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Abstract

Spin-locking of spin I = 3/2 and I = 5/2 nuclei in the presence of large res-

onance offsets has been studied using both approximate and exact theoretical

approaches and, in the case of I = 3/2, experimentally. We show the variety of

coherences and population states produced in a far off-resonance spin-locking

NMR experiment (one consisting solely of a spin-locking pulse) and how these

vary with the radiofrequency field strength and offset frequency. Under magic

angle spinning (MAS) conditions and in the “adiabatic limit”, these spin-locked

states acquire a time dependence. We discuss the rotor-driven interconversion

of the spin-locked states, using an exact density matrix approach to confirm the

results of the approximate model. Using conventional and multiple-quantum fil-

tered spin-locking 23Na (I = 3/2) NMR experiments under both static and MAS

conditions, we confirm the results of the theoretical calculations, demonstrating

the applicability of the approximate theoretical model to the far off-resonance

case. This simplified model includes only the effects of the initial rapid dephas-

ing of coherences that occurs at the start of the spin-locking period and its

success in reproducing both experimental and exact simulation data indicates

that it is this dephasing that is the dominant phenomenon in NMR spin-locking

of quadrupolar nuclei, as we have previously found for the on-resonance and

near-resonance cases. Potentially, far off-resonance spin-locking of quadrupolar
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nuclei could be of interest in experiments such as cross polarisation as a conse-

quence of the spin-locking pulse being applied to a better defined initial state

(the thermal equilibrium bulk magnetisation aligned along the z -axis) than can

be created in a powdered solid with a selective radiofrequency pulse, where the

effect of the pulse depends on the orientation of the individual crystallites.

Keywords: Quadrupolar nuclei, Spin-locking, Off-resonance

irradiation, Cross polarisation, 23Na

1. Introduction

The spin-locking experiment in NMR involves the application of a long ra-

diofrequency (rf) pulse in the direction of the bulk magnetisation vector in the

rotating frame, with the effect of locking the vector in place for up to several

seconds. No further evolution takes place under the influence of resonance off-5

sets, J coupling or dipolar coupling while the magnetisation is spin-locked, as

the radiofrequency field strength (ω1 = |γB1|) is much stronger than any of

these interactions. This spin-locking is an essential part of many experiments

in NMR, most notably the cross-polarisation experiment where the spin-locking

pulse is used to transfer polarisation to less sensitive nuclei in the sample.10

Although the simple vector model picture given above is valid for spin

I = 1/2 nuclei, the spin-locking behaviour of quadrupolar (spin I > 1/2) nuclei

in solids is more challenging to understand. This is of particular significance

in cross-polarisation experiments involving quadrupolar nuclei, [1, 2, 3, 4] in-

cluding those where cross polarisation occurs from one quadrupolar nucleus to15

another, [5, 6, 7, 8] or to a spin I = 1/2 nucleus. [9, 10, 11] The quadrupolar split-

ting parameter, ωQ, may be much larger than the radiofrequency field strength,

resulting in rapid evolution of the magnetisation on a time scale of 1/ωQ before

the system settles into a spin-locked state of single- and multiple-quantum co-

herences as well as nonequilibrium population states. Experiments performed20

under MAS will be more complex still, with a time-dependent quadrupolar

splitting parameter and final spin-locked states which vary with the rotor phase
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ωRt. [12, 13, 14, 15]

Previously, a simple theoretical model was presented by Ashbrook and Wim-

peris to describe the creation and evolution of coherences in a spin-locking ex-25

periment involving half-integer quadrupolar nuclei.[16] This model assumes that

all components of the spin density operator that do not commute with the spin-

locking Hamiltonian will be rapidly dephased at the start of the experiment

and can be ignored. Subsequently, in a further study, the effects of second-

order quadrupolar interactions and small resonance offsets were considered.[17]30

In the present work, a study of the far off-resonance case will be presented. The

magnetisation is left directed along the z-axis of the rotating frame before the

spin-locking pulse is applied.[12] Since this pulse is applied well away from the

Larmor frequency, there is a significant z component to the effective field in the

rotating frame, B1,eff and hence the equilibrium magnetisation has a significant35

component along the direction of the effective field; it is this component that is

spin-locked.

The first sections of this paper will briefly recap the simple theoretical model

of spin-locking based on the assumption of rapid initial dephasing. We will

make extensive use of this model as its success in reproducing experimental40

and exact simulation data will indicate that, as with on- and near-resonance

spin-locking,[16, 17] the rapid initial dephasing that takes place at the start

of the spin-locking period is the key to understanding the outcome of spin-

locking experiments on quadrupolar nuclei. Computer simulations employing

this model will then be presented, as well as exact density matrix calculations45

for spin I = 3/2 and I = 5/2. These simulations, together with experimental

NMR results for the spin I = 3/2 nucleus 23Na, will provide insight into the

far off-resonance spin-locking phenomenon for half-integer quadrupolar nuclei

in the solid state.
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2. Pulse sequences for spin-locking50

Figure 1 shows the pulse sequences for the far off-resonance experiments

described in this paper. Since the spin-locking pulse is applied far away from

the Larmor frequency, there is a significant z component to the effective field

B1,eff . The magnetisation is left directed along the z-axis of the rotating frame

before the spin-locking pulse is applied and so, unlike conventional on- (or near-)55

resonance spin-locking, no initial pulse is required to create a particular state

first. Superficially, the pulse sequences resemble the well known two-dimensional

nutation experiment.[18, 19, 20] However, it is important to note that we are

not interested here in the nutation behaviour that occurs near the start of the

long pulse (indeed, we specifically ignore this) but only in the time-independent60

states that eventually emerge. For observing the spin-locking of the central

transition, a single pulse of duration τ is used, as shown in Fig. 1a. This pulse

sequence is modified as shown in Fig. 1b to allow the observation of spin-locked

multiple-quantum coherences created by the rapid initial dephasing. In this case

the second pulse is phase cycled [21, 22] to convert the desired multiple-quantum65

coherences into the observable single-quantum state.

3. Theoretical model of spin-locking

Previously, a simple theoretical model of spin locking has been introduced

[16] to describe (i) the creation of a variety of coherences by rapid initial de-

phasing and (ii), if the experiment is performed under MAS, the evolution of70

these coherences on a timescale of 1/ωR where ωR is the MAS frequency. An

outline of the model is given here. The rotating-frame Hamiltonian during an

off-resonance spin-locking pulse is defined as

H = Hrf +HQ +HΩ, (1)

where the radiofrequency pulse Hamiltonian (Hrf) and the offset Hamiltonian

(HΩ) are given by,75

Hrf = ω1Ix, (2)
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HΩ = ΩIz. (3)

The first-order quadrupolar Hamiltonian is given by

HQ = ωQ

{
I2
z −

1

3
I(I + 1)

}
, (4)

and, assuming the axial symmetry (η = 0), the first-order quadrupolar splitting

parameter is

ωQ =
ωPAS

Q

2
(3 cos2 θ − 1). (5)

where θ is the angle between the unique principal axis of the quadrupolar in-80

teraction tensor and the applied static magnetic field and

ωPAS
Q =

3πCQ

2I(2I − 1)
, (6)

with the quadrupolar coupling constant CQ in hertz. In this work, we can

ignore the second-order effects of the quadrupolar Hamiltonian as these are

“offset-like” and will be dwarfed by the magnitude of the resonance offsets we

will be considering.85

When the spin-locking pulse is applied to the initial state σ(0), the system

begins to evolve under the influence of the Hamiltonian in Eq. 1, with the time-

dependence given by the Liouville−von Neumann equation,

d

dt
σ(t) = −i[H,σ(t)]. (7)

Assuming that H is time-independent (and therefore ignoring any effects of

MAS at this stage), the solution is90

σ(t) = exp{−iHt}σ(0) exp{+iHt}. (8)

A unitary transformation V can be used to diagonalise the Hamiltonian,

HD = V HV −1. (9)

Equation 8 can then be written as

σ(t) = V −1 exp{−iHDt} V σ(0)V −1 exp{+iHDt}V (10)
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or

σ′(t) = exp{−iHDt} σ′(0) exp{+iHDt} (11)

with

σ′(t) = V σ(t)V −1. (12)

The initial density operator σ(0) is thus transformed by V into the eigenbasis95

of the spin-locking Hamiltonian, i.e., the frame in which H is diagonal. The off-

diagonal elements of σ′(0) evolve at rates determined by ω1 and ωQ and, when

considered across a powder sample where ωQ will vary according to crystallite

orientation, they will dephase rapidly at the start of the spin-locking pulse.

The diagonal elements, σ′D(0), are the states which commute with the spin-100

locking Hamiltonian; these are the states which will be spin-locked. In a static

sample these states will remain unchanged for the duration τ of the spin-locking

pulse. In the eigenbasis of the spin-locking Hamiltonian these are equivalent to

population states. When viewed back in the normal rotating frame using

σ(τ) = V −1σ′D(0)V (13)

the elements of the final density matrix correspond to a range of coherences and105

population states.

Note that the removal of the off-diagonal density operator elements is a

non-unitary transformation that changes the norm, Tr{σ(t)2}, of the density

operator. Therefore, the simple dephasing model of spin-locking strictly only

applies to experiments performed on powder samples in which nothing occurs110

to refocus the coherences that dephase at the start of the spin-locking period.

During MAS, the quadrupolar splitting parameter ωQ becomes time depen-

dent:

ωQ(t) =
ωPAS

Q

2
{−
√

2 sin 2β cos(ωRt+ ξ) + sin2 β cos 2(ωRt+ ξ)} (14)

where β is the angle between the unique principal axis of the quadrupolar

interaction tensor and the spinning axis and ξ is the initial phase about this axis.115

The quadrupolar splitting parameter ωQ(t) changes sign either two or four times
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per rotor period depending on the value of β. A measure of whether this rotor-

driven behaviour occurs adiabatically or suddenly in the weak-field (ω1 � ωPAS
Q )

limit is given by the adiabaticity parameter introduced by Vega,[12]

α =
ω2

1

2ωPAS
Q ωR

(15)

In the “sudden limit” (α � 1), the zero-crossing of ωQ(t) occurs rapidly, and120

the final state σ(t) remains unchanged by MAS. In this case, the spin-locking

behaviour should be the same as in a static sample. Conversely, in the “adiabatic

limit” (α� 1), where the zero-crossing occurs slowly, the spin-locked states are

time dependent. This can be incorporated into the model by using one unitary

transformation, V (0), to produce the initial state in the eigenbasis of the spin-125

locking Hamiltonian but a different transformation, V (τ), to view the density

matrix in the rotating frame after a spin-locking pulse of duration τ ,[16]

σ(τ) = V −1(τ)(V (0)σ(0)V −1(0))DV (τ). (16)

Although the final state σ(τ) varies with the accumulated rotor phase ωRτ as a

result of this time dependence, the spins remain locked at all times. The third

case, when α ∼ 1, is called the intermediate regime; here, a zero-crossing will130

partially convert population differences across spin-locking eigenstates into off-

diagonal coherences and the spin-locked magnetisation will decay on a timescale

of ∼ 1/ωR.

4. Spin-locking calculations

4.1. Spin-locking model135

This simple model of spin-locking can be utilised in numerical calculations,

which we have implemented using home-written Fortran codes. The tensor

operator T1,0, which is proportional to Iz and hence the thermal equilibrium

state, forms the initial density matrix. The spin-locking pulse Hamiltonian is

calculated using Equation 1. The Hamiltonian is diagonalised using the unitary140

transformation V , which is found numerically for convenience, as in Ref. [17].
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By setting the off-diagonal elements to equal zero, only the spin-locked, i.e.,

diagonal, elements of the density matrix are retained. The final density matrix

in the rotating frame is obtained using Eq. 12 or (for MAS) 16. The final states

are determined by calculating the expectation value of operator Q by taking the145

trace of the final density matrix elements with the adjoint operator Q†,

〈Q〉 = Tr{σ(τ)Q†}, (17)

where Q is typically a spherical tensor operator, Tl,p. We can also determine

the norm of the density operator,

Tr{σ(t)2} =
∑
l

∑
p

Tr{σ(t)Tl,−p}2. (18)

The norm of a density operator is conserved under a unitary transformation.[23]

However, as explained elsewhere,[16] the initial rapid dephasing that occurs150

under a spin-locking field corresponds to a non-unitary transformation in our

simple model and so a change in the magnitude of the norm can be used as a

measure of the overall spin-locking efficiency.

4.2. Exact density matrix method

In order to explore the validity of the simple spin-locking model, calcula-155

tions have also been carried out using an exact density matrix approach, again

implemented using home-written Fortran codes. The total experimental time

is broken down into 200 ns divisions (selected by empirical convergence during

trial calculations) and the Hamiltonian is assumed to be time-independent dur-

ing each step, thus allowing the time evolution of the density operator to be160

calculated using the solution of the Liouville−von Neumann equation given in

Eq. 8. An expectation value, powder averaged where required, was calculated

from the final density matrix as above.

5. Experimental details

Experiments were carried out on a Bruker Avance 400 spectrometer equipped165

with a widebore 9.4 T magnet operating at a Larmor frequency of ω0/2π =
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105.8 kHz for 23Na (I = 3/2). 23Na NMR studies were carried out using two

compounds, sodium nitrite (NaNO2) and sodium nitrate (NaNO3), which were

obtained commercially as powdered solids and packed in 4-mm rotors for both

static and MAS experiments. In order to limit the effects of rf inhomogeneity170

on the experimental results, the samples were packed to a depth of around 1

cm only in the centre of the rotor, while the remaining volume of the rotor was

packed with powdered boron phosphate as a spacer material. Each compound

possesses a single crystallographically-distinct cation site, with ωPAS
Q /2π = 84

kHz and η = 0 for NaNO3 [24] and ωPAS
Q /2π = 275 kHz and η = 0.109 for175

NaNO2.[25] The central transition of sodium nitrite (NaNO2) has a second-

order broadened MAS lineshape at 9.4 T with a width of 660 Hz, but this is

still small compared with the resonance offsets (up to 200 kHz) we consider in

this work. The use of these two solid compounds, with their small and medium-

sized quadrupolar coupling constants, allows us to explore a wide range of ratios180

of both the offset Ω and radiofrequency field strength ω1 to the coupling constant

ωPAS
Q . Materials with much larger quadrupolar coupling constants would have

satellite transitions that lie outside of the usable bandwidths (1-2 MHz) of the

NMR probeheads available to us and the agreement between experiment and

theory, both exact and approximate, would be poor as a result of this purely185

instrumental limitation.

6. Results and Discussion

6.1. Spin I = 3/2 in a static solid

Using the model of spin-locking described, the expectation values of the spin

I = 3/2 central transition single-element operator I
{1/2,−1/2}
− and the norm,190

Tr{σ(t)2}, created by the rapid dephasing of the initial state σ(0) = T1,0 were

calculated as a function of radiofrequency field strength, ω1, and resonance

offset, Ω. Figure 2 shows the results as three-dimensional surface plots. The

quadrupolar splitting parameter ωPAS
Q /2π was 200 kHz and a single orientation

was chosen (β = 0◦, hence ωQ = ωPAS
Q ). As the radiofrequency field strength ω1195
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increases, Fig. 2a shows that the magnitude of the norm decreases, indicating

decreasing spin-locking efficiency. The extent of the falloff with ω1 decreases

as the resonance offset Ω increases. This is a simple consequence of the angle

between the effective spin-locking field in the rotating frame and the equilibrium

magnetisation increasing as ω1 increases but decreasing as Ω increases. At200

offsets equal to around 0, ωPAS
Q and 2ωPAS

Q there are local dips in the surface

plot. In Fig. 2b the central transition (CT) intensity is equal to zero when either

ω1/2π = 0 (no spin-locking pulse) or Ω = 0 (the on-resonance pulse does not

lock the equilibrium z-magnetisation). The spin-locked CT intensity increases

as both ω1 and Ω increase, with a dip in intensity at Ω/2π = ωQ = 200 kHz.205

The three-dimensional surface plots in Fig. 3 show the expectation values of

the spin I = 3/2 spherical tensor operators for a powder sample. For simplicity,

only values for tensor operators with positive coherence order p are shown (al-

though tensors with negative p will also be present since the the density matrix

is Hermitian). In contrast to Fig. 2, the contribution of crystallites with differ-210

ing values of ωQ according to orientation gives rise to modified behaviour; in

particular, distinctive features in the plots no longer arise only at offsets around

ωPAS
Q and 2ωPAS

Q .

The T1,0 plot is similar to the one seen in Fig. 2a for the norm; the magnitude

decreases as ω1 increases, with a more rapid falloff at lower offsets. A small dip215

in intensity is seen at Ω/2π ≈ 120 kHz. T2,0 is created with most intensity at

Ω/2π = 90 kHz and ω1/2π = 50 kHz, while T3,0 has its greatest intensity at

lower resonance offsets and rf strengths, with a maximum at Ω/2π = 5 kHz and

ω1/2π = 10 kHz.

Next considering the single-quantum spin-locked states, T1,1 is zero when220

either ω1 and Ω = 0, and as these are both increased, more T1,1 is created. T2,1

is at a maximum when Ω/2π = 30 kHz and ω1/2π = 65 kHz. Both T2,1 and

T3,1 feature intensity dips at Ω/2π ≈ 100 kHz at weak rf field strengths.

The magnitude and sign of the T2,2 expectation value have a complex depen-

dence on the resonance offset and rf field strength, with a maximum magnitude225

at Ω/2π = 110 kHz and ω1/2π = 47.5 kHz. Most T3,2 is created at Ω/2π = 40
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kHz and ω1/2π = 97.5 kHz. The triple-quantum state T3,3 is created with high-

est intensity at low offsets, with a maximum at Ω/2π = 5 kHz and ω1/2π = 65

kHz.

To confirm these model simulations, static 23Na NMR spin-locking exper-230

iments have been carried out. Figure 4 shows the 23Na central-transition in-

tensity for static sodium nitrate (Fig. 4a) and sodium nitrite (Fig. 4b) as a

function of increasing offset of the rf transmitter from the centre of the 23Na

lineshape at three different spin-locking field strengths. The experiments were

recorded using the pulse sequence shown in Fig. 1, with a spin-locking pulse235

length equal to τ = 300 µs. A recycle interval of 10 s was employed in the

NaNO3 experiments, while a shorter interval of 1 s was used in the NaNO2

experiments. The experimentally-derived spin-locking intensities (datapoints

shown by squares joined by a dashed line) have been empirically scaled to allow

a comparison with the theoretical results for the expectation value of I
{1/2,−1/2}
−240

from the spin-locking model (shown by solid lines). The same scaling factor was

applied to all experimental data points shown in Figs. 4 and in 5.

In Fig. 4a, with the rf field strength equal to ω1/2π = 20.8 kHz, the spin-

locked CT intensity for NaNO3 increases to a maximum at Ω/2π = 50 kHz

before falling off again. With ω1/2π = 41.7 kHz, the CT intensity rises as245

the offset increases, dipping at Ω/2π = 20 kHz before rising to a maximum

at Ω/2π = 90 kHz. At the strongest spin-locking field, the CT intensity rises

with increasing offset, dipping very slightly at Ω/2π = 30 kHz and reaching a

maximum at Ω/2π = 130 kHz, before falling off gradually. As ω1 increases, the

maximum amount of spin-locked CT obtained also increases. The experimental250

results and the model show an excellent agreement at all three rf strengths for

NaNO3. While a simulation using exact density matrix theory would also reflect

the experimental results, we see here that calculations employing the simplified

rapid dephasing model of spin-locking are highly successful in predicting the

experimental outcome, indicating that it is the initial dephasing that dominates255

the experimentally observed behaviour.

Figure 4b shows an increase in spin-locked CT magnetisation for NaNO2 up
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to Ω/2π= 50 kHz with ω1/2π = 20.8 kHz before falling off again with a further

increase in the resonance offset. At ω1/2π = 41.7 kHz, the amount of CT spin-

locked builds up slowly to a maximum around Ω/2π = 100 kHz, and remains260

fairly steady before decreasing at offsets greater than 140 kHz. At the strongest

rf field strength, the build up of the spin-locked CT intensity as the offset

increases is slower. A maximum is reached at Ω/2π = 170 kHz. A near-perfect

agreement between the experimental data and model is seen with ω1/2π = 20.8

kHz, although a greater divergence is seen for the higher rf strengths.265

Figure 5 shows plots of the spin-locked 23Na triple-quantum intensity for

sodium nitrite as a function of resonance offset for three different rf field strengths.

The experimental points are compared to the expectation value of the triple-

quantum coherence T3,3 calculated using the simple model of spin-locking. The

pulse sequence in Fig. 1b was used with a spin-locking pulse duration of 300 µs.270

The length of the conversion or mixing pulse was optimised for the conversion of

the triple-quantum coherences back into observable central-transition coherence

(1.6 µs for ω1/2π = 166.7 kHz).

With the spin-locking rf field strength set to 83.3 kHz, the amount of triple-

quantum coherence rises rapidly as the offset increases up to Ω/2π = 7 kHz.275

The intensity then declines as the offset is raised further. Halving the rf strength

to 41.7 kHz, the maximum amount of triple-quantum coherence is created at

a lower offset of Ω/2π = 2 kHz. When the field strength is lowered further to

20.8 kHz, the occurrence of triple-quantum coherence is again shifted to a still

lower offset, with a maximum at Ω/2π = 1 kHz. It is clear that, except at high280

rf field strengths, little TQ intensity arises in a static solid as a result of the far

off-resonance spin-locking experiment.

For the two strongest rf strengths, the calculations closely match the ex-

perimental results, although both slightly underestimate the amount of spin-

locked magnetisation present at higher offset. The calculation carried out with285

ω1/2π = 20.8 kHz also significantly underestimates the amount of spin-locked

triple-quantum magnetisation created at low offsets. However, the general trend

is still reflected accurately.
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6.2. Spin I = 3/2 under MAS

Sample rotation during MAS leads to more complex spin-locking behaviour290

as the magnitude and sign of the quadrupolar splitting change, with the spin-

locking behaviour dependent on whether the zero-crossing occurs adiabatically

or suddenly. Figure 6 shows the expectation values of the I = 3/2 spherical

tensor operators formed by initial rapid dephasing as a function of time through

one complete rotor period in the adiabatic limit, at resonance offsets of Ω/2π =295

50 kHz (Fig. 6a) and 100 kHz (Fig. 6b). The spin-locking field strength used in

these simulations was ω1/2π = 75 kHz and the quadrupolar splitting given by

ωPAS
Q /2π = 200 kHz. A single crystallite orientation was chosen with β = 90◦

and an initial phase angle of ξ = 180◦, giving a value of ωQ/2π = 100 kHz at

the start of the rotor period.300

Looking first at Fig. 6a, T1,0 is most abundant at the start of the rotor

period, along with a significant amount of T2,1, T2,0 and T3,0. As the sample

rotates, the amount of T1,0 decreases then rises again slightly forming a local

maximum after a quarter turn of the rotor. This is mirrored by the next quarter

turn, returning T1,0 to its original amplitude. The same cycle is observed for305

the second half of the rotor period. Similar behaviour is seen for T2,0. The

intensity of T1,1, T3,1 and T2,2 correspondingly rises as the population states

decline, giving maxima after a quarter turn and minima at a half turn. Both

T3,2 and T3,3 reach a maximum near an eighth of a rotor period before falling

to a minimum after another equal time period. Note that, as shown in Figure310

5, there is little T3,3 created by the initial dephasing at this magnitude of offset

but that more is created by adiabatic transfer during the rotation of the sample.

Next, considering the plots in Figure 6b where a larger offset of 100 kHz has

been used, we see that there is a smaller amplitude for the modulation of the

spin-locked states compared to the lower offset. At the start of the rotor period,315

the population states T1,0, T2,0 and T3,0 are present in greatest intensity in order

of decreasing rank. This is to be expected in view of the initial state being the

p = 0 population state T1,0 in this type of far off-resonance experiment. The

decrease in intensity of these leads to the rotor-driven interconversion with the

13



higher-order coherences, with the appearance of T1,1, T2,1 and T2,2 being the320

most significant. A large decrease is observed in the intensities of T3,1, T3,2 and

T3,3 compared with the simulations for Ω/2π = 50 kHz in Fig. 6a.

Density matrix calculations confirm the validity of the results found using

the spin-locking model. In Fig. 7, the spin I = 3/2 expectation values have been

calculated in a powder over two rotor periods using (a) the dephasing model325

and (b) an exact density matrix approach. The oscillations seen before in Fig. 6

are strongly dependent on the crystallite orientation as defined in Eq. 3, while

here the summation of the orientations over the full range of β and ξ values

offers a more realistic representation of a typical experiment on a powder. After

a period of initial rapid dephasing (the noise-like oscillations on the left of330

the plots), the states settle into a periodic interconversion of spin-locked states

in Fig. 7b, principally between populations and single-quantum coherences as

suggested by Fig. 6. The calculation using the simple model (Fig. 7a) shows

excellent agreement in predicting the evolution of the spin-locked states.

23Na MAS NMR spin-locking experiments have been performed on NaNO2,335

confirming the complex rotor-driven dynamics predicted by theory. Figure 8

shows experimental 23Na spin-locked central-transition (Figs. 8a and 8b) and

triple-quantum (Figs. 8c and 8d) intensities as a function of the spin-locking

pulse length, where the maximum pulse length was equal to five full rotor periods

(500 µs at a MAS frequency of ωR/2π = 10 kHz). In Fig. 8a the spin-locking340

field strength used was 83.3 kHz, yielding an adiabaticity parameter of α = 1.26.

In this adiabatic limit, the rotor-driven modulation is clearly apparent. As

the rotor turns, the CT intensity increases, reaching a maximum after a half

turn. This is followed by a decrease during the second half of the rotor period

as the various crystallites experience zero-crossings. At the end of each rotor345

period, the crystallites have experienced either two or four zero-crossings, and

the original signal intensity is re-established. In Fig. 8b, the spin-locking field

strength was reduced to 20.8 kHz, yielding α = 0.08. In these experiments, the

modulation of the eigenstates falls into the sudden limit and the effect of sample

rotation on the spin-locked states is much less pronounced. Similar effects are350
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seen in Figs. 8c and 8d, where the spin-locked triple-quantum coherence is

monitored as a function of spin-locking pulse duration in the adiabatic limit

(Fig. 8c) and the sudden limit (Fig. 8d). In the adiabatic limit, an obvious

modulation of the intensity is observed, with minima at integer rotor periods.

This corresponds to the simulations where population states are most abundant355

at the start of each rotor period, and sample rotation induces coherence-transfer

to higher order states. When performed at a lower spin-locking field strength

(Fig. 8d), there is no obvious strong modulation of the amplitude with rotation.

6.3. Spin I = 5/2 under MAS

A comparison of the spin I = 5/2 results of the model with an exact density360

matrix calculation is presented in Fig. 9. Here the evolution of the spin-locked

states has been calculated for the duration of two complete turns of the rotor.

The same simulation parameters are used as described for the corresponding

spin I = 3/2 simulation (Fig. 7), giving an adiabaticity parameter of α = 1.4

for the density matrix calculation. For the population states and single-quantum365

coherences, a good qualitative agreement can be seen between the model and

the exact density matrix simulations. However, for the higher order coherences,

the magnitude of the spin-locked states decays on the timescale of around 1/ωR

in the density matrix simulations, such that there is little magnetisation spin-

locked in these states during the second rotor period. This behaviour is also370

observed in conventional or near-resonance spin-locking[17] for spin I = 5/2

and appears to be a consequence of the greater number of spin transitions blur-

ring the distinction between the ”adiabatic” and ”sudden” spin-locking regimes

originally defined by Vega[12] for spin I = 3/2. Purely adiabatic behaviour is

known[17] to be difficult to observe for spin I = 5/2, whatever the value of the375

adiabaticity parameter, and there always appears to be some degree of dephas-

ing on a timescale of 1/ωR. Our simplified model of spin-locking, which assumes

that a rapid initial dephasing takes place and that spin-locking under MAS is

then entirely in either the sudden or adiabatic regimes, is not able to reproduce

this level of detail.380
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7. Conclusions

Using the model of quadrupolar spin-locking introduced by Ashbrook and

Wimperis [16] which predicts the spin-locked state after an initial period of

rapid dephasing, we have investigated the far off-resonance case of spin locking

for spin I = 3/2 and I = 5/2 nuclei. Since the offset is large, there is a385

significant z-component to the effective field B1,eff and so the magnetisation is

left directed along the rotating-frame z-axis before the pulse is applied. We

have made extensive use of this simplified model as its success in reproducing

experimental and exact simulation data indicates that, as with on- and near-

resonance spin-locking,[16, 17] the rapid initial dephasing that takes place at390

the start of the off-resonance spin-locking period is the key phenomenon in such

experiments performed on quadrupolar nuclei.

Three-dimensional surface plots showing the creation of a range of differ-

ent coherences as a function of offset and spin-locking field strength have been

presented. In the plots for single-orientation nuclear spin, features occur in the395

plots at integer multiples of ωPAS
Q (see Fig. 2), while more complicated behaviour

is observed in the powder simulations (Fig. 3). Spin I = 3/2 calculations us-

ing the dephasing model were found to be successful in predicting the results

of single-quantum and triple-quantum experiments carried out on NaNO2 and

NaNO3 (Figs. 4 and 5).400

Under MAS, a time dependence is introduced to the quadrupolar splitting

parameter, and the spin-locking behaviour in the weak-field limit (ω1 � ωQ)

falls into different regimes according to the value of the adiabaticity parameter

α, as defined by Vega. [12] In the adiabatic limit, α� 1, the spin-locked states

also acquire a time dependence. The rotor-driven interconversion of eigenstates405

predicted by the rapid dephasing model calculations are reflected by the brute-

force density matrix simulations in Figs. 7 and 9.

In the sudden limit, α� 1, the spin-locked states under MAS are expected

to be similar to those found in static solids. This was found in Figs. 8b and 8d,

where experiments on NaNO2 show little variation in the spin-locked single- or410
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triple-quantum central transition amplitudes with MAS.

As in our previous investigations of the spin-locking of quadrupolar nuclei,

the rapid dephasing model has been shown to explain virtually all of the key

features in far-off resonance spin-locking experiments found both experimen-

tally and in exact density matrix calculations. Relaxation effects are clearly not415

included in either the exact or approximate theoretical models used here but

are unlikely to be important on experimentally accessible timescales unless sig-

nificant dynamics are present in the solid. The close agreement between theory

and experiments in this work is noteworthy. Far off-resonance spin-locking of

quadrupolar nuclei requires an initial state (the thermal equilibrium bulk mag-420

netisation) that is created solely by spin-lattice and spin-spin relaxation during

the long relaxation interval. In contrast, if a central-transition selective pulse

is applied to create the initial state, as in conventional spin-locking, that initial

state will be much less well defined in a powder as a consequence of the impossi-

bility of the condition ω1 � ωQ holding for all crystallites. Therefore, although425

possibly only of esoteric interest, we believe that far off-resonance spin-locking

could be relevant to experiments such as cross polarisation from one quadrupolar

nucleus to another,[5, 6, 7, 8] or to a spin I = 1/2 nucleus,[9, 10, 11] as we would

expect better agreement with any prior theoretical investigation. Off-resonance

cross polarisation has been investigated before for spin I = 1/2 nuclei[26] and is430

not generally considered to be a useful technique in that application but the par-

ticular features of cross polarisation involving quadrupolar nuclei[3] may make

it worthwhile re-examining.
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Figure 1: Pulse sequences for observing spin-locked (a) single-quantum and (b) multiple-

quantum coherences under far off-resonance conditions.
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Figure 2: Three-dimensional surface plots of the spin I = 3/2 expectation values for (a) the

density operator norm and (b) the central transition (CT) created by rapid dephasing of the

initial state T1,0 under spin-locking, as a function of ω1 and Ω. Results are plotted for a single

orientation (θ = 0) with ωPAS
Q /2π = 200 kHz.
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Figure 3: Three-dimensional surface plots of the spin I = 3/2 expectation values of spherical

tensor operators, Tl,p created by rapid dephasing of initial state T1,0 under a spin-locking

Hamiltonian, as a function of ω1 and Ω. Results are plotted for a powder sample with

ωPAS
Q /2π = 200 kHz.
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Figure 4: Spin-locked 23Na NMR central-transition intensity in (a) NaNO3 and (b) NaNO2 as

a function of resonance offset, recorded using the pulse sequence in Fig. 1a. The spin-locking

pulse duration was 300 µs in each case. Experimental points are shown by squares joined by

a dashed line, while the spin-locking intensities calculated using the spin-locking model are

shown by a solid line. The intensities of all experimental points were multiplied by the same

empirical constant to allow comparison with the calculated spin-locking intensities.
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Figure 5: Spin-locked 23Na NMR triple-quantum intensity in NaNO2 as a function of reso-

nance offset, recorded using the pulse sequence in Fig. 1b for spin-locking rf field strengths

of (a) 83.3 kHz, (b) 41.7 kHz and (c) 20.8 kHz. The spin-locking pulse duration was 300 µs

in each case. Experimental points are shown by squares joined by a dashed line, while the

spin-locking intensities calculated using the spin-locking model are shown by a solid line.
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Figure 6: Expectation values of I = 3/2 spherical tensor operators, Tl,p, created by rapid

dephasing of an initial state T1,0 under spin-locking and MAS. The resonance offset was

(a) Ω/2π = 50 kHz and (b) Ω/2π = 100 kHz. Results are plotted as a function of rotor

period for a single crystallite orientation (β = 90◦ and ξ = 180◦) with ω1/2π = 75 kHz and

ωPAS
Q /2π = 200 kHz.
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Figure 7: Evolution of expectation values of I = 3/2 spherical tensor operators, Tl,p, under

MAS. Results are plotted for a powder with ωPAS
Q /2π = 200 kHz, ω1/2π = 75 kHz and

Ω/2π = 50 kHz. Results are shown for (a) the spin-locking model and (b) an exact density

matrix calculation. The MAS rate in (b) was ωR/2π = 10 kHz, yielding an adiabaticity

parameter of α = 1.4 for the density matrix calculations.
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Figure 8: 23Na MAS NMR experiments, showing the signal intensity of the (a, b) central

transition and (c, d) triple-quantum coherence during the spin-locking of NaNO2 at a reso-

nance offset of 50 kHz with varying spin-locking durations. The MAS rate was ωR/2π = 10

kHz, yielding adiabaticity parameters of (a, c) α = 1.26 and (b, d) α = 0.08.
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Figure 9: Evolution of expectation values of I = 5/2 spherical tensor operators, Tl,p, under

MAS. Results are plotted for a powder with ωPAS
Q /2π = 200 kHz, ω1/2π = 75 kHz and

Ω/2π = 50 kHz. Results are shown for (a) the spin-locking model and (b) an exact density

matrix calculation. The MAS rate in (b) was ωR/2π = 10 kHz, yielding an adiabaticity

parameter of α = 1.4 for the density matrix calculations.28
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