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A condition monitoring system for an early 
warning of developing faults in wind turbine 

electrical systems

Electrical condition monitoring (CM) normally involves the collection of high-frequency, instantaneous data for feature 
extraction. This paper presents a novel development of an electrical condition monitoring system for wind turbines. The 
system is developed based upon a control and data acquisition system, for which hardware modules can be configured 

for a particular set of signals, thus tailoring the system to a specific range of monitoring tasks. A wavelet-based singularity 
detection method is proposed, which automatically calculates the Lipschitz exponent, a measure to describe the local 

transient activities in the measurement signal. The relationship between the Lipschitz exponent and the type and severity 
of faults occurring on the grid and in the power electronics is explored. The proposed algorithms are tested and validated 

using simulation data from computer simulations of a doubly-fed induction generator (DFIG) wind turbine with a grid 
connection. A field-programmable gate array (FPGA) embedded in the system has been utilised, allowing the signal 
processing tasks to be undertaken in real-time for monitoring purposes. The paper demonstrates that a fault signal 
of small magnitude generated at the early stage of a fault carries the same Lipschitz exponent as the signal of large 

magnitude generated at the late stage of the fault, thereby providing an early warning before the fault develops into a 
detrimental one.
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1.  Introduction
The published statistics state that, for wind turbines in most 
European countries, the failure rate per turbine per year is as high 
as 3.5 for larger units (>1 MW) and around 1.0 for smaller units 
(<500 kW)[1]. Over an operating life of 20 years, maintenance costs 
for an onshore wind farm are estimated to be 10-15% of the total 
income and for an offshore wind turbine farm over the same period 
these costs are estimated to be 20-25% of the total income[2,3]. 
In this regard, the monitoring and diagnostics of turbines play 
an increasingly important role in the competitive operation of 
wind farms. Consolidated knowledge about the past and current 
condition of wind turbines can be used to improve performance, 
reliability and availability, thus enabling the optimal scheduling of 
maintenance activities and minimising the risk of costly, unexpected 
failures of turbines during their service life. 

Typically, CM systems comprise sensors, data acquisition, data 
filtration, data storage, feature extraction, pattern recognition 
and decision-making units. A review of condition monitoring of 
rotating electrical machines can be found in[4] and a review of the 
design and system architecture of condition monitoring systems 
for wind turbines can be found in[5]. The majority of vibration 
monitoring systems available measure vibration, which requires a 
range of sensors for different frequencies[6]. Other systems measure 
parameters such as blade stress and the temperatures of the nacelle, 
coolant, oil and generator[7]. Monitoring data may be stored locally 
or transferred to a central computer for further diagnosis. The large 
number of data generated requires techniques such as fast Fourier 
transform (FFT) and enveloped FFT to reveal patterns in the data, 
which might infer the nature, form and extent of the degradation of 
components[8].

Electrical condition monitoring normally involves the analysis 
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of transient electrical behaviours of the 
components or systems and high-frequency 
sampling is therefore required. For example, 
in insulation condition monitoring based 
on partial discharge (PD) measurement and 
analysis, a sampling rate usually in the range 
of MHz is required in order to capture the 
magnitude of the discharges and the number 
of discharges with regard to a particular phase 
angle within an AC cycle for an accurate PD 
pattern recognition[9].

Wind turbines usually operate at varying 
speeds and are subject to intermittent and 
stochastic aerodynamic effects. In addition, 
power electronics are often required to 
control the flow of power between the 
wind turbine and the local grid system in 
either direction, depending on the load and 
climatic conditions; hence, the behaviour of 
the measurement signals is non-stationary. 
Consequently, recent research has focused 
on the use of windowed Fourier transform 
and wavelet analysis to cope with the non-stationary components 
in the measurement data[9,10]. Research into CM techniques has 
also employed generic software and hardware for monitoring and 
analysis[11,12]. However, it should be noted that, at present, many 
CM systems use individual monitoring modules for a specific 
component or subsystem with a particular type of detection 
technique. Clearly, it would be beneficial to monitor parameters 
associated with a number of components to better identify potential 
failures of individual components and of the system as a whole[13].

This paper proposes a novel system for electrical condition 
monitoring of wind turbines, although the system is designed such 
that it can use a variety of data acquisition modules to perform CM 
tasks for specific components. An early warning algorithm based 
on wavelet singularity analysis is developed to identify the faults 
occurring on the grid and in the power electronics when they are 
still at an incipient stage. A grid-connected DFIG wind turbine has 
been simulated to generate useful data at a system level to validate 
the proposed algorithms. In order to realise the proposed system, 
a control unit incorporating an FPGA module has been employed, 
allowing signal processing tasks to be carried out in real time.

2. Overview of the system
A key factor to take into account when considering condition 
monitoring is how measurements are realised and performed. 
Failures in wind turbines can occur in any subsystem of the 
turbine, from the blades, through the drivetrain to the generator. In 
addition, monitoring techniques need to deal with meteorological, 
acoustic, optical, mechanical, thermal, electromagnetic and 
electrical phenomena while generating data for collection and 
interpretation. Anomalies occurring in the turbine and the grid will 
adversely affect the output of the generator, such as current, voltage 
and power output, and hence the performance of the device.

2.1 Configurable data acquisition system
The proposed system is illustrated in Figure 1. A set of analogue 
input modules, controlled by a real-time control unit, are used 
to acquire signals from sensors that are physically connected to 
different subsystems of an operational wind turbine. Interactions 
between these different monitoring modules are taken into account; 

for example, the turbine speed could affect both the bearing 
temperature and shaft vibration levels of the generator. Monitoring 
data alone or, when necessary, together with relevant operational data 
collected by other in situ systems, such as a supervisory control and 
data acquisition (SCADA) system, are sent to the host computer via a 
local area network and saved to a historical database. These data can 
be transmitted to a remote support centre for further analysis.

The input modules can be configured for different sensors and 
various inputs. For example, an analogue module can be used for 
speed measurements, including wind, rotor and generator speed, 
while another is used for measurements of electrical parameters, 
such as current, voltage and power outputs. Further analogue 
modules can be used for vibration measurements. A thermocouple 
module can be added to monitor the temperature of components, 
such as the bearings, generator winding or nacelle, and control 
signals can be monitored with a digital input module. The CM 
system is controlled by a real-time control unit, which reads data 
from direct memory access first-in first-out (DMA-FIFO) buffers 
and also exchanges data over the internet through a transmission 
control protocol/internet protocol (TCP/IP) connection with a 
host PC, ie the CM server. Software modules are implemented on 
the host PC using LabVIEW for user interface options and data 
analysis. This modular structure can provide significant flexibility 
for monitoring parameters by adding new hardware modules and 
data analysis software as required.

In this system, an FPGA is employed primarily because of its 
reconfigurable I/O capability. The processing unit in the FPGA can 
be connected directly to the different types of acquisition hardware, 
therefore minimising latency. An FPGA consists of many small 
building blocks, including logic blocks, memories and I/O blocks, 
plus interconnecting wires and switches, the functions of which can 
be configured by the user. The blocks can work in parallel and can 
also be interconnected to build more complex operation blocks. 
These distinct features have made FPGA-based hardware systems 
very attractive for real-time signal processing applications[14-16]. The 
FPGA in this system employs three DMA channels to which data 
can be written concurrently, thereby allowing signal processing 
tasks to be carried out in real time.

Computer simulations of a DFIG wind turbine with a grid 
connection were created. Useful data at a system level under 

Figure 1. Schematic diagram of the CM system, including data flows between modules 
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different grid and power electronic faults were obtained to validate 
the algorithms proposed in this paper. The model will be described 
in more detail in Section 3. 

2.2 Wavelet-based singularity detection 
It is well known that at the time instant when a fault occurs, the 
output signals usually contain transient changes or discontinuities. 
The analysis of non-stationary signals for appropriate feature 
extraction is normally performed by the Fourier transform and 
wavelet transform in the context of signal processing. Fourier 
analysis has been used extensively to analyse vibration signals[6], in 
which the harmonics of signals generated by a healthy machine are 
compared to those of the signals generated by monitored machines. 
The frequency-related characteristic of these signals can be vital for 
abnormality diagnosis and discrimination. Furthermore, wavelet 
transform techniques have been researched to mine the non-
stationary components for both time- and frequency-related local 
characteristics in the measurement data. For example, continuous 
wavelet transforms have been proposed for the detection of 
mechanical and electrical faults in drivetrains by tracking signal 
energy within particular frequency bands[10], and the detection of 
rotor eccentricity by extracting the strength of particular frequency 
components[17].

Intuitively, the changes in measured signals in the early stages of 
a fault are usually small in magnitude but may indicate the start of a 
significant failure. However, small magnitude signals are normally 
undetected by conventional methods, for example threshold rules, 
particularly in a harsh offshore environment. Despite being low in 
magnitude and of short duration, such a small signal may essentially 
carry the same features as a large signal.

The local singularities of a signal can be described by the Lipschitz 
exponent. It should be noted that the Fourier transform can only 
measure the global Lipschitz exponent of a signal, which cannot 
provide information regarding the time distribution of singularities. 
Instead, the wavelet transforms can provide localisation in both the 
time and frequency domains by means of compactly supported 
wavelets and can therefore measure the local Lipschitz exponent at 
a particular location. The continuous wavelet transform (CWT) is 
preferred since it calculates the wavelet coefficients at every possible 
scale and time instant and hence detects more precisely the location 
of singularities in the time-scale domain. In contrast, the discrete 
wavelet transform (DWT) uses discretisation methods to obtain the 
scale and time parameters.

The CWT of a time-dependent signal f(t) is defined by the 
convolution between the signal f(t) and the scaled and time-shifted 
wavelet ψ(t), as described below:

                         Wψ f s,τ( ) = s
−1
2 f t( )
−∞

+∞

∫ ψ t −τ
s

⎛
⎝⎜

⎞
⎠⎟ dt .................... (1)

where s is a scaling factor controlling the amplitude and the 
duration of the wavelets and τ represents a time instant shifting on 
the time axis. 

Suppose the wavelet ψ(t) and the signal f(t) to be analysed are 
both real, then local modulus maxima at point (s0 , τ0) can be defined 
such that |Wψ f (s0, τ) | <  |Wψ f (s0, τ0) |, where τ is either the right 
or left neighbourhood of τ0 . Therefore, at a given scale s0 , a series 
of modulus maxima can be obtained from wavelet coefficients  
Wψ f (s0, τ). In the time-scale plane, maxima lines are defined as 
those curves that are connected by arbitrarily close points across the 
scales, along which all points are modulus maxima. The existence 
of maxima lines indicates the existence of local edges or sharp 
transitions in the signal. Such singularities can be calculated by the 

decay of wavelet coefficients along the maxima lines when the scale 
s approaches zero at the certain point τ0 .

Assume that there exists a scale s0 > 0 and a constant C, such 
that for s < s0 all the modulus maxima of Wψ f (s, τ) belong to a cone 
defined by | s – s0 | < Cs. Then, the function f(t) is Lipschitz α at τ0  
if, and only if, there exists a constant A, such that at each modulus 
maxima within the cone: 

                                      Wψ f s,τ( ) < Asα+0.5  .................................. (2)

Equation (2) offers a straightforward method to calculate the 
Lipschitz exponent α of the singular points. On a logarithmic scale, 
the Lipschitz α at τ0 can be obtained by finding the slope of the 
linear relationship, as follows: 

                      logWψ f s,τ( ) < logA + α + 0.5( )log s  .................. (3)

The selection of an appropriate wavelet and the scales are 
crucial for applications. For a practical signal, it can be written as a 
polynomial when expanded into a Taylor series: 

                                         f t( ) = cm
0<m<k
∑ t m  ..................................... (4)

Wavelets are usually designed with vanishing moments. A 
wavelet ψ(t) is said to have k vanishing moments if it satisfies the 
condition:
                         t j

−∞

+∞

∫ ψ t( )dt = 0 j = 0,1,2,...,k −1  ...................... (5)

If a wavelet ψ(t) has k vanishing moments, such a wavelet is 
orthogonal to polynomials of degree k – 1. Consequently, the wavelet 
transform, as described in Equation (1), can remove the polynomial 
trends and detect singularity points in signals. Essentially, if ψ(t) 
has one vanishing moment, the modulus maxima appears at signal 
discontinuities; if ψ(t) has two vanishing moments, the modulus 
maxima also corresponds to discontinuities on the derivative of the 
smoothed signal. This implies that the number of modulus maxima, 
and hence the number of maxima lines across the entire time-scale 
space, increases linearly with the number of vanishing moments of 
the wavelet. Therefore, the wavelets to be selected are those with as 
few vanishing moments as possible, but with enough moments to 
detect the discontinuities that are of interest in the signal.

In this study, the Gaussian wavelet with one vanishing moment 
is used since it is sufficient to detect discontinuities appearing in 
the measurement signal. For example, the Lipschitz exponent α 
of a Dirac signal is estimated as 0, whereas the α of a signal that 
is differentiable at a time instant is measured as 1. The Gaussian 
function g(t) can be represented by Equation (6), where σ is the 
standard deviation: 

                                       g t( ) = 1
2πσ

e
− t2

2σ 2
⎛

⎝⎜
⎞

⎠⎟  ................................ (6)

The Gaussian wavelet with one vanishing moment is defined as 
the first-order derivative of g(t). The Fourier transform of the first 
order derivative of the Gaussian function is:

                                         Ĝ ω( ) = jω( )e−
ω 2

2  ................................... (7)

As can be seen from Equations (6) and (7), the Gaussian wavelet 
is perfectly local in both the time and frequency domains.

Generally, modulus maxima at lower scales (high frequencies) 
are affected by noise components in the original signal. In contrast, 
the wavelet transform at higher scales (lower frequencies) have a 
poorer time resolution; therefore, the maxima lines may contain the 
modulus maxima of their adjacent points. Once the scale range is 
determined, the maxima lines within the selected scale region are 
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then used to estimate the Lipschitz α with the least-squares method, 
as given in Equation (3). 

The wavelet modulus maxima method has been used to infer 
the original site of the partial discharge source by investigating 
pulse propagation along the induction motor winding[9], to 
detect transient travelling waves for directional transmission line 
protection[18] and to locate faults for ageing underground cable 
systems[19].

2.3 FPGA implementation
Many of the most popular FPGAs are in-system programmable, 
allowing modification of the operation of the device for dedicated 
applications[20]. The target FPGA in this system is a Virtex-5 LX30 
FPGA from Xilinx, working at an operating clock frequency of  
90 MHz. It contains 19.2k flip-flops, 19.2k look-up tables and 
1152 kbit embedded block RAM. This allows a data stream of 32k 
elements to be processed at one time. Figure 2 shows the flowchart 
for calculation of wavelet-based Lipschitz exponents. As can 
be seen from Section 2.2, calculation of the Lipschitz exponent 
involves huge matrix manipulation and has its own computational 
complexity due to the use of a CWT transform to obtain local 
modulus maxima. It is therefore necessary to implement it using a 
combination of algorithms on a real-time processor in the control 
unit and the FPGA. 

The time taken for performing FFT analysis on a data stream 
of, for example, 104 elements is 3.9 ms on the FPGA, compared to  
93.7 ms using the real-time processor (a 533 MHz MPC8347 
processor with 256 MB RAM) and 80.7 ms on the host PC (the CM 
server with a 2.93 GHz Intel Core 2 Duo processor and 4 GB RAM), 
respectively. It can clearly be seen that the FPGA-based hardware 
processing unit considerably outperforms both the host computer 
and the real-time processor.

The condition monitoring algorithm has been implemented in 
real-time with the reconfigurable hardware system described above, 
in this case using National Instruments Compact RIO (cRIO) 
hardware consisting of a real-time control unit attached to an I/O 
chassis. Monitoring signals are generated in real-time by a dSPACE 

control board, operating in lieu of sensors on a wind turbine. These 
signals are fed into analogue input modules housed in the I/O 
chassis and the Xilinx FPGA embedded within the chassis manages 
the signal acquisition and processing tasks. The hardware set-up is 
shown in Figure 3, comprising (from left to right) the host PC, the 
cRIO control unit and attached I/O chassis and the dSPACE control 
board. The cRIO hardware, including the FGPA, is programmed 
using LabVIEW. 

The dSPACE software is used to produce signals from text files 
created by the wind turbine simulations. These signals are generated 
by the dSPACE control board in real-time at a sample rate of 5 kHz. 
The signals are subsequently fed into the analogue input modules 
and the FPGA passes the signals to the cRIO control unit via a local 
bus. The singularity detection method is undertaken by a real-time 
processor housed within the control unit on a sliding window of 500 
data points. The corresponding Lipschitz exponents are calculated 
by the FPGA and the real-time processor, as outlined previously. 

3. Validation of algorithms
3.1 Wind turbine simulation
The performance of wind turbines can be monitored via the analysis 

of measured signals in order to obtain insight 
into developing faults well ahead of damage 
affecting the system. However, it is difficult to 
obtain such practical condition monitoring 
data from real wind turbines. Data from the 
simulation of distributed generation power 
systems, to which empirical faults can be 
applied, can be used to test and validate the 
proposed condition monitoring algorithms.

The wind turbine simulation used in this 
paper has been constructed using Simulink/
SimPowerSystems (SPS) and is based 
upon a model developed by researchers at 
Hydro-Québec. This simulation comprises a  
1.5 MW wind turbine connected to a 30 km 
25 kV transmission line, exporting power 
to a 120 kV grid, as illustrated in Figure 4. 
The transmission line is divided into several 
sections in order to incorporate faults at a 
range of distances from the point of common 
coupling (PCC) of the wind turbine to the 
power network, with switches to allow the 
fault location to be selected. Further switches 
allow the selection of the fault type, such as 
AG (phase-A-to-ground), AB (phase-A-to-

Figure 2. The flowchart for Lipschitz exponent calculation 

Figure 3. Reconfigurable hardware used to implement the 
proposed singularity detection algorithm
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phase-B short circuit), ABG (phase-A-to-phase-B-to-ground) or 
ABCG (three-phase-to-ground). The 120 kV network load model 
is represented by an ideal voltage source and equivalent system 
impedance. The transformers used to connect the wind turbine to 
the transmission line and the transmission line to the grid are 575 V 
to 25 kV and 25 kV to 120 kV, respectively. The electrical subsystem 
of the wind turbine model is of a DFIG type. The AC-DC-AC 
converter comprises rotor- and grid-side converters and a capacitor 
is connected on the DC side to ensure variations in the DC-link 
voltage are kept to a minimum. The converters are regulated by  
pulse width modulation (PWM) controllers. A coupling inductor is 
used (not shown in Figure 4) to filter the high-frequency component 
of the voltage before the grid-side converter is connected to the 
grid.

The control system for the turbine comprises three coordinated 
controllers. The rotor-side controller regulates the power output  
of the wind turbine and the voltage (or reactive power) measured 
at the machine stator terminals. This is achieved by adjusting 
the torque or by regulating the speed of the generator. The 
power is controlled to follow a predefined turbine power-speed 
characteristic. The grid-side controller principally maintains the  
DC link voltage regardless of the direction and magnitude of 
the rotor power. Moreover, it allows the exchange (generation or 
absorption) of reactive power to the network for voltage support 
requirements, as required. Finally, the pitch angle controller 
regulates the speed of the generator at high wind speeds: when 
the nominal generator power is reached, the pitch angle controller 
limits the rotor speed by adjusting both the pitch angle and its rate 
of change. 

In this system, a host PC with a 2.93 GHz Intel Core 2 Duo 
processor was used for modelling and simulation of the wind 
turbine and transmission system. The simulation is controlled 
using a graphical user interface developed in LabVIEW on the 
host computer to allow interaction with the simulation. Following 
compilation of the Simulink model as a real-time library file, it is 
incorporated in LabVIEW. Controllers and indicators are assigned 
to the variables defined in the Simulink model.

3.2   Detection of grid faults
The detection of grid faults is used to 
demonstrate how far a grid fault can still be 
detected at the point of common coupling 
of the wind turbine, thereby examining the 
influence of the grid fault on the turbine’s 
operational performance. In order to 
demonstrate how grid faults can be detected 
with the early warning condition monitoring 
algorithms, typical asymmetrical and 
symmetrical faults, such as AG and ABCG 
faults, have been introduced individually into 
the simulation after 5 s, each lasting 0.2 s. 
Root-mean-square (RMS) values of the signal 
have been proven to be more suitable for 
condition monitoring as they contain more 
critical features than instantaneous values[21]. 
Figure 5 illustrates the RMS phase current 
output for an AG fault and an ABCG fault 
occurring at different locations between 0 km 
and 30 km from the point of connection. Note 
that the ABCG grid fault exhibits a distinctive 
double peak trace. The faults become less 
detectable due to the reduction in magnitude 
of the measurement signal when the fault is 

Figure 4. User interface of the SimPowerSystems model for DFIG wind turbine simulations

Figure 5. RMS phase current output when a fault occurs at different 
locations from 0-30 km: (top) AG fault and (bottom) ABCG fault 
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further away from the wind turbine. 
Figure 6 shows the Lipschitz exponent of the first rising edge of 

the phase current for both faults occurring at different locations, 
where, for comparison, the Lipschitz exponent of the fault-free 
turbine is also shown. For a healthy wind turbine, the Lipschitz 
exponent of the electrical signals is 1.0 because their RMS values 
are kept constant in the healthy conditions. Note that the maximum 
value corresponding to the first peak of the measurement signal 
versus the distance of the fault differs significantly, as can be seen 
from Figure 5. Nevertheless, the Lipschitz exponent value of 
the first rising edge of the phase current is constant, irrespective 
of the fault location, indicating that faults at the far end of the 
feeders are detectable. Lipschitz exponents resulting from the AG 
are larger than those produced from the ABCG. This implies that 
a more severe three-phase grounded fault produces much sharper 
transitions than those produced by a single-phase grounded fault, 
the most common fault type in electrical distribution networks.

It is also found that, for the AG fault, the Lipschitz exponent value 
of the second rising edge of the phase current changes with fault 
location, whereas for the ABCG fault, the Lipschitz exponent value of 
the first falling edge of the phase current is fault-location dependent. 
Hence, these characteristics can be used to infer the location of the 
faults, even for the case where the measurement signal is weak. Here, 
it should be emphasised that the work presented in this paper is 
focused primarily on the study of early fault detection; the study of 
fault location is beyond the scope of this paper.

3.3 Detection of power electronics faults
In this section, power electronics faults are introduced into the 
simulation, specifically broken rotor bars and DC link capacitor 
faults. Rotor bar faults are associated with the thermal and magnetic 
stresses caused by electromagnetic forces due to the high currents 
carried by the bars, residual stresses from manufacturing and 
environmental stresses. This type of fault begins as high resistance 
in the rotor bars and can develop into cracks or holes[22]. As soon 
as cracks develop, the resistance of the bars increases further, 
consequently increasing localised heating and worsening the 
cracks. DC link capacitors are required to endure high ripple 
currents leading to self-heating, which, in addition to high 
ambient operating temperatures, can result in the deterioration 

of the electrolyte material and the loss of electrolyte by vapour 
diffusion. Furthermore, when the capacitor is operating at higher 
temperatures than the rated temperature, the DC voltage will be 
derated. The working life of a capacitor is also dependent upon 
operating voltage, current and frequency. Consequently, DC link 
capacitors, although well designed, are considered one of the 
weakest components employed in power converters[23]. 

Rotor bar faults have been introduced into the simulation by 
adjusting the generator rotor phase resistances[24]. An example 
of simulations incorporating one to 25 broken bars is shown in 
Figure 7 (top), illustrating the phase current. As with the grid fault 
simulation, the faults occur after 5 s and last 0.2 s. Figure 7 (bottom) 
shows the Lipschitz exponent of the first rising edge of the phase 
current, compared to the normalised magnitude of the first peak of 
the phase current for broken rotor bar faults. Indeed, the magnitude 
of the phase current can provide an indication of the severity of 
the fault. However, it can be observed that the Lipschitz exponent 
value of phase current is not affected by the number of broken 
bars, which means that a fault from one broken bar can produce 
an equivalent Lipschitz exponent to that produced by faults from 
25 broken bars. Therefore, the rotor bar fault can be detected at an 
earlier stage by means of measurement of the Lipschitz exponent, 
before developing into an actual failure and outage.

An example of simulations incorporating a faulty DC link 
capacitor operating at 5% to 90% of full capacity is shown in Figure 

Figure 6. The Lipschitz exponent of the first rising edge of 
phase current due to the AG fault and the ABCG fault occurring 
at different locations. The Lipschitz exponent of the fault-free 
turbine is also shown

Figure 7. Detection of rotor bar faults: (top) RMS phase current 
output for the different number of broken rotor bars; (bottom) 
Lipschitz exponent value and the normalised peak value 
corresponding to the broken rotor bar faults

6 Insight • Vol 58 • No 12 • December 2016
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8 (top). Similarly, the fault occurs after 5 s and lasts 0.2 s. Figure 8 
(bottom) shows the Lipschitz exponent of the first rising edge of 
the phase current in comparison with the normalised magnitude 
of the first peak of the phase current for DC link capacitor faults. 
Again, in contrast to the trend visible for the magnitude of the peak, 
the Lipschitz exponent value is little affected by the capacitance 
drops. As a result, the capacitance loss in the DC link capacitor can 
be detected at an earlier stage when using the Lipschitz exponent 
method.

4. Conclusions
This paper has presented a novel electrical condition monitoring 
system for wind turbines. The reconfigurable structure can provide 
flexibility of the CM system to monitor a specific set of turbine 
components by adding new hardware modules and data analysis 
software. In order to provide an early warning indicator, a method 
for extracting local geometrical features represented by the local 
singularities of a signal is proposed. Using this wavelet-based 
singularity detection method, a fault signal of small magnitude 
generated at the early stage of a fault was proven to carry the same 
Lipschitz exponent value as the signal of large magnitude at the late 
stage of the fault. The relationship between the Lipschitz exponent 

Figure 8. Detection of DC link capacitor faults: (top) RMS phase 
current output for the different age drop in capacitance of DC link 
capacitor; (bottom) Lipschitz exponent value and the normalised 
peak value corresponding to the capacitance drops in DC link 
capacitor

of the measurement signal and the location and severity of faults 
occurring on the grid and in the power electronics was discussed. 
The work demonstrates that the technology can be used to provide 
an early warning before a fault develops into a detrimental one.

Electrical condition monitoring systems normally gather high-
frequency and instantaneous data for analysis. Consequentially, 
when implemented online, it is essential for the system to process 
these data in real time. The FPGA employed in the proposed system 
allows the real-time implementation of digital signal processing 
tasks, ie the wavelet modulus maxima algorithms in this study, and 
offers the ability to run multiple tasks concurrently. 

The proposed method is essentially immune to noise. 
The distribution of the modulus maxima of noise generally 
concentrates on low scales, ie higher frequencies, which decay 
quickly and cannot propagate further. If there are still maxima lines 
generated by noise within the selected scale range, their Lipschitz 
exponents are negative in contrast to positive ones corresponding 
to the signal discontinuities. In the present study, only one of the 
distinctive rising or falling edges was used for Lipschitz exponent 
measurement; however, there are in fact a number of rises and 
falls in the signal that can be useful for analysis, depending on the 
type of fault. Further work will incorporate Lipschitz values with 
statistical moments of the coefficient modulus maxima in specific 
scales or frequency bands to further identify the location, duration 
and severity of the faults.

The technique has been demonstrated using data obtained from 
computer simulations of a wind turbine with a grid connection. 
It is worth noting that it is difficult to obtain practical condition 
monitoring data containing different types of fault in wind turbines, 
particularly when the faults are in an early stage of development. 
Future work will investigate the Lipschitz exponent for a signal from 
a fault-free wind turbine operating in variable wind conditions as 
the detection baseline and compare the value of the exponent for 
different fault types. Future work will also seek to use condition 
monitoring data obtained from the controllable experimental tests 
and from real wind turbines to demonstrate the proposed early 
warning fault detection technique. 
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