Modelling high-power large-aperture radar meteor trails

Dyrud, Lars P. and Ray, Licia and Oppenheim, Meers and Close, Sigrid and Denney, Kelly (2005) Modelling high-power large-aperture radar meteor trails. Journal of Atmospheric and Solar-Terrestrial Physics, 67 (13). pp. 1171-1177. ISSN 1364-6826

Full text not available from this repository.

Abstract

Despite decades of research, many questions remain about the global flux of meteoroids at Earth, their influence on the atmosphere, and their use as upper atmospheric diagnostics. We see high-power large-aperture (HPLA) radar observations of meteor phenomena called head echoes and non-specular trails as a valuable tool for answering these questions. In the past we conducted plasma simulations demonstrating that meteor trails are unstable to growth of Farley-Buneman gradient-drift (FBGD) waves that become turbulent and generate large B-field aligned irregularities (FAI). These FAI result in reflections called non-specular meteor trails. Using these and other results, we have developed a model that follows meteor evolution from ablation and ionization through the creation of radar head echoes and non-specular trail reflections. This paper presents results from this model, showing that we can reproduce many aspects of these large radar observations, such as the general altitude profile of head echoes and non-specular trails. Additionally we show that trail polarization due to E-fields or neutral winds causes a noticeable trail feature as well as may be responsible for trails lasting longer than about 1 s. We also demonstrate how such a model is a valuable tool for deriving meteoroid properties such as flux, mass, and velocity. Finally, such a model could also provide some composition information, and diagnose the atmosphere and ionosphere where meteors produce their trails.

Item Type: Journal Article
Journal or Publication Title: Journal of Atmospheric and Solar-Terrestrial Physics
Uncontrolled Keywords: /dk/atira/pure/subjectarea/asjc/1900/1912
Subjects:
Departments: Faculty of Science and Technology > Physics
ID Code: 83377
Deposited By: ep_importer_pure
Deposited On: 05 Dec 2016 09:50
Refereed?: Yes
Published?: Published
Last Modified: 01 Jan 2020 09:59
URI: https://eprints.lancs.ac.uk/id/eprint/83377

Actions (login required)

View Item View Item