groups (534+ Categories), and Clinical 

Classification Software (260+ Categories). Hierarchical Condition Categories were found to be better 

predictors than Charlson and Elixhauser (Li et al. 2010) and is the preferred method of the Center for 

Medicare & Medicaid Services. Pine, et al. (2007), use forward-stepwise logistic regression as a process 

of variable selection from the entire set of ICD-9-CM codes. 

The total number of categories in many schemes has increased as the number of ICD codes increases. 

Each of these seeks to provide a clinically coherent set of diagnoses, allowing the universe of diagnoses 

to be reduced from the number present in ICD, and to reduce the chance that patients with similar 

symptoms who are diagnosed using similar but slightly different codes are risk-adjusted in similar 

ways. 

An alternative to reducing the number of ICD codes is using classification and prediction algorithms 

which do not assume a data model and estimate parameters. Tree-based machine leaning methods 

such as random forest described below can perform this task in a computationally efficient way that 

avoids estimating parameters for a large number of predictors simultaneously without reducing the 

dimensionality of the problem through categorization of a priori variable selection. Tree based models 

have a high degree of predictive accuracy, but in contrast to econometric models, are not built to 

minimize bias. Machine learning methods do not overcome omitted variable bias, endogeneity 

between institutional quality and coding practices, or endogeneity between patient characteristics 

and coding practices. However, limitations such as these are present in previously used methods and 
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thus they do not limit the ability to compare performance between methods. Machine learning 

methods are increasingly being used in health economics when predictive accuracy is a high priority 

and the problems of using a method that is not unbiased can be mitigated (Hastie et al. 2009, Lee et 

al. 2010, Kreif et al. 2015). This paper used the random forest method rather than other machine 

learning methods such as neural networks or the super learner because tree based methods provide 

more transparency, as the output includes information about the importance of predictors in the 

prediction (Breiman, 2003). 

An important application of risk adjustment pertains to pay-for-performance (P4P). Risk adjusting 

performance seeks to incentivize the efficient, quality delivery of care measured with health 

outcomes. Bird et al. (2005) outline some principals of estimating performance indicators in the health 

sector. An important factor they note is how the variability in outcomes affects the confidence in 

estimates of performance. This variability plays a key role in this analysis, and the paper finds that the 

distribution of risk-adjusted mortality is quite sensitive to the method used to estimate patient risk. 

Existing research has emphasized the importance of uncertainty in empirical measurement when 

estimating institutional quality (Goldstein and Spiegelhalter, 1996). Street, 2002 showed that hospital 

efficiency was sensitive to estimation decisions, and questioned the use of hospital specific point 

estimates in performance evaluation.  

The United States are the Center for Medicare & Medicaid Services (CMS) Hospital Value-Based-

Purchasing plan is one of the largest pay-for-performance schemes currently in use and includes risk-

adjusted mortality rates with other quality measures. These rules withhold up to 3% of hospital 

reimbursements from all included hospitals and reallocate those payments according to the measure 

of hospital quality (Centers for Medicare & Medicaid Services, HHS 2011; Joynt and Jha 2013). 

Similarly, adjusting for patient risk in estimating the cost-effectiveness of hospital interventions plays 

a significant role in the resulting estimates and poor risk adjustment can make a difference when it 

comes to comparing the cost-effectiveness of interventions. McKay et al. (2008) use privately 

estimated patient risk values from a model which includes demographic variables and comorbidities 

to provide estimates of the importance of cost-inefficiency on health outcomes. Cost-inefficiency is 

estimated using stochastic frontier analysis, and is not found to be an important predictor of hospital 

performance. On the other hand, Karnon et al. (2013) show that risk adjusting has a great effect in 

how cost-effectiveness of hospitals is estimated and the ranking of hospital performance in their study 

of cardiac patients at four hospitals. 
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Underlying both pay for performance schemes and the cost-effectiveness of hospital interventions is 

the role that quality and perceived quality play in patient choice of their provider of care. Report cards 

are a popular way to influence patient perception of hospital quality. There has been a flurry of studies 

estimating the effect of these report cards, finding that admissions volumes are affected by report 

cards, especially when report card results are low (indicating high mortality) or below expectations 

(Cutler et al. 2004, Dranove and Sfekas 2008), but that report cards do not have a great effect on 

future performance (Dranove et al. 2003). In work with similar results, Wang et al. (2011) points out 

the importance of patient level over hospital level analysis in this area, while Epstein (2010) notes that 

reputation about performance plays an important role even where report cards are not available – 

both in the choices patients make and in how patients are referred by their general practitioners. In 

all cases, comparing quality among hospitals relies heavily on the quality of the method of risk 

adjusting mortality rates of the hospitals. 

 

2.3. Methods 

The first step in estimating risk-adjusted mortality rates is to estimate mortality risk. Then mortality 

risk can be used to adjust hospital mortality rates. First, mortality risk is estimated for each patient. 

Then estimated patient scores are used in a logistic regression mixed model with hospital random 

effects. The resulting estimates for the hospital effects are then normalized to the underlying mortality 

rate. 

It is common in risk adjustment studies to focus on cases of Acute Myocardial Infarction (AMI). In 

contrast to many conditions, the protocol for treating AMI is homogenous across facilities and 

comorbidities are commonly used to estimate patient severity (Antman et al. 2004). Therefore, a 

patient’s mortality is a function of both patient-level characteristics and the facility’s adherence to the 

“best practices” protocol, but not a facility-level choice of treatment strategy. Also, risk-adjusted 

mortality from AMI has been shown to be correlated at least with risk-adjusted mortality for coronary 

artery bypass graft, and suggest that hospitals providing good-quality medical management of 

coronary artery disease also provided a good-quality surgical service (Park et al. 2005). 

Hospitals generally collect extremely detailed patient comorbidity data which may be used to estimate 

severity. In this model, an indicator variable for each disease in this data set is created and a value 

based on the presence of that comorbidity is assigned to each patient. An indicator variables for basic 

patient demographic data is also created. Faced with such a large number of predictors, machine 
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learning techniques provide a way to build models that include as many predictors and interrelations 

between predictors as necessary (Caruana et al. 2008, Hastie et al. 2009). This model uses a random 

forest to estimate a patient’s mortality likelihood1 with actual in-hospital mortality as the outcome 

variable and these comorbidity and demographic indicator as predictors. The fitted outcome of this 

procedure is patientscore which is measured as a percentage of trees for each patient which predict 

that the patient will die. Patientscore is continuous on the interval [0, 1] but should not be thought of 

as a percentage chance that a patient will die – random forest does not lend itself to this interpretation 

in the way that probit regression might. The model is generated using half the observations as a 

training set and the other half as a test set. Model fit statistics are generated for the test set sample, 

alone, but risk-adjusted mortality rates for facilities are calculated using patient scores from both the 

test and training set so that there are more observations per hospital. Separating data into a test and 

training set is common in estimating goodness of fit for machine learning methods to reduce the 

possibility that goodness of fit scores represent over-fitted models which can result from using the 

same data to generate and test the model.2 

Random forests are based on the creation of many classification trees (the general method, 

classification and regression trees, may be better recognized by its acronym, CART). A classification 

tree is a binary decision tree that takes a selection of the data at each node and split it into two sets 

based on its classification according to a variable selected from the set of predictors. Given a chosen 

predictor, the node splits the observations based on whether or not the observation takes a value for 

that predictor from a set of values (for instance, if the predictor is binary, then the node splits based 

on whether that predictor takes a zero or one, if the variable is continuous, the node may split the 

observations based on whether or not they take a value greater than some constant). At the first node 

is the entire set of observations being used for a particular tree. At each node, the variable used to 

split the data is selected based on one of many different splitting criteria. These criteria seek to 

measure how well the observations are split based on how homogeneous the post-split sets are in 

terms of the outcome variable of interest. In random forests, the criterion that is usually used (and 

the criteria used in this paper) is to maximize reduction of Gini impurity (Breiman, 2003). Gini impurity 

measures of how often a randomly chosen observation from the set of observations at a node would 

be incorrectly labeled if a label were randomly assigned. This reduction in gini impurity is calculated 

by looking at a weighted average of the gini impurity of the two subsets that are formed after the 

                                                           
1 Random forest is computed using R version 3.0.1 and the package RandomForest version 4.7 using default 
parameters. Alternate runs increasing the number of trees to grow and increasing the number of variables 
sampled at each node did not change the results. 
2 Great variation in predicted outcomes was not found between a random forest model created using the entire 
sample compared to one with only a 50% training sample. 
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observations are split. In random forests, new nodes are added to trees until no further reduction in 

gini impurity is possible. While generating a decision tree can take many calculations as the gini 

impurity is estimated for many predictors across many potential nodes, no calculation is 

computationally complex in the way that matrix manipulation required for generalized least squares 

regression can be, and thus is well suited for large data sets with many predictors. 

Random forest is an ensemble learning method which means that it generates many classifiers and 

aggregates their results, illustrated in Figure 2.1. These classifiers are individual decision trees, here 

10,000 trees are used (changing this by a factor of 10 or 100 did not materially change the results). 

Trees are generated using a bootstrap sample of the training data and a random subset of the 

predictors. Each tree is then used to predict whether or not an observation in the test set died, and 

patient score is based on the percentage of trees which predict mortality for that patient. In some 

trees it is possible that the key predictors are not selected, and thus much of the predictive power 

may come from a subset of the trees. This technique is sometimes called bootstrapped aggregating or 

bagging. Since a subset of predictors is used, each tree is less powerful for predicting than would be a 

single tree built using the entire set of predictors. However, a tree built from the entire set of 

predictors may be over-fit, producing a very good predictor on the training set of data but not on the 

test set of data. Taking a random subset of predictors for each tree is akin to applying a shrinkage 

method where those predictors are forced to have no effect on a prediction. Thus random forests take 

on the low variance and high predictive power of shrinkage methods and the robustness to outliers, 

insensitivity to monotone transformations of predictors, and computability of tree based methods 

(Hastie T, Tibshirani R, and Friedman J. 2009). 
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Figure 2.1: Schematic diagram of random forests 

 

For comparison, random forests using the Elixhauser classification scheme as well as performing a 

logistic regression based model are created. Logistic regression requires an iterative process to 

converge upon a set of values reflecting the contribution each predictor to the outcome of interest. 

In a case such as the one here studied, the large number of predictors causes the process to fail to 

converge, even when the process is allowed a very large number of iterations. To deal with this, a 

variable selection method is often recommended; Pine, et al. (2007), use forward-stepwise logistic 

regression as a process of variable selection. This work is replicated using forward-stepwise logistic 

regression to select a subset of present on admission predictors of equal number (they select 200 

predictors) to that selected in Pine et al. Forward-stepwise regression starts with a logistic model with 

no predictors. It selects from the set of all predictors that predictor which most improves the fit. To 

choose which predictor most improves fit, at each stage, the predictor that gives the greatest 

improvement in AIC is selected. Logistic regression on just those 200 predictors is carried out and 

other predictors are not included in this model. Thus, forward stepwise logistic regression can be 
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interpreted as a sort of shrinkage method – it can also be interpreted as a method of variable selection 

as these interpretations are not mutually exclusive.  

When predicting binary outcomes, there are many goodness of fit statistics appropriate for estimating 

model quality (Baldi et al. 2000), and this paper focuses on four such statistics. Let 𝑇𝑇𝑇𝑇 be true positives, 

𝑇𝑇𝑇𝑇 be true negatives, 𝐹𝐹𝐹𝐹 be false positives, and 𝐹𝐹𝐹𝐹 be false negatives. The statistics considered are: 

accuracy 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

, precision 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

, Matthews correlation coefficient or Phi coefficient 

𝑇𝑇𝑇𝑇∗𝑇𝑇𝑇𝑇+𝐹𝐹𝑃𝑃∗𝐹𝐹𝐹𝐹
√(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)∗(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)∗(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)∗(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)

, and the area under the receiver operator characteristic (ROC) 

curve. The ROC curve is a plot of the true positive rate or sensitivity of a predictor against the false 

positive rate or 1-specificity of a predictor where the scores are assigned to outcomes dependent on 

their comparison to some threshold (scores above the threshold are assigned mortality equal one, 

below are assigned zero). The area under the ROC curve is equivalent to the probability that a 

randomly chosen estimate from the set of observations with mortality equal to one will be scored 

higher than a randomly chosen estimate from the set of observations with mortality equal to zero. 

Since patientscore is not a prediction of mortality, but the percentage of the trees in the random forest 

that predict mortality, for these statistics to be calculated a threshold value on must be chosen 

between zero and one such that the patient is considered to have been predicted to die if their 

patientscore is above the threshold and to have survived if their patientscore is below the threshold. 

For each method, a number of thresholds may be chosen, and a threshold such that the estimated 

mortality rate will equal the true mortality rate is chosen in this paper, although a threshold such that 

the MCC is maximized is sometimes recommended as well (Baldi et al. 2000). 

Risk-adjusted mortality rates for hospitals are estimated from patient scores by estimating a logistic 

regression3 using actual mortality (patientOutcome) as a binary outcome variable, the logit 

transformation of patient scores (patientScore) as a fixed effect, and the individual hospital as a 

random effect: 

(1) 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝛼𝛼 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) + 𝛾𝛾ℎ𝑜𝑜𝑜𝑜𝑜𝑜 + 𝜖𝜖. 

Where 𝛾𝛾ℎ𝑜𝑜𝑜𝑜𝑜𝑜 represents the relationship between the patient outcome and a hospital (so ℎ𝑜𝑜𝑜𝑜𝑜𝑜 ∈

𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻) and is parameterized as a random variable (Gelman, 2006): 

                                                           
3 Logistic regression is performed using computed using R version 3.0.1 and the package lme4 version 1.6 using 
default parameters. 
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𝛾𝛾ℎ𝑜𝑜𝑜𝑜𝑜𝑜~𝑁𝑁�0,𝜎𝜎ℎ𝑜𝑜𝑜𝑜𝑜𝑜2 �. 

𝜎𝜎ℎ𝑜𝑜𝑜𝑜𝑜𝑜 is the standard deviation of model errors at the hospital level. Although patient score is not a 

probability measure, logit(patientScore) is used to improve the interpretability of this hospital 

measure. In particular, risk-adjusted mortality rate (RAMR) for a hospital can be estimated by the 

inverse logit of the conditional modes of the random effects given the observed data values and the 

estimated parameter values (𝛾𝛾�ℎ𝑜𝑜𝑜𝑜𝑜𝑜) plus the logit of the mean mortality rate across the entire 

population (11.7%): 

(2) 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(. 117) +  𝛾𝛾�ℎ𝑜𝑜𝑜𝑜𝑜𝑜� 

 

2.4. Data 

The New York and California State Inpatient Databases collected by the Healthcare Costs and 

Utilization Project contains approximately 90% of the state’s inpatient discharges each year (HCUP 

2014). The data collected is primarily used to calculate reimbursements for patient care. Variables 

include the patient’s age, sex and a series of ICD-9-CM diagnosis codes. States vary in the number of 

diagnoses recorded per patient per admission, but the minimum value across all states is nine. The 

first code listed is designated as the primary diagnosis. A secondary diagnosis is defined as one located 

in positions two through nine. At most the first nine diagnoses are used for each patient to ensure 

comparability across states. Each ICD-9-CM code consists of three to five digits. The first three digits 

represent a broad category of diagnosis. The fourth and fifth digits (if they exist) represent the sub-

category and sub-classification of the diagnosis, respectively. For this work, all comorbidities which 

have the same first three digits are grouped, this is compared to results with those where all five digits 

are used. The first three digits allow diagnoses to be grouped in clinically coherent ways (Krumholz et 

al. 2006b). 

The sample is limited to cases between 2005 and 2007 in which Acute Myocardial Infarction (AMI) is 
either the primary or a secondary diagnosis. Further, hospitals with fewer than 25 cases are dropped, 
as recommended by CMS (Grady et al. 2013). The sample consists of 425,322 patient-level 
observations, an average of 220 patients (sd = 190) per hospital and the mean hospital mortality rate 
is 11% (sd = 0.51).4 Useful demographic variables such as the age and sex of the patient, as well as the 

                                                           
4 Across New York and California, 4.3% of all observations which listed AMI did so at the tenth or greater position. 
Those observations were excluded from this analysis. Their inclusion did not materially change any of the 
reported results. 
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primary and eight secondary diagnoses can be used to create risk adjustment models from hospital 
administrative data. In the ICD-9-CM comorbidity coding schemes, the fifth digit, where present is a 
sub-classification code, and fourth digit is a sub-category code. A 3-digit ICD-9 code is created by 
dropping the fourth and fifth digit, leaving three digit alpha-numeric codes representing broad 
categories of diagnoses, which while broad, are more detailed than those of other categorization 
schemes. ICD-10 codes, which have been used in the US since October 2013, are not perfectly 
resolvable into ICD-9-CM codes, but are similar and may be used in the same way as ICD-9 codes. Age 
is binned into five year intervals, and along with a dummy for the patient sex and five dummies for 
different patient admission types along with 936 3 digit ICD-9-CM based binary comorbidity indicators 
totaling 987 predictors, all of which are binary variables. It is unnecessary to control for the non-linear 
effect of age on mortality in tree based models, and has no effect on the results, but is done for 
comparability to other research. 

An important issue facing researchers is the choice between risk adjustment as a prospective task 

versus a retrospective task. Prospective models rely more on information related to chronic conditions 

that persist over time, while retrospective models attach relatively more weight to information related 

to acute conditions (Ellis 2000). As a retrospective task, risk adjustment uses all information revealed 

about the patient through the care process. This involves including all comorbidity diagnoses given to 

a patient, including potentially conditions which the patient receives due to poor quality care, in-

hospital infections, or accidents that occur during the treatment process. These issues make 

prospective risk adjustment more appealing. Another argument for preferring prospective risk 

adjustment is that patient selection can be performed only from prospective information. Patient 

selection is an important consideration if there is concern that moral hazard affects hospital patient 

mix and thus could affect this analysis. Dunn et al. (1996) finds retrospective models greatly 

outperform prospective models in estimating patient mortality risk. However, in estimating facility 

performance it may be that prospective models are preferred. Data limitations minimize the ability to 

perform prospective analysis, however the data includes a variable indicating if a comorbidity is 

present upon admission to the hospital. When only those comorbidities that are present upon 

admission are used, estimated patient risk is more prospective than when all comorbidities are used. 

The possibility that the present on admission variable is not used uniformly across hospitals and the 

possibility of gaming this variable limit the applicability of these estimates. Using all comorbidities is 

briefly compared to using only those present on admission and in the preferred model only 

comorbidities present on admission are used. 

 

2.5. Results 
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Patient score summary results for different sets of predictors are reported in Table 2.1. Reported 

results are generated from out-of-sample observations only, and they are robust to alternative 

parameters of the random forest model.5 The principal statistic of interest is the area under the ROC 

curve. It is equivalent to the c-statistic, which represents the probability that a randomly-chosen 

patient who died will have a larger score than a randomly-chosen patient who survived. To estimate 

accuracy and precision of a prediction, the analysis must include a choice of cutoff, a score above 

which the patient will be predicted as dead and below which the patient will be predicted as alive. 

Since the proportion of patients expected to survive is known, a choice of that cutoff is made so that 

the percentage of patients predicted to survive is equal to the actual percentage. Another measure of 

quality of prediction is the Matthews correlation coefficient, which combines accuracy and precision 

into one measure.6  

                                                           
5 Neural networks was also attempted and found similar results. This paper focusses on random forests. 
6 A cutoff such that patients with scores below the threshold are predicted to live, and those with scores above 
are predicted to die is used (this paper’s cutoff equaled the mortality rate observed in the data, or 11.2%). The 
cutoff can also be varied to calculate the maximum value possible for Matthews correlation coefficient, accuracy 
and precision. All these values are reported in Table 1.  
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Table 2.1: Random forest model results for each diagnostic information set 
Model i ii iii iv v 
Diagnostic  Elixhauser 3-Digit POA Stepwise All 3-Digit All 5-Digit 
ICD-9-CM - 3-digit 5-digit 3-digit 5-digit 
Number of predictors 81 987 200 1,011 6,286 
Training set 50% 50% 50% 50% 50% 
C-Statistic 0.712 0.899 0.853 0.876 0.909 
Matthews correlation coefficient  0.146 0.264 0.230 0.234 0.271 
Accuracy 0.901 0.912 0.910 0.910 0.912 
Precision 0.397 0.842 0.696 0.720 0.860 

Note: Patient scores are generated using a random forest with different sets of predictors for each 
model. Results are generated from out-of-sample observations only. MCC, accuracy, and precision are 
calculated with the fraction of deaths set at the rate observed in this subset of the data (11.2%). Due 
to the high number of cases, bootstrapped standard errors estimated on each statistic were very low 
(below 0.005). Data is from California and New York State Inpatient Database, 2005-2007.  
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Focusing on c-statistic, models using present on admission (POA) 3-digit ICD-9 codes (ii) and using all 

3-digit ICD-9 codes (iv) perform similarly. To test the importance of the final two digits, a model using 

all 5-digit ICD-9 codes is estimated (v). The 5-digit ICD-9 code model performed similarly to the 3-digit 

codes, but this result may depend on the size of the training set. All three significantly outperform the 

models proposed by Elixhauser et al. (1998) (i) and an approximation of the model used in Pine et al. 

(2007) (iii). Very little distinction between models using 3-digit and 5-digit ICD-9 codes is found, even 

though the latter uses the full set of 15,000 5-digit ICD-9 codes. This increase in predictors is 

computationally more intensive (which is why its training set is smaller). This implies the informational 

value of the fourth and five digits is relatively small. All of these statistics are generated using the test 

set only, but the training set gives very similar estimates, as might be expected given the large number 

of observations. 

It is assumed that including only diagnoses that are POA represents the ideal measure of exogenous 

patient-level risk. Figure 2.2 illustrates scatters of patient-level scores, and it shows a strong 

correspondence between models using only POA diagnoses (ii) and all diagnoses (iv).  Table 2.2 is a 

correlation matrix of facility-level scores generated from each of the five risk-adjustment models with 

own model standard deviations down the triangle.7 It reports both the Pearson correlation of facility-

level quality scores and the Spearman correlation of the rankings that result from those scores. 

Comparing models with POA diagnoses (ii) to all diagnoses (iv), the facility correlations are extremely 

high: 0.948 for the scores and 0.953 for the ranking. This suggests that in jurisdictions without POA 

coding, the closest proxy is to use all available diagnosis codes. The diagonal of this table are the 

standard deviation of hospital rankings within that model. This statistic expresses how the much the 

variation in patient scores affects the distribution of hospital risk-adjusted mortality rates. Since this 

method models those rates using a Gaussian-distributed random effect with expected mean equal to 

the underlying rate of mortality in the data, the standard deviation of these scores is the key statistic 

in understanding variation in this distribution. An f-test shows that pairwise difference between these 

standard deviations is significant in all cases where the method using random forest on 3-digit present 

on admission predictors is used, but not in any of the other cases. This significance suggests that the 

presence and accuracy of present on admission indicators in patient data may be an important 

consideration when choosing an optimal risk adjustment process. 

  

                                                           
7 To increase the number of patients per hospital, both in-sample and out-of-sample observations are used in 
these regressions. 
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Figure 2.2: Scatterplot of Patient Scores across Models. 

Panel A: Model POA 3-Digit ICD-9 Diagnoses (ii) 
versus POA Pine 2007 Inspired mode (iii)  

Panel B: Model with POA 3-Digit ICD-9 Diagnoses 
(ii) versus All 3-Digit ICD-9 Diagnoses (iv) 

  
Note: Patient scores are generated using a random forest with different sets of predictors for each 
model. Data is from California and New York State Inpatient Database, 2005-2007. 
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Table 2.2: Pearson and Spearman Correlation Matrix of facility-level quality scores generated by 
each of the five diagnostic models with own model standard deviations down the diagonal 

Statistic Model 
I ii iii iv v 
Elixhauser 3-Digit POA Stepwise All 3-Digit All 5-Digit 

Pearson correlation 
of facility-level 
quality scores 

i Elixhauser 0.237 0.755 0.859 0.827 0.737 
Ii 3-Digit POA  0.296 0.906 0.948 0.910 
Iii Stepwise   0.234 0.967 0.855 
Iv All 3-Digit    0.238 0.889 
V All 5-Digit     0.223 

Statistic   Elixhauser 3-Digit POA Stepwise All 3-Digit All 5-Digit 

Spearman’s ρ 
correlation of the 
ranking of facilities 
by quality score. 

i Elixhauser 0.237 0.779 0.852 0.832 0.740 
ii 3-Digit POA  0.296 0.917 0.953 0.898 
Iii Stepwise   0.234 0.959 0.849 
iv All 3-Digit    0.238 0.882 
v All 5-Digit     0.223 

Note: Correlation matrix presents correlation between hospital scores across methods, with diagonal 
representing the standard deviation of hospital scores. Hospital Risk-adjusted Mortality Rates (RAMR) 
estimated from a hospital random effect on a logistic model with AMI patient mortality as the outcome 
variable and patient score as the input variable. Patient scores generated using stepwise logistic 
regression on 5-digit predictors generating a logistic model with 200 predictors for the stepwise model. 
Patient scores are generated using a random forest with different sets of predictors for all other 
models. Data is from California and New York State Inpatient Database, 2005-2007. 
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To further evaluate the usefulness of this metric, hospital risk-adjusted mortality rates is compared 

between using 3 digit ICD-9 predictors to the hospital risk-adjusted mortality rates using Elixhauser 

predictors. Figure 2.3 is a scatter plot of hospital scores for the 583 hospitals in this New York and 

California dataset across these two methods. Since 2013, CMS has withheld a percentage of payments 

to US hospitals to fund the Hospital Value-Based Purchasing Program. In 2013, the first year of this 

program, this was 1% of payments. This is scaling up, rising to 2% by 2017 and continuing at that level 

thereafter. These funds are awarded to hospitals based on a rank ordering of quality of care as 

measured through process indicators, outcome indicators, and patient experience indicators. 

Payments for performance in 2013 were announced in November of that year; approximately half of 

hospitals would see payments change between -0.2% and +0.2%, with a quarter being above that level 

and a quarter below. The half with minimal change is defined by the CMS as breaking even through 

the program (Conway 2013). If quality were entirely based on risk-adjusted mortality rates using the 

3-digit POA method (model ii), about one third of hospitals losing over 0.2% of payments using the 

Elixhauser method would now be defined as breaking even; and about 7% of hospitals losing over 

0.2% would instead gain over 0.2%. This magnitude of change is present for hospitals estimated to be 

of high quality using the Elixhauser method, about a third of hospitals gaining over 0.2% would merely 

break even using this method and about 8% of hospitals gaining over 0.2% are would instead lose over 

0.2%. Thus the method strongly affects a significant amount of hospital payments. Rosenthaul and 

Frank (2006) review existing pay for performance programs in health and find that they have limited 

effectiveness. They suggest that the small size of the bonus payments plays a role, to which this 

analysis adds the inefficiency of currently used estimates of facility performance. 
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Figure 2.3: Comparing Hospital Risk-adjusted Mortality Rates 

 
Note: Hospital Risk-adjusted Mortality Rates (RAMR) estimated from a hospital random effect on a 
logistic model with AMI patient mortality as the outcome variable and patient score as the input 
variable. Patient scores are generated using a random forest with different sets of predictors for each 
model. Data is from California and New York State Inpatient Database, 2005-2007. 
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An important existing procedure for risk adjustment using detailed comorbidity information is 

forward-stepwise logistic regression as shown in Pine, et al. (2007). A similar c-statistic and accuracy 

is found, but significantly improved precision. This suggests that in this case forward-stepwise logistic 

regression does not overcome issues related to bias compared to tree-based methods.  

In order to express uncertainty in hospital specific quality estimates, O used hospital-clustered 

bootstrapping to generate 500 datasets from the test-set admissions. I then estimated hospital risk-

adjusted mortality rate for each bootstrapped dataset and ranked facilities for that bootstrapped 

sample. I then calculated across all bootstraps each facilities mean absolute change in ranking 

between that method and using the Elixhauser method for each hospital and 95% confidence interval 

around that ranking. These means were then normalized so that for each hospital, the mean difference 

is set to be positive. Thus, a negative value for the 2.5 percentile implies that at least 2.5 percent of 

the time the hospital ranking moved in the opposite direction of the mean. Using 5-digit ICD-9 codes 

gives a mean absolute change of 5.8 (a mean 2.5% of 0.1; and a mean 97.5% of 11.0), while 3-digit 

POA ICD-9 codes gives a mean change of 2.9 (-0.2; 5.5) and all 3-digit ICD-9 codes gives a mean change 

of 7.1 (1.1; 14.5). Thus, we can be reasonably certain that the variation between rankings comparing 

the new methods with Elixhauser is more than variation that would come from random chance. 

 

2.6. Discussion 

This paper assumes that morbidities in this data are coded to represent the best belief of the 

diagnosing physician. However, this may not be true and instead, coding may be performed to 

optimize patient risk to give highest estimate of hospital quality. This is unlikely, not least because the 

data is collected for the purpose of reimbursements and not for quality estimation and because 

patient care depends in part on accurate recording of diagnoses. However, this gaming could occur 

through recording patient comorbidities that inflate a patient’s mortality risk. Any model used will 

necessarily associate certain diagnoses with a higher predicted mortality than other similar conditions. 

In recording comorbidities, doctors and health administrators sometimes must choose between very 

similar conditions. In such cases, allowing great specificity in conditions may allow doctors or health 

administrators to choose a condition which a model gives higher weight in predicting mortality. Using 

a non-parametric model such as random forests lessens the ease of taking this action, but does not 

completely rule it out. Regardless of whether such a patient survives, this type of gaming will result in 

a better risk-adjusted mortality rate for a hospital than they would otherwise receive. Unfortunately, 

it may not be possible to prevent this type of gaming in all cases. However, if it is known that switching 



27 
 

is occurring between two similar conditions, those conditions can be combined into one condition for 

the purposes of the model. Also, using aggregated ICD codes (in the case of ICD-9 CM, this is done by 

using only the first 3 digits) minimizes the chances that a condition could be included in the model 

under two different codings. 

Another issue that is true for all in-hospital mortality based measures of quality is that patients who 

are likely to die soon could be discharged to avoid their inclusion in in-hospital mortality data. For this 

reason, 30-day mortality, which includes mortality within 30 days of discharge from the hospital, is 

commonly used instead of in-hospital mortality. 30-day mortality is not included in this data set and 

not used in this paper. 

A third issue is related to the cross-sectional nature of the data. Random forests as used in this paper 

are not suited to, for instance, survival analysis. However, recent work has extended machine learning 

methods and even random forests to such data and has found similar improvements to prediction 

(Ishwaran et al, 2008). Further research of the problems in this paper should link patients visits so that 

information from prior visits can be included in prediction, and may extend on that work. 

2.7. Conclusion 

Our results show significant improvement in risk-estimation for the purposes of risk-adjustment when 

using random forests on all ICD-9 codes over current methods. The paper also shows that facility 

rankings vary significantly between the preferred risk-adjustment model and models which use more 

limited sets of patient morbidity information such as variable selection models such as forward 

stepwise logistic regression and variable categorization methods such as using Elixhauser’s 

Comorbidity Index. Variation is extremely small between a risk adjustment model using POA diagnosis 

codes and a model which uses all available codes. Therefore, if one’s objective is to generate facility-

level quality scores in jurisdictions in which POA codes are unavailable, then the preferred risk-

adjustment strategy is to use all available information. This conclusion is conditional on a risk-

adjustment strategy that utilizes machine learning and large volume of data, and one may draw 

different conclusions under different conditions. However, given rapid increases in both the 

availability of data and computing power, these conditions may be widely applicable to contemporary 

health economics research. 

This paper has shown that risk adjustment using with all ICD-9 codes directly in the analysis can be 

performed using random forests. Future research to confirm these results should also consider using 

disease classification from volume 10 of the International Classification of Diseases as well as 



28 
 

considering its application to risk adjusted readmission rates. It has also shown that such a method 

greatly improves the predictability of the model over GLS methods currently common in the literature 

and used in government and industry applications. It has also shown that this improvement in 

predictability results in significantly different estimates of hospital quality and that pay-for-

performance schemes and quality reports would reflect this difference. In particular, this paper shows 

that the quality of as many as one-third of hospitals would be mis-categorized in a scheme which uses 

RAMR to group facilities into three groups: below average, average, and above average. As such, using 

a machine learning method such as random forests using all POA ICD-9 codes would be the preferable 

method for risk adjusting patient mortality.  
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Chapter 3 

3.1. Introduction 

The Affordable Care Act’s Hospital Value-Based Purchasing Program is a program which began in 2013 

and withholds a portion of a hospitals federal reimbursements and distributes those funds to hospitals 

in proportion to the hospital’s quality ranking. The ranking is based on a number of measures, 

including risk-adjusted mortality rates (RAMRs) and risk-adjusted readmission rates. This type of 

program is often called a pay-for-performance program and represents a large financial incentive to 

hospitals to perform well in these measures. Research on measurement issues in health economics 

has considered the bias that might come in estimation due to reporting heterogeneity (Bago d’Uva et 

al. 2008). Less focus has been given to the question of how important the method of aggregation of a 

statistic in health economics is to the usefulness of the resulting estimate. This paper addresses the 

question of how to calculate RAMRs. This paper considers different health economics applications and 

suggests the preferred method of estimating RAMRs. 

In-hospital patient mortality risk can be estimated upon patient arrival with increasing accuracy and 

precision due to increased detail and regularity in administrative coding of patient morbidities upon 

arrival and the use of non-parametric methods to capitalize upon non-linearities and interaction 

between different morbidities. A hospital risk-adjusted mortality rate (RAMR) is an estimate of the 

risk of mortality at a hospital that controls for uneven case mixes at different hospitals and is used as 

an estimate of hospital quality. There has been some research on the role of the estimation of patient 

mortality risk in estimating RAMR (Pine 2007, CMS; HHS 2011). Less focus has been paid to the 

question of how to use patient risk to adjust mortality rates. While the method used to estimate 

patient risk and the method used to apply those risk estimates to adjust mortality rates was debated 

during the creation of the Affordable Care Act passed in the United States in 2010 (CMS; HHS 2014), 

there does not exist metrics to compare the usefulness of methods used to estimate RAMRs from 

patient risk. This paper proposes such metrics and argues that the choice of formula used to estimate 

RAMR has a significant effect on hospital scoring and relative ranking. 

This paper identifies a number of competing formula for RAMR as a function of patient risk and 

realized patient mortality. It focuses on three important uses of this measure: (1) by patients who may 

choose between different facilities on the basis of quality, (2) by policy makers who seek to reward 

high quality facilities through pay-for-performance schemes and to close low quality facilities, and (3) 

by economists and health policy researchers who wish to use RAMRs in their analyses, either by 

estimating the determinants of RAMRs (that is RAMR as an outcome variable) or by using RAMRs as a 
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predictor in an analysis of another outcome. For each of these applications, three tests can be used to 

compare the accuracy of a formula in estimating RAMR. Simulation from the distribution of patient 

risk and RAMRs among Acute Myocardial Infarction (AMI) patients in New York hospitals from 2005-

2007 is used to estimate the quality of each formula and provide preferred formulae each application. 

This paper makes three contributions. First, in order to assess the relative performance of the different 

formula, this paper proposes a taxonomy of RAMR formula. Second, it designs a simulation framework 

to model patient risk and hospital quality. Third, it proposes different tests to estimate the usefulness 

of a risk-adjustment formula to achieve various health economics tasks. Given a set of patient 

mortality risks, the most intuitive and possibly the most common formula for RAMR is to multiply a 

hospital’s excess mortality ratio by the underlying mortality rate in the population (Guru et al. 2008; 

Hannan et al. 2013). Another method involves replacing the actual hospital mortality with the 

expected value of a hospital’s mortality from a “random effects” model of hospital mortality in the 

estimation of a hospital’s excess mortality ratio. This method is recommended for use in the 2013 

Affordable Care Act, and is not uncommon elsewhere in the literature (Krumholz et al. 2006b; Grudy 

et al. 2013). Since the hospital specific effect is estimated using a probability function which can shrink 

extreme values towards the mean (commonly called a random effect in economics), this process can 

smooth RAMR estimates when a hospital has fewer patients. Alternatively, a hospital specific effect is 

sometimes used directly as a control variable (see Mark et al. 2005).  

 

3.2. Background 

In one type of formula to estimate RAMR, first a binary outcome model of patient mortality as a 

function of patient mortality risk is created. This model gives an estimate of the probability of patient 

mortality as a function of patient mortality risk independent of the hospital the patient attends. The 

sum of these estimates of patient mortality risks for all patients at a given hospital is an estimate of 

the hospital’s risk-adjusted expected mortality rate. This model is compared to an estimate of the 

actual mortality rate in a hospital. There is a common alternative to obvious method to estimate actual 

mortality of dividing total deaths by total patients. The alternative is to use estimate a multilevel binary 

outcome model which includes hospital-specific effects and use the hospital-specific effects as the 

estimate of the actual mortality rate. The ratio between the estimated mortality rate independent of 

the hospital and the estimated actual mortality rate is sometimes called an excess hospital mortality 

ratio. Multiplying this ratio by a population average mortality rate gives a standardized risk-adjusted 

mortality rate.  
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There has been limited research on the formula used to estimate RAMR. Silber et al. (2010) study the 

model recommended by Medicare’s “Hospital Compare”, which is equivalent to that used by the 

Affordable Care Act, to estimate annual RAMR for AMI cases. They show that the accuracy of the 

model suffers because some hospitals do not receive very many patients per year. The paper notes 

that hospital volume is known to effect hospital quality and suggests that estimated RAMRs would be 

more accurate if other information, particularly volume, is used in the estimation. This paper also 

notes the advantage of using random effects in modelling RAMRs using a multilevel model because it 

provides shrinkage of the estimated rates towards the mean across all hospitals (Gelman, 2006), an 

effect which results fewer estimates of extremely high and extremely low performing hospitals, 

particularly for hospitals with fewer patients. 

Simulation is frequently used in health research and has been used to address issues with hospital 

quality measurement. Hofer & Hayward (1996) provide an early example of the use of Monte Carlo 

simulation to understand if simulated variation in hospital quality due to different rates of preventable 

mortality would be detected in variation in mortality rate. Even in cases where they assume perfect 

case-mix adjustment, where only patients’ primary diagnoses are considered and no risk adjustment 

is performed based on additional information about patient case-mix, they find that detection of 

variation in mortality rates may not be possible. More recently, Koetsier et al. (2012) use simulation 

of RAMRs to see how different sequential stopping tests used in quality control perform at the task of 

finding an unexpected decrease in hospital quality over time. Their paper considered a case where 

hospital quality is measured repeatedly over time and after a given period, the mortality rate increases 

slightly (representing a decrease in hospital quality). It then asks how many additional periods of 

measurement at this lower quality are required before different sequential stopping tests signal a 

change in the RAMR. 

To understand how one might measure the usefulness of an RAMR formula, it is important to note 

some of the applications of hospital RAMRs. Important applications of risk-adjustment include pay-

for-performance (P4P), the role of perceived hospital quality in patient choice, and estimation of the 

relationship between quality and its determinants. Risk-adjusting performance seeks to incentivize 

quality delivery of care independent of cost and using health outcomes as the dependent outcome 

(Ellis 2000). Bird et al. (2005) outline some principals of estimating performance indicators in the 

health sector. An important factor they note is variations in patient case-mixes across facilities. This 

variability plays a key role in this analysis and an explicit attempt to model systematic and random 

case-mix heterogeneity across facilities. The two most prominent P4P plans introduced to date in the 

United States are the Center for Medicare & Medicaid Services (CMS) Hospital Value-Based-
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Purchasing plan and Hospital Readmissions Reduction Program which use risk-adjusted 30-day 

readmission and risk-adjusted 30-day mortality as measures of quality. Adjustment is performed by 

categorizing comorbidities using a modified set of CMS HCC indicators. Collectively these programs 

reallocate up to five percent of DRG-based reimbursements for inpatient stays (Centers for Medicare 

& Medicaid Services, HHS 2011; Joynt and Jha 2013). The value of pay-for-performance schemes relies 

crucially on the rank correlation (i.e. Spearman correlation) between estimated RAMR and the 

hospital’s actual RAMR. As with many of the analyses discussed in this review, this work uses the in-

hospital mortality instead of the very highly correlated 30-day mortality. 

Another important consideration in the importance of accurate RAMR estimation is the role that 

quality and perceived quality play in patient choice of their provider of care. Report cards are a popular 

way to influence patient perception of hospital quality. There has been a flurry of studies estimating 

the effect of these report cards, finding that admissions volumes are effected by report cards, 

especially when report card results are low (indicating high mortality) or below expectations (Cutler 

et al. 2004, Dranove and Sfekas 2008), but that report cards do not have a significant effect on future 

performance (Dranove et al. 2003). 

Similarly, hospital mortality rate and RAMR is used to estimate the importance of hospital level 

variables. In the health economics literature, Mark et al. (2005) use risk-adjusted mortality rates as an 

outcome variable in a study of HMO penetration in the US. More recently, risk-adjusted mortality rates 

were treated as a control in McKay et al. (2008), who estimate a model of observed mortality on cost 

inefficiency, patient case mix, hospital quality, and hospital volume. Volume is an extremely common 

predictor of interest, Finks (2011) look at how the relationship between volume and RAMR has 

changed over time. Inaccurate estimation of RAMR can be interpreted as measurement error plays an 

important role in the biasedness of coefficient and standard error estimates in regressions involving 

RAMR such as these. This study explicitly simulates the relationship between volume and RAMR, but 

does not seek to provide a causal estimate of this relationship. 

RMSE, bias, correlation, bias2 

This paper assumes a true RAMR and considers the usefulness of different models of RAMR comparing 

modeled and true RAMR using four metrics, Root mean squared error (RMSE) between true and 

modeled RAMRs, bias between true and modeled RAMRs, correlation between the true and modeled 

RAMRs, and bias in the estimation of a relationship between RAMR and a correlated predictor 

between true and modeled RAMRs. RMSE is intuitively similar to sum of squared errors (SSE). 

Minimizing RMSE is equivalent to minimizing SSE, the optimization condition of ordinary least squares 
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regression. Unlike SSE, RMSE has the same scale as the data, and thus gives us a good idea how wrong, 

on average, an estimated RAMR is. The closer RMSE is to zero, the better.  Bias estimates the direction, 

on average, of the error in estimation of RAMR. A high correlation of estimated RAMR to actual RAMR 

is extremely important for the credibility of a pay-for-performance program that emphasizes relative 

position of ranking of hospitals. Bias in estimation of 𝛽𝛽(3) provides a flavor of how important accurate 

estimation of RAMR is for scholars seeking to estimate the determinants of hospital quality and is 

described in more detail later. 

3.3. Data 

Inpatient data on patients with primary diagnosis of acute myocardial infarction (AMI) is frequently 

used for work on RAMR. A primary reason is that mortality is the outcome of overwhelming 

importance to the treating doctor, rather than, for instance a balance which includes subjective weight 

on post-treatment quality of life (Krumholz et al. 2006a). Additionally, AMI diagnoses have an 

incidence rate and mortality rate which are high enough to allow for statistical inferences. Common 

methods of estimating patient risk use administrative data on patient morbidities upon arrival. 

Administrative data is quite detailed and estimating patient risk from administrative data can require 

a reduction in the dimensionality of patient morbidity detail. Methods to reduce this dimensionality 

include selecting a subset of highly predictive admission morbidity codes (Pine 2007) and categorizing 

different morbidities together based on clinical coherence, such as the hierarchical condition 

classification used by the Centers for Medicare & Medicaid Services, (CMS; HHS 2011). The quality of 

a prediction is measured by the precision and accuracy of an estimate and by a statistic called the area 

under the ROC curve or c-statistic. Variation in accuracy within a condition is minimal, and so 

simulating variation in precision (and thus in the c-statistic) is the main focus of introduced noise in 

the simulations. While having slightly different scales, estimates of both of these methods vary from 

between 0.9 and 0.6, with precision 1.0 being an implausibly perfect prediction.  

To parameterize the simulation all inpatients from the New York State Inpatient Databases 2005-2007 

whose primary diagnosis is AMI (ICD-9-cm codes starting with 410, excluding those with an indicator 

for a prior occurrence) are pooled. The New York State Inpatient Databases collected by the 

Healthcare Costs and Utilization Project contains approximately 90% of the state’s inpatient 

discharges each year (HCUP 2014). The data collected is primarily used to calculate reimbursements 

for patient care. Variables include the patient’s age, sex and a set of patient comorbidities encoded 

using of ICD-9-CM diagnosis codes. The first code listed is designated as the primary diagnosis.  
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The sample is limited to cases between 2005 and 2007 in which Acute Myocardial Infarction (AMI) is 

either the primary or a secondary diagnosis. The age and sex of the patient, the source of admission 

(self-admit, emergency, and transfer are the main categories), as well as the primary and eight 

secondary diagnoses are used as predictors. Age is binned into five year intervals. Along with those, 

this paper uses dummy variables for the patient sex and five dummies for different patient admission 

source along with 6,286 3 digit ICD-9-CM based binary comorbidity indicators totaling 6337 predictors, 

all of which are binary variables. Using binned age indicator variables is commonly recommended as 

a simple means of controlling for non-linear age effects. Tree based models such as random forests 

control for the non-linear effect of age on mortality implicitly, and using a single continuous variable 

or multiple indicator variables has no effect on the results. Indicator variables are used for 

comparability to other research. 

Patient in-hospital mortality risk is estimated from these variables including only comorbidities 

recorded as present upon admission. The simulation adds noise to the patient risk variable to simulate 

variation in quality of patient risk estimation. To estimate patient risk as a single variable, first patient 

mortality probability is estimated using a random forest following the method of the second chapter 

which uses all administrative data on patient morbidities coded in ICD-9 as well as ages and hospital 

admission source to model patient mortality. This allows us to estimate with high precision and 

accuracy patient mortality probabilities, which is used as base estimates of patient risk. 

In such a large data set, population mortality rate (0.0951) is nearly exactly equal to the mean patient 

risk, 0.0951 (sd for patient risk 0.151). The number of AMI patients seen at each hospital (𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡ℎ) 

varies from 1 to 1363 (mean = 165, sd = 188). Following the method used by CMS (Grady et al. 2013) 

observations from hospitals that saw less than 25 patients are dropped, leaving 52,194 patients and 

324 hospitals. This step reduces a number of hospitals that perform very poorly or perfectly, small 

simulations which include these hospitals gave results consistent with those presented below. 

Hospital risk-adjusted mortality rates are estimated from the entire set of observations in the five 

unique ways available from the set in Table 3.1: “Raw local standardized”, “Local fixed effects”, 

“Sample fixed effects”, “Local random effects”, and “Sample random effects”. When estimated for the 

entire population, “Fitted sample standardized” equals “Sample random effects,”, and “Fitted local 

standardized” equals “Local random effects.” Formulae for each RAMR calculation are given in Table 

3.2, discussed below. 
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Table 3.1: Summary Statistics 
Variable Mean SD Min Max 

Patient Risk 0.0955 0.152 0.0394 0.992 

Patients per Hospital 220 190 25 1363 

Hospital Mortality Rate 0.111 0.0509 0 0.389 

RAMR (“Raw local 
standardized”) 

0.102 0.0389 0 0.304 

RAMR (“Fitted local 
standardized”) 

0.104 0.0367 0.0092 0.289 

RAMR (“Local fixed effects”) 0.111 0.0409 <0.001 0.389 

RAMR (“Sample fixed effects”) 0.103 0.0513 <0.001 0.359 

RAMR (“Local random effects”) 0.114 0.0513 0.0102 0.392 

RAMR (“Sample random 
effects”) 

0.106 0.0410 0.0160 0.363 

Note: Patient risk is summarized over all patients, while the other variables are at the hospital level. . 
“Raw” refers to an estimate which does not use a model of patient mortality. “Local” refers to a 
calculation which only uses patients which are actually admitted to each hospital while “sample” uses 
modeled patient outcomes if all patients were admitted to each hospital. “Standardized” refers to the 
standardization of an estimate by multiplying modeled outcomes by the ratio of actual mortality to 
expected mortality. “Fixed” effects use a fixed indicator variable for a hospital in modelling patient 
outcomes while “random” effects fit hospital outcomes in the model to a normal distribution with an 
estimated mean and standard error, and then use the mean of the distribution as a point estimate of 
the hospital-specific effect. Hospitals with less than 25 patients are dropped. Patient risk is fitted 
estimates from a logistic model of mortality on patient morbidities. RAMRs are estimated from pooled 
NY and CA data, 2005-2007. 
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The different estimates of RAMR have nearly identical means and standard deviations. While not 

perfect matches, the “fitted local standardized” method used by CMS (Grady et al. 2013) is selected 

as the basis for the simulations. Figure 3.1 presents a KDE distribution of the number of patients per 

hospital and of average RAMRs estimated from patient scores. Both variables are truncated at zero 

and have long right tails. Since hospitals with less than 25 patients are excluded, average RAMRs are 

neither too close to zero nor too close to one. 
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Figure 3.1: Distributions of key variables, NY and CA AMI inpatients, 2005-2007 
Panel 1: KDE of number of patients per hospital. 

 

Panel 2: KDE of average hospital RAMRs from 
patient scores.  

 
Note: For completeness, all hospitals are included in Panel 1. Hospitals with less than 25 patients are 
dropped in panel 2 and in all subsequent analyses. Estimates are from pooled NY and CA data, 2005-
2007. 
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Hospitals do not receive patients randomly from the universe of patients. That is, the mean patient 

risk of a hospital’s patients may be correlated to the RAMR of a hospital. The nature of this relationship 

is complex; it will be related to the decision of a patient’s ambulance team, the relationship between 

a patient and a hospital, the socio-economic condition of the patient’s neighborhood and socio-

economic aspects of patient risk not captured in the patient’s age and morbidities, etc. (see Finlayson 

et al. 1999). Likewise, hospital RAMR may be correlated to the number of patients a hospital receives, 

𝑁𝑁ℎ, either through patients preferring hospitals with lower RAMR or through hospital learning by 

doing. The purpose of this paper is not to understand the subtleties of these factors (for more, see 

Pitches et al. 2007), but it is important to test if these factors affect the quality or RAMR formulae. 

 

3.4. Model 

3.4.1. Estimating Risk-adjusted Mortality Rate 
There are various possible formulae that can be used to estimate risk-adjusted mortality rate. Before 

discussing these, this section needs to briefly define a few variables. Let 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑖𝑖 be an 

exogenous, unbiased measure of a patient’s risk of in-hospital mortality, 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑖𝑖. Average mortality 

and average patient risk for a particular hospital are given by 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�������|ℎ and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝����������������|ℎ, while 

averages for the entire sample are 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚������� and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝����������������. In this analysis the sample will be 

considered to be the entire population of cases. In cases where the sample does not equal the 

population, a further distinction would need to be made in these averages. This analysis relies on two 

different risk models with hospital effects. The fixed effects model is estimated as: 

(1) 𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡ℎ𝑖𝑖 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝛽𝛽𝑓𝑓𝑓𝑓 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑖𝑖 + 𝛼𝛼𝑓𝑓𝑓𝑓,ℎ + 𝜖𝜖𝑓𝑓𝑓𝑓,ℎ𝑖𝑖), 

Where 𝜖𝜖𝑓𝑓𝑓𝑓,ℎ𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝑓𝑓𝑓𝑓) is a disturbance parameter and 𝛼𝛼𝑓𝑓𝑓𝑓,ℎ is a hospital-specific effect estimated as 

a fixed effect in the model. Note that there is no global intercept, so a hospital-specific effect is 

estimated for every hospital. The expected mortality at a given hospital for patients of that hospital 

from this model is denoted 𝐸𝐸𝑖𝑖∈ℎ[𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�𝛽𝛽𝑓𝑓𝑓𝑓 ∗  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑖𝑖 + 𝛼𝛼𝑓𝑓𝑓𝑓,ℎ�]. The expected mortality at 

a given hospital for patients of that hospital from this model is denoted 𝐸𝐸∀𝑖𝑖[𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�𝛽𝛽𝑓𝑓𝑓𝑓 ∗

 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑖𝑖 + 𝛼𝛼𝑓𝑓𝑓𝑓,ℎ�]. 

A less common alternative formation for hospital RAMR use is 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�𝛽𝛽𝑓𝑓𝑓𝑓 ∗  𝐸𝐸𝑖𝑖∈ℎ[𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑖𝑖] +

 𝛼𝛼𝑓𝑓𝑓𝑓,ℎ� and 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�𝛽𝛽𝑓𝑓𝑓𝑓 ∗  𝐸𝐸∀𝑖𝑖[𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑖𝑖] +  𝛼𝛼𝑓𝑓𝑓𝑓,ℎ�. While the expectation of the inverse logit 

of a variable does not equal the inverse logit of its expectation, these two estimates are very similar 

and this alternative is not included. Note that the hospital specific effect is generally an underestimate 
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of RAMR unless 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 were normalized to have its mean equal zero. In that case the inverse 

logit of the hospital specific effect is equal to this alternative formulation, i.e. 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�𝛼𝛼𝑓𝑓𝑓𝑓,ℎ�  =

 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�𝛽𝛽𝑓𝑓𝑓𝑓 ∗  𝐸𝐸𝑖𝑖∈ℎ[𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑖𝑖] +  𝛼𝛼𝑓𝑓𝑓𝑓,ℎ�. 

The random effects model is estimated as: 

(2) 𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡ℎ𝑖𝑖 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝛽𝛽𝑟𝑟𝑟𝑟 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑖𝑖 + (𝛼𝛼𝑟𝑟𝑟𝑟,ℎ + 𝜖𝜖𝑟𝑟𝑟𝑟,ℎ𝑖𝑖)), 

Where 𝛼𝛼𝑟𝑟,𝑒𝑒ℎ~𝑁𝑁(𝜇𝜇𝑟𝑟𝑟𝑟 , 𝛿𝛿𝑟𝑟𝑟𝑟) is estimated as normally distributed from a probability model and 

𝜖𝜖𝑟𝑟𝑟𝑟,ℎ𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝑟𝑟𝑟𝑟) is the second disturbance parameter. Again there is no global intercept, so it is not 

necessary to assume that 𝐸𝐸(𝜇𝜇𝑟𝑟𝑟𝑟) = 0. Otherwise, this specification matches what is normally called 

random effects in the economics literature. A fitted estimate of the probability of mortality for an 

observation from this model is denoted 𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡ℎ𝚤𝚤|𝑟𝑟𝑟𝑟� . The expected mortality at a given hospital for 

patients of the hospital from this model is denoted 𝐸𝐸𝑖𝑖∈ℎ[𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�𝛽𝛽𝑟𝑟𝑟𝑟 ∗  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑖𝑖 +  𝛼𝛼𝑟𝑟𝑟𝑟,ℎ�]. 

The expected mortality at a given hospital for patients of that hospital from this model is denoted 

𝐸𝐸∀𝑖𝑖[𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�𝛽𝛽𝑟𝑟𝑟𝑟 ∗  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑖𝑖 +  𝛼𝛼𝑟𝑟𝑟𝑟,ℎ�]. As with “fixed effects”, the average of the set of 

mortality risks for the set of patients is the focus rather than estimating hospital mortality risk for the 

average of the set of patients. 

This paper suggests seven ways to estimate risk-adjusted mortality rates which can be characterized 

across a number of different strategy groupings. One strategy grouping involves estimating the ratio 

of the overall population mortality rate divided by an estimated expected mortality ratio and 

multiplying this ratio by the hospitals actual or predicted mortality ratio. The paper calls this grouping 

“standardized” estimation, the ratio of population mortality to hospital or sample mortality can be 

considered a standardization of risk-adjusted mortality provided by the expected mortality rates. 

Occasionally risk-standardized mortality rates (RSMR) is used in the literature instead of risk-adjusted 

mortality rate. A distinction between the two is not always made, but in this paper, standardized refers 

only to mortality rates estimated in this way. 

A second grouping involves estimating hospital-specific effects in a logistic regression of patient 

outcome on patient risk. If the hospital-specific effects are estimated from a probability model to 

follow a normally distributed hospital-specific component of the error in the logistic regression, this is 

the method commonly called random effects in the economics literature, and this paper will denote 

this group “random effect” estimation. Alternatively, hospital-specific fixed effects can be included in 

the logistic regression, to be denoted “fixed effect” estimation. 
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Another dimension of grouping is to decide if hospital risk-adjusted mortality rates are to be estimated 

for the patients the hospital actually receives or if they are to be estimated as if the hospital has 

received an average patient from the sample (or, nearly equivalently, the hospital has received the 

entire set of patients in the sample). This paper uses the terms “local” and “sample” to differentiate 

between these. Finally, “local standardized” estimation of hospital risk-adjusted mortality rates can 

be calculated two ways, a hospitals actual mortality ratio can be divided by the expected mortality 

ratio or a hospitals mortality ratio can be predicted using a model which includes hospital effects and 

that prediction can be divided by expected mortality ratio. The former this paper calls “raw local 

standardized” estimation and the latter this paper calls “fitted local standardized” estimation. The 

latter method is performed using a hospital random effects model to predict patient mortality for 

hospitals in the method used by CMS (Grady et al. 2013), and this paper follows that procedure. Racz 

& Sedransk (2010) give the name of Bayesian risk-adjusted mortality rate to a version of “fitted local 

standardized” estimation of RAMR where the average patient risk in the denominator is estimated 

using Bayes rule. This paper does not include this method, but a Bayesian estimate of the average 

patient would be nearly identical to a frequentist estimate in the case used in this simulation where 

the set of predictors is very limited and very small hospitals are dropped. Table 3.2 gives a precise 

description of each method.  

  



41 
 

Table 3.2: Risk-adjusted Mortality Rate Estimation Formulae 
Estimation name Formula Use in Literature 
“Raw local 
standardized” 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚������� ∗ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�������|ℎ
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝����������������|ℎ

 
Guru et al. 2008; 
Hannan et al. 2013; 

“Fitted local 
standardized” 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚������� ∗ 𝐸𝐸𝑖𝑖∈ℎ[𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�𝛽𝛽𝑟𝑟𝑟𝑟 ∗  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑖𝑖 +  𝛼𝛼𝑟𝑟𝑟𝑟,ℎ�] 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝����������������|ℎ

 
Krumholz et al. 
2006b; Grudy et al. 
2013 

“Fitted sample 
standardized”* 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚������� ∗ 𝐸𝐸∀𝑖𝑖[𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�𝛽𝛽𝑟𝑟𝑟𝑟 ∗  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑖𝑖 + 𝛼𝛼𝑟𝑟𝑟𝑟,ℎ�] 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝����������������  

- 

“Fitted fixed effects 
sample standardized”* 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚������� ∗ 𝐸𝐸∀𝑖𝑖[𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�𝛽𝛽𝑓𝑓𝑓𝑓 ∗  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑖𝑖 +  𝛼𝛼𝑟𝑟𝑟𝑟,ℎ�] 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝����������������  

- 

“Local fixed effects” 𝐸𝐸𝑖𝑖∈ℎ[𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�𝛽𝛽𝑓𝑓𝑓𝑓 ∗  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑖𝑖 +  𝛼𝛼𝑓𝑓𝑓𝑓,ℎ�] Mark et al. 2005 
“Sample fixed 
effects”* 

𝐸𝐸∀𝑖𝑖[𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�𝛽𝛽𝑓𝑓𝑓𝑓 ∗  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑖𝑖 +  𝛼𝛼𝑓𝑓𝑓𝑓,ℎ�] - 

“Local random effects” 𝐸𝐸𝑖𝑖∈ℎ[𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�𝛽𝛽𝑟𝑟𝑟𝑟 ∗  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑖𝑖 + 𝛼𝛼𝑟𝑟𝑟𝑟,ℎ�] - 
“Sample random 
effects”* 

𝐸𝐸∀𝑖𝑖[𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑔𝑔𝑖𝑖𝑖𝑖�𝛽𝛽𝑟𝑟𝑟𝑟 ∗  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑖𝑖 +  𝛼𝛼𝑟𝑟𝑟𝑟,ℎ�] - 

Note: A selection of recent uses of a formula in the literature is included. “Raw” refers to an estimate 
which does not use a model of patient mortality. “Local” refers to a calculation which only uses patients 
which are actually admitted to each hospital while “sample” uses modeled patient outcomes if all 
patients were admitted to each hospital. “Standardized” refers to the standardization of an estimate 
by multiplying modeled outcomes by the ratio of actual mortality to expected mortality. “Fixed” effects 
use a fixed indicator variable for a hospital in modelling patient outcomes while “random” effects fit 
hospital outcomes in the model to a normal distribution with an estimated mean and standard error, 
and then use the mean of the distribution as a point estimate of the hospital-specific effect. 
* Standardizing “Local fixed effects” is identical to “Raw local standardized”. Because this paper uses 
a sample as a population, “Fitted fixed effects sample standardized” is the same as “Sample random 
effects” and “Fitted sample standardized” is the same as “Sample random effects” in all models in this 
paper.  
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The taxonomy has three pieces, “local” vs “sample”, “raw” vs “fitted”, and among the fitted, “fixed” 

vs “random”. This suggests a pattern, and at first glance the pattern is broken in two places. First, 

“Raw sample standardized” is not included because “raw” refers to actual and not modeled outcomes 

and “sample” refers to all admits in a sample and not just to those who are admitted to a particular 

hospital, but actual patient outcomes can only be observed at the hospital to which they are admitted. 

Second, If patient risk is estimated from an unbiased model and the sample is the entire population, 

then 𝐸𝐸�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝����������������� = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�������, and “Fitted sample standardized” estimation is equal to “sample 

random effect” estimation. In this analysis, the patient risk model is not forced to be unbiased (since 

this paper uses a nonlinear estimate and do not allow observed patient risk < 0), but in every case 

the difference between 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝���������������� and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚������� is nearly undetectable and so only results for “sample 

random effect” estimation are reported. 

If the expected mortality rate at every hospital is equal to the expected mortality rate at all hospitals, 

which would be the case if patients were randomly distributed to hospitals, then 𝐸𝐸�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝����������������|ℎ� =

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚������� . In this case, “fitted local standardized” estimation would be equal to “local random effect” 

estimation and “raw local standardized” estimation would be equal to “local fixed effect” estimation.  

However, even if patientrisk is unbiased, if patients prefer to attend higher quality hospitals, i.e. 

𝑐𝑐𝑐𝑐𝑐𝑐(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝����������������|ℎ,𝑁𝑁ℎ) > 0, assuming patient severity is not correlated with hospital quality 

𝑐𝑐𝑐𝑐𝑐𝑐�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝����������������|ℎ,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ� = 0, then more patients will attend hospitals with lower expected 

mortality rates and the expected average patient risk at each hospital will be less than the overall 

mortality rate, 𝐸𝐸�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝����������������|ℎ� < 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�������. If patient severity is correlated with hospital quality, the 

direction of this inequality may change, but the underlying point is that an estimate of “fitted local 

standardized” need not equal an estimate of “local random effect” and an estimate of “raw local 

standardized” need not equal an estimate of “local fixed effect”. In this analysis, these estimates are 

not equal so both estimates are reported. 

Before moving on, consider three notes about theoretical considerations. First, the loss functions used 

in optimizing likelihood functions over a non-linear function are not amenable to estimating a 

theoretical comparison of the goodness-of-fit estimates, and rather, simulation and numerical 

estimation are appropriate. Second, random effects are commonly avoided in economics because 

they require special conditions to consistently estimate coefficients on the fixed effect. In this case, 

the fixed effect is patient risk and the estimate of interest is the hospital-specific effect. This fact limits 

the applicability of this concern to this analysis, although fitted RAMR does use the coefficient on 

patient risk in its estimation. Once could, thus, interpret the use of random effects estimates in this 

analysis as allowing that a theoretically inconsistent estimate of the fixed effect combined with a more 
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efficient estimate of the hospital-specific effect may ultimately be more efficient and useful than other 

methods. Third, it is also important to note that focusing on “raw local standardized” estimation is not 

intuitively satisfying for a number of reasons. One, the ratio of observed to expected mortality for a 

high risk, high mortality facility and for a low risk, low mortality facility need not consistently compare 

the quality of the two facilities. Two, while it may be argued that using a model of hospital mortality 

means the hospital is being judged on theoretic rather than actual patient outcomes, a hospital’s 

treatment of its patients plays a role in those patients’ estimated risk scores used in the denominator 

of this (and all) models, and thus including theoretic outcomes of a hospital’s patients cannot be 

avoided. 

 

3.4.1. Simulation 
Since performance of these formula cannot be readily compared theoretically, this paper develops a 

simulation which allows the formula to be compared with a true RAMR many times with many 

different amounts of noise. The first task of the simulation is to aggregate a distribution of patient 

risks and mortalities to estimate hospital RAMRs. 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑖𝑖 is taken from a kernel density 

estimate (KDE) of patient risks from the data and draw 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑖𝑖 from a binomial distribution using the 

patient risks.8 The number of hospitals is set equal to the number of hospitals in the data. Each hospital 

is assigned a “true” RAMR (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑅𝑅ℎ) for each simulation, estimated from a KDE of RAMR from the 

“Local random effects” estimate. 

In the simulation, observations are assigned a hospital by a bootstrap method. Each patient’s hospital 

is selected randomly with replacement from list of hospitals equal in length to the number of patients, 

but with hospitals allowed to repeat so they appear in the same the frequency they appear in the data. 

Thus the distribution of patients per hospital will match the actual distribution, but there will be some 

variation between the observed number in any simulation and the expected number. 

To add interesting variation in RAMR and hospital case mixes with plausible parameters, two simple 

OLS regressions are estimated. The first regression allow inclusion of a component of hospital quality 

that is endogenous to the simulation, that it is correlated with the number of patients the hospital 

treats. 

                                                           
8 Using a KDE ensures that using a specific set of patient risk scores does not obscure uncertainty in patient risks. 
An alternative to drawing from a KDE of patient risk estimates estimated in the previous chapter is to estimate 
a set of patient risks using the methods of the previous chapter but using a bootstrapped sample of the data. 
Using a KDE instead of bootstrapping patient risk scores could provide greater variation between simulations as 
the bootstrapped sample will, on average, have more identical observations than draws from the KDE. 
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(3) 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ� = 𝛼𝛼(3) + 𝛽𝛽(3) ∗ 𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡ℎ +  𝜖𝜖ℎ, 

An additional benefit of including this relationship in the model is that it will later be able to use fitted 

RAMRs to estimate 𝛽𝛽(3) and thereby test the degree of attenuation bias from measurement error in 

different estimates of RAMR.  

The second relationship tested considers the relationship between average patient risk and RAMR.  

(4) 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝����������������|ℎ = 𝛼𝛼(4) + 𝛽𝛽(4) ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ� + 𝜖𝜖ℎ 

In both regressions, the number of observations is equal to the number of hospitals (258). The 

estimated value from (3) of 𝛼𝛼(3) = 0.14 (𝑠𝑠𝑠𝑠 = 0.0057) and of 𝛽𝛽(3) = −0.00011 (𝑠𝑠𝑠𝑠 = 0.000015) 

and from (4) of 𝛼𝛼(4) = 0.066 (𝑠𝑠𝑠𝑠 = 0.0038) and of 𝛽𝛽(4) = 0.339 (𝑠𝑠𝑠𝑠 = 0.030) . Parameters are set 

to conservative (closer to zero) round numbers: 𝛼𝛼(3) = − 1
10000

∗ 𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡ℎ��������; 𝛽𝛽(3) = 1
10000

; 𝛼𝛼(4) = −1
5
∗

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ���������� ; and 𝛽𝛽(4) = 1
5
.  

In order for hospital size variation to be simulated as in (3), this simulation include a hospital size effect 

to be added to RAMR: 

(5) 𝑠𝑠𝑖𝑖𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑓𝑓ℎ = − 1
10000

∗ 𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡ℎ +  1
10000

∗ 𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡ℎ��������  

In this estimation, the number of patients per hospital from the data is used, rather than the 

bootstrapped patient-hospital assignment. From this the hospital RAMR is calculated: 

(6) 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑅𝑅ℎ + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓ℎ 

In order for patient selection variation to be simulated as in (4), a hospital-specific selection effect is 

added to each patient’s patient risk: 

(7) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑖𝑖ℎ = 1
5
∗ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑅𝑅ℎ −

1
5
∗ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑅𝑅ℎ��������������� 

Note that letting 𝛼𝛼(3) = 𝛽𝛽(3) ∗ 𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡ℎ�������� and 𝛼𝛼(4) = 𝛽𝛽(4) ∗  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ���������� results in:  

(8) 𝐸𝐸(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓ℎ) = 𝐸𝐸(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑖𝑖ℎ) = 0 

Thus these effects do not change the means of the patient risk and RAMR estimates that they modify. 

The model specific and hospital-specific nuisance parameters are combined into a single nuisance 

variable which is normally distributed with mean zero and standard deviation having a simulation-

specific component as well as a component specific to each hospital within a simulation. In a given 
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simulation, all patient risks are measured with a noise, having a variance, 𝜌𝜌~𝑁𝑁�0, � 1
10
�
2
�. This noise 

simulates measurements with different levels of precision. Within each hospital in each simulation the 

noise is increased by adding to 𝜌𝜌, a hospital-specific noise component given by 𝜈𝜈ℎ~𝑁𝑁(0, 𝜈𝜈2), which 

allows different hospitals to have different levels of precision. The degree of hospital-specific noise 

varies across simulations according to 𝜈𝜈~𝑁𝑁�0, � 1
10
�
2
�. The nuisance for any given observation will 

then be a mean-zero random variable with normal distribution and variance equal to the sum of 𝜌𝜌, 

the total noise on the patient risk for a particular run of the simulation, and 𝜈𝜈ℎ, the noise on patient 

risk for patients at a particular hospital in that run of the simulation: 𝜂𝜂𝑖𝑖ℎ~𝑁𝑁(0,𝜌𝜌2 + 𝜈𝜈ℎ2). 

Observed patient risk in the simulation is then: 

(9) 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘𝑖𝑖ℎ = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘𝑖𝑖ℎ + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑓𝑓𝑖𝑖ℎ + 𝜂𝜂𝑖𝑖ℎ 

Mortality is simulated from “true” patient risk without the noise parameter but including the selection 

effect, 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑖𝑖~𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘ℎ𝑖𝑖 −  𝜂𝜂𝑖𝑖ℎ) – so 𝑃𝑃(𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡ℎ𝑖𝑖) = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘ℎ𝑖𝑖−𝜂𝜂𝑖𝑖ℎ. Observed and 

“true” patient risks are censored to be in the set, [0, 1], RAMR censoring was unnecessary as no 

RAMRs were outside of (0, 1). 

The simulation is repeated 1,000 times and in each simulation RAMR is estimated six different ways 

according to models (1) and (2) and the formulae in Table 3.2 using 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘ℎ𝑖𝑖, 𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟ℎ𝑖𝑖, and the 

patient’s simulated hospital assignment. Also equation (3) is estimated from every fitted 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅� , and 

every observed 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛� . 

 

3.5. Results 

Comparisons between formulae are based on their performance across four measures as the amount 

of noise in the simulated patientrisk varies. For each observation of patientrisk and patient mortality 

this paper also calculates the precision and the c-statistic as correlates to noise that may be estimated 

in real world data. In order to motivate the relationship between noise and observed patient risk, this 

paper first present scatter plots of precision against the sum of noise parameters, 𝜌𝜌 + 𝜈𝜈, and of the c-

statistic against 𝜌𝜌 + 𝜈𝜈 (Figure 3.2). These plots show the model to cover the universe of goodness of 

fits common in the risk-adjustment literature (see second chapter, Pine 2007). Since 𝜌𝜌 and 𝜈𝜈 are 

independent, simulations where one is low and the other is high are likely. The sum, 𝜌𝜌 + 𝜈𝜈, is a 

measure of the total amount of noise in a simulated trial. When noise is very low, the precision and c-
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statistics are close to 1; while as the noise parameters increase, these decrease to lower values similar 

to those found when risk-adjustment is performed using less granular data. 
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Figure 3.2: Relationship between goodness-of-fit of observed patient risk and noise parameters 
Panel 1: Scatter plot of precision against noise 

 

Panel 2: Scatter plot of c-statistic against noise 

 
Note: Given the rule that an observation is expected to die if observed patient risk is above 50%, 
precision equals the number true positives divided by the total number of positives. The c-statistic is 
equal to the probability that a randomly chosen positive instance will have higher observed patient risk 
than a randomly chosen negative one. Estimates are from pooled NY and CA data, 2005-2007. 
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Quality of RAMR estimation is judged by comparing simulated 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ and each fitted 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ�  for the 

six models. The four measures used are: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(�𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ� −𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ�
2) 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ� −𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑐𝑐𝑐𝑐𝑐𝑐�𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ� ,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ� 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝛽𝛽(3)� −  𝛽𝛽(3)�  

Where 𝛽𝛽(3)�  comes from an estimate of model (3) using simulated 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ and simulated 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛�  and 

represents the relationship that would be estimated if true RAMRs were known, while 𝛽𝛽(3)� is estimated 

from estimated 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ�  and simulated 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛� . Using simulated 𝑛𝑛𝑛𝑛𝑎𝑎𝑡𝑡�  for both estimates of 𝛽𝛽(3) allows 

the estimate of attenuation bias to be more applicable to estimates of 𝛽𝛽(3) than would be made in the 

literature where there is no “true” number of patients per hospital other than the “observed” number 

of patients per hospital. Analysis that uses 𝛽𝛽3 = 1
10000

 gives similar results to using 𝛽𝛽(3)� . Comparisons 

are presented in Figure 3.3 across variation in noise on patient risk, 𝜌𝜌 and in Figure 3.4 across variation 

in heterogeneous, hospital-specific noise on patient risk, 𝜈𝜈. Here this paper pays close attention to 

“raw local standardized” estimation and “fitted local standardized” estimation, as these are the most 

common methods. A clear way to present trends in the goodness-of-fit measures, this paper presents 

the results using local scatterplot smoothing (loess) of the plot of the measure against noise 

parameters. Loess gives a smooth curve through this data and is appropriate since the shape of the 

relationship between these measures and noise parameters is not known. 95% confidence intervals 

of the curve are presented as dashed lines around the loess estimate. The estimates are made using 

a smoother span of 0.75 with 2 degree polynomials. 

Minimizing SSE is the optimization condition of ordinary least squares regression. This condition is 

equivalent to minimizing RMSE, but unlike SSE, RMSE has the same scale as the data, and thus gives 

us a good idea how wrong, on average, an estimated RAMR is. In this case, “raw local standardized” 

and “fitted local standardized” estimates are two of the worst three, while “sample random effects” 

and “local random effects” are the best and second best. Because the difference between these is 

only the standardization, this suggests that standardization does not improve model fit. Bias estimates 

the direction, on average, of the error in estimation of RAMR. In this case the two “fixed effects” 

estimates perform worst, underestimating RAMR by about one percentage point (or about 10% of 

mean RAMR). RMSE is a better measure of how incorrect an estimate of RAMR is, but accuracy in both 
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of these measures is important for estimation of the difference in health outcomes when choosing 

between hospitals. 

Correlation of estimated RAMR to actual RAMR is extremely important for the credibility of a pay-for-

performance program that emphasizes relative position of ranking of hospitals. Low correlation 

implies that many hospitals will be incorrectly judged to be performing below or above average. In 

this case again “local random effects” performs best and the two “direct” estimates perform worst. 

The final estimate, bias in estimation of 𝛽𝛽(3) provides a flavor of how important accurate estimation 

of RAMR is for scholars seeking to estimate the determinants of hospital quality. All bias estimates 

suggest a negative bias. Since the “true” 𝛽𝛽(3) is negative, this means that the estimations of 𝛽𝛽(3) using 

estimated RAMRs is larger (and closer to zero), consistent with interpreting poor estimation of RAMR 

as measurement error and this bias as attenuation bias. Since the true value of 𝛽𝛽(3) = 10−4, the mean 

bias of 1.2 ∗ 10−5 is an error of 12%, so the scale of this bias is quite important and will play a role in 

the ability of a researcher to identify a signal and properly recognize its sign. For this statistic, “fitted 

local standardized” estimation does perform best, and “local random effects” performs second best. 

“Raw local standardized” is in the middle of the pack, suggesting that scholars should avoid using this 

measure when possible. 

  



50 
 

Figure 3.3: RAMR estimation quality across noise on patient risk, 𝝆𝝆 
Panel 1: RMSE against 𝜌𝜌 
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Panel 2: RAMR Bias against 𝜌𝜌 
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Panel 3: Correlation against 𝜌𝜌 
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Panel 4: Bias estimating 𝛽𝛽(3) against 𝜌𝜌 

 
 

Note: Four measures of goodness of RAMR fit as a function of simulated patient risk measurement 
variance fitted using loess curves with dashed lines representing 95% confidence intervals, data from 
1,000 simulations built from New York State Inpatient Databases 2005-2007 AMI inpatients.   
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Figure 3.4: RAMR estimation quality across heterogeneous hospital-specific noise on patient risk, 𝝂𝝂 
Panel 1: RMSE against 𝜈𝜈 
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Panel 2: RAMR Bias against 𝜈𝜈 
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Panel 3: Correlation against 𝜈𝜈 
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Panel 4: Bias estimating 𝛽𝛽(3) against 𝜈𝜈 

 
 

Note: Four measures of goodness of RAMR fit as a function of simulated hospital risk measurement 
variance fitted using loess curves with dashed lines representing 95% confidence intervals, data from 
1,000 simulations built from New York State Inpatient Databases 2005-2007 AMI inpatients.   
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Hospital-specific levels of noise can simulate a context where patient risk precision varies across 

hospitals. This simulates non-uniform hospital reporting of patient morbidity data. The general trends 

in this dimension are similar to those across the patient risk measurement noise. However, there is an 

important difference in how different measures of RAMR respond to increased hospital-specific noise. 

“Local fixed effects” and “local random effects” do not greatly vary as hospital-specific noise increases 

in any measure, but bias, RMSA, and especially correlation are very sensitive to the degree of hospital-

specific noise. Therefore it is particularly important to pay attention to the RAMR measure used in 

contexts with inconsistent reporting of patient risk across hospitals. 

In the estimate of attenuation bias in the volume-quality relationship, in cases with nonzero values of 

nu, 𝜈𝜈, the measurement error in hospital quality is endogenous in the simulation. This model did not 

include potential instruments, neither instruments which deal with volume-quality endogeneity, nor 

instruments which deal with heterogeneous measurement error in quality estimation. However, this 

endogeneity has no effect on the applicability of the result –these recommendations apply to research 

involving volume and quality as well as to research involving non-endogenous determinants of quality. 

This paper did perform tests with nu, 𝜈𝜈, set equal to zero to simulate an exogenous determinant of 

hospital RAMR. In these tests, the relationship between RAMR estimation quality and noise on patient 

risk, 𝜌𝜌, show a nearly identical profile of attenuation bias to those seen in Figure 3.3 regardless of 

RAMR formula.  

It is important to remember that the estimation of the volume-quality relationship presented in this 

chapter is at the aggregate, hospital level, while the real outcome of interest, patient mortality, is a 

patient level variable. The true relationship between hospital quality, hospital volume, and patient 

mortality should be estimated using a multilevel model. The linear presentation of a simple 

relationship between hospital volume and hospital RAMR presented in this paper is similar to that 

found in many places in the literature, but can only give an aggregate effect estimate, and cannot be 

interpreted as the effect of volume on the probability of an individual patient’s death. 

3.6. Conclusion 

Risk-adjusted mortality rates (RAMRs) are an important and commonly used measure of hospital 

quality. A number of different formulae are used to generate RAMRs from patient risk estimates with 

little concern given to the role these formula play in affecting the usefulness of the estimated RAMRs. 

This paper shows that RAMRs estimated using common techniques are not optimal for a number of 

important purposes and that non-standardized versions should be considered. Particularly, 

standardizing estimates reduces their usefulness for four tasks health economists typically use in their 
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work. Standardizing a hospital mortality rate is necessary when the goal is to use a hospital’s actual 

mortality rate to estimate its RAMR, but, a hospital’s predicted mortality rate is often preferred to its 

actual rate (Grady et al. 2013). When the hospital’s mortality is predicted using hospital-specific 

effects, standardizing does not further improve the estimate. Rather, when a model with hospital-

specific effects is used to predict in-hospital mortality, that prediction is itself a preferable estimate of 

RAMR. RAMR estimates when hospital effects are fitted with a probability model (such as in random 

effects models) allowing shrinkage of estimates towards the mean further improves the estimation 

compared to estimating hospital effects as fixed effects. 

This paper presents a number of formula for estimating RAMR, the most common two being “raw 

local standardized” or “fitted local standardized”. In many cases, these results recommend using a 

different formula. The biggest impact of the results may be in pay-for-performance estimation since 

this scheme is most efficient when it correctly ranks hospital quality. This paper finds that the 

Spearman correlation of simulated true RAMR to estimated RAMR using the methods commonly used 

by policy makers to perform significantly worse than other methods. Depending on the scheme, this 

difference will play a significant role in how well a scheme aligns hospital interests to its performance. 

If a hospital judges that a scheme cannot discern quality signal from noise, it may reduce the 

willingness of a hospital to prioritize investment in quality improvement. For similar reasons, this 

paper also find that patient choice should not be based on the most popular methods of calculating 

RAMR. 

Measurement error in RAMR when using RAMR as an outcome in regression models did result in 

attenuation bias, and that this bias is great when using what this paper calls “raw local standardized” 

estimates of RAMR, a method that is common. In this case this paper recommends “local random 

effects” or “fitted local standardized”. The magnitude of the bias ranges from over 16% of the signal, 

while for high levels of noise, using “local random effects” can reduce bias to less than 6% of the signal. 

This difference has significant implications for hypothesis testing and estimating effect sizes in 

modeling hospital quality. 

The aggregation of interest in this work is hospitals, but the results could be applicable to any 

institutional or jurisdictional grouping, such as the RAMR for a particular geographic region or facility 

type, or even, plausibly, for coherent groupings of patients, such as when comparing RAMR across 

states. These results may also apply to risk-adjusted rates of hospital readmission, which is another 

important measure of hospital quality. 

  



60 
 

Chapter 4 

4.1. Introduction 

 

Provision of health care provides an interesting opportunity for economists to study the relationship 

between volume and quality. This paper focuses on provision of care for inpatients admitted with 

Acute Myocardial Infarction (AMI), which is a condition frequently used in research on hospital quality. 

Quality of provision is measured using risk-adjusted mortality rates which is a measure of a hospital’s 

mortality rate which takes into account non-random case mixes in hospitals. There is a negative 

relationship between most kinds of hospital volume, including AMI volume, and RAMR; as volume 

increases, quality improves resulting in a decrease in RAMR. This relationship may be in part due to 

patient selection, patients prefer better care, increasing volume at better hospitals. The relationship 

may also be in part due to returns to scale and/or learning-by-doing, that is there may be a causal 

effect of volume on quality. This paper’s contribution is to use a novel instrument to estimate that 

causal effect. 

Instrumental variables are frequently used to address endogeneity in the volume quality relationship 

in health provision. A common instrument is the total volume of patients with similar conditions within 

a certain radius of each hospital. This paper addresses critiques of that instrument by looking at the 

volume of another set of conditions a hospital sees, the volume of shock and of trauma patients. This 

instrument is correlated with AMI volume, but since it may not be correlated with patient choice, an 

estimate using this instrument can provide evidence for causality in what otherwise is an endogenous 

relationship. Using this instrument, this paper does find evidence for causality, even in cases where 

hospital-specific fixed effects are included – in contrast with recent research (Kim et al. 2016). 

The relationship between risk-adjusted mortality rates and patient volume is often measured using 

cross-sectional data, an approach which exploits variation between hospitals. An advantage of panel 

data is that repeated measurements of a hospital allow a model to be estimated using hospital-specific 

effects. Controlling for hospital-specific fixed effects results in an estimate of the relationship which is 

measured within a given hospital. In this way, fixed-effects control for time invariant hospital factors, 

the most important of which for this analysis is the size of the hospital infrastructure. Including 

hospital fixed effects is overlooked in some existing research, and a recent paper (Kim et al. 2016) 

argues that when hospital-specific fixed effects are included, the relationship is no longer significant. 

This paper is consistent with that result in that including hospital-specific effects in the model greatly 
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increases the standard error around the estimate, but does find some evidence that a within hospital 

effect of volume on quality exists. 

In addition to using hospital fixed effects this work introduces the novel use of shock and trauma 

volume as an instrument for AMI volume to deal with endogeneity in the volume-quality relationship. 

Emergency technicians responding to patients who are in shock or have experienced trauma might 

prioritize minimizing the time getting the patient to the hospital as quickly as possible. If they do, then 

trauma and shock volume reflect the volume of patients near a hospital. Thus, this sort of volume may 

be correlated with the volume of AMI patients, but is not otherwise correlated with the quality of the 

hospital treatment of AMI cases. This instrument is generally strong but greatly weakened when 

hospital-specific fixed effects are included. 

This paper starts with a discussion of the relationship between volume and quality and the current 

state of research. It then presents three models commonly used to estimate this relationship, two of 

which use as their unit of analysis the hospital, and one of which is at the individual level. The following 

section discusses the data used in this paper. Then, in the results section, estimates are given for the 

main model including some evidence for a causal relationship, even when hospital-specific fixed 

effects are included. The robustness section considers some variations, especially in how volume is 

measured, and how the relationship is modeled. The paper then concludes with a discussion of its 

limitations and policy implications. 

 

4.2. Background 

The association between hospital volume and mortality is an active area of research, with most 

research finding that higher volume is associated with better outcomes. In fact, the relationship is so 

robust, Silber et al. (2010) suggest including volume as a predictor of quality to improve the accurate 

estimation of hospital risk-adjusted mortality rates. More common, however, is the study of the 

relationship between these two variables and its implications. 

One important application of this research is to identify cut points and inflections in the relationship 

between volume and quality. Ross et al. (2010) identify a level at which returns to volume taper off. 

Their study is based on about 3.5 million Medicare patients with AMI, heart failure, or pneumonia in 

the United States from 2004-2006. Another group of studies considers the other side of the quality-

volume relationship, suggesting that at very low volumes, quality tends to be poorer, and that this 

implies that certain procedures should be avoided where possible at low volume facilities. Gutacker 
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(2016) studies the relationship between mortality in coronary artery bypass graft surgery (CABG) and 

volume of those surgeries. The study includes hospitals in five countries, Denmark, England, Portugal, 

Slovenia, and Spain. He finds that mortality is much lower in large, English hospitals and conclude that 

hospitals which would have annual volume less than 415 refrain from the surgery. His focus is common 

in CABG volume research, an area where the debate frequently focuses on minimum safe volumes, 

ranging from 450 to 150 and even lower (Shahian 2004). 

Another task in this area of research is to understand the mechanism behind the relationship. Schull 

et al. (2006) study the relationship between hospital volume and accurate myocardial infarction (MI) 

diagnoses. They consider the role of experience in MI care, suggesting that volume could be a proxy 

for both experience and the presence of better skilled specialists. Their work suggests better 

standardization of care to reduce the difference in measured quality between high- and low-volume 

hospitals. 

Not all work in this area finds a significant quality-volume relationship. Lee et al. (2015) consider 

ischemic heart disease (IHD) cases in Victoria, Australia between 1998 and 2005 and do not find a 

significant relationship between volume and quality. However, when controlling for overall volume, 

they do find that specialization has a positive relationship with quality. To measure specialization, they 

estimate the number of IHD cases as a proportion of all cases the hospital sees. While this paper does 

not look at specialization, the suggestion of no-effect in Lee et al. (2015) and Kim et al. (2016) must be 

considered carefully. Particularly, Kim et al. (2016) shows the importance of using hospital-specific 

effects for understanding the policy implications of the result. Since many policies relating to volume 

are unlikely to change the hospital specific effect, it is important to include these effects when seeking 

to use estimates to make policy recommendations. 

An important limitation in papers including these is that endogeneity in the volume-quality 

relationship may result in estimates which are not causal. There are two competing explanations for 

the volume-outcome relationship. One is economies of scale, possibly through learning-by-doing. The 

other is selective referral or patients being more likely to attend higher quality hospitals, either 

through their own selection or through the selection of a referring agent, for instance by an ambulance 

dispatcher or another physician of the patient. There are important policy implications related to 

which of these mechanisms is driving the volume-outcome relationship. If volume improves quality 

through economies of scale or learning by doing, then consolidation of patients to centralized 

hospitals may improve overall public health. On the other hand, if patient selective referral drives this 

result, then optimal policy may hinge on whether there is a crowding effect from this selection, or if 
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some economies of scale persist. A number of papers use instrumental variables to attempt to deal 

with this endogeneity. 

In a paper studying the relationship between CABG mortality and volume, Gaynor et al. (2005) attempt 

to estimate a causal relationship between volume and quality, explicitly as a way to measure returns 

to scale and learning-by-doing. As an instrument for CABG volume, they use the number of CABG 

patients residing in and the number of CABG-offering hospitals operating in various fixed geographical 

radii around the given hospital. This instrument is found to be very strong, suggesting that the number 

of nearby procedures and hospitals are good predictors of a hospital’s volume. However, they decide 

not to include the instrument in the main analysis on account of their Hausman-Wu test statistic being 

above 0.05. In fact, their Hausman-Wu test statistic has a very low p-value, 0.06. Even so, they do not 

reject the null hypothesis of exogeneity and instead argue the instrument is unnecessary. They argue 

that if quality affects volume through selection, an instrumental variables estimate of the volume 

effect would be lower than the non-instrumental variables estimate of the volume effect, while they 

found an increase in the coefficient on volume. Using a probit regression of individual patient mortality 

on hospital volume, their results predict that at the mean volume level in their data (216 cases per 

year), an increase in volume by one case would reduce mortality by 0.003 percentage points. An 

increase in volume across the interquartile range, from 98 to 263 cases, would reduce mortality by 

1.38 percentage points from 2.39% to 1.78%. 

Another paper by Gowrisankaran et al. (2006) uses a model where three kinds of mortality including 

CABG mortality are estimated using a logit function at the patient level as a function of hospital volume 

and again uses the number of patients within a specific distance to the hospital as instruments. Their 

estimates imply that increasing quarterly volume from 117 CABG cases to 175 cases reduces the 

chance of dying by 0.5 percentage points from 3.6% to 3.1%. 

As with the non-causal papers, there are some examples where no significant relationship is found. 

Heusch (2009) uses a similar instrument to Gaynor and to Gowrisankaran to estimate learning-by-

doing effects for CABG patients of individual surgeons rather than for hospitals. Their econometric set 

up uses a patient-level model in the second stage. This paper uses quarterly data for 57 Florida 

surgeons during the 36 quarters between 1998 and 2006. This paper also sets up a model of forgetting, 

where surgeon experience can depreciate. Almost all of their reported estimates are very noisy, and 

in their instrumental variables models their t-statistics are uniformly smaller than one in absolute 

magnitude, and they reject the hypothesis of a causal volume-quality relationship. Another paper by 

Ramanarayanan (2008) uses the occurrence of a surgeon stopping performing CABG as an exogenous 

shock to increase volume for other surgeons at a facility as an instrument again for the volume-
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outcome relationship in CABG cases. While this paper finds a significant effect, it is much smaller than 

other research; an increase of one additional case per year decreases mortality by 0.005 percentage 

points the following year. 

Instead of using cases in an area around a hospital as an instrument for hospital volume, this paper 

uses volume of shock and trauma patients at the hospital as instruments for hospital AMI volume, as 

patients with these conditions will be less likely to be allowed to spend more time in an ambulance 

going to a preferred hospital, and instead will be sent to the nearest possible hospital. The importance 

of shock and trauma in this paper is based on the idea that emergency technicians responding to 

patients who are in shock or have experienced trauma might prioritize minimizing travel time to the 

hospital. If they do, then trauma and shock volume reflect the volume of patients near a hospital. 

Thus, this sort of volume may be correlated with the volume of AMI patients, but is not otherwise 

correlated with the quality of the hospital treatment of AMI cases.  

Scale or volume is sometimes measured as a cumulative variable, but recently this has been criticized, 

and in any case it is usually measured contemporaneously with patient outcomes. In fact, 

Gowrisankaran et al. (2006) and Heusch (2009) both include forgetting in their models; compared to 

factories with a small number of outputs doctors face a large variety of patients and comorbidities 

and the value of experience gained may be lost when new patient’s with different illnesses arrive. Lee 

et al. (2015) argue that learning is more important in the context of specialization; while many 

physician’s skills are fungible, this suggests that forgetting is less likely or that learning is more 

successful when variation in patients is reduced.  

Much of the research uses ordinary least squares to study the relationship between a hospitals risk-

adjusted mortality rate and its patient volume. Lee et al. (2015) note that when risk-adjusted mortality 

rates are calculated in a separate estimation, this two-step method may induce heteroscedastic errors 

and standard errors should be calculated using the Huber-White sandwich estimator. It is also 

common to perform estimation at the patient level, looking at individual mortality as a function of 

hospital volume using a probit or logit model. Kim et al. (2016) look at in-hospital mortality of Florida, 

New York, and New Jersey cancer patients between 2000 and 2011 who are given surgical procedures 

for colectomy, esophagectomy, pancreatic resection, pneumonectomy, pulmonary lobectomy, or 

rectal resection. Their work estimates patient mortality on annual hospital volume and finds that 

significance of their results depends on whether or not hospital fixed effects are included, results are 

not significant when annual hospital fixed effects are included. They note that in their fixed effects 

specification the estimation requires variation in annual hospital volume within a hospital, which may 
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be limited and greatly reduce the power of their estimate, but suggest that there remains significant 

variation in annual volume within a hospital and that this issue does not drive their null result. 

The instrument used in this paper assumes that emergency medical services (EMS) prioritize 

minimizing the time between their loading the patient into an ambulance and the patient’s arrival at 

the hospital when patients are diagnosed with shock and/or trauma. In emergency medicine, the 

“golden hour” refers to findings that the patient outcomes deteriorate when a patient with severe 

injury waits more than an hour for care. It has long been recommended that minimizing total out-of-

hospital time is particularly important in trauma and shock patients (Poitras 2011). The importance of 

this period has been challenged for trauma victims in recent studies, although it likely holds for 

patients who are in shock. Newgard et al. (2015) consider time between an incident and arrival at the 

hospital, or out-of-hospital time, for patients with shock and patients with traumatic brain injury. They 

find no evidence that lower out-of-hospital time improves outcomes in traumatic brain injury patients, 

and mixed evidence that such time improves outcomes in patients with shock. 

McCoy et al. (2013) separate out-of-hospital time into response time (the time it takes EMS to arrive 

at the scene), scene time (the time EMS spends at the scene), and transport time (the time it takes 

once the patient is loaded in the ambulance to arrive at a hospital) in trauma patients. They did not 

have data on response time, but they do compare the importance of scene time and transport time. 

They find that scene times longer than 20 minutes may worsen outcomes in some trauma patients 

(particularly penetrating trauma), but do not find transport times play a significant role in outcomes. 

Swaroop et al. (2013) and Crandall et al. (2013) both use the Illinois Trauma Registry and find a similar 

result that minimizing out-of-hospital time for penetrating trauma victims is critical. 

Emergency care research often focuses on cardiac arrest, heart conditions, trauma, and motor vehicle 

accidents. However, some research considers all patients. Pons et al. (2005) look at EMS response 

times for all patients and find mixed evidence that they are critical for survival, a very short response 

time (less than four minutes) did improve outcomes in their data, but when time was modeled 

continuously they did not find a significant relationship between time to response and outcomes. 

Wilde (2013) also looks at the relationship between EMS response time and mortality and find that 

mortality rates worsen as time to care increases and also looks at all patients. Their study uses distance 

between the incident and the nearest EMS facility as an instrument. This instrument is meant to deal 

with endogeneity that arises when the emergency service knows patient severity and reduces 

response time when patient severity is high. 
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Newgard et al. (2010) add another category to out-of-hospital time, activation, which they define as 

the time between onset and contacting emergency services. This gives five time variables: activation, 

response, scene, transport, and total time in a study of trauma patients. This study does not find a 

significant effect of variation in any of these time variables on patient outcomes. Fleet and Poitras 

(2011) point out limitations in Newgard’s work and suggest that lives are saved when out-of-hospital 

time is minimized. Harmsen et al. (2015) include most of these and other less recent papers in a 

systematic review of the relationship between out-of-hospital time and outcomes in trauma patients. 

Their review concludes that out-of-hospital time is important, although there is some evidence that 

increased on-scene time may improve outcomes. It concludes, however, that minimizing transport 

time is important as well. 

This paper, then, seeks to add to the literature first by introducing a novel instrument, Volume of 

shock and trauma patients. Second, this paper follows a number of important methodological 

suggestions in the literature: using robust standard errors, including hospital-specific fixed effects, 

instrumenting hospital volume, including both hospital-level and individual-level models, and 

discussing scale versus learning. 

 

4.3. Method 

4.3.1. Instrument Validity 
The instrument used in this paper is the volume of patients with trauma and or shock during that 

month. Patients who experience trauma or shock need to be stabilized as quickly as possible. When a 

patient has these conditions, they will be taken to the facility which can accept them which involves 

the shortest delay possible. This suggests the use of the volume of trauma or shock patients a hospital 

receives as an instrument for monthly AMI volume. 

Instrument validity is based on the satisfaction of two primary assumptions, the “exclusion restriction” 

that the instrument has no effect on the outcome except through the predictor, and that the 

instrument is associated with the predictor being instrumented. The second assumption is tested 

using an F-test which estimates how strongly the instrument predicts the endogenous predictor 

controlling for covariates. The first assumption cannot be directly tested, and is based on the design.  

One common instrument for patient volume is the number of cases within a certain distance of a 

hospital. Both the number of nearby cases and the number of trauma and shock cases are functions 

of the number of people near the hospital who could possibly have an AMI, and thus are related to 
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the number of ill people who could go to the hospital as instruments for the number of people who 

do. This factor, the size of the population the hospital could serve, could influence the level of 

investment a hospital receives, but this investment may be unlikely to change over the period studied 

and will be captured in the fixed effect. Instead of using cases in an area around a hospital as an 

instrument for hospital volume, this paper uses volume of shock and trauma patients at the hospital 

as instruments for hospital AMI volume, as patients with these conditions will be less likely to be 

allowed to spend more time in an ambulance going to a preferred hospital, and instead will be sent to 

the nearest possible hospital. One advantage of trauma and shock cases as an instrument over nearby 

cases is that the definition of the radius may affect the instrument. In cases within a fixed distance 

around the hospital is used, variations in population density and road density within that ring can 

influence the demographics within that ring and quality of the hospital. Less dense population could 

mean that a hospital’s catchment is significantly larger than the ring used in the instrument, and so 

for these hospitals the fitted volume from the first stage of the IV will be underestimated. If hospitals 

in low density areas are systematically of different quality than hospitals in more dense areas, this will 

bias the estimate – for instance if rural hospitals are worse than urban hospitals, using a radius-based 

instrument may overestimate the effect of volume on quality, making low volume hospitals look worse 

than they actually are, as volume at low quality rural hospitals is underestimated in the first stage. 

This instrument can be modified to handle population density and road structure around the hospital, 

but such modifications are ad hoc at best, as these variables are not constant within a ring around the 

hospital. Another criticism of using cases within a certain distance of a hospital is that population home 

location choice may be partially determined by proximity to a good hospital. Using trauma and shock 

volume may be preferred in this case as well, victims of trauma or shock may be less likely to predict 

the possibility of their future illness when choosing a location of their homes and thus may not be 

influenced by the quality of the nearest hospital. 

Medical conditions in the hospital administrative data in this paper are categorized using codes from 

the International Classification of Disease Volume 9 – Clinical Modification (ICD-9-CM or ICD-9).9 There 

are numerous different kinds of shock and of trauma. In order to simplify the analysis, four codes for 

shock are considered. These codes are grouped in that they start with the same three-number ICD-9 

code, 785: unspecified shock (ICD-9 code 785.50), cardiogenic shock – shock resulting from failure of 

the heart to pump an adequate amount of blood as a result of heart disease and especially heart attack 

(ICD-9 code 785.51), septic shock – a life-threatening form of sepsis that usually results from the 

                                                           
9 ICD-9-CM was the scheme used in the US until October, 2013 and is used in this data. Since October, 2013, 
Volume 10 of the ICD codes have been used in the US. ICD-10 is not perfectly resolvable into ICD-9 codes, but is 
nearly so and results in this work should not depend on the coding scheme used. 
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presence of bacteria and their toxins in the bloodstream and is characterized especially by low blood-

pressure and reduced blood flow to organs and tissues and often organ dysfunction (ICD-9 code 

785.52), and other (ICD-9 code 785.59). Volume of patients within each of these categories is 

considered separately and then all cases are considered together, creating 5 shock volume variables. 

Similarly, ten types of trauma based on ICD-9 code 958 are considered: air embolism as an early 

complication of trauma – an air embolism is an obstruction of circulation by air in the veins usually 

introduced by wounds (958.0), fat embolism as an early complication of trauma – in this case the 

circulatory embolism is by fatty tissue (958.1), secondary and recurrent hemorrhage as an early 

complication of trauma (958.2), posttraumatic wound infection not elsewhere classified (958.3), 

traumatic shock (958.4), traumatic anuria – a condition sometimes known as crush syndrome and 

associated with trauma to the kidney (958.5), Volkmann's ischemic contracture – a condition caused 

by obstruction of the brachial artery near the elbow (958.6), traumatic subcutaneous emphysema – 

or gas trapped under the skin, often caused by a punctured lung (958.7), other early complications of 

trauma (958.8), and traumatic compartment syndrome – a condition arising from internal bleeding 

into a compartment of the body containing nerves and muscles which cannot easily stretch to contain 

it and can lead to a loss of blood flow to the area (958.9). All types are grouped into a single volume 

variable. 

The importance of shock and trauma in this paper is based on the idea that emergency technicians 

responding to patients who are in shock or have experienced trauma might prioritize minimizing travel 

time to the hospital. If they do, then trauma and shock volume reflect the volume of patients near a 

hospital. Thus, this sort of volume may be correlated with the volume of AMI patients, but is not 

otherwise correlated with the quality of the hospital treatment of AMI cases.  

Another issues to address when considering instrument validity  is the assumption that a given 

observation is unaffected by treatments assigned or received by other observations, an assumption 

called the stable unite treatment value assumption. This assumption is frequently violated in cases 

like this study where geographic variation plays a role and geographic spillovers may occur. This 

violation may cause bias of uncertain direction. In order to control for this issue, results are clustered 

by geographic area, although this can only partially control for the issue, as geographic areas in the 

data may not exactly match the spillover areas which lead to the bias (Green and Vavreck 2008). 

 

4.3.2. Model 
This paper’s main model will study patient outcomes at an aggregate level. For robustness, it will also 

look at a model of the individual level. At the aggregate, hospital level, a hospital’s mortality rate is a 
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function of a number of patient-level and hospital-level variables. Most of the patient-level variables 

are captured in a measure of patient risk. For this reason, including patient risk is a key component of 

any model of hospital quality. One important patient level variable that is only partially captured in 

the data available in this paper relates to the amount of time it takes for the patient to receive care. 

The amount of time before the patient is admitted to the hospital will be partially captured in patient 

severity data. The amount of time the patient spends admitted to the hospital but not being properly 

cared for will be partially captured by hospital fixed effects. Two other hospital level factors are 

important as well, the hospital’s human capital level and physical capital level, which represent skill 

and training in the hospital and infrastructure in the hospital. Over short time periods, these two 

factors are more or less fixed for a hospital. One important aspect of hospital infrastructure is the size 

of the hospital. The size of the hospital, as might be measured by the number of beds in the hospital 

or the full-time equivalent staff levels is also largely fixed over a short time period. 

Fundamental intuition applying the economics of scale to hospital care would be based in the ability 

of large hospitals to invest in specific, specialized tools and staff. This investment plays a key role in 

the intuition behind scale cut-offs, volume below which it is not recommended that certain procedures 

be carried out, such as the CABG study by Gutacker et al. (2016). This type of specialization will, also, 

generally be fixed in a hospital over a short time period. The remaining relationship between 

exogenous volume and patient outcomes may, then, be ascribed to learning and practice by the 

hospital’s physicians, nurses, and staff. 

Various measures of hospital volume are possible. Cumulative hospital volume could be a discounted 

or non-discounted count of a hospital’s patients since some starting point. Given the possible role of 

forgetting and the importance of recent volume, this paper looks at current-month volume and at 

past-month volume. 

Patient severity is estimated using the model described in Chapter 2. Using the set of patient 

comorbidities information directly, this paper creates a very large set of predictors. Sparse, high-

dimensional models often do not converge and reducing dimensionality means losing information and 

leads to the potential for consequential omitted variable bias. A patient’s mortality likelihood is 

estimated using a random forest with actual in-hospital mortality as the outcome variable and these 

comorbidity indicators as well as patient age, sex, and mode of arrival at the facility as predictors. The 

fitted patient score from this model is regressed in a logit model against actual outcome, and fitted 

values from this regression can be interpreted as the estimated probability of mortality. Quality for 

each hospital for each month is estimated using the method recommended by the Affordable Care 

Act, described in Chapter 3. This model fits a model of patient outcome on the patient score and a 



70 
 

hospital-specific random effect. A fitted estimate from this model for a hospital’s patients is then used 

as a smoother estimate than actual patient outcomes. Risk-adjusted mortality rates then are then 

estimated by calculating the ratio of the fitted estimate of mortality for those patients from the 

random effects model to the expected mortality of those patients from the model with no random 

effects, and then multiplying this ratio by the actual mortality ratio in the sample. 

With this estimate of quality, the main model regressed monthly AMI risk-adjusted mortality rates, 

RAMR, against monthly hospital AMI volume, a hospital-specific fixed effect, γ, and a time effect, δ. 

The time effect consists of a fixed effect for each month. This estimate shows the value of going to a 

larger hospital on the quality of care for the patient: 

(1) 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑡𝑡 = 𝛼𝛼 +  𝛽𝛽1𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉ℎ𝑡𝑡 + 𝛾𝛾ℎ + 𝛿𝛿𝑡𝑡 + 𝜖𝜖ℎ𝑡𝑡. 

I expect to find a positive relationship between volume and quality. This is for two reasons: first, better 

hospitals attract more patients. Second, hospitals with more patients will get more experience and 

quality returns to scale. This second part of the relationship is important because it is the increase in 

quality due to scale and learning by doing, and is the causal effect of volume on quality. Both reasons 

implies a positive coefficient for 𝛽𝛽1 on 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉ℎ𝑡𝑡. 

The interpretation of this estimate when hospital and monthly fixed effects are not included is very 

different from when these fixed effects are included. Temporal fixed effects allow the model to 

incorporate global shocks to volume – similar to seasonal effects. Including this as a control lessens a 

concern that the result is driven by seasonal codetermination of quality and of volume. Without 

hospital fixed effects, the effect may be dominated by between hospital relationships; in other words, 

that large hospitals are generally higher quality than small hospitals. 

In an individual-level version of this calculation is also common in the literature and is estimated in 

this paper for robustness. This model estimates patient level outcomes, M, as a function of patient 

severity, monthly hospital AMI volume, a hospital-specific fixed effect, γ, and a time effect, δ. 

(2) 𝑀𝑀𝑖𝑖ℎ𝑡𝑡 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝛼𝛼 +  𝛽𝛽1𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉ℎ𝑡𝑡 + 𝛽𝛽2𝐸𝐸(𝑀𝑀𝑖𝑖ℎ𝑡𝑡) + 𝛾𝛾ℎ + 𝛿𝛿𝑡𝑡 + 𝜖𝜖𝑖𝑖ℎ𝑡𝑡). 

Occasionally this is estimated with more than one measure of patient severity, however for simplicity 

this paper only uses the estimated mortality using the random forest based procedure described 

above. 

This model doesn’t match the first model because the first model does not control for expected 

mortality. The first model does not control for expected mortality because the dependent variable 

relies in part on the expected mortality rate, and thus controlling for expected mortality on the right 
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hand side would put that measure on both sides of the equation. However, it is possible to consider 

an aggregation of equation 2. An aggregate version of the dependent variable would be a hospitals 

total mortality rate in a month. Of the independent variables, volume and the fixed effects do not 

need further aggregation. An aggregate version of a patient’s expected mortality is a hospital’s 

expected mortality. This leads us to another alternate specification also here estimated in the 

robustness section that estimates a hospital’s actual mortality rate, MR, as a function of its expected 

mortality rate, monthly hospital AMI volume, a hospital-specific fixed effect, γ, and a time effect, δ: 

(3) 𝑀𝑀𝑅𝑅ℎ𝑡𝑡 = 𝛼𝛼 +  𝛽𝛽1𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉ℎ𝑡𝑡 + 𝛽𝛽2𝐸𝐸(𝑀𝑀𝑅𝑅ℎ𝑡𝑡) + 𝛾𝛾ℎ + 𝛿𝛿𝑡𝑡 + 𝜖𝜖ℎ𝑡𝑡. 

Instrumental variables estimates for equations 1 and 3 can be estimated by adding another model: 

(4) 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉ℎ𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽1𝑧𝑧ℎ𝑡𝑡 + 𝛽𝛽2𝑋𝑋ℎ𝑡𝑡 + 𝛾𝛾ℎ + 𝛿𝛿𝑡𝑡 + 𝜖𝜖ℎ𝑡𝑡 

This model includes in its predictors all of the predictors of main models (none in equation 1, expected 

mortality rate in equation 3), indexed by the vector X, and fixed effects when they are included, as 

well as one or more instruments, z. These models are estimated using two stage least squares. 

Equation 2 is estimated at the patient level, but the endogenous predictor is hospital-level volume. 

Thus, the structure of the instrumental variable model remains similar:  

(5) 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉ℎ𝑡𝑡 = 𝛼𝛼 +  𝛽𝛽1𝑧𝑧ℎ𝑡𝑡 + 𝛽𝛽2𝐸𝐸(𝑀𝑀𝑖𝑖ℎ𝑡𝑡) + 𝛾𝛾ℎ + 𝛿𝛿𝑡𝑡 + 𝜖𝜖𝑖𝑖ℎ𝑡𝑡. 

Equation 2 is non-linear; a probit function is used to deal with the binary individual outcome variable, 

but the first stage, equation 5 is still estimated using OLS. To deal with the multi-level, non-linear 

nature of this system, standard errors from equations 2 and 5 are reported using a bootstrap. 

In the main results, the instrument is the sum of the total cases of trauma and shock that the hospital 

admits in a given month. For robustness, these are considered as instruments separately. Also, for 

robustness, AMI volume is measured as a ratio of AMI volume in a given month to its average volume 

across the full 36 months. 

  

4.4. Data 

This paper uses 2005-2007 New York State Inpatient Data to create a longitudinal data set of hospital-

risk adjusted mortality rates and volumes. The data was created for the Healthcare Costs and 

Utilization Project, a part of the Agency for Healthcare Research and Quality in the US Department of 

Health and Human Services. Measurement of RAMRs is restricted to AMI patients. Following the 
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method used by Center for Medicare and Medicaid Services (Grady et al. 2013) observations from 

hospitals that saw less than 25 patients in any of the three years are dropped, removing 40 facilities. 

Ten hospitals who served a plurality of individuals whose ZIP codes were coded as homeless and two 

hospitals on the border with Canada who served a plurality of individuals whose ZIP codes indicated 

they were foreign are dropped, resulting in a data set of 163 hospitals with 36 months of data each, 

and 105,842 total AMI cases10. Monthly volume of AMI patients, trauma patients, shock patients, and 

trauma and/or shock patients are recorded. Figure 4.1 is a map of New York State (with Panel 2 

focusing on the part of the state in the New York City Metropolitan Area) with five-digit ZIP codes 

outlined and shaded by density of AMI patients. It shows that while a large proportion of the data 

comes from the New York City area, there is a large amount of geographic diversity. 

  

                                                           
10 Dropping hospitals who saw fewer than 25 shock or fewer than 25 trauma cases in any year was also 
considered. Doing this did not change the significance of the results. 
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Figure 4.1: Total AMI Volume of New York State and New York City MSA, Per ZIP Code, 2005-2007 
Panel 1: New York State 

 

Panel 2: New York City Metropolitan Area 

 

Note: Data is from New York State Inpatient Database, 2005-2007.  
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Volume of inpatients recorded as experiencing trauma and volume of patients experiencing shock are 

also recorded. This data has four different common codes for shock: unspecified shock (ICD-9 code 

785.50), cardiogenic shock (ICD-9 code 785.51), septic shock (ICD-9 code 785.52), and other (ICD-9 

code 785.59). Volume of patients with each of these categories is considered separately and then all 

cases are considered together, creating 5 shock-volume variables. There are numerous types of 

trauma in this data, so this paper focuses on complications of shock (ICD-9 code 958), which include: 

air embolism as an early complication of trauma (958.0), fat embolism as an early complication of 

trauma (958.1), secondary and recurrent hemorrhage as an early complication of trauma (958.2), 

posttraumatic wound infection not elsewhere classified (958.3), traumatic shock (958.4), traumatic 

anuria (958.5), Volkmann's ischemic contracture (958.6), traumatic subcutaneous emphysema 

(958.7), other early complications of trauma (958.8), and traumatic compartment syndrome (958.9). 

All of these are combined, creating one shock-volume variable recording volume of patients with at 

least one of these categories of shock. Since these two categories are neither mutually exclusive nor 

universally comorbid, volume of patients experiencing trauma, shock, or both is recorded. Patients 

diagnosed with trauma or shock may or may not have AMI, so volume of trauma or shock cases with 

no AMI present are also recorded as a comorbidity. In the main analysis, hospital data are aggregated 

at the monthly level, considering monthly volumes and monthly risk-adjusted mortality rates. Data is 

also aggregated at hospital level, creating cross-sectional data consisting of monthly averages. 

Quality is measured as hospital risk-adjusted mortality rate. Small, low performing hospitals are 

dropped, so the average mortality rate in this data, 0.0756 of patients die, is better than the average 

mortality rate of AMI inpatients in a more general population survey. Because higher quality hospitals 

are larger, the average hospital RAMR will have few large higher-performing hospitals and many small 

low-performing hospitals, pushing upwards the average hospital RAMR, which is 0.1274. Table 4.1 

summarizes the patient admission statistics in this data, how many admissions of the three, non-

mutually exclusive, key patient groups, and the average mortality rate and risk-adjusted mortality 

rates. There is a small decline in the mortality rate and a small increase in the risk-adjusted mortality 

rate of the data over the time period, but these changes are very small and not statistically significant. 

The number of AMI patients declined slightly, while the number of shock and the number of trauma 

patients rose slightly. The slopes for AMI and shock were statistically significant but only represent a 

change in AMI cases per hospital per month of 5.6 and in shock cases per hospital per month of 2.3. 
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Table 4.1: Hospital Inpatient and AMI Mortality Summary Statistics, Per Year 

Statistic N Mean 
St. 
Dev. 

Mean for 
Hospitals in Top 
Half of AMI 
Volume 

Mean for 
Hospitals in 
Bottom Half of 
AMI Volume 

AMI patients 525 216.85 235.8 367 67 
Shock patients 525 113.79 112.58 128 50 
Trauma patients 525 11.39 25.15 34 3 
Mortality rate 525 0.09 0.05 0.08 0.1 
Risk-adjusted mortality rate 525 0.12 0.06 0.09 0.15 

Note: Top half and bottom half of AMI Volume is based on hospitals with AMI volume greater than 
and less than the median value of 210. Data is from New York State Inpatient Database, 2005-2007. 
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Table 4.1 also reports the means for hospitals with AMI volume greater than and less than the median 

value of 210. Hospitals with higher AMI patient volume have lower average monthly mortality rates 

and RAMRs. In part this may be due to the issue of noisy estimates of RAMR and mortality rates, 

RAMRs and mortality rates have strict lower and upper bounds at zero and one, and that overall 

average RAMR and mortality rate is closer to zero. These three factors together may result in a similar 

character of data, that small hospitals have higher estimated RAMRs and mortality rates. To ensure 

this does not drive the results, models were tested with hospitals with below median volume dropped. 

In this case, results did not significantly change. 

Some attention must also be paid to cases of AMI where the patient also is diagnosed with shock or 

trauma. If this were common, it could increase the correlation of AMI volume and shock and trauma 

volume and it could reduce the usefulness of shock and trauma volume as an instrument. However, 

this occurs in only 4.4% of the observations. Dropping these observations or these hospitals has little 

effect on the outcome. These patients do have some effect on the correlation of AMI volume and 

shock and trauma volume, particularly when controlling for fixed effects. Including these patients in 

the model, but not including them in the trauma and shock volume reduces the first stage model fit 

and first stage F-statistic for testing weak instruments. There is little overall change in this case in 

models with no fixed effects. However, in models with fixed effects, this results in a first stage F-

statistic well below 10, and a very noisy estimate of the coefficient on AMI volume which is very close 

to zero and no longer statistically significant. While this paper drops hospitals with less than 25 AMI 

patients in a year, another issue of interest is hospitals with zero volume in a given month. No 

observations happen to have zero AMI cases, and 6.8% of observations have zero trauma or shock 

observations in a given month. Dropping these hospitals or hospital-months has little effect on the 

result. 

While this paper does not focus on the determinants of hospital quality beyond volume, this paper 

acknowledges the role of the demographics of a hospital’s patients. To approximate the demographics 

of a hospital’s patient population, the most common home ZIP code for AMI patients at a hospital is 

recorded as representative of the hospital’s patient population. In cases where more than one ZIP 

code are equally common, the ZIP code of the first patient from that group in the data is used. General 

demographic information about those ZIP codes are then taken from the 2007-2011 American 

Community Survey (data is accessed using the R package acs.r as described in Glenn 2011). The 

American Community Survey is an annual survey administered by the US Census Bureau as a 

replacement for the long form of the US Census and which first began collecting data in 2005. Data is 

available at the level of census tract and can be aggregated to various higher dimensions, including 
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ZIP code tabulation areas, which are nearly identical to ZIP codes, and which are used here. It is 

recommended that 5-year pooled results of the survey be used and the 2007-20011 results are used 

rather than the 2005-2009 because more variables are available for all New York State ZIP codes using 

the later series. Using this dataset, demographic information about each hospital is recorded, and that 

information is summarized in Table 4.2. The variables considered are the population living in the ZIP 

code, the median income of people living in the ZIP code, the percentage of people over the age of 25 

who graduated from high school or have equivalent educational attainment, a Gini index estimate of 

inequality in the ZIP code, the percentage of people who work away from home who have commutes 

greater than 30 minutes living in the ZIP code, the percentage of the people in the ZIP code who are 

male, the median age of residents of the ZIP code, the percentage of the ZIP code who identify as 

white, and the population density of the ZIP code based on the 2010 US census. All of these variables 

are directly from the survey or are simple ratios of two values in the survey. 
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Table 4.2: Summary Demographic Information for the Plurality ZIP Code of the Hospital’s Patients 
Statistic N Mean St. Dev. 
Population 163 41,133.00 23,639.00 
Median Income 163 29,187.00 10,968.00 
% High School Graduates 163 0.44 0.13 
Estimated Gini Index 163 0.45 0.05 
% Commuters > 30 min 163 0.39 0.21 
% Male 163 0.48 0.02 
Median Age 163 39 5.3 
% White 163 0.73 0.26 
Population Density (1,000s per sq. mi) 163 6.3 11 

Note: Data is from New York State Inpatient Database, 2005-2007, American Community Survey 
pooled 2007-2011 
 
  



79 
 

4.5. Results 

The main goal of this part of the paper is to examine if the relationship between volume and RAMR 

persists when using the instrument. Table’s 4.3 and 4.4 show the first and second stage of the 

regression described in equations 1 and 4. Table 4.3 gives the pooled estimate and the within (fixed 

effects) estimate. Table 4.5 gives the between estimate where all monthly observations for a hospital 

are averaged. The strength of the instrument is estimated using a test for weak instruments which has 

an f-distribution. In general, an instrument is considered weak if the F-statistic from this test is below 

ten. The F-statistic is above ten in all of the results in this section and in most of the results in the next 

section. The negative relationship between AMI volume and RAMR is consistently present in this 

section, giving evidence that there is a causal relationship between these two variables. To estimate 

the causal effect of volume on quality, this paper uses the volume of trauma and shock patients as an 

instrument which is correlated to the volume of AMI patients a hospital receives but does not enter a 

patient’s or an ambulance dispatcher’s choice set when a patient is sent to a hospital. Since volume 

of trauma or shock patients is a function of the number of trauma or shock patients in the vicinity, and 

is not a function of patient or ambulance choice, this instrument allows for estimation of causation in 

the effect of volume on quality for AMI patients, that is, how does volume improve quality. The 

instrumental variables estimate is likely to be smaller in magnitude than the corresponding naïve OLS 

and logit estimates. 

Columns 1, 2, and 3 of Table 4.3 are non-instrumental variables OLS estimates using equation 1. 

Columns 4, 5, and 6 are instrumental variables estimates estimating equations 4 and 1 using the two-

stage least squares method. In all tables, variables are scaled slightly so that coefficients are easier to 

read and interpret; volume is divided by 100, income is divided by $100,000, population density is 

divided by 1,000. The coefficient on volume in the first five columns is between -0.12 and -0.2, so if 

the number of patients per month increases by 10, the estimated RAMR for the hospital decreases by 

1.2 to 2 percentage points. This represents a 10% to 17% decline in RAMR (average RAMR in this data 

is 12%). Error terms are likely to be heteroskedastic and correlated with AMI volume, so Huber-White 

clustered standard errors are used. This paper is most concerned with the instrumental variables 

estimates. The instrument gives an estimate of AMI volume which is determined by emergency 

medical need in the area of the hospital, and is a function of catchment area but not with quality of 

AMI treatment. While this exclusion restriction cannot be directly tested, the key assumption of the 

relationship between the instrumental variable and the instrumented variable is tested with results 

given in each table and more detail in Table 4.4 below.  
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Including both hospital and monthly fixed effects as in Column 6 results in all variation being related 

to random shocks to patient volume, and thus can plausibly be considered an estimate of the within 

hospital causal effect of volume on quality. Residual variation in volume is greatly reduced by the 

inclusion of hospital and monthly fixed effects which inflate the magnitude of the estimated local 

average treatment effect. This coefficient, -0.9, is 4.5 to 7.5 times larger than the other estimates. This 

relationship – a much larger instrumental variables estimate relative to OLS – is common. Three 

common reasons are often given, and all may exist in this example: weak instrument, measurement 

error, and heterogeneous treatment. As the instrument and predictor of interest are both continuous, 

the common measure of instrument quality compares the residual sum of squares in the instrument 

model (equation 4 in this case) with and without the inclusion of the instrument. In the comparison, 

the relevant statistic has an F-distribution, and if the F-statistic is greater than 10, the instrument is 

generally considered a good instrument. In Columns 4 and 5, the F-statistic for the instrument (which 

is the same in all three columns) is 3843 and 3771 respectively. However, in Column 6, the F-statistic 

is 16, still probably a good instrument, but much weaker than it was in the other columns. Since this 

instrument is continuous, what is called as the local average treatment effect when a binary 

instrument is used is sometimes interpreted as the heterogeneous treatment effect. In this case, 

doctors who are more likely to improve during high volume periods may be more likely to work at 

hospitals with higher volume. Thus, the instrumental variables estimate may be only partially valid; 

with a binary instrument, it might be said that the effect is locally valid. The heterogeneous treatment 

effect suggests that the causal relationship between volume and RAMR for hospitals which are more 

likely to have higher volumes. Finally, while there is very little measurement error in the data, AMI 

procedures may have considerable skill spillovers with other procedures, and thus AMI volume may 

be a noisy measure of the amount of practice physicians are getting which is applicable to the care of 

AMI patients. Table 8 in the robustness section presents an alternative measure of AMI volume where 

the instrument turns out to look a little stronger when hospital-specific and monthly fixed effects are 

included. In that case, the coefficient on AMI volume has a similar implication on the magnitude of 

the effect to the coefficients from Columns 1 through 5 of this table. 
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Table 4.3: Relationship between AMI Volume and AMI RAMR at Hospitals 
Dependent Variable: RAMR RAMR RAMR RAMR RAMR RAMR 

 OLS OLS OLS IV IV IV 
Independent Variables (1) (2) (3) (4) (5) (6) 
AMI Volume (/100) -0.153*** -0.145*** -0.123*** -0.195*** -0.178*** -0.928* 

 (0.007) (0.007) (0.019) (0.01) (0.01) (0.499) 
Median Income (/$100,000)  -0.217    -0.219  
  (0.291)    (0.292)  
% High School Graduates  0.067**    0.059**  
  (0.026)    (0.027)  
Estimated Gini Index  0.106*    0.082  
  (0.057)    (0.058)  
% Commuters > 30 min  0.015    0.016  
  (0.013)    (0.013)  
% Male  -0.072    -0.074  
  (0.088)    (0.087)  
Population Density  -0.0001    0.00002  
 (1,000 per sq. mi)  (0.0003)    (0.0003)  
Median Age  -0.00003    -0.00004  
  (0.0005)    (0.0005)  
% White  0.058***    0.059***  
  (0.013)    (0.013)  
Constant 0.146*** 0.062 0.113*** 0.154*** 0.082 0.497** 
  (0.003) (0.06) (0.013) (0.003) (0.061) (0.238) 
Hospital Fixed Effects N N Y N N Y 
Monthly Fixed Effects N N Y N N Y 
Observations 5,644 5,644 5,644 5,644 5,644 5,644 
R2 0.055 0.062 0.14 0.051 0.06 0.016 
F-Statistic for weak 
instrument test:    3843 3771 16 

Note: OLS and IV estimates of the relationship between monthly AMI inpatient volume and risk-
adjusted mortality rates, equation 1 and equation 4. Huber-White clustered standard errors in 
parentheses. IV estimates use total volume of trauma and shock inpatients during the month as 
instruments for AMI volume. Volumes are calculated per month. Data is from New York State Inpatient 
Database, 2005-2007.  
*p<0.1; **p<0.05; ***p<0.01 
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Table 4.4 shows estimates from equation 4, and represents the first stage of the instrumental variables 

estimates from Table 4.3. Columns 1 and 2 without fixed effects corresponding to Columns 4 and 5 in 

Table 4.3, with Column 3 corresponding with Column 6 in Table 4.3 and including fixed effects. The 

coefficient on shock and trauma volume is more than ten times larger in Columns 1 and 2 than in 

Column 3. This corresponds to the instrument being weaker in that case when hospital-specific and 

monthly fixed effects are included. It also corresponds to the large difference in estimates of the 

coefficient on AMI volume in Table 4.3. In general, however, the relationships between the two kinds 

of volume is nearly one-to-one in Columns 1 and 2, as might be expected. In Column 3, most of the 

relationship is captured by the hospital fixed effect, although there remains a significant correlation 

between shock and trauma volume and AMI volume. The F-statistic is high in part because of the large 

amount of data and because the instrumental variable and the instrumented variable are both 

continuous. To compare this F-statistic to other F-statistics in similar studies, using the number of 

patients within a radius of a hospital as an instrument for CABG volume, Gowrisankaran et al. 2006 

report first-stage F-test statistics of as high as 345 for some of their models. 
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Table 4.4: First stage of IV, Relationship between Instrument (Shock and Trauma Volume) and AMI 
Volume at Hospitals 

Dependent Variable: 
AMI 
Volume 
(/100) 

AMI 
Volume 
(/100) 

AMI 
Volume 
(/100) 

  OLS OLS OLS 
Independent Variables: (1) (2) (3) 
Shock and Trauma Volume (/100) 1.152*** 1.257*** 0.092** 

 (0.035) (0.041) (0.043) 
Median Income (/$100,000)  -0.224  
  (0.413)  
% High School Graduates  -0.164***  
  (0.029)  
Estimated Gini Index  -0.248***  
  (0.059)  
% Commuters > 30 min  -0.147***  
  (0.016)  
% Male  -0.363***  
  (0.085)  
Population Density  0.0004  
 (1,000 per sq. mi)  (0.0004)  
Median Age  0.309***  
  (0.046)  
% White  -0.013  
  (0.013)  
Constant 0.064*** 0.362*** 0.453*** 

 (0.003) (0.054) (0.02) 
Hospital Fixed Effects N N Y 
Monthly Fixed Effects N N Y 
Observations 5,644 5,644 5,644 
R2 0.405 0.445 0.899 
F-Statistic for weak instrument test: 3843 3771 16 

Note: First stage of instrumental variables regressions, corresponding to equation 4. Huber-White 
clustered standard errors in parentheses. IV estimates use total volume of trauma and shock inpatients 
during the month as instruments for AMI volume. Volumes are calculated per month. Data is from New 
York State Inpatient Database, 2005-2007.  
*p<0.1; **p<0.05; ***p<0.01 
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An alternative is a between estimate of the effect, where all volumes in a hospital across the entire 36 

months of the data are averaged. In this case, one observation is made for each hospital, and no fixed 

effects are used. Table 4.5 presents this model. Column 1 is an OLS estimate of the relationship 

between a hospital’s average monthly AMI volume and its RAMR. Column 2 uses the average monthly 

trauma and shock cases. In this way, this is a between hospital estimate. The coefficients in this 

estimate are similar to those in Table 4.3, but are about one third their magnitudes. In this case, the 

instrument is quite strong, giving a relatively tight bound around the coefficient on AMI volume in the 

second stage regression. The coefficient of 0.07 implies that comparing two hospitals, one with 10 

more patients, the higher volume hospital will have 0.7 percentage points lower RAMR. 
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Table 4.5: Relationship between AMI Volume Ratio and AMI RAMR at Hospitals, Cross-sectional 
Dependent Variable: RAMR RAMR 

 OLS IV 
Independent Variables: (1) (2) 
AMI Volume -0.057*** -0.070*** 
(monthly average/100) -0.007 -0.011 
Constant 0.092*** 0.094*** 

 -0.003 -0.003 
Observations 163 163 
R2 0.21 0.198 
F-Statistic for weak instrument test:  172 

Note: OLS and IV estimates of the relationship between average monthly AMI inpatient volume and 
risk-adjusted mortality rates, equation 1 and equation 4. Huber-White clustered standard errors in 
parentheses. IV estimates use total volume of trauma and shock inpatients as instruments for AMI 
volume. Volumes are average across all the data. Data is from New York State Inpatient Database, 
2005-2007. 
*p<0.1; **p<0.05; ***p<0.01 
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4.6. Robustness 

There are a number of choices in constructing variables and in modeling strategy that may be made, 

and it is useful to discuss the robustness to these choices. In the case of this paper, shock and trauma 

volume are counted together and used as an instrument. Shock and trauma could be considered 

separately, which is tested in Table 4.6. For that matter, different definitions of shock and trauma are 

possible, which are not tested. The definition of AMI volume is not fixed, in Table 4.7 this paper looks 

at results if monthly volume is calculated as a ratio against average monthly volume. Tables 4.8 and 

4.9 look at variations in the modelling strategy, Table 4.8 considering a patient-level model and Table 

4.9 considering a different version of the hospital-level model. Some of these variations can weaken 

the instrument relative to the main results, but in cases where the instrument remains strong, the 

conclusions are generally robust to these variations.  

In Table 4.6, the instrumental variables estimates from Table 4.3 are repeated but in Columns 1, 2, 

and 3 only the volume of shock patients are used and in Columns 4, 5, and 6 only the volume of trauma 

patients are used as an instrument. In Table 4.3 the total volume of patients with trauma and or shock 

is used as an instrument; another option is to include both volumes as two instruments in the same 

model. This case gives results that are nearly identical to Table 4.3 and is omitted. The first-stage 

regressions of the models estimated in Table 4.6 are omitted, but the F-statistic test for weak 

instruments is provided in the table. This result is very similar to the instrumental variables results in 

Table 4.3. It also shows that shock volume is more important to the result than trauma volume, but 

that in all cases where no hospital-specific fixed effect is used, the test for weak instruments gives a 

very high F-statistic. This suggests that if only trauma volume is available, it may be an effective 

instrument if hospital-specific fixed effects are not a part of the model. Shock may be an effective 

instrument in either case. 
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Table 4.6: Relationship between AMI Volume and AMI RAMR at Hospitals, Robustness to Different 
Instruments 

Dependent Variable: RAMR RAMR RAMR RAMR RAMR RAMR 
Instrument Shock Shock Shock Trauma Trauma Trauma 
Independent Variables (1) (2) (3) (4) (5) (6) 
AMI Volume (/100) -0.198*** -0.179*** -1.226* -0.170*** -0.165*** 0.4 

 (0.011) (0.011) (0.743) (0.013) (0.014) (0.387) 
Median Income (/$100,000)  -0.219    -0.219  
  (0.292)    (0.291)  
% High School Graduates  0.059**    0.062**  
  (0.027)    (0.026)  
Estimated Gini Index  0.08    0.091  
  (0.058)    (0.058)  
% Commuters > 30 min  0.016    0.016  
  (0.013)    (0.013)  
% Male  -0.074    -0.074  
  (0.087)    (0.088)  
Population Density  0.00003    -0.00004  
 (1,000 per sq. mi)  (0.0003)    (0.0003)  
Median Age  -0.004    -0.004  
  (0.05)    (0.05)  
% White  0.059***    0.058***  
  (0.013)    (0.013)  
Constant 0.154*** 0.083 0.639* 0.149*** 0.075 -0.136 

 (0.003) (0.061) (0.355) (0.004) (0.061) (0.183) 
Hospital Fixed Effects N N Y N N Y 
Monthly Fixed Effects N N Y N N Y 
Observations 5,644 5,644 5,644 5,644 5,644 5,644 
R2 0.051 0.06 -0.152 0.055 0.061 0.075 
F-Statistic for weak 
instrument test: 

3672 3698 11 729 689 9 

Note: OLS and IV estimates of the relationship between monthly AMI inpatient volume and risk-
adjusted mortality rates, equation 1 and equation 4. Huber-White clustered standard errors in 
parentheses. IV estimates use total volume of trauma or total volume of shock inpatients during the 
month as instruments for AMI volume. Volumes are calculated per month. Data is from New York State 
Inpatient Database, 2005-2007. 
*p<0.1; **p<0.05; ***p<0.01 
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Table 4.7 presents an alternative measure of AMI volume, the ratio of a hospital’s AMI volume in a 

particular month to its average volume over all months. In this case, the instrument is very weak when 

hospital effects are included, but the F-statistic for the test for weak instruments is higher when 

hospital-specific and monthly fixed effects are included; in fact the F-statistic is higher than when raw 

AMI volume is used instead of the AMI-volume ratio. In this case, the coefficient on AMI volume ranges 

from -0.05 for the non-instrumental variables estimates to -0.14 for the instrumental variables 

estimate. To understand the magnitude of the IV estimate, consider a large hospital that sees 50 AMI 

patients in a month that sees an increase of 20%, or 10 patients. This increase in 10 patients is the 

same increase in volume that was considered in example in the main section in this paper. In this case, 

estimated RAMR in the instrumental variables estimate of Column 6 will drop 2.8 percentage points. 

This result is slightly larger than the estimate from Columns 4 and 5 of Table 4.3. The uncertainty of 

Column 6 of Table 4.3 was much higher making a comparison more difficult. 
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Table 4.7: Relationship between AMI Volume Ratio and AMI RAMR at Hospitals 
Dependent Variable: RAMR RAMR RAMR RAMR RAMR RAMR 
Instrument OLS OLS OLS IV IV IV 
Independent Variables (1) (2) (3) (4) (5) (6) 
AMI Volume Ratio -0.054*** -0.054*** -0.056*** -7.328 -5.592 -0.135*** 

 (0.006) (0.006) (0.005) (9.654) (6.625) (0.045) 
Median Income (/$100,000) 

 
-0.209 

 
  -0.209 

 

 
 

(0.295) 
 

  (5.451) 
 

% High School Graduates 
 

0.103*** 
 

  0.103 
 

 
 

(0.027) 
 

  (0.454) 
 

Estimated Gini Index 
 

0.217*** 
 

  0.217 
 

 
 

(0.057) 
 

  (0.953) 
 

% Commuters > 30 min 
 

0.01 
 

  0.01 
 

 
 

(0.013) 
 

  (0.235) 
 

% Male 
 

-0.064 
 

  -0.064 
 

 
 

(0.088) 
 

  (1.493) 
 

Population Density 
 

-0.001*** 
 

  -0.001 
 

 (1,000 per sq. mi) 
 

(0.0003) 
 

  (0.005) 
 

Median Age 
 

0.004 
 

  0.004 
 

 
 

(0.05) 
 

  (0.781) 
 

% White 
 

0.054*** 
 

  0.054 
 

 
 

(0.013) 
 

  (0.223) 
 

Constant 0.171*** 0.026 0.127*** 7.445 5.564 0.230*** 

 (0.007) (0.06) (0.011) (9.666) (6.69) (0.06) 
Hospital Fixed Effects N N Y N N Y 
Monthly Fixed Effects N N Y N N Y 
Observations 5,644 5,644 5,644 5,644 5,644 5,644 
R2 0.025 0.041 0.16 -451.434 -261.606 0.112 
F-Statistic for weak 
instrument test: 

   0 1 23 

Note: OLS and IV estimates of the relationship between monthly AMI inpatient volume and risk-
adjusted mortality rates, equation 1 and equation 4. Huber-White clustered standard errors in 
parentheses. IV estimates use total volume of trauma and shock inpatients during the month as 
instruments for AMI volume. AMI Volume Ratio is equal to a hospitals AMI Volume each month divided 
by its average monthly volume over all months. Volumes are calculated per month. Data is from New 
York State Inpatient Database, 2005-2007. 
*p<0.1; **p<0.05; ***p<0.01 
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Table 4.8 presents estimates from a model of individual level mortality as a function of hospital 

monthly volume and individual patient severity as in equation 2. As with that previous table, the 

coefficient on AMI volume is estimated with much less certainty when hospital and monthly fixed 

effects are included in the model. When hospital fixed effects are not included, the coefficient, -

0.0004, implies that an increase in volume by 10 patients in a month reduces the probability of an 

individual patient dying by 4% points. This estimate implies a slightly larger effect than in Tables 4.3 

and 4.5. The IV estimate of the coefficient is slightly smaller, but nearly the same.  
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Table 4.8: Average Marginal Relationship between AMI Volume and Mortality for AMI Patients, 
Probit, Average Marginal Effect 

Dependent Variable: 
Patient 
Outcome 

Patient 
Outcome 

Patient 
Outcome 

Patient 
Outcome 

 GLS GLS IV IV 
Independent Variables: (1) (2) (3) (4) 
AMI Volume -0.000415*** -0.0000515 -0.000362*** -0.0000466 

 (0.00002) (0.003) (0.0004) (0.0008) 
Patient Severity 0.314*** 0.311*** 0.315*** 0.312*** 

 (0.003) (0.003) (0.003) (0.004) 
Hospital Fixed Effects N Y N Y 
Monthly Fixed Effects N Y N Y 
Observations 105,842 105,842 105,842 105,842 
Pseudo-R2 0.32 0.33 . . 
LogLik -18618 -18321 -501724 -392248 
F-Statistic for weak 
instrument test:   

55763 1002 

Note: GLS and IV estimates of the probit relationship between monthly AMI inpatient volume and 
individual in-hospital mortality, equation 3 and equation 4. Huber-White clustered standard errors in 
parentheses. IV estimates use total volume of trauma and shock inpatients during the month as 
instruments for AMI volume. Volumes are calculated per month. Data is from New York State Inpatient 
Database, 2005-2007. 
*p<0.1; **p<0.05; ***p<0.01 
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Table 4.9 gives estimates from equation 3. As mentioned before, this is a similar model to equation 2 

estimated in Table 4.8, except that individual in-hospital mortality outcome and volume is now 

aggregated to the hospital-month level. These results are similar to those in Table 4.3, but the non-

fixed effects estimates are about one third as large as they are in the previous table. The coefficients 

cannot be compared directly between Table 4.3 and Table 4.9 because AMI volume and expected 

mortality rates are correlated, and direct interpretation of the coefficient on AMI volume in Table 4.9 

assumes that expected mortality rates are held constant. This also explains why the coefficients on 

AMI volume are smaller in Table 4.9 than in Table 4.3. As with other models, the F-statistic for the 

weak instrument test is much smaller when fixed effects are included, although it is above ten in Table 

4.9 Column 6. The coefficient on AMI volume in that column is not significant, however. 
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Table 4.9: Relationship between AMI Volume and Mortality for AMI patients at Hospitals 

Dependent Variables: 
Mortality 
Rate 

Mortality 
Rate 

Mortality 
Rate 

Mortality 
Rate 

Mortality 
Rate 

Mortality 
Rate 

  OLS OLS OLS IV IV IV 
Independent Variables: (1) (2) (3) (4) (5) (6) 
AMI Volume (/100) -0.047*** -0.044*** 0.022 -0.072*** -0.069*** -1.059 

 (0.004) (0.005) (0.02) (0.008) (0.009) (1.721) 
E(Mortality Rate) 0.993*** 0.992*** 0.986*** 0.987*** 0.986*** 0.926*** 

 (0.042) (0.042) (0.04) (0.042) (0.042) (0.104) 
Median Income (/$100,000)  -0.406*    -0.407*  
  (0.229)    (0.229)  
% High School Graduates  0.004    -0.002  
  (0.02)    (0.02)  
Estimated Gini Index  0.02    0.002  
  (0.044)    (0.045)  
% Commuters > 30 min  0.029***    0.030***  
  (0.011)    (0.011)  
% Male  -0.166***    -0.167***  
  (0.064)    (0.064)  
Population Density  -0.0003    -0.0002  
 (1,000 per sq. mi)  (0.0002)    (0.0002)  
Median Age  0.008    0.007  
  (0.035)    (0.035)  
% White  0.024**    0.025**  
  (0.01)    (0.01)  
Constant 0.021*** 0.071 -0.030*** 0.026*** 0.087** 0.438 

 (0.004) (0.044) (0.01) (0.004) (0.044) (0.747) 
Hospital Fixed Effects N N Y N N Y 
Monthly Fixed Effects N N Y N N Y 
Observations 5,644 5,644 5,644 5,644 5,644 5,644 
R2 0.366 0.369 0.409 0.365 0.367 0.047 
F-Statistic for weak 
instrument test:    3945 3868 18 

Note: OLS and IV estimates of the relationship between monthly AMI inpatient volume and hospital 
mortality rates, equation 2 and equation 4. Huber-White clustered standard errors in parentheses. IV 
estimates use total volume of trauma and shock inpatients during the month as instruments for AMI 
volume. Volumes are calculated per month. Data is from New York State Inpatient Database, 2005-
2007. 
*p<0.1; **p<0.05; ***p<0.01 
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4.7. Conclusion 

Using a novel instrument for AMI volume of shock and trauma volume, this paper gives an estimate 

of the effect of volume on risk-adjusted mortality rates that is of comparable magnitude to some 

estimates from the literature. This paper argues that this instrument is more robust to variation in 

geographic characteristics of a hospital’s region than commonly used instruments involving the 

number of patients with a particular illness geographically close to the facility. The relationship 

estimated using ordinary least squares persists when hospital specific and monthly fixed effects are 

included in the model. However, the instrument becomes weaker when these effects are included, 

and the model no longer estimates a statistically significant relationship between instrumented 

volume and risk-adjusted mortality rates. However, if volume is measured as a ratio of a month’s 

volume to the average monthly volume for that hospital in the data, the instrument is less weak, and 

statistical significance returns – and the magnitude is reasonable.  

In many cases where administrative data is not merged with ambulance data, instruments which 

estimate how many cases occur within a radius of a facility are difficult to precisely estimate as patient 

location information may, as in this case, represent a patient’s mailing home ZIP code, but this can 

represent a large land area and there is no verification in the data if the onset of illness occurred at 

home or at another place. However, data on shock and trauma volume may be generally available. 

There are a number of weaknesses with using volume of trauma and shock as an instrument for AMI 

volume. Volume of trauma also may indicate the volume of traffic accidents and traumatic events 

such as occupational accidents and violent crime in an area. There may be factors which affect both 

the volume of traumatic events and the quality of nearby hospitals; an example being socioeconomic 

determinants of quality (see Nelson et al. 2002). Another factor is that hospitals with a history of 

high volume in general may be more likely to invest in quality. Investment in hospitals with higher 

general volume can lead to greater overall impact if the hospitals spend those funds on goods which 

are non-excludable within the hospital, that is which can improve outcomes for many illnesses. 

While every important socioeconomic factor cannot be perfectly accounted for, hospital-specific 

fixed effects are included which should limit the effect of invariant socioeconomic determinants of 

quality and trauma volume as well as the relationship between past volume and quality 

improvement. In cases where those effects are included, the instrument loses a great deal of its 

power. Another weakness is related to the autocorrelation of hospital volume, which could inflate 

instrument strength. Further work should use auto-correlation robust methods such as those 

suggested by Arellano and Bover (1995) and Blundell and Bond (1998) and also should consider with 

placebo testing, whereby the IV is applied to a setting where there would be a null causal effect. 
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The quality returns to volume may be due to a number of causes. Within hospital estimates could tend 

to represent returns to scale within the hospital and learning-by-doing. Between hospital estimates 

could, may be related to greater investments in hospitals during periods of high volume, even if the 

volume is relatively unexpected. While these estimates may be causal, if the investment-volume 

relationship considers measures of volume correlated to both AMI volume and to trauma and shock 

volume, this effect may not give an estimate that is as useful from the perspective of policy makers. 

Even if volume does improve quality in a causal manner, the exact causal mechanism is not yet clear. 

Heusch (2009) criticizes the concept of learning-by-doing as an oversimplification. They argue that 

learning effects may have multiple components, including fungibility of learning across institutions 

and across procedures, depreciation of knowledge – possibly through forgetting, difference between 

learning from recent experience and from cumulative experience, and static scale effects. 

The effect of volume on quality is often applied to questions of the utility of merging hospitals. This 

local average treatment effect may imply that the causal estimates given here of the outcomes benefit 

of merging facilities may be overestimated. On the other hand, the benefits estimated were 

significantly different from zero and persist even for low-volume facilities. Thus, while the beneficial 

effect of merging may be overestimated, these results suggests that merging emergency facilities 

which are very nearby may improve AMI outcomes if such a merger does not delay treatment for 

patients. Further research should seek to more precisely disentangle quality returns to scale and 

learning-by-doing. Both of these are important and suggest different policy implications. On the other 

hand, some of these returns may be captured without increasing hospital volume. If learning and 

experience are necessary, physicians at low volume hospitals may rotate to higher volume hospitals 

or use simulated cases to increase their practice and experience. Similar techniques may be developed 

for physicians at high volume facilities for periods when they see lower volume. Also, administrative 

efficiencies developed at high volume hospitals may be passed to low volume hospitals directly. 
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Chapter 5  

5.1 Conclusion 

This thesis is based on an interest in measurement and methodological issues in health economics. I 

have chosen to focus on questions relating to hospital quality particularly regarding risk-adjusted 

mortality rates (RAMRs), using a large US inpatient dataset. I have also focused on the use of a wide 

range of tools from econometrics and statistics that are not as common in economics. Two important 

contributions of this work are the exploration of the usefulness of machine learning in a health 

economics setting, and the use of very large inpatient datasets to address questions in health 

economics. The second and third chapters explore measurement and modelling issues around quality 

and how important those issues are in the incentivizing of high quality hospitals. The final chapter 

explores the role that economies of scale and learning-by-doing play in quality and introduces a novel 

instrument for assessing causality in the quality-volume relationship in health provision.  

 

5.2. Summary 

Improving the accuracy of estimation of hospital quality can greatly improve the efficiency of health 

policies aimed at improving hospital quality. The second chapter of this thesis uses a novel application 

of machine learning as a risk estimation of patient mortality technique in a large administrative dataset 

which greatly improves the ability to control for patient case mix in estimating RAMRs. It uses the 

technique called random forests which allows analysis of the whole data set and incorporates in its 

model non-linearity such as comorbidity interactions automatically. This method outperforms existing 

methods for mortality risk prediction. It also shows that facility rankings vary significantly between the 

patient risk-adjustment models presented in the chapter. Alternative models often use more limited 

sets of patient morbidity information by categorizing morbidities such as Elixhauser’s Comorbidity 

Index (Elixhauser 1998), or by a variable selection process like forward stepwise logistic regression. 

Variation is extremely small between a risk adjustment model using only present-on-admission 

diagnosis codes and a model which uses all available codes. Therefore, if one’s objective is to generate 

facility-level quality scores in data where present-on-admission information is unavailable, then the 

evidence suggests the preferred risk adjustment strategy is to use all available information. Given 

rapid increases in both the availability of data and computing power, using random forests or possibly 

other machine learning techniques on the fullest set of comorbidity information possible is likely to 

provide the best adjustment in many situations. 
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This chapter creates indicator variables for each International Classification of Diseases Volume 9 

codes as predictors in random forests. Future research to confirm these results should also consider 

using disease classifications from Volume 10 of the International Classification of Diseases as well as 

considering its application to risk adjusted readmission rates. Common methods in the literature 

reduce the dimensionality of the problem by grouping morbidities into a smaller set of categories and 

then model mortality using generalized least squares methods based on logit or probit estimation, this 

work illustrates the usefulness of these new techniques in those situations. It also shows that this 

improvement in predictability results in significantly different estimates of hospital quality and that 

pay-for-performance schemes and quality reports would reflect this difference. In particular, this 

chapter shows that the quality of as many as one-third of hospitals would be mis-categorized in a 

scheme which uses RAMR to group facilities into three groups: below average, average, and above 

average. As such, using a machine learning method such as random forests using all POA ICD-9 codes 

would be the preferable method for risk adjusting patient mortality. 

The third chapter continues to focus on the estimation of RAMRs as an important and commonly used 

measure of hospital quality. A number of different formulae are used to generate RAMRs from patient 

risk estimates with little concern given to the role these formula play in affecting the utility of the 

estimated RAMRs. The third chapter shows that RAMRs estimated using common techniques are not 

optimal for a number of important purposes and that non-standardized versions should be 

considered. Particularly, that standardizing estimates reduces their performance for four tasks health 

economists typically use in their work. Standardizing a hospital mortality rate is necessary when the 

goal is to use a hospital’s actual mortality rate to estimate its RAMR, but, a hospital’s predicted 

mortality rate is often preferred to its actual rate (Grady et al. 2013). When the hospital’s mortality is 

predicted using hospital-specific effects, this paper argues that standardizing does not further improve 

the estimate. Rather, when a model with hospital-specific effects is used to predict in-hospital 

mortality, that prediction is itself a preferable estimate of RAMR. RAMR estimates when hospital 

effects are fitted with a probability model (such as in random effects models), allowing shrinkage of 

estimates towards the mean, further improves the estimation compared to estimating hospital effects 

as fixed effects. 

The third chapter then presents a number of formula for comparing aggregate patient mortality risk 

at a hospital to estimating RAMR. It then compares the performance of the different formula in 

different tasks. For instance, pay-for-performance schemes are based on hospital quality ranking, and 

thus are most efficient when hospital quality is correctly ranked. Spearman correlation is a measure 

of how well the ordering of two variables, in this case RAMRs from different formula, match each 
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other. This work estimated the Spearman correlation of simulated true RAMR to estimated RAMR, 

and finds the formula with the highest correlation is not the formula commonly used by policy makers 

including that of the Affordable Care Act’s pay-for-performance scheme, the Hospital Value Based 

Purchasing Plan. Depending on the scheme, this difference will play a significant role in how well a 

scheme aligns hospital interests to its performance. If a hospital judges that a scheme cannot discern 

quality signals from noise, it may reduce the willingness of a hospital to prioritize investment in quality 

improvement. For similar reasons, it also finds that patient choice is not always optimal when using 

the most popular methods of calculating RAMR. 

Measurement error in RAMR when using RAMR as an outcome in regression models did result in 

attenuation-like bias. The chapter makes recommendations for RAMR formulae in these cases as well. 

When measurement is noisy, there is bias in all formula. For high levels of noise, the magnitude of the 

bias can be over 16% of the signal when the lowest performing formula is used, while using the 

preferred formula can reduce bias to less than 6% of the signal. This difference has significant 

implications for hypothesis testing and estimating effect sizes in modeling hospital quality. 

This chapter focuses on hospital RAMR, but the results may apply to any institutional or jurisdictional 

groupings, such as the RAMR for a particular geographic region or facility type, or even, plausibly, for 

coherent groupings of patients, such as when comparing RAMR across states. The results may also 

apply to risk-adjusted rates of hospital readmission, which is another important measure of hospital 

quality. 

Using shock and trauma volume as a novel instrument for AMI volume, the fourth chapter gives an 

estimate of the effect of volume on RAMRs that is of comparable magnitude to some existing 

literature, but which contradicts some of the most recent studies, such as Kim et al. (2016). This 

chapter argues that this instrument is more robust to variation in geographic characteristics of a 

hospital’s region than other commonly used instruments involving the number of patients with a 

particular illness geographically close to the facility. The relationship estimated without an 

instrumental variable persists when hospital specific and monthly fixed effects are included in the 

model. However, the instrument becomes weaker when these effects are included, and the model no 

longer estimates a statistically significant relationship between instrumented volume and RAMRs. 

However, if volume is measured as a ratio of a month’s volume to the average monthly volume for 

that hospital using this data, then the instrument is less weak, and the results are again statistically 

significant and of reasonable magnitude.  
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There are a number of weaknesses with using volume of trauma and shock as an instrument for AMI 

volume. Volume of trauma also may indicate the volume of traffic accidents and traumatic events such 

as occupational accidents and violent crime in an area. There may be factors which affect both the 

volume of traumatic events and the quality of nearby hospitals; an example being socioeconomic 

determinants of quality. Another factor is that hospitals with a history of high volume in general may 

be more likely to invest in quality. Investment in hospitals with higher general volume can lead to 

greater overall impact if the hospitals spend those funds on goods which are non-excludable within 

the hospital, that is which can improve outcomes for many illnesses. While every important 

socioeconomic factor cannot be perfectly accounted for, hospital-specific fixed effects are included 

which should limit the effect of invariant socioeconomic determinants of quality and trauma volume 

as well as the relationship between past volume and quality improvement. In cases where those 

effects are included, the instrument loses a great deal of its power. 

The effect of volume on quality is often applied to questions of the utility of merging hospitals. Thus, 

this paper supports suggestions that merging emergency facilities which are near each other may 

improve AMI outcomes if such a merger does not delay treatment for patients. Further research 

should seek to more precisely disentangle quality returns to scale and learning-by-doing. Both of these 

are important and suggest different policy implications. On the other hand, some of these returns may 

be captured without increasing hospital volume. If learning and experience are necessary, physicians 

at low-volume hospitals may rotate to higher-volume hospitals or use simulated cases to increase their 

practice and experience. Administrative efficiencies learned at high-volume hospitals may be passed 

to low-volume hospitals directly.  

 

5.3. Discussion 

This thesis does leave an important question regarding the generalizability of the results. In 2013, the 

United States health data collection policies joined those of many other countries in adopting a new 

classification system for patient illness recording, shifting from volume 9 to volume 10 of the 

International Classification of Diseases guidelines, a fundamental variable in the second chapter. In 

2014 most major provisions of the Affordable Care Act in the United States were phased in. Health 

care faces new and changing procedures and challenges all the time. This thesis uses data from 2005-

2007, and it will be important to verify the conclusions it offers against these new conditions, and 

against future new conditions. Further, this thesis uses data from the largest and fourth largest US 

states by population, states with great regional variation that make them somewhat representative 



100 
 

of the country as a whole. However, next steps in research will need to focus more on this geographic 

variation. Rural and urban hospitals are included in the analysis, however, because the samples were 

largely urban, future work should assess questions of the application of this thesis to rural areas. There 

are many similarities, but also many fundamental differences between health care in the United States 

and in other countries. While these issues exist, the data is still very representative and the change in 

coding may not greatly affect the conclusions of the thesis. It is likely, then, that the results are 

generalizable to other regions and across other time periods, but it will be useful to test the robustness 

of its conclusions, especially to data from other countries. 

These different chapters deal with questions that will be a part of the future of health economics. All 

three chapters take advantage of large administrative data sets. The second chapter creates a new 

measure of patient mortality risk which is used in the other two chapters. It also adds to the literature 

on the applications of machine learning to economics and health economics (Athey and Imbens 2016). 

The third chapter provides a unique evaluation of different methods for aggregating patient risk to 

hospital RAMRs, an important aspect of quality. While randomized experiments are a gold standard 

in understanding causal relationships, healthcare provision is an ongoing concern and many important 

questions cannot be addressed in a lab. The use of data analysis, including instrumental variables as 

is used in the fourth chapter, as well as other methods, is extremely important, especially when 

discussing issues about quality, where lab conditions may not give appropriate inferences. An 

important future goal of my work will involve using machine learning techniques in causal inference 

(Hill 2012, Kreif et al. 2015). 

All three chapters also have important implications for health policy, particularly for incentivizing the 

quality of health care. Incentives for health care often come in pay-for-performance schemes, where 

measured hospital quality is used to modify reimbursements to hospitals for services provided. Less 

attention is paid to the role of cost-effectiveness in health policy incentives. Many possible policies 

and interventions may be considered for implementation in both public and private healthcare 

settings. Relative cost-effectiveness of these interventions can play a key role in how the 

implementation of interventions is prioritized. Better measurement of provision quality may result in 

more precise measures of intervention cost-effectiveness. Better measurement of cost-effectiveness 

increases the value of cost-effectiveness analysis as a policy tool and reduces uncertainty for policy 

makers comparing programs and interventions. 
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