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Abstract—The aim of this study was to examine the relation-5
ship between the anisotropy direction of exposed gravel bed and6
flow direction. Previous studies have shown that the anisotropy7
direction of a gravel bed surface can be visually determined in the8
elliptical contours of 2-D variogram surface (2DVS). In this letter,9
airborne laser scanning (ALS) point clouds were acquired at a10
gravel bed, and the whole data set was divided into a series of11
6 m × 6 m subsets. To estimate the direction of anisotropy, we12
proposed an ellipse-fitting-based automatic procedure with con-13
sideration given to the grain size characteristic d50 to estimate the14
primary axis of anisotropy [hereafter referred to as the primary15
continuity direction (PCD)] in the 2DVS. The ALS-derived PCDs16
were compared to the flow directions (for both high and low17
flow) derived from hydrodynamic model simulation. Comparison18
of ALS-derived PCDs and simulated flow directions suggested that19
ALS-derived PCDs could be used to infer flow direction at differ-20
ent flow rates. Furthermore, we found that the ALS-derived PCDs21
estimated from any elliptical contour of the 2DVS exhibited a simi-22
lar orientation when the contours of the 2DVS reveal the clear an-23
isotropic structure, demonstrating the robustness of the technique.24

Index Terms—Airborne laser scanning (ALS), flow direction,25
spatial continuity, 2-D variogram surface (2DVS).26

I. INTRODUCTION27

28 THE geostatistical variogram function has been recognized29

as an important tool for detecting spatial anisotropy in30

different variables, such as air pollution [1], snow depth [2], and31

exposed gravel bed structures [3]–[8]. The anisotropy indicates32

that the spatial correlation pattern changes with orientation,33

and it can be represented by the elliptical contours in a 2-D34

variogram surface (2DVS).35

Many studies have shown that the visually determined36

anisotropy direction of a 2DVS can be associated with different37

mechanisms, such as wind for air pollution and snow depth38

structures [1], [2] and hydrodynamic dispersion (i.e., flow39
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movement) for homogeneous porous media [9]. In the last two 40

decades, substantial studies have investigated the anisotropy 41

directions derived from a 2DVS in the exposed gravel beds and 42

suggested that the anisotropy directions exhibited in the gravel 43

bed surfaces reflect the dominant grain orientation [3]–[6]. 44

Various studies have examined the relationship between gravel 45

orientation and flow direction [10]–[16]. For lower flows, larger 46

pebbles, and lower pebble concentrations, elongated pebbles 47

are transported by rolling and are deposited with their major 48

axes normal to the flow direction. For higher flows, smaller 49

pebbles, and higher pebble concentrations, the pebbles skip 50

along the bed and tend to be deposited with their major axis 51

parallel to the flow [16]. It has been reported that particle 52

imbrication would occur naturally in a direction parallel to 53

the flow [5], [16], [17]. Particle imbrication covering a range 54

of directions might indicate that flow direction changed over 55

the duration of the last competent event (e.g., varied with 56

flow depth) or that different flows (with different directions) 57

imbricated particles in different ways over time [16]. It has 58

also been reported that the anisotropy directions failed at being 59

conclusive on the surface-forming flow direction [5], [18]. The 60

latter is notoriously difficult to determine accurately from in situ 61

visual observations [19]. 62

The determination of flow direction is essential to trace the 63

water paths and sediment transportation. For coarse bed materi- 64

als, rolling/sliding and saltation are the most possible modes of 65

sediment transport, with rolling/sliding dominated by coarser 66

pebbles and saltation dominated by finer gravel. Alignment 67

of bed particles transverse to the flow can be associated with 68

transport mode by rolling and sliding [17], while bed structure 69

longitudinal to the flow can be attributed to deposition of 70

saltating particles after contact with the upstream front of stable 71

grain and particle imbrications [4], [5], [20]. It is thus of interest 72

to explore the relationship between the anisotropy of gravel 73

bed surfaces and flow direction across large areas. However, 74

comparison of anisotropy direction determined visually from 75

a 2DVS, extracted for laboratory and field gravel surfaces, to 76

flow direction determined from subjective observation [3]–[6] 77

revealed no common consensus about the relationship between 78

anisotropy direction and flow movement in exposed gravel 79

beds. This is possibly due to the limited numbers of data and 80

the small spatial extents available to earlier researchers. 81

Advances in remote sensing have facilitated the measurement 82

of gravel bed surfaces in a spatially extensive and cost-effective 83

way based on the airborne approach, including airborne laser 84

scanning (ALS), aerial photogrammetry, and unmanned aerial 85

systems (UASs) [8], [21]–[23]. Huang and Wang [8] have 86

indicated that a detailed description of gravel bed surfaces is 87
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a prerequisite for visualizing the obvious anisotropy pattern in88

the 2DVS of gravel bed surfaces. Recent progress on combining89

UAS and structure-from-motion photogrammetry has gained90

attention for measuring submerged and dry gravel beds, and91

it has been shown that a digital elevation model (DEM) with92

a spatial resolution of a few centimeters can be achieved [22],93

[23]. However, the UAS has to be operated at a low altitude94

(i.e., lower than 100 m) for such a purpose, and this would be95

challenging when performing UAS surveys in river valleys. The96

ALS, which incorporates laser ranging, inertial measurement97

unit, and Global Positioning System technologies, has shown98

potential for mapping the surface elevation of a large area [24].99

Moreover, the pulse repetition frequencies of the commercial100

ALS systems have increased from 70 kHz in 2003 (as for the101

ALS used in this study) to 900 kHz in 2014 [25], which shows102

that the ALS is now economically favorable for capturing103

gravel bed surfaces with high-density ALS point clouds.104

In this research, we examined the anisotropy characteristics105

of a very high-point-density ALS data of an exposed gravel106

bed by comparing its anisotropy direction with simulated flow107

directions under high- and low-flow scenarios based on fixed-108

bed hydrodynamic modeling. To better reveal the variation of109

the anisotropy characteristic within the river channel, the whole110

ALS data set was divided into a series of 6 m × 6 m subsets,111

which results in 324 subsets of ALS point data. In order to112

consistently derive the anisotropy direction for each 6 m × 6 m113

subset, we devised an ellipse-fitting-based automatic procedure114

with the consideration of the grain size characteristic d50, which115

is the median of particle size distribution, to determine the116

primary axis of anisotropy [hereafter, referred to as the primary117

continuity direction (PCD)] in the 2DVS.118

II. METHOD119

A. 2DVS120

The variogram has been used widely to quantify the spatial121

variability in gravel bed surfaces [4], [5], [8]. The empirical122

variogram, which is half the mean squared difference between123

pairs of data points separated by the lag vector h, can be124

expressed as125

γ̂(h) =
1

2N(h)

N(h)∑

i=1

[z(xi)− z(xi + h)]2 (1)

where γ̂(h) is the semivariance, the lag (distance and direction)126

vector h is the separation between two data points, N(h) is the127

number of point pairs separated by lag h, and z(xi) is the bed128

elevation at the location xi.129

The empirical variogram is a function that relates semivari-130

ance γ̂(h) to lag h and is usually expressed as a set of 1-D plots,131

where different plots represent different directions. An alterna-132

tive is to plot all directions together as a 2DVS, i.e., a raster map133

of semivariance values γ̂(hx,hy) representing the empirical134

variogram for all available lag vectors h = (hx,hy) [1], [26].135

Previous studies suggested the removal of possible large-136

scale topographic trends (i.e., the bed slope), which causes the137

spatial basis in the collected spatial data, before calculation138

of the 2DVS [5]. In this research, the planar detrending was139

applied to each ALS 6 m × 6 m subset, and the elevation140

residuals were used for calculation of the 2DVS.141

Fig. 1. (a) Georectified orthophoto with a spatial resolution of 5 cm × 5 cm
showing the gravel bar near the confluence of the NanShih Creek and PeiShih
Creek, northern Taiwan, with a latitude of 24◦54′10′′ N and longitude of
121◦33′24′′ E. The black polygon shows the extent of exposed gravel bed.
The gray rectangle represents a temporally submerged area caused by daily
discharge fluctuations. The white rectangle represents an area that is covered
by silt and gravel. (b) Image taken from the 50 cm × 50 cm acrylic frame for
photo-sieving.

B. Automatic Determination of Anisotropy Direction by 142

Ellipse Fitting 143

The 2DVS expressed as a contour plot can facilitate the 144

analysis of spatial continuity (i.e., spatial autocorrelation) by 145

visualizing the spatial variability along all directions simultane- 146

ously [1], [26]. It is thus suggested that the anisotropy direction 147

can be determined by tracing one of the elliptical contours in 148

the 2DVS [26]. 149

The procedure for determining the PCD is described as fol- 150

lows. First, because the magnitude of the contours of the 2DVS 151

is influenced by the actual semivariances γ̂(hx,hy), the semi- 152

variances γ̂(hx,hy) in the 2DVS were standardized (divided by 153

the variance of the elevation residuals for each ALS 6 m × 6 m 154

subset), which implies that the contour levels in the 2DVS range 155

theoretically between 0 and just greater than 1 (the maximum 156

theoretical value is equal to the a priori variance not the sample 157

variance). Then, we applied an ellipse-fitting procedure to all 158

elliptical contours of the 2DVS such that the PCD, which rep- 159

resents the direction of greatest spatial continuity (i.e., spatial 160

autocorrelation), is estimated as the direction of the major axis 161

of the fitted ellipse. Since the number of available contour levels 162

in the 2DVS is inherently affected by the spatial autocorrelation 163

property of the subject under investigation (in our case, the ALS 164

point cloud of a exposed gravel bed), this raises difficulties in 165

choosing the contour with a specific contour level for each ALS 166

6 m × 6 m subset. As a result, the PCD is determined when the 167

semimajor length of fitted ellipses falls in a given range derived 168

by the grain size characteristic d50. We chose the d50 value 169

as a physically based guidance in the ellipse-fitting procedure, 170

rather than an arbitrary measurement value, with the hope to 171

maximize the transferability of this procedure to other study 172

areas. The test results for determining the range constraint are 173

shown in section Determination of ALS-derived PCDs. 174

III. DATA 175

The study area [Fig. 1(a)] is an exposed gravel bed (denoted 176

as the black polygon) near the confluence of the NanShih 177

Creek and PeiShih Creek, northern Taiwan, with latitude and 178

longitude of 24◦54′10′′ N and 121◦33′24′′ E, respectively. The 179

gravel bed was occasionally submerged and migrated by severe 180

floods caused by typhoons that occurred between May and 181

November of each year. It is noted that low discharges would 182

temporarily cause a submerged area, which is denoted by the 183

gray rectangle in Fig. 1(a). 184
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Fig. 1(b) shows one of the 22 image samples, which were185

taken from the 50 cm × 50 cm acrylic frame in the exposed186

gravel bed in Fig. 1(a). We applied the photo-sieving technique187

developed by Graham et al. [27] to derive the particle size188

distribution aggregated from the 22 image samples, and the189

resultant d50 is equal to 5.5 cm.190

A. ALS191

An ALS survey was conducted on May 7, 2009, at the above192

ground level of 650 m along the river channel using an Optech193

ALTM 3070 system onboard a helicopter with nominal eleva-194

tion and horizontal accuracies of 15 and 32.5 cm, respectively.195

The average point cloud density was 247 pts · m−2. Further-196

more, aerial photographs were also collected by a medium-197

format digital camera, integrated with an Optech ALTM 3070,198

simultaneously with laser scanning in order to generate georec-199

tified orthophotos with a spatial resolution of 5 cm × 5 cm, as200

shown in Fig. 1(a).201

For the ALS data of the exposed gravel bed, first, the extreme202

high points were removed manually. Then, the whole point data203

were divided into a series of 6 m × 6 m subsets, each of which204

was aligned with the longitudinal and transverse directions in205

the mainstream of NanShih Creek. The mean spacing between206

the centers of 6 m × 6 m subsets is 8 m. The specific 6 m × 6 m207

subset size was chosen because our previous study [8] demon-208

strated that, using this size, reliable anisotropy patterns can209

be obtained for each subset while maximizing the number of210

available subsets. Furthermore, in order to avoid the potential211

bias caused by vegetation (sparse and short Miscanthus) on the212

gravel bed, we calculated the 2DVSs of ALS 6 m × 6 m data213

sets only where the cumulative vegetation area was smaller than214

1 m2 with the help of the 5-cm resolution orthophoto. This leads215

to 324 subsets available for 2DVS calculation.216

The ALS data are also used to produce the DEM of the dry217

surfaces within the study area with a resolution of 1 m × 1 m,218

where the point clouds belonging to vegetation were removed219

by visual inspection in Terrscan environment. Due to the in-220

frared wavelength of 1064 nm operated by the ALTM 3070,221

water absorption prevents ALS measurement for underwater222

surfaces. The underwater elevations were thus measured using223

a total station and surveying prism pole in wadable areas, while224

a shipboard single-beam SONAR was used to survey deeper225

areas in June 2009. To facilitate the integration of a complete226

DEM of the study area, all surveying, including ALS, was227

referenced to TWD97 datum, the national coordinate system228

of Taiwan. The DEMs of the wet surfaces of a resolution of229

1 m × 1 m were interpolated from total station and SONAR230

data. The complete DEM of the study area was created by231

mosaicking the two DEMs of the dry and wet surfaces, respec-232

tively, and was further used for hydrodynamic modeling.233

B. Hydrodynamic Modeling234

To explore the relation between the ALS-derived PCDs and235

flow directions, we simulated the depth-averaged 2-D flow236

fields under high- and low-flow scenarios using a finite-element237

(FE) hydrodynamic model developed by Wu et al. [28]. The238

computational domain, extending 600 m to the Hsintien Creek239

and 700 and 500 m to the NanShih and PeiShih Creeks240

[Fig. 2(a)], contained 17105 elements and 9000 nodes with a241

Fig. 2. (a) ALS-derived DEM map and computational mesh of simulation
domain, which extends 600 m to the Hsintien Creek and 700 and 500 m to
the NanShih and PeiShih Creeks, and contains 17105 elements and 9000 nodes
with a mean spacing of 4 m; simulated velocity vectors under (b) high-flow and
(c) low-flow scenarios, where the regions without velocity data are exposed
bars. The scenario simulations exhibit different extents of bar submergence and
distinct patterns of 2-D flow field.

mean spacing of 4 m. The ALS-derived DEM was mapped 242

to the FE grids via a triangulated irregular network shown in 243

Fig. 2(a). The model was validated with the observed water lev- 244

els [29]. The calibrated parameter values were then used for the 245

scenario simulations. The upstream boundary conditions (BC) 246

were specified with the flows from the NanShih and PeiShih 247

Creeks, while the downstream BC was specified with the water 248

depth at the Hsintien Creek. For the high-flow scenario, the 249

specified flows (3400 and 1230 m3s−1) are equivalent to a flood 250

event with seven-year return period; for the low-flow scenario, 251

the specified values (23 and 18 m3s−1) correspond to flows 252

with a 50% probability of exceedance. These two scenario 253

simulations exhibited different extents of bar submergence and 254

distinct patterns of 2-D flow field [Fig. 2(b) and (c)]. The 255

simulated velocity vectors at the FE nodes were interpolated 256

to the centers of the 6 m × 6 m ALS subset, allowing direct 257

comparisons of the ALS-derived PCDs and flow directions. 258

IV. RESULTS AND DISCUSSION 259

A. Anisotropy Property of 2DVSs 260

The 2DVSs of the 324 ALS 6 m × 6 m subsets were com- 261

puted using the R software, and the contour map of the 2DVS 262

was generated using a purpose-written MATLAB program. 263

Based on internal testing, the lag distance of the 2DVS and the 264

contour level interval in the contour plot were set to 15 cm and 265

0.05, respectively, to best reveal anisotropic structures. 266
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Fig. 3. (a) Contours of the 2DVS reveal a clear anisotropic structure. The ellipse-fitting procedure was applied to the black and gray contour, respectively, in order
to determine the PCDs. The black and gray lines are the PCDs determined from the fitted ellipse with the semimajor axis lengths equal to 8.0 d50 and 9.5 d50 ,
respectively. The contours of the 2DVS in (b) and (c) show a clear anisotropic structure, but there exist only parallel contours in (c), which prevents application of
the ellipse-fitting procedure to obtain the PCD.

Most of the 2DVSs of the ALS 6 m × 6 m subsets revealed267

a clear anisotropic structure similar to the contours shown268

in Fig. 3(a). It is thus appropriate to apply the ellipse-fitting269

procedure to a specific contour to determine the PCD. While a270

small number of subsets show fewer [Fig. 3(b)] or no [Fig. 3(c)]271

elliptical contours in their 2DVS, the anisotropic structure is272

still prominent. Based on visual inspection, the 2DVSs similar273

to Fig. 3(b) and (c) appeared to be in the area covered by silt and274

gravel, which is highlighted by the white rectangle in Fig. 1(a).275

Due to the requirement of ellipse fitting, the ALS-derived PCDs276

are only available for those 2DVSs similar to Fig. 3(a) and (b).277

B. Determination of ALS-Derived PCDs278

To mitigate the influence of the jagged appearance of the279

elliptical contours with small lag distances [c.f., Fig. 3(a)] on280

the PCD estimation, we applied the ellipse-fitting procedure281

only to those contour lines including more than 20 cells in the282

2DVS, which implies that the semimajor axis length of the fitted283

ellipse should be larger than 7 d50 in our study area.284

When there are more than two candidate contour lines that285

fall in a range of multiple times of d50, we select the PCD286

with the smallest semimajor axis length. As shown in our data,287

the difference between different PCDs is insignificant. Fig. 3(a)288

shows an example for the determination of the PCD with the289

semimajor axis length constraint being 7–10 d50, and two290

candidate contours with their semimajor axis lengths of 8.0 d50291

[black line in Fig. 3(a)] and 9.5 d50 [gray line in Fig. 3(a)]292

were found, where the former one would be reported. The angle293

difference between these two PCDs is as small as 3◦.294

To further examine the insignificance of PCD bias caused by295

the choice of semimajor axis length constraint in the ellipse fit-296

ting, we generated three sets of ALS-derived PCDs determined297

from the semimajor axis length within three ranges, i.e., 7–10d50,298

9–12 d50, and 11–14 d50, and compared these PCD results with299

the simulated high- and low-flow directions. The choice of these300

constraint ranges was made in order to maximize of chance of301

having at least one available contour for each constraint.302

C. Comparison of ALS-Derived PCDs and Simulated303

Flow Directions304

The angle differences of the ALS-derived PCDs and simu-305

lated flow directions were calculated. The positive angle dif-306

Fig. 4. Histograms of the angle differences between the three sets of ALS-
derived PCDs and simulated flow directions at (a) high and (b) low flow. The red,
green, and blue bins represent the histograms of the angle differences calculated
from the three sets of ALS-derived PCDs determined by the semimajor axis
length constraints, which are 7–10 d50 , 9–12 d50 , and 11–14 d50, respectively.

ferences denote that the ALS-derived PCD lies to the left of 307

the simulated flow directions when facing downstream; the 308

negative angle differences denote that the ALS-derived PCD 309

lies to the right of the simulated flow directions. 310

The histograms of the angle differences for high and low 311

flow are shown in Fig. 4(a) and (b), respectively. The red, 312

green, and blue bins in Fig. 4 represent the histograms of the 313

angle differences calculated from the three sets of ALS-derived 314

PCDs determined by the semimajor axis length constraints 315

being 7–10 d50, 9–12 d50, and 11–14 d50, respectively. For the 316

high flow, the total numbers of comparison pairs are 324, 299, 317

and 275 when the semimajor axis constraints are 7–10 d50, 318

9–12 d50, and 11–14 d50, respectively; for the low flow, the total 319

numbers of comparison pairs become 107, 96, and 89 when 320

the semimajor axis constraints are 7–10 d50, 9–12 d50, and 321

11–14 d50, respectively. Because the submerged area is much 322

smaller for low-flow condition [c.f., Fig. 2(c)], the number of 323

comparison pairs for low flow was much less than that for high 324

flow. Furthermore, we noted that the number of available ALS- 325

derived PCDs decreased with the increase of the semimajor 326

axis length constraint. Because the semivariances of 2DVS are 327

expected to increase slowly at large lag distances [1], [26], 328

the larger spacing of contours in the 2DVS leads to fewer 329

contours available for ellipse fitting. As observed in Fig. 3(a), 330

the elliptical contours starting from 0.5 to 0.9 become sparse. It 331

is also noted that the contours became fragmented, and it was 332

not easy to find ellipse shape [as shown in the upper left and 333

lower right corner in Fig. 3(a)] when the data are not able to 334

reveal such long range spatial correlation in the 2DVS. 335
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Fig. 5. Comparison of the ALS-derived PCDs and simulated flow directions
at (a) high and (b) low flow. The gray polygon is the extent of the exposed
gravel bed. The white segments represent the simulated flow directions. The
red, yellow, green, and blue segments denote the absolute values of angle
difference of 0◦–15◦ , 15◦–30◦ , 30◦–45◦, and 45◦–90◦ , respectively, of the
ALS-derived PCDs with respect to simulated flow directions. Rectangle A
denotes the area with notable discrepancies of ALS-derived PCDs and high-
flow direction. Rectangle B denotes the area where the ALS-derived PCDs have
better agreement with low-flow direction than high-flow direction.

As observed in Fig. 4, the distributions of the angle differ-336

ences with three different semimajor axis constraints for high337

and low flow are, respectively, similar. To further demonstrate338

the similarity between each distribution of angle difference,339

for high and low flow, respectively, we applied the nonpara-340

metric Kruskal–Wallis test, implemented in R software. The341

null hypothesis for the Kruskal–Wallis test is that the three342

sets of angle differences come from the same distribution. The343

resultant p-values for the Kruskal–Wallis test are 0.89 and 0.83344

for high and low flow, respectively, both of which failed to reject345

the null hypothesis at the significant level of 0.05. This implies346

that the angle differences calculated from the three sets of347

ALS-derived PCDs and simulated flow directions do not reveal348

statistically significant differences. It is thus suggested that the349

ALS-derived PCDs derived from any elliptical contour of the350

2DVS should exhibit similar orientation when the contours351

of the 2DVS reveal the clear anisotropic structure. The ALS-352

derived PCDs determined with the semimajor axis length con-353

straint of 7–10 d50 are discussed as it gave the largest number354

of comparison pairs.355

Fig. 5(a) and (b) demonstrates the comparison of ALS-356

derived PCDs and simulated high- and low-flow directions,357

respectively. The gray polygon in Fig. 5 shows the extent358

of exposed gravel bed [also shown as the black polygon in359

Fig. 1(a)]. The white segments in Fig. 5 represent the simulated360

flow directions. We observed that the simulated flow directions361

for high flow are primarily parallel to the main stream direc-362

tion in Fig. 5(a). Moreover, the simulated low flow primarily363

flows through the temporarily submerged area in Fig. 5(b)364

[c.f., the gray rectangle in Fig. 1(a)]. The red, yellow, green,365

and blue segments in Fig. 5 denote the absolute values of366

angle difference of 0◦–15◦, 15◦–30◦, 30◦–45◦, and 45◦–90◦,367

respectively, of the ALS-derived PCDs with respect to simu-368

lated flow directions.369

We noted a good agreement between the ALS-derived PCDs 370

and simulated high flow in the right portion of the exposed 371

gravel bar [Fig. 5(a)], where the white segments become invis- 372

ible due to the insignificant angle difference between the ALS- 373

derived PCDs and simulated high flow. This implies a potential 374

for inferring high-flow direction from ALS-derived PCD for 375

this area. However, an area with notable discrepancies of the 376

ALS-derived PCDs and high-flow direction is also presented 377

[denoted as rectangle A in Fig. 5(a)]. For the temporarily 378

submerged gravel bed area, we observed that the ALS-derived 379

PCDs showed better agreement with the simulated low-flow 380

direction than the high-flow direction [where a larger number 381

of red and yellow segments are found in Fig. 5(b)], expect for AQ1382

the rectangle B area. 383

Furthermore, Fig. 4 reveals that the angle differences at high 384

flow exhibit a peak close to 0◦, while at low flow, the peak is 385

close to 30◦, which suggests that the PCDs of bed surface struc- 386

ture are, overall, better correlated to the high flow. However, for 387

the topographically low spots (e.g., rectangle B in Fig. 5), the 388

low flow might have left a signature on the bed surface during 389

the recession of flood, where the PCDs are better correlated 390

to the low flow. From the aforementioned results, we demon- 391

strated that the ALS-derived PCDs correspond to the flow 392

directions at different flow rates. 393

It is noted that the typhoon-induced torrents were 3-D turbu- 394

lent flows, typically characterized by fluctuating velocities with 395

their magnitudes and directions changing with time and depth 396

[30]. However, the 2-D hydrodynamic simulation performed 397

herein was based on steady depth-averaged flood flows; thus, 398

the discrepancies between the PCDs of bed surface structure 399

and the computed flow directions may be attributable in part to 400

these unresolved spatial variations. 401

V. CONCLUSION 402

In summary, we have explored the relationship of the aniso- 403

tropy direction of exposed gravel bed (i.e., the ALS-derived 404

PCDs) and simulated flow directions. We have determined the 405

PCDs from the 2DVSs by applying an ellipse-fitting procedure 406

with consideration given to the grain size characteristic d50. 407

The angle differences between the ALS-derived PCDs and sim- 408

ulated flow directions were calculated, and the Kruskal–Wallis 409

test was performed on the angle differences. The results suggest 410

that the ALS-derived PCDs estimated from any elliptical con- 411

tour of the 2DVS should exhibit similar orientation when the 412

contours of the 2DVS reveal a clear anisotropic structure. Fur- 413

thermore, the comparison of the ALS-derived PCDs and sim- 414

ulated flow directions shows good agreement, which suggests 415

that ALS-derived PCDs could be used to infer flow direction at 416

different flow rates. 417

What is remarkable here is that the process for determining 418

the PCD in the 2DVS is largely automatic and is scalable. Here, 419

we applied the technique to 324 ALS 6 m × 6 m subsets, but 420

potentially, this is expandable and scalable to the whole ALS 421

scenes where the river can be adequately demarcated. Thus, this 422

letter points to the potential of determining flow direction across 423

large areas, at both high and low flow, without the need for 424

in situ measurement or simulation modeling. Future research 425

should demonstrate this ability across a range of different flow 426

conditions and for a wider range of gravel bed surfaces. 427
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Anisotropy Characteristics of Exposed Gravel
Beds Revealed in High-Point-Density

Airborne Laser Scanning Data

1

2

3

Guo-Hao Huang, Chi-Kuei Wang, Fu-Chun Wu, and Peter M. Atkinson4

Abstract—The aim of this study was to examine the relation-5
ship between the anisotropy direction of exposed gravel bed and6
flow direction. Previous studies have shown that the anisotropy7
direction of a gravel bed surface can be visually determined in the8
elliptical contours of 2-D variogram surface (2DVS). In this letter,9
airborne laser scanning (ALS) point clouds were acquired at a10
gravel bed, and the whole data set was divided into a series of11
6 m × 6 m subsets. To estimate the direction of anisotropy, we12
proposed an ellipse-fitting-based automatic procedure with con-13
sideration given to the grain size characteristic d50 to estimate the14
primary axis of anisotropy [hereafter referred to as the primary15
continuity direction (PCD)] in the 2DVS. The ALS-derived PCDs16
were compared to the flow directions (for both high and low17
flow) derived from hydrodynamic model simulation. Comparison18
of ALS-derived PCDs and simulated flow directions suggested that19
ALS-derived PCDs could be used to infer flow direction at differ-20
ent flow rates. Furthermore, we found that the ALS-derived PCDs21
estimated from any elliptical contour of the 2DVS exhibited a simi-22
lar orientation when the contours of the 2DVS reveal the clear an-23
isotropic structure, demonstrating the robustness of the technique.24

Index Terms—Airborne laser scanning (ALS), flow direction,25
spatial continuity, 2-D variogram surface (2DVS).26

I. INTRODUCTION27

28 THE geostatistical variogram function has been recognized29

as an important tool for detecting spatial anisotropy in30

different variables, such as air pollution [1], snow depth [2], and31

exposed gravel bed structures [3]–[8]. The anisotropy indicates32

that the spatial correlation pattern changes with orientation,33

and it can be represented by the elliptical contours in a 2-D34

variogram surface (2DVS).35

Many studies have shown that the visually determined36

anisotropy direction of a 2DVS can be associated with different37

mechanisms, such as wind for air pollution and snow depth38

structures [1], [2] and hydrodynamic dispersion (i.e., flow39
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movement) for homogeneous porous media [9]. In the last two 40

decades, substantial studies have investigated the anisotropy 41

directions derived from a 2DVS in the exposed gravel beds and 42

suggested that the anisotropy directions exhibited in the gravel 43

bed surfaces reflect the dominant grain orientation [3]–[6]. 44

Various studies have examined the relationship between gravel 45

orientation and flow direction [10]–[16]. For lower flows, larger 46

pebbles, and lower pebble concentrations, elongated pebbles 47

are transported by rolling and are deposited with their major 48

axes normal to the flow direction. For higher flows, smaller 49

pebbles, and higher pebble concentrations, the pebbles skip 50

along the bed and tend to be deposited with their major axis 51

parallel to the flow [16]. It has been reported that particle 52

imbrication would occur naturally in a direction parallel to 53

the flow [5], [16], [17]. Particle imbrication covering a range 54

of directions might indicate that flow direction changed over 55

the duration of the last competent event (e.g., varied with 56

flow depth) or that different flows (with different directions) 57

imbricated particles in different ways over time [16]. It has 58

also been reported that the anisotropy directions failed at being 59

conclusive on the surface-forming flow direction [5], [18]. The 60

latter is notoriously difficult to determine accurately from in situ 61

visual observations [19]. 62

The determination of flow direction is essential to trace the 63

water paths and sediment transportation. For coarse bed materi- 64

als, rolling/sliding and saltation are the most possible modes of 65

sediment transport, with rolling/sliding dominated by coarser 66

pebbles and saltation dominated by finer gravel. Alignment 67

of bed particles transverse to the flow can be associated with 68

transport mode by rolling and sliding [17], while bed structure 69

longitudinal to the flow can be attributed to deposition of 70

saltating particles after contact with the upstream front of stable 71

grain and particle imbrications [4], [5], [20]. It is thus of interest 72

to explore the relationship between the anisotropy of gravel 73

bed surfaces and flow direction across large areas. However, 74

comparison of anisotropy direction determined visually from 75

a 2DVS, extracted for laboratory and field gravel surfaces, to 76

flow direction determined from subjective observation [3]–[6] 77

revealed no common consensus about the relationship between 78

anisotropy direction and flow movement in exposed gravel 79

beds. This is possibly due to the limited numbers of data and 80

the small spatial extents available to earlier researchers. 81

Advances in remote sensing have facilitated the measurement 82

of gravel bed surfaces in a spatially extensive and cost-effective 83

way based on the airborne approach, including airborne laser 84

scanning (ALS), aerial photogrammetry, and unmanned aerial 85

systems (UASs) [8], [21]–[23]. Huang and Wang [8] have 86

indicated that a detailed description of gravel bed surfaces is 87
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a prerequisite for visualizing the obvious anisotropy pattern in88

the 2DVS of gravel bed surfaces. Recent progress on combining89

UAS and structure-from-motion photogrammetry has gained90

attention for measuring submerged and dry gravel beds, and91

it has been shown that a digital elevation model (DEM) with92

a spatial resolution of a few centimeters can be achieved [22],93

[23]. However, the UAS has to be operated at a low altitude94

(i.e., lower than 100 m) for such a purpose, and this would be95

challenging when performing UAS surveys in river valleys. The96

ALS, which incorporates laser ranging, inertial measurement97

unit, and Global Positioning System technologies, has shown98

potential for mapping the surface elevation of a large area [24].99

Moreover, the pulse repetition frequencies of the commercial100

ALS systems have increased from 70 kHz in 2003 (as for the101

ALS used in this study) to 900 kHz in 2014 [25], which shows102

that the ALS is now economically favorable for capturing103

gravel bed surfaces with high-density ALS point clouds.104

In this research, we examined the anisotropy characteristics105

of a very high-point-density ALS data of an exposed gravel106

bed by comparing its anisotropy direction with simulated flow107

directions under high- and low-flow scenarios based on fixed-108

bed hydrodynamic modeling. To better reveal the variation of109

the anisotropy characteristic within the river channel, the whole110

ALS data set was divided into a series of 6 m × 6 m subsets,111

which results in 324 subsets of ALS point data. In order to112

consistently derive the anisotropy direction for each 6 m × 6 m113

subset, we devised an ellipse-fitting-based automatic procedure114

with the consideration of the grain size characteristic d50, which115

is the median of particle size distribution, to determine the116

primary axis of anisotropy [hereafter, referred to as the primary117

continuity direction (PCD)] in the 2DVS.118

II. METHOD119

A. 2DVS120

The variogram has been used widely to quantify the spatial121

variability in gravel bed surfaces [4], [5], [8]. The empirical122

variogram, which is half the mean squared difference between123

pairs of data points separated by the lag vector h, can be124

expressed as125

γ̂(h) =
1

2N(h)

N(h)∑

i=1

[z(xi)− z(xi + h)]2 (1)

where γ̂(h) is the semivariance, the lag (distance and direction)126

vector h is the separation between two data points, N(h) is the127

number of point pairs separated by lag h, and z(xi) is the bed128

elevation at the location xi.129

The empirical variogram is a function that relates semivari-130

ance γ̂(h) to lag h and is usually expressed as a set of 1-D plots,131

where different plots represent different directions. An alterna-132

tive is to plot all directions together as a 2DVS, i.e., a raster map133

of semivariance values γ̂(hx,hy) representing the empirical134

variogram for all available lag vectors h = (hx,hy) [1], [26].135

Previous studies suggested the removal of possible large-136

scale topographic trends (i.e., the bed slope), which causes the137

spatial basis in the collected spatial data, before calculation138

of the 2DVS [5]. In this research, the planar detrending was139

applied to each ALS 6 m × 6 m subset, and the elevation140

residuals were used for calculation of the 2DVS.141

Fig. 1. (a) Georectified orthophoto with a spatial resolution of 5 cm × 5 cm
showing the gravel bar near the confluence of the NanShih Creek and PeiShih
Creek, northern Taiwan, with a latitude of 24◦54′10′′ N and longitude of
121◦33′24′′ E. The black polygon shows the extent of exposed gravel bed.
The gray rectangle represents a temporally submerged area caused by daily
discharge fluctuations. The white rectangle represents an area that is covered
by silt and gravel. (b) Image taken from the 50 cm × 50 cm acrylic frame for
photo-sieving.

B. Automatic Determination of Anisotropy Direction by 142

Ellipse Fitting 143

The 2DVS expressed as a contour plot can facilitate the 144

analysis of spatial continuity (i.e., spatial autocorrelation) by 145

visualizing the spatial variability along all directions simultane- 146

ously [1], [26]. It is thus suggested that the anisotropy direction 147

can be determined by tracing one of the elliptical contours in 148

the 2DVS [26]. 149

The procedure for determining the PCD is described as fol- 150

lows. First, because the magnitude of the contours of the 2DVS 151

is influenced by the actual semivariances γ̂(hx,hy), the semi- 152

variances γ̂(hx,hy) in the 2DVS were standardized (divided by 153

the variance of the elevation residuals for each ALS 6 m × 6 m 154

subset), which implies that the contour levels in the 2DVS range 155

theoretically between 0 and just greater than 1 (the maximum 156

theoretical value is equal to the a priori variance not the sample 157

variance). Then, we applied an ellipse-fitting procedure to all 158

elliptical contours of the 2DVS such that the PCD, which rep- 159

resents the direction of greatest spatial continuity (i.e., spatial 160

autocorrelation), is estimated as the direction of the major axis 161

of the fitted ellipse. Since the number of available contour levels 162

in the 2DVS is inherently affected by the spatial autocorrelation 163

property of the subject under investigation (in our case, the ALS 164

point cloud of a exposed gravel bed), this raises difficulties in 165

choosing the contour with a specific contour level for each ALS 166

6 m × 6 m subset. As a result, the PCD is determined when the 167

semimajor length of fitted ellipses falls in a given range derived 168

by the grain size characteristic d50. We chose the d50 value 169

as a physically based guidance in the ellipse-fitting procedure, 170

rather than an arbitrary measurement value, with the hope to 171

maximize the transferability of this procedure to other study 172

areas. The test results for determining the range constraint are 173

shown in section Determination of ALS-derived PCDs. 174

III. DATA 175

The study area [Fig. 1(a)] is an exposed gravel bed (denoted 176

as the black polygon) near the confluence of the NanShih 177

Creek and PeiShih Creek, northern Taiwan, with latitude and 178

longitude of 24◦54′10′′ N and 121◦33′24′′ E, respectively. The 179

gravel bed was occasionally submerged and migrated by severe 180

floods caused by typhoons that occurred between May and 181

November of each year. It is noted that low discharges would 182

temporarily cause a submerged area, which is denoted by the 183

gray rectangle in Fig. 1(a). 184
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Fig. 1(b) shows one of the 22 image samples, which were185

taken from the 50 cm × 50 cm acrylic frame in the exposed186

gravel bed in Fig. 1(a). We applied the photo-sieving technique187

developed by Graham et al. [27] to derive the particle size188

distribution aggregated from the 22 image samples, and the189

resultant d50 is equal to 5.5 cm.190

A. ALS191

An ALS survey was conducted on May 7, 2009, at the above192

ground level of 650 m along the river channel using an Optech193

ALTM 3070 system onboard a helicopter with nominal eleva-194

tion and horizontal accuracies of 15 and 32.5 cm, respectively.195

The average point cloud density was 247 pts · m−2. Further-196

more, aerial photographs were also collected by a medium-197

format digital camera, integrated with an Optech ALTM 3070,198

simultaneously with laser scanning in order to generate georec-199

tified orthophotos with a spatial resolution of 5 cm × 5 cm, as200

shown in Fig. 1(a).201

For the ALS data of the exposed gravel bed, first, the extreme202

high points were removed manually. Then, the whole point data203

were divided into a series of 6 m × 6 m subsets, each of which204

was aligned with the longitudinal and transverse directions in205

the mainstream of NanShih Creek. The mean spacing between206

the centers of 6 m × 6 m subsets is 8 m. The specific 6 m × 6 m207

subset size was chosen because our previous study [8] demon-208

strated that, using this size, reliable anisotropy patterns can209

be obtained for each subset while maximizing the number of210

available subsets. Furthermore, in order to avoid the potential211

bias caused by vegetation (sparse and short Miscanthus) on the212

gravel bed, we calculated the 2DVSs of ALS 6 m × 6 m data213

sets only where the cumulative vegetation area was smaller than214

1 m2 with the help of the 5-cm resolution orthophoto. This leads215

to 324 subsets available for 2DVS calculation.216

The ALS data are also used to produce the DEM of the dry217

surfaces within the study area with a resolution of 1 m × 1 m,218

where the point clouds belonging to vegetation were removed219

by visual inspection in Terrscan environment. Due to the in-220

frared wavelength of 1064 nm operated by the ALTM 3070,221

water absorption prevents ALS measurement for underwater222

surfaces. The underwater elevations were thus measured using223

a total station and surveying prism pole in wadable areas, while224

a shipboard single-beam SONAR was used to survey deeper225

areas in June 2009. To facilitate the integration of a complete226

DEM of the study area, all surveying, including ALS, was227

referenced to TWD97 datum, the national coordinate system228

of Taiwan. The DEMs of the wet surfaces of a resolution of229

1 m × 1 m were interpolated from total station and SONAR230

data. The complete DEM of the study area was created by231

mosaicking the two DEMs of the dry and wet surfaces, respec-232

tively, and was further used for hydrodynamic modeling.233

B. Hydrodynamic Modeling234

To explore the relation between the ALS-derived PCDs and235

flow directions, we simulated the depth-averaged 2-D flow236

fields under high- and low-flow scenarios using a finite-element237

(FE) hydrodynamic model developed by Wu et al. [28]. The238

computational domain, extending 600 m to the Hsintien Creek239

and 700 and 500 m to the NanShih and PeiShih Creeks240

[Fig. 2(a)], contained 17105 elements and 9000 nodes with a241

Fig. 2. (a) ALS-derived DEM map and computational mesh of simulation
domain, which extends 600 m to the Hsintien Creek and 700 and 500 m to
the NanShih and PeiShih Creeks, and contains 17105 elements and 9000 nodes
with a mean spacing of 4 m; simulated velocity vectors under (b) high-flow and
(c) low-flow scenarios, where the regions without velocity data are exposed
bars. The scenario simulations exhibit different extents of bar submergence and
distinct patterns of 2-D flow field.

mean spacing of 4 m. The ALS-derived DEM was mapped 242

to the FE grids via a triangulated irregular network shown in 243

Fig. 2(a). The model was validated with the observed water lev- 244

els [29]. The calibrated parameter values were then used for the 245

scenario simulations. The upstream boundary conditions (BC) 246

were specified with the flows from the NanShih and PeiShih 247

Creeks, while the downstream BC was specified with the water 248

depth at the Hsintien Creek. For the high-flow scenario, the 249

specified flows (3400 and 1230 m3s−1) are equivalent to a flood 250

event with seven-year return period; for the low-flow scenario, 251

the specified values (23 and 18 m3s−1) correspond to flows 252

with a 50% probability of exceedance. These two scenario 253

simulations exhibited different extents of bar submergence and 254

distinct patterns of 2-D flow field [Fig. 2(b) and (c)]. The 255

simulated velocity vectors at the FE nodes were interpolated 256

to the centers of the 6 m × 6 m ALS subset, allowing direct 257

comparisons of the ALS-derived PCDs and flow directions. 258

IV. RESULTS AND DISCUSSION 259

A. Anisotropy Property of 2DVSs 260

The 2DVSs of the 324 ALS 6 m × 6 m subsets were com- 261

puted using the R software, and the contour map of the 2DVS 262

was generated using a purpose-written MATLAB program. 263

Based on internal testing, the lag distance of the 2DVS and the 264

contour level interval in the contour plot were set to 15 cm and 265

0.05, respectively, to best reveal anisotropic structures. 266
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Fig. 3. (a) Contours of the 2DVS reveal a clear anisotropic structure. The ellipse-fitting procedure was applied to the black and gray contour, respectively, in order
to determine the PCDs. The black and gray lines are the PCDs determined from the fitted ellipse with the semimajor axis lengths equal to 8.0 d50 and 9.5 d50,
respectively. The contours of the 2DVS in (b) and (c) show a clear anisotropic structure, but there exist only parallel contours in (c), which prevents application of
the ellipse-fitting procedure to obtain the PCD.

Most of the 2DVSs of the ALS 6 m × 6 m subsets revealed267

a clear anisotropic structure similar to the contours shown268

in Fig. 3(a). It is thus appropriate to apply the ellipse-fitting269

procedure to a specific contour to determine the PCD. While a270

small number of subsets show fewer [Fig. 3(b)] or no [Fig. 3(c)]271

elliptical contours in their 2DVS, the anisotropic structure is272

still prominent. Based on visual inspection, the 2DVSs similar273

to Fig. 3(b) and (c) appeared to be in the area covered by silt and274

gravel, which is highlighted by the white rectangle in Fig. 1(a).275

Due to the requirement of ellipse fitting, the ALS-derived PCDs276

are only available for those 2DVSs similar to Fig. 3(a) and (b).277

B. Determination of ALS-Derived PCDs278

To mitigate the influence of the jagged appearance of the279

elliptical contours with small lag distances [c.f., Fig. 3(a)] on280

the PCD estimation, we applied the ellipse-fitting procedure281

only to those contour lines including more than 20 cells in the282

2DVS, which implies that the semimajor axis length of the fitted283

ellipse should be larger than 7 d50 in our study area.284

When there are more than two candidate contour lines that285

fall in a range of multiple times of d50, we select the PCD286

with the smallest semimajor axis length. As shown in our data,287

the difference between different PCDs is insignificant. Fig. 3(a)288

shows an example for the determination of the PCD with the289

semimajor axis length constraint being 7–10 d50, and two290

candidate contours with their semimajor axis lengths of 8.0 d50291

[black line in Fig. 3(a)] and 9.5 d50 [gray line in Fig. 3(a)]292

were found, where the former one would be reported. The angle293

difference between these two PCDs is as small as 3◦.294

To further examine the insignificance of PCD bias caused by295

the choice of semimajor axis length constraint in the ellipse fit-296

ting, we generated three sets of ALS-derived PCDs determined297

from the semimajor axis length within three ranges, i.e., 7–10d50,298

9–12 d50, and 11–14 d50, and compared these PCD results with299

the simulated high- and low-flow directions. The choice of these300

constraint ranges was made in order to maximize of chance of301

having at least one available contour for each constraint.302

C. Comparison of ALS-Derived PCDs and Simulated303

Flow Directions304

The angle differences of the ALS-derived PCDs and simu-305

lated flow directions were calculated. The positive angle dif-306

Fig. 4. Histograms of the angle differences between the three sets of ALS-
derived PCDs and simulated flow directions at (a) high and (b) low flow. The red,
green, and blue bins represent the histograms of the angle differences calculated
from the three sets of ALS-derived PCDs determined by the semimajor axis
length constraints, which are 7–10 d50, 9–12 d50, and 11–14 d50 , respectively.

ferences denote that the ALS-derived PCD lies to the left of 307

the simulated flow directions when facing downstream; the 308

negative angle differences denote that the ALS-derived PCD 309

lies to the right of the simulated flow directions. 310

The histograms of the angle differences for high and low 311

flow are shown in Fig. 4(a) and (b), respectively. The red, 312

green, and blue bins in Fig. 4 represent the histograms of the 313

angle differences calculated from the three sets of ALS-derived 314

PCDs determined by the semimajor axis length constraints 315

being 7–10 d50, 9–12 d50, and 11–14 d50, respectively. For the 316

high flow, the total numbers of comparison pairs are 324, 299, 317

and 275 when the semimajor axis constraints are 7–10 d50, 318

9–12 d50, and 11–14 d50, respectively; for the low flow, the total 319

numbers of comparison pairs become 107, 96, and 89 when 320

the semimajor axis constraints are 7–10 d50, 9–12 d50, and 321

11–14 d50, respectively. Because the submerged area is much 322

smaller for low-flow condition [c.f., Fig. 2(c)], the number of 323

comparison pairs for low flow was much less than that for high 324

flow. Furthermore, we noted that the number of available ALS- 325

derived PCDs decreased with the increase of the semimajor 326

axis length constraint. Because the semivariances of 2DVS are 327

expected to increase slowly at large lag distances [1], [26], 328

the larger spacing of contours in the 2DVS leads to fewer 329

contours available for ellipse fitting. As observed in Fig. 3(a), 330

the elliptical contours starting from 0.5 to 0.9 become sparse. It 331

is also noted that the contours became fragmented, and it was 332

not easy to find ellipse shape [as shown in the upper left and 333

lower right corner in Fig. 3(a)] when the data are not able to 334

reveal such long range spatial correlation in the 2DVS. 335
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Fig. 5. Comparison of the ALS-derived PCDs and simulated flow directions
at (a) high and (b) low flow. The gray polygon is the extent of the exposed
gravel bed. The white segments represent the simulated flow directions. The
red, yellow, green, and blue segments denote the absolute values of angle
difference of 0◦–15◦, 15◦–30◦, 30◦–45◦ , and 45◦–90◦, respectively, of the
ALS-derived PCDs with respect to simulated flow directions. Rectangle A
denotes the area with notable discrepancies of ALS-derived PCDs and high-
flow direction. Rectangle B denotes the area where the ALS-derived PCDs have
better agreement with low-flow direction than high-flow direction.

As observed in Fig. 4, the distributions of the angle differ-336

ences with three different semimajor axis constraints for high337

and low flow are, respectively, similar. To further demonstrate338

the similarity between each distribution of angle difference,339

for high and low flow, respectively, we applied the nonpara-340

metric Kruskal–Wallis test, implemented in R software. The341

null hypothesis for the Kruskal–Wallis test is that the three342

sets of angle differences come from the same distribution. The343

resultant p-values for the Kruskal–Wallis test are 0.89 and 0.83344

for high and low flow, respectively, both of which failed to reject345

the null hypothesis at the significant level of 0.05. This implies346

that the angle differences calculated from the three sets of347

ALS-derived PCDs and simulated flow directions do not reveal348

statistically significant differences. It is thus suggested that the349

ALS-derived PCDs derived from any elliptical contour of the350

2DVS should exhibit similar orientation when the contours351

of the 2DVS reveal the clear anisotropic structure. The ALS-352

derived PCDs determined with the semimajor axis length con-353

straint of 7–10 d50 are discussed as it gave the largest number354

of comparison pairs.355

Fig. 5(a) and (b) demonstrates the comparison of ALS-356

derived PCDs and simulated high- and low-flow directions,357

respectively. The gray polygon in Fig. 5 shows the extent358

of exposed gravel bed [also shown as the black polygon in359

Fig. 1(a)]. The white segments in Fig. 5 represent the simulated360

flow directions. We observed that the simulated flow directions361

for high flow are primarily parallel to the main stream direc-362

tion in Fig. 5(a). Moreover, the simulated low flow primarily363

flows through the temporarily submerged area in Fig. 5(b)364

[c.f., the gray rectangle in Fig. 1(a)]. The red, yellow, green,365

and blue segments in Fig. 5 denote the absolute values of366

angle difference of 0◦–15◦, 15◦–30◦, 30◦–45◦, and 45◦–90◦,367

respectively, of the ALS-derived PCDs with respect to simu-368

lated flow directions.369

We noted a good agreement between the ALS-derived PCDs 370

and simulated high flow in the right portion of the exposed 371

gravel bar [Fig. 5(a)], where the white segments become invis- 372

ible due to the insignificant angle difference between the ALS- 373

derived PCDs and simulated high flow. This implies a potential 374

for inferring high-flow direction from ALS-derived PCD for 375

this area. However, an area with notable discrepancies of the 376

ALS-derived PCDs and high-flow direction is also presented 377

[denoted as rectangle A in Fig. 5(a)]. For the temporarily 378

submerged gravel bed area, we observed that the ALS-derived 379

PCDs showed better agreement with the simulated low-flow 380

direction than the high-flow direction [where a larger number 381

of red and yellow segments are found in Fig. 5(b)], expect for AQ1382

the rectangle B area. 383

Furthermore, Fig. 4 reveals that the angle differences at high 384

flow exhibit a peak close to 0◦, while at low flow, the peak is 385

close to 30◦, which suggests that the PCDs of bed surface struc- 386

ture are, overall, better correlated to the high flow. However, for 387

the topographically low spots (e.g., rectangle B in Fig. 5), the 388

low flow might have left a signature on the bed surface during 389

the recession of flood, where the PCDs are better correlated 390

to the low flow. From the aforementioned results, we demon- 391

strated that the ALS-derived PCDs correspond to the flow 392

directions at different flow rates. 393

It is noted that the typhoon-induced torrents were 3-D turbu- 394

lent flows, typically characterized by fluctuating velocities with 395

their magnitudes and directions changing with time and depth 396

[30]. However, the 2-D hydrodynamic simulation performed 397

herein was based on steady depth-averaged flood flows; thus, 398

the discrepancies between the PCDs of bed surface structure 399

and the computed flow directions may be attributable in part to 400

these unresolved spatial variations. 401

V. CONCLUSION 402

In summary, we have explored the relationship of the aniso- 403

tropy direction of exposed gravel bed (i.e., the ALS-derived 404

PCDs) and simulated flow directions. We have determined the 405

PCDs from the 2DVSs by applying an ellipse-fitting procedure 406

with consideration given to the grain size characteristic d50. 407

The angle differences between the ALS-derived PCDs and sim- 408

ulated flow directions were calculated, and the Kruskal–Wallis 409

test was performed on the angle differences. The results suggest 410

that the ALS-derived PCDs estimated from any elliptical con- 411

tour of the 2DVS should exhibit similar orientation when the 412

contours of the 2DVS reveal a clear anisotropic structure. Fur- 413

thermore, the comparison of the ALS-derived PCDs and sim- 414

ulated flow directions shows good agreement, which suggests 415

that ALS-derived PCDs could be used to infer flow direction at 416

different flow rates. 417

What is remarkable here is that the process for determining 418

the PCD in the 2DVS is largely automatic and is scalable. Here, 419

we applied the technique to 324 ALS 6 m × 6 m subsets, but 420

potentially, this is expandable and scalable to the whole ALS 421

scenes where the river can be adequately demarcated. Thus, this 422

letter points to the potential of determining flow direction across 423

large areas, at both high and low flow, without the need for 424

in situ measurement or simulation modeling. Future research 425

should demonstrate this ability across a range of different flow 426

conditions and for a wider range of gravel bed surfaces. 427
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