
Minimizing the Cost of Iterative
Compilation with Active Learning

William F. Ogilvie
University of Edinburgh, UK

s0198982@sms.ed.ac.uk

Pavlos Petoumenos
University of Edinburgh, UK

ppetoume@inf.ed.ac.uk

Zheng Wang
Lancaster University, UK
z.wang@lancaster.ac.uk

Hugh Leather
University of Edinburgh, UK

hleather@inf.ed.ac.uk

Abstract
Since performance is not portable between platforms, en-
gineers must fine-tune heuristics for each processor in turn.
This is such a laborious task that high-profile compilers, sup-
porting many architectures, cannot keep up with hardware
innovation and are actually out-of-date. Iterative compilation
driven by machine learning has been shown to be efficient
at generating portable optimization models automatically.
However, good quality models require costly, repetitive, and
extensive training which greatly hinders the wide adoption of
this powerful technique.

In this work, we show that much of this cost is spent
collecting training data, runtime measurements for differ-
ent optimization decisions, which contribute little to the fi-
nal heuristic. Current implementations evaluate randomly
chosen, often redundant, training examples a pre-configured,
almost always excessive, number of times – a large source
of wasted effort. Our approach optimizes not only the selec-
tion of training examples but also the number of samples
per example, independently. To evaluate, we construct 11
high-quality models which use a combination of optimization
settings to predict the runtime of benchmarks from the SPAPT
suite. Our novel, broadly applicable, methodology is able to
reduce the training overhead by up to 26x compared to an
approach with a fixed number of sample runs, transforming
what is potentially months of work into days.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—compilers, optimization

Keywords Active Learning; Compilers; Iterative Compila-
tion; Machine Learning; Sequential Analysis;

1. Introduction
With Dennard scaling long dead and technology scaling stop-
ping within the next five years [1], performance improve-
ments rely increasingly on software improvements, especially

compiler and runtime optimizations. Accurate heuristics for
deciding the best way to optimize a program are hard to con-
struct. The space of possible decisions is vast, while their
effect on performance is complex and depends on both the
application and the targeted hardware. Manually develop-
ing such heuristics takes months or years, even for a single
target, meaning that tuning the compiler and runtime heur-
istics for each new released processor is unrealistic. Even
high-quality production compilers are out-of-date [31] and
cannot extract the full performance potential of the hardware.
The industry-wide trend towards heterogeneity only serves
to make the optimization decision space even more complex,
making effective heuristics near impossible to construct [44].

To overcome this problem, iterative compilation [30] was
proposed as a means by which heuristics can be automatically
produced, without the need for expert involvement. Different
optimization strategies are applied and the effect on speed,
size, or energy is measured. Augmented with machine learn-
ing [2], these data are used to train a predictor which selects
the best optimizations for a particular code and platform. This
approach not only produces heuristics much faster, but it also
outperforms heuristics crafted by human experts [31, 57].
The same methodology can be applied to radically differ-
ent problem domains: compilation [33, 55, 56], parallelism
mapping [22], runtime tuning [15], and hardware-software
co-design [60].

The time required to create these heuristics, while auto-
mated, is still substantial. Researchers have improved upon
this work by removing its reliance on random search and
used active learning instead [4, 5, 39, 60]. Random search is
problematic because it selects optimization decisions and pro-
files the application multiple times under those optimizations
before it even knows whether this will actually improve our
knowledge of the decision space. In contrast, active learning
is a methodology which predicts the parts of the decision



space where as much information as possible can be gained
and directs the search towards them.

These works represent a substantial leap forward towards
making iterative compilation quick and easy. However, size-
able inefficiencies still exist. Previous work on iterative
compilation used a fixed sampling plan: each unique train-
ing instance is repeatedly profiled a set number of times,
chosen a priori. Repeated measurements are necessary be-
cause runtime measurements are inherently noisy.

There are many sources of noise encountered for runtime
measurements. The most egregious of which is caused by
other user or system processes. Such processes compete for
resources with our application, especially cores, caches [41],
and memory [59], and they do so in non-deterministic ways.
In recent systems, the power and thermal walls lead to
more complex interference patterns. Intel’s Turbo Boost,
for example, might lower the frequency and the power
consumption of a process running on a core, when other
cores wake up [9].

Even ignoring interference from other applications, there
are still more sources of noise. Memory management mech-
anisms, such as dynamic memory allocators [26] and garbage
collectors [48], can introduce additional unpredictable over-
heads. On top of this, address space layout randomization and
the physical page allocation mechanism change the logical
and physical memory layout of the application every time it is
executed, potentially affecting the number of conflict misses
in the CPU caches and branch mispredictions [17, 38]. Multi-
threaded applications can even force non-deterministic beha-
vior on themselves, if the scheduler is not set to be perfectly
repeatable, or if small timing changes alter the communica-
tion patterns [45]. Any I/O can have non-repeatable timings,
and even changes to the environment variables between runs
can shift memory and alter runtimes [38].

Past research has investigated ways to reduce experimental
noise. Typical approaches include overriding the default
scheduling policy [43, 45], using more deterministic memory
management mechanisms [26, 43, 45], avoiding I/O, or
just minimizing the number of active processes, including
services and daemons. Doing so is not always enough or
desirable because of the following reasons. First, while they
do reduce noise, they do not eliminate it. Multiple profiling
runs are still needed to determine whether noise affects the
measurement significantly. Even then the amount of variation
might be too high for optimization heuristics dependent
on accurate measurements [32]. Secondly, modifications
to reduce noise may do so at the expense of altering the
runtime behaviour that is meant to be measured or of risking
the wrong heuristic being learned. Heuristics targeting very
specific, low-noise runtime environments may not match well
when used in practice. For example, [16] showed that the
runtime variation caused by memory layout changes, such
as address space randomization, can dwarf the differences
between optimizations. If address space randomization is

disabled during training or only a single run is taken, then
an optimization could be selected which is not optimal on
average in deployment. Instead, multiple runs must be used
to smooth out the effects of random layout changes. Finally,
even when a low-noise environment would not actually
alter the heuristic, we have found it difficult to convince
companies that tuning heuristics to an environment different
than their production one is acceptable. In short, what is
needed are techniques which perform well in realistic, noisy
environments.

Our work aims exactly at handling noise without having
to reduce it and without wasting time on large numbers of re-
peated performance measurements. Our insight was that each
additional observation, that is, each additional performance
measurement for the same optimization strategy, provides
diminishing amounts of information. Indeed, that extra in-
formation quickly reaches zero if there is little experimental
noise or if the observation fits well with what we already
know about the decision space. In other words, extra profiling
runs for a decision are useful only if they are likely to con-
tradict what we predict about that decision. Our experiments
confirm that iterative compilation can be slowed down by
using a fixed sampling plan, spending most of its time getting
observations which provide no additional information.

In this paper, we introduce a novel active learning tech-
nique for iterative compilation which combines sequential
analysis, an approach where the number of samples are not
fixed. By profiling the application under the same optimiz-
ation decision only as long as this improves our knowledge
of the decision space, we produce models quickly without
sacrificing the heuristic’s quality. Specifically, our technique
begins by taking a single sample runtime for optimizations
that are deemed to be most profitable to learn from, as defined
by an active learner. As knowledge is built up, the algorithm
is able to revisit these examples instead of getting new ones.
This happens if it determines that they are of continued in-
terest, that is if it appears that measurement noise has affected
the data we previously collected on that configuration.

To evaluate our approach we create predictors for 11
programs from the SPAPT suite [3]. These models can predict,
with low error, the runtime of a particular code given a
number of optimization options that we may want to apply,
and in this way can find an optimal combination. Our results
show that we can create a high-quality heuristic on average
4x, and up to 26x, faster than a baseline approach which uses
35 samples per run.

2. Motivation
As previously stated, the research in this paper is based on
the realization that current procedures for creating machine
learning based heuristics do not consider sample size a para-
meter for optimization, but rather assume it to be a constant
value fixed a priori. Moreover, little or no justification is
ever provided for one chosen sample size over another. With



0

10

20

30

0 10 20 30

Loop i1 Unroll Factor

L
o
o
p
 i
2
 U

n
ro

ll 
F

a
c
to

r

1

2

3

4
MAE (ms)

mm compiled with −O2
1 sample per point

(a) mean absolute error for sample size of one

0

10

20

30

0 10 20 30

Loop i1 Unroll Factor
L
o
o
p
 i
2
 U

n
ro

ll 
F

a
c
to

r

1

2

3

4
MAE (ms)

mm compiled with −O2
optimum samples per point

(b) mean absoulute error for optimal sample size

0

10

20

30

0 10 20 30

Loop i1 Unroll Factor

L
o
o
p
 i
2
 U

n
ro

ll 
F

a
c
to

r

0

10

20

30

# Samples

mm compiled with −O2
optimum samples per point

(c) optimal number of samples across the space

Figure 1. Error and sample size for each point in the decision space when using a sample size of one or the optimal sample size.
The decision is the unroll factor for two loops of the mm kernel of SPAPT. For most but not all points, a single sample is enough.

active, iterative learning this need not be the case and we can
leverage the knowledge built up by the algorithm over time to
adaptively select a more appropriate sample size per example,
significantly speeding-up training overall.

To motivate our work, we examined the way iterative
compilation works on the problem of tuning the unroll
factor for two loops, i1 and i2, of the matrix multiplication
kernel in the SPAPT suite on the system we describe in
Section 4. Using the -O2 optimization level as a baseline, we
compiled the kernel multiple times, each one with a different
combination of unroll factors for the two loops. Each binary
was then executed 35 times and its runtime measurements
recorded.

In Figure 1a, we present the Mean Absolute Error (MAE)
we would have incurred had we only taken a single observa-
tion. This gives us an estimated baseline for the worst error
we could pay in this space, as high as 4ms (5% of the mean)
for some binaries but practically zero for many. For the latter
getting even a second sample is a waste of effort. To estim-
ate the potential speed-up we could obtain if we knew how
many samples we should actually take for each optimization
setting we iterate through the space again, but at each point
we remove samples randomly from the group of 35 samples
we collected initially. We continue reducing the number of
samples as long as our calculated MAE is below 0.1ms.

Figures 1b and 1c show the error of this adaptive ap-
proach across the space and the number of samples needed
per configuration to maintain such a small error, respectively.
These figures demonstrate that there is quite considerable
stochastic noise in measurements across the space and, there-
fore, that the number of samples needed for a low MAE
varies. If we take the naïve, fixed sampling plan of 35, we
need 35× 30× 30 = 31, 500 individual executions, whereas
with ‘perfect knowledge’ we can incur an error of only 0.1ms
at the cost of 15, 131 program runs – nearly half.

●

●

●

●

●

●

●
●

●
●

● ● ●

0 5 10 15 20 25 30

1
.5

2
.0

2
.5

3
.0

adi compiled with −O2

Loop i1 Unroll Factor

R
u

n
ti
m

e
 (

s
)

Figure 2. Runtime versus unroll factor for a loop of adi,
when using a sample size of one. A relationship between
unroll factor and runtime is relatively clear despite the noise –
i.e. stable around 2.1s until 10 where it climbs steadily and
plateaus at 3.1s for high levels of loop unrolling.

This example starts with ‘perfect’ information about each
point in the decision space and it removes samples until the
average runtime starts to deviate from that initially calculated.
A real sequential analysis approach on the other hand needs
to work the opposite way around: start from zero information
about each point and add samples until the distance between
their average runtime and the true mean is minimal. We
cannot know this distance without actually taking a large



number of samples, but we can approximate it by looking at
what the rest of the space tells us.

Consider Figure 2, where we unroll the i1 loop in the
adi benchmark a random number of times and take a single
sample each time. Despite the noise, we see that there is a
pattern easily identifiable to the human eye: a plateau starting
at 2.1s then climbs and levels off at 3.1s, around a loop
unroll factor of 10. We postulate, and it can be shown that,
points in areas where the pattern is clear and which fit well in
that pattern are likely to be already close to their respective
population means. The points where we need more samples
are the rest.

Our active learning approach for iterative compilation
already uses Machine Learning to discover patterns in the
decision space during the training process. We can use that
same knowledge to determine whether a set of runtime
measurements for a point in the space fits the local pattern or
not, that is whether it is likely to be affected by noise or not
given what is known about its neighbours.

3. Active Learning with Sequential Analysis
Previous research [18, 31] has shown that machine learning
can be used to generate compiler heuristics more accurately
than human experts. However, current implementations use
randomly collected examples for training and this is problem-
atic since randomness often leads to redundancy. In contexts
where obtaining data is cheap this is perfectly acceptable; but
for us, since each example requires compilation and multiple
runs to record average performance, a lot of effort can be
wasted.

Active learning [39] is specifically aimed at reducing
the occurrence of these unprofitable evaluations. Instead of
blindly selecting training examples, in our case binaries com-
piled with certain optimizations, it generates an intermedi-
ate model based on the examples already evaluated. The
algorithm considers a number of potential candidates (optim-
ization settings) that it could learn from next and assigns each
a score. This score represents the predicted extra information
that the example will provide. It is usually a function of the
uncertainty the model has with regards to the predicted value
– runtime. The example with the highest score is ‘labelled’
– compiled and profiled – and the information used to up-
date the intermediate model. This loop continues until some
completion criterion has been reached.

Our work in this paper introduces a novel approach to
active learning which is broadly applicable. The only as-
sumptions we make are that neighbouring examples in the
optimization design space do not significantly differ in res-
ult from one another the majority of the time, and that the
signal-to-noise ratio of measurements are such that an ap-
proximately accurate model can be fit to the data, where this
is in essence no different than techniques which attempt to
avoid over-fitting. While traditional active learning is used
to reduce only the number of training examples, we wish

to reduce the number of samples needed per example. To
the best of our knowledge, we are the first to propose com-
bining active learning and sequential analysis in this way.
Previous research in this area has ignored sequential analysis.
The reason for this is that many implementations of active
learning are greedy [6, 47], so learning noisy data on pur-
pose will lead to incorrect conclusions being drawn from the
intermediate models. In particular, this will steer the search
towards the wrong areas of the decision space, significantly
reducing further the quality of the final model. In Section 3.3
we explain how we overcome this problem.

3.1 Sequential Analysis
Traditionally in active learning the training set (the set of
examples already seen) and the candidate set, a random
subset of all examples that could be learnt from next, are kept
disjoint. This makes sense because the information contained
in the training set is assumed to be of good quality; each
example will have been evaluated some fixed number of
times to ameliorate the effect of noise, hence, there is little
to be gained from revisiting those examples. However, as
we have demonstrated, a fixed sample count is often overly
conservative and wasteful, slowing down the training process
substantially.

In order to modify active learning to incorporate sequential
analysis we change the algorithm such that the initial sample
size is set to one. In case of noisy data, we need to be able to
revisit previously compiled programs so we keep them in the
candidate set – see Figure 3. That is to say, at each iteration of
the learning loop the algorithm will consider not only getting
a new example but also whether it is more profitable to try an
old one again, similar to the multi-armed bandit problem [29].
We are able to do this because the particular model we use
provides a scoring function which quantifies the uncertainty
the model has about a particular point in the space, given
what it knows. As knowledge is gained, given the shape
of the intermediate model, noisy examples or examples in
complex areas of the decision space will begin to ‘stick out’,
and will be more likely to be visited. In both cases, with each
iteration of the training loop, we select the example where
the highest amount of information can be extracted.

We outline our algorithm in more detail in Alg. 1. The
algorithm begins by constructing a model M with ninit

training examples which have been randomly chosen from
all potential examples F as a seed. To generate this initial
model we obtain some fixed number of observations nobs

for each training example to give the active learner a quick
and accurate look at the search space. The learning loop
then proceeds whilst the completion criterion has not been
satisfied. In Alg. 1 this criterion is set to a fixed number of
training instances but could have been based on, for example,
wall-clock time or some estimate of error in the final model
established through cross-validation [25]. At each iteration
of the loop the candidate set C combines nc random points
which have never been observed before and those examples



Learning
Algorithms

New
Observation

Initial
Training
Points

Active Learner

Intermediate
Model

Final
Model

Evaluate
Candidates

Random
Unseen

Previously
Seen

Figure 3. An overview of our active learning approach. To seed an initial model, we give the learner some good quality data.
We then choose a single training example from a set of candidate examples. We collect data for the chosen example and feed
that back into the algorithm. The process repeats until we reach some completion criterion. Contrary to existing active learning
approaches, we collect our (potentially noisy) training data one observation at a time. Visited training examples remain in the
candidate set and can be revisited if getting more observations for them is more profitable than trying a new training example.

which have been seen previously but less than nobs times. We
choose the next training example x based upon its predicted
usefulness (see Section 3.3) and we measure its runtime y one
more time. We then update the model as well as the required
data structures. It should be noted that this algorithm is easily
parallelized by selecting multiple training examples per loop
iteration instead of just one [4].

Tt Tt+1

Stay Prune Grow

Xt+1

Figure 4. This diagram shows the three potential updates
that are stochastically applied to the Dynamic Tree upon
receiving a new training example xt+1. The tree either
remains unchanged, a leaf node is pruned back so that the
parent of the leaf becomes a leaf itself, or grown such that
two new children divide the relevant subspace.

3.2 Dynamic Trees
In regression problems where we wish to estimate the uncer-
tainty of a prediction the collective wisdom would be to use a
Gaussian Process (GP) [46]. However, GP inference is slow
with O(n3) efficiency for n examples. This is problematic,
particularly in active learning, since each time something
new is learned a model needs to be constructed and evaluated.
A more efficient model which we leverage in this work is
the relatively new dynamic tree, which is based on the clas-
sical decision tree model [8] with modifications to include
Bayesian inference [10, 11]. The advantages of the dynamic
tree for our purposes are

• its ability to evolve over time as new data come in, without
reconstructing the model from the ground up with each
iteration;
• its estimation of uncertainty at any given point in the

space, like a GP but without the overhead;

• its avoidance of over-fitting to the training data, which is
vital since we are learning potentially noisy information.

Full details on the model can be obtained from the article
by Taddy et al. [51]. The brief overview of how it works is
as follows. The static model used within the dynamic tree
framework is a traditional decision tree for regression applic-
ations. A set of rules recursively partitions the search space
into a set of hyper-rectangles such that training examples
with the same or similar output value are contained within
the same leaf node. The dynamic tree changes over time,
when new information is introduced, by a stochastic process
thereby avoiding the need to prune at the end. At time t, a tree
Tt is derived from the training data (x, y)t. When new data
(xt+1, yt+1) arrives, an updated tree Tt+1 is created, identical
to Tt except that some mechanism has been randomly chosen
from three possibilities – see Figure 4. The leaf node η(xt+1)
containing xt+1 either (1) remains completely unchanged; (2)
is pruned, so that the parent of η(xt+1) becomes a leaf node;
(3) is grown, such that η(xt+1) becomes an internal node to
two new children. The choice of transformation is influenced
by yt+1 in a posterior distribution. This posterior distribution
depends upon the probability of yt+1 given xt+1, Tt, and
[x, y]t; hence, the dynamic tree is more resilient to noisy data
than other techniques.

3.3 Quantifying Usefulness
The most crucial part of the active learning loop is estimating
which training example from within the pool of potential
candidates C would be most profitable to learn from next. The
dynaTree package for R [21] that we use offers two heuristics
out-of-the-box, both well cited in the literature for regression
problems. The first was presented by Mackay [34] and selects
the candidate where the estimated variance of the output
is maximized relative to the other candidates. The second
heuristic by Cohn [13] selects the candidate it calculates will
most reduce the predicted average variance across the space.
To put this in a more accessible way, it selects the example
it believes will enable the model to best fit what it is already
seeing, in an attempt to reveal key information that it may be
missing. Both are competitive with each other, and both solve



Algorithm 1 An active learning algorithm modified to re-
duce the number of samples, where F contains all training
examples that could be chosen, ninit and nmax specify the
initial and total number of training examples to record, nc the
number of candidates per iteration, and nobs the number of
samples thought to be needed to reduce the affects of noise
in the output/performance values.

1: procedure ACTIVELEARN(F, ninit, nmax, nc, nobs)
2: X ← sample(F, ninit)
3: Y ← getObservations(X,nobs)
4: M ← dynaTree(X,Y )
5: D ← ∅
6: for i = ninit, nmax do
7: C ← sample(F −X,nc)
8: for all k ∈ keys(D) do
9: if D[k] < nobs then C ← C ∪ k

10: end if
11: end for
12: x← ∅
13: vmin ←MAX_DOUBLE
14: for all c ∈ C do
15: v ← predictAvgModelVariance(M, c)
16: if v < vmin then
17: vmin ← v
18: x← c
19: end if
20: end for
21: y ← getObservations(x, 1)
22: M ← updateModel(M,x, y)
23: X ← X ∪ x
24: if k ∈ keys(D) then
25: D[k]← D[k] + 1
26: else
27: D[k]← 1
28: end if
29: end for
30: return M
31: end procedure

the greedy search problem discussed previously, although
the latter is more computationally intensive than the former –
O(|C|2) versus O(|C|). Despite this, we use the latter as our
scoring function, since it handles heteroskedasticity, non-
uniform variance across the space which we assume for
increased robustness, more effectively.

4. Experimental Setup
4.1 Optimization Problem
We evaluate our approach by examining how efficiently
we can construct models to solve a classical but complex
compilation problem. In particular, the problem we consider
in this work involves finding the optimal set of compilation
parameters for a program. The set of parameters includes loop
unrolling, cache tiling, and register tiling factors, where each
parameter has a range of possible values unique to each loop.

The combination of these parameters results in a massive
search space where we will need to find a configuration that
leads to a short program runtime. Our goal is to build a
program-specific model that can predict the runtime from the
given set of optimizations. This allows us to quickly search
over a large number of configurations to find out the best
performing one without compiling and profiling the program
with every single option.

4.2 Platform and Benchmarks
Platform We evaluated our method on a server running
OpenSuse v12.3 with an Intel Core i7-4770K 4-core CPU
at 3.4GHz. The machine contains 16GB of RAM and the
compiler used was gcc v4.7.2.

Environment We measured time using the C library func-
tion clock_gettime(). As in previous iterative compilation
literature, our machine was restricted to a single user and did
not have any processes running other than those enabled by
default under a standard OS installation. We took no further
steps to reduce experimental noise, such as pinning threads or
using a non-standard memory allocator; we decided against
this to avoid creating an artificial environment which could
alter our findings, as discussed previously in Section 1.

Benchmarks We used 11 applications taken from the
SPAPT suite [3], a collection of search problems (programs)
for automatic performance tuning. These benchmarks are
based on high-performance computing problems such as
stencil codes and dense linear algebra. These particular 11
were chosen based on an initial prototyping of our algorithm
using data kindly provided by the authors of [4], where only
these 11 were contained within that initial dataset. These
programs are sequential implementations, where dynamic
memory is allocated it is through the standard malloc()
library function; again, we decided against using a low noise
allocator for reasons previously discussed.

Each problem of the SPAPT suite is defined by three
primary variables – kernel, input size, and tunable config-
uration. The tunable parameters are further broken down into
a number of integer and binary values, with the values giv-
ing optimizing code transformations to apply, as specified
above. In our experiments binary flags and input size were
not considered so that a fair comparison could be made with
the related work [4]. The precise size of each search space is
given in Table 1.

4.3 Evaluation Methodology
Baseline Approach Most machine learning in compilers
works use simple constant sampling plans [36, 37, 49], where
the number of observations in each sample is fixed ahead of
time. Different sizes are chosen in the literature, for example,
[19, 23] use 10, [24] uses 20, [42] uses 80, and the work
against which we compare [4] uses 35. There is no statistical
criterion that can determine how many observations will be
sufficient for this purpose. However, post hoc validation can



be performed, for example by calculating the ratio of the
Confidence Interval (CI) to the mean and rejecting if that
breaches some threshold. Typically, this validation is not
presented in papers, if it is done at all. When it is done,
standard values are to use the 95% confidence and a 1%
CI/mean threshold. In this paper, we compare against a
constant sampling plan of 35 observations, as that is what
is used in our comparison work [4]. We note that even 35
observations is not always enough. Across our benchmarks
we found that even though on the majority of examples there
was often very little noise, many did not fall into this pattern.
Fully 5% of examples broke the threshold. Even at a more
generous 5% threshold, we found that with 35 observations,
0.5% failed. With fewer observations the problem is worse.
At 5 observations, 3.3% fail that more generous threshold,
and at 2 observations (the minimum to have any statistical
certainty), 5% fail. This finding is corroborated by [32] which
samples until the threshold is met, and discovers that for
timing small code sequences it is sometimes necessary to take
hundreds of observations. Since active learning is susceptible
to bad data, these erroneous training examples can have a
detrimental affect on the quality of the learned heuristic and
its convergence.

Our technique, by avoiding a constant sampling plan, is
able to achieve far better results. Indeed, it is even able to
perform adequately with only one observation per example
in low noise parts of the space, and will spend effort with
multiple observations only on those parts of the space that
require it.

Based on classical methodologies, we consider two tech-
niques to be in competition with our own. For both, we get a
fixed number of observations for each training example and
the candidate set is kept disjoint from past training examples.
The first technique uses the average of the runtimes recorded
over 35 observations per single training example, as in [4].
The second technique records a single execution per example.
In this way we can compare how our approach fairs in rela-
tion to both very low and relatively high accuracy per training
point, in terms of estimating mean runtime.

In order to provide the best evaluation possible we com-
pare our methodology to the active learning approach by
Balaprakash et al. [4]; in particular, we use the same bench-
mark suite, model, parameters, and accuracy metric they do.

Evaluation Metrics Our evaluation examines the efficiency
of model construction and, more specifically, the evolution
of the model error over training time for each one of the 11
benchmarks and the three different active learning approaches.
We quantify the accuracy of the models produced by each
approach using the Root Mean Squared Error of the predicted
runtimes (1). For each data point in a test set of n instances
the runtime predicted by the current model ŷt is compared to
the observed mean runtime yt as follows:

RMSE =

√∑n
i=1 (ŷi − yi)

2

n
(1)

We measure the training time in each experiment as the
cumulative compilation and runtimes of any executables used
in training. The overhead of updating the Dynamic Trees
is not measured as it is a small part of the overall training
overhead and is near constant for all evaluated approaches.

4.4 Algorithm and Model Parameters
For each kernel the goal is to produce a model capable of
estimating mean serial code runtime for any set of optimiza-
tion settings. To this end, we used the following parameters
in constructing our model and overall learning algorithm.

With respect to Alg. 1, we start by seeding the algorithm
with just 5 random examples ninit. For each of these we
record 35 observations nobs to calculate a mean runtime.
For the Dynamic Tree model we employ the R dynaTree
package. We use an entirely default configuration except the
number of particles N is set to 5,000. In each iteration of
the loop we consider 500 random and new candidate training
instances nc.

The completion criterion for the experiments was set such
that the maximum size of the training set nmax does not
exceed 2,500. All experiments were repeated ten times with
new random seeds. The results reported in Section 5 are all
averaged over ten experimental runs.

4.5 Description of the Datasets
To collect the data for our experiments we profile each pro-
gram with 10,000 distinct, randomly selected configurations.
For each one, we record its mean runtime, determined by
averaging 35 separate executions per example, and its com-
pilation time. Per experiment, we randomly mark 7,500 of
them as available for use in training, while we test the model
on the remaining 2,500 examples.

The feature values of each data point, which is to say
the values which make each example distinct from one
another, were all normalized through scaling and centring
to transform them into something similar to the Standard
Normal Distribution: a common practice in machine learning
work, where features are not all on comparative scales.

5. Experimental Results
In this Section we first show that our approach can greatly
speed-up the learning process by reducing the cost of profiling
by up to 26x, as compared to a baseline approach that uses 35
observations for each data point. We then provide a detailed
analysis of our results for each program in turn.

5.1 Overall Analysis
To evaluate the overall efficiency of our proposed method-
ology versus the baseline active learning approach [4], we



Table 1. Lowest common RMS error achieved by both approaches, profiling time needed to reach this error level, and speed-up
for all 11 benchmarks

benchmark search space lowest common RMSE cost of the baseline cost of our approach speed-up
(sec) (sec)

adi 3.78× 1014 0.087 2.62× 104 9.08× 104 0.29
atax 2.57× 1012 0.097 3.33× 103 2.39× 102 13.93

bicgkernel 5.83× 108 0.065 1.35× 104 3.76× 103 3.59
correlation 3.78× 1014 0.589 57.46 8.13 7.07

dgemv3 1.33× 1027 0.067 1.75× 102 7.44 23.52
gemver 1.14× 1016 0.342 2.99× 103 1.15× 102 26.00
hessian 1.95× 107 0.006 5.76× 103 1.56× 103 3.69
jacobi 1.95× 107 0.076 3.04× 103 8.57× 102 3.55

lu 5.83× 108 0.013 2.57× 103 7.09× 102 3.62
mm 3.18× 109 0.042 9.87× 104 8.89× 104 1.11
mvt 1.95× 107 0.002 2.59× 103 2.20× 103 1.18

geometric mean 3.97

Table 2. This table gives an indication of the spread of the variance and 95% confidence interval relative to the mean for all
benchmarks tested; the latter is given for two sample sizes, 5 and 35 observations. The values shown illustrate that although
noise can be low for many benchmarks, it is high for others.

benchmark variance 35-sample 95% C.I. / mean 5-sample 95% C.I. / mean
min mean max min mean max min mean max

adi 8.44× 10−10 2.34× 10−3 0.14 4.10× 10−6 2.25× 10−3 0.05 2.77× 10−6 0.01 0.16
atax 7.54× 10−10 9.72× 10−5 0.03 2.22× 10−5 2.31× 10−3 0.06 1.79× 10−5 0.01 0.25

bicgkernel 2.06× 10−10 1.06× 10−4 0.05 1.17× 10−5 1.52× 10−3 0.07 1.02× 10−5 4.64× 10−3 0.29
correlation 2.27× 10−10 0.42 8.02 2.13× 10−5 0.03 0.34 4.42× 10−6 0.13 2.41

dgemv3 1.15× 10−9 5.60× 10−5 0.03 3.31× 10−5 2.25× 10−3 0.08 2.24× 10−5 0.01 0.28
gemver 1.19× 10−9 5.91× 10−3 0.47 1.18× 10−5 4.81× 10−3 0.10 9.34× 10−6 0.02 0.42
hessian 2.35× 10−11 1.03× 10−6 1.99× 10−4 3.89× 10−5 1.33× 10−3 0.06 1.63× 10−5 4.15× 10−3 0.24
jacobi 2.54× 10−10 1.20× 10−4 0.09 1.32× 10−5 1.29× 10−3 0.09 4.12× 10−6 3.83× 10−3 0.39

lu 1.84× 10−11 8.45× 10−7 1.09× 10−4 2.03× 10−5 6.89× 10−4 0.02 5.76× 10−6 2.10× 10−3 0.11
mm 2.76× 10−10 4.87× 10−6 1.31× 10−3 2.26× 10−5 7.44× 10−4 0.02 1.36× 10−5 2.37× 10−3 0.09
mvt 9.97× 10−12 1.07× 10−8 7.87× 10−6 6.29× 10−5 8.28× 10−4 0.03 3.98× 10−5 2.44× 10−3 0.11

ad
i

m
m

m
vt

ja
co

bi

bi
gc

ke
rn

el lu

he
ss

ia
n

co
rre

la
tio

n
at

ax

dg
em

v3

ge
m

ve
r

G
eo

-m
ea

n
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

26x

R
e
d

u
c
ti
o

n
 o

f 
p

ro
fi
lin

g
 c

o
st

23.5x

Figure 5. Reduction of profiling overhead compared to a
baseline approach

measured the time needed for both techniques to first reach a
common lowest average error.

In particular, Table 1 shows for each benchmark what this
lowest common average error is and how many seconds it
took to collect the profiling data needed to reach this level
for the competing methods. Figure 5 presents graphically
the acceleration achieved by our approach. In all but one
benchmark our algorithm is faster at reaching the lowest
average error. Specifically, our methodology is able to reduce

the overhead for 10 benchmarks by up to 26x. The only
benchmark in which our approach fails to reduce the overhead
is adi. However, the difference in errors between the two
techniques is comparable, within a few thousandths of a
second on average. Summarizing, our approach outperforms
the baseline by achieving on average a 4x reduction of
the profiling overhead, which translates to saving weeks of
compute time in practice for many compilation problems.

5.2 Detailed Analysis
In this Section we present our findings in more detail. Fig-
ures 6a–6f show the Root Mean Squared Error (1) against
evaluation time (cumulative profiling and compilation cost
in seconds) averaged over 10 runs for several representative
results. To make a fair comparison each graph shows the
range of time over which all three sampling plans are simul-
taneously active in processing up to 2,500 training instances.
What follows is a qualitative summary of those results.
adi: Figure 6a gives error against time for the three different
sampling techniques we evaluated for benchmark adi. It
seems self-evident that there is some considerable noise in
the underlying data since a single observation per training
example plateaus in error fairly quickly and cannot achieve
the same results as the other two methods. Although our



variable observation approach is also unable to keep up with
a high fixed number of observations per example it does
achieve comparably low error throughout.
atax, bicgkernel: The data of benchmark atax in Figure
6b is quite different to that in Figure 6a and appears to
represent a case where the underlying noise in performance
measurements is comparatively low. This is exemplified by
the fact that one sample per unique instance is enough to
do well, and indeed our technique appears to detect this;
compare these plot-lines to the 35 observations approach and
we see a good example of how much time can potentially be
saved by our technique over this baseline. The bicgkernel
experiments follow the same sort of pattern.
correlation: Figure 6c, showing the results of the benchmark
correlation, is interesting since the error remains high
regardless of sampling technique. Data from Table 2 points
at a potential reason for this, that we outline below. As in
Figure 6a, we see that there must be noise present since one
observation does even worse. Our approach is not quite as
good as using a large number of observations per data point
but is competitive and within a few hundredths of a second
in terms of average error by the end of the displayed time.
dgemv3, gemver, hessian: In Figure 6d our variable ap-
proach is much faster than the classical method and the
simple but potentially noisy variant, similarly for the results
of dgemv3 and hessian.
jacobi, lu, mm, mvt: The data for the jacobi benchmark
(Figure 6e), which is also generally representative of lu, are
interesting since they show our algorithm to be slightly too
cautious but still much more efficient than a fixed sampling
plan. The mm benchmark gives a graph akin to that of mvt,
showing our approach as giving slight speed-ups over the
classical methodology.

Table 2 details the distributions of the runtimes measured
during our experiments, and in particular the spread of the
variance and confidence intervals relative to the means. The
level of noise across this set of benchmarks varies across
applications. Moreover, the variance is not constant across all
parts of the space for even a single benchmark in isolation;
some parts of the space suffer from extreme noise. An
adaptive algorithm, such as ours, is necessary to make the
best of these conditions.

Correlation shows very high noise and achieves a 7x
learning speed-up whereas gemver has lower noise but gave
us the highest learning speed-up – 26x. We think this is
because our experiments capped the number of executions
at 35, but many points in correlation’s space need more
data. This limits the maximum speed-up that can be attained.
Gemver, in contrast to correlation has fewer points for
which 35 observations are inadequate. For adi, where the
speed-up runs counter to our expectations, we ran longer
experiments but the outcome did not change. We believe that
this is due to the shape of the noisy regions in the space. We
will investigate these in future work.

6. Related Work
Our work lies at the intersection of optimization modeling
and active learning. No existing work has used sequential
analysis and active learning to reduce the overhead of iterative
compilation.

Analytic Modeling Analytic models have been widely used
to tackle complex optimization problems, such as auto-
parallelization [7, 40], runtime estimation [12, 27, 58], and
task mappings [28]. A particular problem with them, however,
is that the model has to be re-tuned for each new targeted
hardware [50].

Predictive Modeling Predictive modeling has been shown
to be useful in the optimization of both sequential and par-
allel programs [14, 23, 52, 53]. Its great advantage is that
it can adapt to changing platforms as it has no a priori as-
sumptions about their behavior, but it is expensive to train.
There are many studies showing it outperforms human based
approaches [19, 24, 31, 54, 61]. Prior work for machine learn-
ing in iterative compilation [20] often uses random sampling
or exhaustive search to collect training examples. The process
of collecting these examples can be expensive, taking several
months in practice. With active learning, our approach can
significantly reduce the overhead of collecting these training
data, accelerating the process of tuning optimization heurist-
ics using machine learning.

Active Learning for Systems Optimization Active learn-
ing has recently emerged as a viable means for constructing
heuristics for systems optimization. Zuluaga et al. [60] pro-
posed an active learning algorithm to select parameters in a
multi-objective problem; Balaprakash et al. [4, 5] used act-
ive learning to find optimizations for both CPU and GPU
scientific codes; and Ogilvie et al. [39] proposed its use to
construct models to map programs in a CPU–GPU mixed
platform. In all these works, however, each training example
was profiled a fixed number of times in order to compute an
average performance. Our work advances this prior work by
dynamically adjusting the number of profiling runs as needed,
which significantly reduces the training overhead.

Program Runtime Variation The work by Mazouz et al.
[35] shows that parallel program execution time could vary
to various extents on different platforms. Thus, the number of
profiling runs needed for statistical soundness varies from one
platform to the other. Leather et al. [32] proposed a statistical
method to determine the number of times to profile a program
but for the much simpler problem of determining the best
performing binary version of a program during a random
search of the optimization space. In their work, binaries
whose confidence interval of the runtime does not overlap
with that of the best performing binary are not revisited.



0 20000 40000 60000 80000

0
.0

8
5

0
.0

9
5

0
.1

0
5

Results for adi benchmark

Evaluation Time (s)

R
o
o
t 
M

e
a
n
−

S
q
u
a
re

 E
rr

o
r 

(s
)

all observations

one observation

variable observations

(a) adi

0 1000 2000 3000

0
.0

6
0
.0

8
0
.1

0
0
.1

2
0
.1

4

Results for atax benchmark

Evaluation Time (s)

R
o
o
t 
M

e
a
n
−

S
q
u
a
re

 E
rr

o
r 

(s
)

all observations

one observation

variable observations

(b) atax

0 200 400 600 800 1000

0
.6

0
.7

0
.8

0
.9

1
.0

Results for correlation benchmark

Evaluation Time (s)

R
o
o
t 
M

e
a
n
−

S
q
u
a
re

 E
rr

o
r 

(s
)

all observations

one observation

variable observations

(c) correlation

0 500 1000 1500 2000 2500 3000

0
.2

5
0
.3

0
0
.3

5
0
.4

0

Results for gemver benchmark

Evaluation Time (s)

R
o
o
t 
M

e
a
n
−

S
q
u
a
re

 E
rr

o
r 

(s
)

all observations

one observation

variable observations

(d) gemver

0 500 1000 1500 2000 2500 3000

0
.0

4
0
.0

6
0
.0

8
0
.1

0
0
.1

2
0
.1

4

Results for jacobi benchmark

Evaluation Time (s)

R
o
o
t 
M

e
a
n
−

S
q
u
a
re

 E
rr

o
r 

(s
)

all observations

one observation

variable observations

(e) jacobi

0 500 1000 1500 2000 2500

0
.0

0
2

0
.0

0
3

0
.0

0
4

0
.0

0
5

0
.0

0
6

Results for mvt benchmark

Evaluation Time (s)

R
o
o
t 
M

e
a
n
−

S
q
u
a
re

 E
rr

o
r 

(s
)

all observations

one observation

variable observations

(f) mvt

Figure 6. RMS error over time for six of our benchmarks for three different approaches: one observation, 35 observations, and
variable observations per training point

7. Conclusions and Future Work
While we need good software optimization heuristics to fully
exploit the performance potential of our hardware, it is be-
coming increasingly unrealistic to hand-tune them with expert
knowledge for every hardware architecture they have to target.
The result is that current compilers use out-of-date optimiza-
tion strategies, ultimately leading to sub-optimal binaries. To
alleviate this problem, previous research has proposed ma-
chine learning to automate the heuristic generation process.
Existing implementations are unnecessarily slow. They select
their training data randomly, much of which carry little useful
information despite being time consuming to acquire. Active
learning approaches have tackled this inefficiency, but their
inflexible sampling plan still causes them to collect training
data with little useful information.

In this paper, we present a unique approach, broadly applic-
able to heuristic generation. It combines sequential analysis,
which reduces the observations per training example, together
with active learning, which reduces training examples overall,
to greatly accelerate learning. We demonstrate our approach

by comparing it with a baseline 35-sample technique which
creates software optimization models derived through active
learning alone. Our approach achieves an average speed-up
of 4x, and up to 26x, without significant penalties to the final
heuristic quality.

We intend to test the bounds of our technique by artificially
introducing noise into the system to see how robustly it
performs in extreme cases. Success would allow our strategies
to be used in heavily loaded multi-user environments. This
would have been interesting in this paper, and is something
of an omission that was pointed out to us in a review. As such
we leave it to future work.

Acknowledgments
This work was partly supported by the UK Engineering
and Physical Sciences Research Council (EPSRC) under
grants EP/L000055/1 (ALEA), EP/M01567X/1 (SANDeRs),
EP/M015823/1, and EP/M015793/1 (DIVIDEND). We would
like to thank Dr. Balaprakash, of Argonne National Laborat-
ory, for his kind help in providing us the initial data for our
research.



References
[1] 2015 international technology roadmap for semicon-

ductors. http://www.semiconductors.org/main/
2015_international_technology_roadmap_for_
semiconductors_itrs/. Retrieved 08/09/16.

[2] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P.
O’Boyle, J. Thomson, M. Toussaint, and C. K. I. Williams.
Using Machine Learning to Focus Iterative Optimization. In
CGO, 2006.

[3] P. Balaprakash, S. M. Wild, and B. Norris. SPAPT: Search
Problems in Automatic Performance Tuning. In ICCS, 2012.

[4] P. Balaprakash, R. B. Gramacy, and S. M. Wild. Active-
Learning-Based Surrogate Models for Empirical Performance
Tuning. In CLUSTER, 2013.

[5] P. Balaprakash, K. Rupp, A. Mametjanov, R. B. Gramacy, P. D.
Hovland, and S. M. Wild. Empirical Performance Modeling of
GPU Kernels Using Active Learning. In ParCo, 2013.

[6] M.-F. Balcan, A. Beygelzimer, and J. Langford. Agnostic
Active Learning. In ICML, 2006.

[7] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan.
A Practical Automatic Polyhedral Parallelizer and Locality
Optimizer. In PLDI, 2008.

[8] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone.
Classification and regression trees. Wadsworth and Brooks,
1984.

[9] J. Charles, P. Jassi, N. S. Ananth, A. Sadat, and A. Fedorova.
Evaluation of the Intel Core i7 Turbo Boost feature. In IISWC,
2009.

[10] H. A. Chipman, E. I. George, and R. E. McCulloch. Bayesian
CART Model Search. Journal of the American Statistical
Association, 93, 1998.

[11] H. A. Chipman, E. I. George, and R. E. McCulloch. Bayesian
Treed Models. Machine Learning, 48, 2002.

[12] M. Clement and M. Quinn. Analytical Performance Prediction
on Multicomputers. In SC, 1993.

[13] D. A. Cohn. Neural Network Exploration Using Optimal
Experiment Design. Neural Networks, 9(6), 1996.

[14] K. D. Cooper, P. J. Schielke, and D. Subramanian. Optimizing
for Reduced Code Space using Genetic Algorithms. In LCTES,
1999.

[15] C. Cummins, P. Petoumenos, M. Steuwer, and H. Leather.
Autotuning OpenCL Workgroup Size for Stencil Patterns.
arXiv preprint arXiv:1511.02490, 2015.

[16] C. Curtsinger and E. D. Berger. STABILIZER: Statistically
Sound Performance Evaluation. In ASPLOS, 2013.

[17] A. B. de Oliveira, J.-C. Petkovich, and S. Fischmeister. How
much does memory layout impact performance? A wide study.
In REPRODUCE 2014, 2014.

[18] C. Dubach, T. Jones, E. Bonilla, G. Fursin, and M. F. P.
O’Boyle. Portable Compiler Optimisation Across Embedded
Programs and Microarchitectures using Machine Learning. In
MICRO, 2009.

[19] M. K. Emani et al. Smart, Adaptive Mapping of Parallelism in
the Presence of External Workload. In CGO, 2013.

[20] G. Fursin et al. Milepost GCC: Machine Learning Enabled
Self-tuning Compiler. International Journal of Parallel Pro-
gramming, 39(3), 2011.

[21] R. B. Gramacy and M. A. Taddy. dynaTree: Dynamic Trees
for Learning and Design. http://faculty.chicagobooth.
edu/robert.gramacy/dynaTree.html, 2011. R package.
Retrieved 02/29/16.

[22] D. Grewe, Z. Wang, and M. F. O’Boyle. Portable Mapping of
Data Parallel Programs to OpenCL for Heterogeneous Systems.
In CGO, 2013.

[23] D. Grewe, Z. Wang, and M. F. P. O’Boyle. OpenCL Task
Partitioning in the Presence of GPU Contention. In LCPC,
2013.

[24] D. Grewe et al. A Workload-Aware Mapping Approach For
Data-Parallel Programs. In HiPEAC, 2011.

[25] T. Hastie, R. Tibshirani, and J. Friendman. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction,
chapter 7. Springer, 2 edition, 2009.

[26] J. Herter, P. Backes, F. Haupenthal, and J. Reineke. CAMA:
A predictable cache-aware memory allocator. In Euromicro,
2011.

[27] S. Hong and H. Kim. An Analytical Model for a GPU
Architecture with Memory-level and Thread–level Parallelism
Awareness. In ISCA, 2009.

[28] A. H. Hormati, Y. Choi, M. Kudlur, R. Rabbah, T. Mudge, and
S. Mahlke. Flextream: Adaptive Compilation of Streaming
Applications for Heterogeneous Architectures. In PACT, 2009.

[29] M. N. Katehakis and J. Arthur F. Veinott. The multi-armed
bandit problem: Decomposition and computation. Mathematics
of Operations Research, 12(2), 1987.

[30] P. M. W. Knijnenburg, T. Kisuki, and M. F. P. O’Boyle.
Iterative Compilation. 2002.

[31] S. Kulkarni and J. Cavazos. Mitigating the Compiler Optim-
ization Phase-Ordering Problem using Machine Learning. In
OOPSLA, 2012.

[32] H. Leather, M. F. P. O’Boyle, and B. Worton. Raced profiles:
efficient selection of competing compiler optimizations. In
LCTES, 2009.

[33] H. Leather, E. Bonilla, and M. O’Boyle. Automatic Feature
Generation for Machine Learning–based Optimising Compila-
tion. ACM TACO, 2014.

[34] D. J. C. MacKay. Information-Based Objective Functions for
Active Data Selection. Neural Computation, 4, 1992.

[35] A. Mazouz, S. A. A. Touati, and D. Barthou. Study of
Variations of Native Program Execution Times on Multi-Core
Architectures. In CISIS, 2010.

[36] A. Monsifrot, F. Bodin, and R. Quiniou. A Machine Learning
Approach to Automatic Production of Compiler Heuristics. In
AIMSA, 2002.

[37] E. Moss, P. Utgoff, J. Cavazos, D. Precup, D. Stefanovic,
C. Brodley, and D. Scheeff. Learning to schedule straight-line
code. Advances in Neural Information Processing Systems,
1997.

http://www. semiconductors. org/main/2015_international_technology_roadmap_for_semiconductors_itrs/
http://www. semiconductors. org/main/2015_international_technology_roadmap_for_semiconductors_itrs/
http://www. semiconductors. org/main/2015_international_technology_roadmap_for_semiconductors_itrs/
http://faculty. chicagobooth. edu/robert. gramacy/dynaTree. html
http://faculty. chicagobooth. edu/robert. gramacy/dynaTree. html


[38] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney.
Producing Wrong Data Without Doing Anything Obviously
Wrong! In ASPLOS XIV, 2009.

[39] W. F. Ogilvie et al. Fast Automatic Heuristic Construction
Using Active Learning. In LCPC. 2014.

[40] E. Park, J. Cavazos, L.-N. Pouchet, C. Bastoul, A. Cohen, and
P. Sadayappan. Predictive Modeling in a Polyhedral Optimiza-
tion Space. International Journal of Parallel Programming, 41
(5), 2013.

[41] P. Petoumenos, G. Keramidas, H. Zeffer, S. Kaxiras, and
E. Hagersten. STATSHARE: A Statistical Model for Managing
Cache Sharing via Decay. In MoBS, 2006.

[42] P. Petoumenos, L. Mukhanov, Z. Wang, H. Leather, and D. S.
Nikolopoulos. Power Capping: What Works, What Does Not.
In ICPADS, 2015.

[43] L.-N. Pouchet. Polybench: The polyhedral benchmark suite.
URL: http://polybench. sourceforge. net, 2012.

[44] J. Power, A. Basu, J. Gu, S. Puthoor, B. M. Beckmann, M. D.
Hill, S. K. Reinhardt, and D. A. Wood. Heterogeneous System
Coherence for Integrated CPU–GPU Systems. In MICRO,
2013.

[45] K. K. Pusukuri, R. Gupta, and L. N. Bhuyan. Thread Tran-
quilizer: Dynamically reducing performance variation. ACM
TACO, 2012.

[46] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes
for Machine Learning. The MIT Press, 2006.

[47] B. Settles. Active Learning. Morgan and Claypool, 2012.

[48] F. Siebert. Constant-Time Root Scanning for Deterministic
Garbage Collection. In CC, 2001.

[49] M. Stephenson, S. Amarasinghe, M. Martin, and U.-M.
O’Reilly. Meta Optimization: Improving Compiler Heuristics
with Machine Learning. In PLDI, 2003.

[50] M. Stephenson, S. Amarasinghe, M. Martin, and U.-M.
O’Reilly. Meta Optimization: Improving Compiler Heuristics
with Machine Learning. In PLDI, 2003.

[51] M. A. Taddy, R. B. Gramacy, and N. G. Polson. Dynamic Trees
for Learning and Design. Journal of the American Statistics
Association, 106(493), 2009.

[52] Z. Wang and M. F. O’Boyle. Mapping Parallelism to Multi-
cores: A Machine Learning Based Approach. In PPoPP, 2009.

[53] Z. Wang and M. F. O’Boyle. Partitioning Streaming Parallelism
for Multi-cores: A Machine Learning Based Approach. In
PACT, 2010.

[54] Z. Wang and M. F. P. O’Boyle. Using Machine Learning to
Partition Streaming Programs. ACM TACO, 2013.

[55] Z. Wang, D. Powel, B. Franke, and M. F. O’Boyle. Exploitation
of GPUs for the Parallelisation of Probably Parallel Legacy
Code. In CC, 2014.

[56] Z. Wang, G. Tournavitis, B. Franke, and M. F. P. O’boyle.
Integrating Profile-driven Parallelism Detection and Machine-
learning-based Mapping. ACM TACO, 2014.

[57] Y. Wen, Z. Wang, and M. O’Boyle. Smart multi-task schedul-
ing for OpenCL programs on CPU/GPU heterogeneous plat-
forms. In IEEE HiPC, 2014.

[58] R. Wilhelm et al. The Worst-Case Execution-Time Problem –
Overview of Methods and Survey of Tools. ACM TECS, 2008.

[59] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Address-
ing Shared Resource Contention in Multicore Processors via
Scheduling. In ASPLOS XV, 2010.

[60] M. Zuluaga, A. Krause, G. Sergent, and M. Püschel. Active
Learning for Multi–Objective Optimization. In ICML, 2013.

[61] M. Zuluaga et al. “Smart” Design Space Sampling to Predict
Pareto–Optimal Solutions. In LCTES, 2012.


	Introduction
	Motivation
	Active Learning with Sequential Analysis
	Sequential Analysis
	Dynamic Trees
	Quantifying Usefulness

	Experimental Setup
	Optimization Problem
	Platform and Benchmarks
	Evaluation Methodology
	Algorithm and Model Parameters
	Description of the Datasets

	Experimental Results
	Overall Analysis
	Detailed Analysis

	Related Work
	Conclusions and Future Work

