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A new family of inflationary models is introduced and analyzed. The behavior of the parameters
characterizing the models suggest preferred values, which generate the most interesting testable predictions.
Results are further improved if late reheating and/or a subsequent period of thermal inflation is taken into
account. Specific model realizations consider a sub-Planckian inflaton variation or a potential without fine-
tuning ofmass scales, based on thePlanck and grand unified theory scales. A toymodel realization in the context
of global and local supersymmetry is examined, and results fitting the Planck observations are determined.
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I. INTRODUCTION

Different classes of inflationary models produce wildly
varying predictions for observables with some models
being ruled out by recent advances in the precision of
cosmic microwave background observations. The Planck
2015 results [1] found the following value for the spectral
index of the curvature perturbation, ns, and the following
upper bound on the ratio of the power spectra of the tensor
to scalar perturbations, r: ns ¼ 0.968� 0.006 at 1-σ with
negligible tensors and r < 0.11. These (and the fact that
non-Gaussian and isocurvature perturbations have not been
observed) strongly suggest that primordial inflation is
single field with a concave scalar potential featuring an
inflationary plateau.
Indeed, while the minimal versions of chaotic and hybrid

inflation are all but ruled out (but see Refs. [2,3]), models
with such an inflationary plateau (e.g. Starobinsky R2

inflation [4] or Higgs inflation [5]) have received enormous
attention. In these models (and similar other such models,
e.g. α-attractors [6]), the approach to the inflationary
plateau is exponential. In this case, however, distinguishing
between models is difficult [7]. In contrast, a power-law
inflationary plateau was considered in Ref. [8], where shaft
inflation was introduced, based in global supersymmetry
with a deceptively simple but highly nonperturbative
superpotentialW ∝ ðΦn þmnÞ1=n, wherem is a mass scale.
In this paper, we consider a new family of single-field

inflationary models, which feature a power-law approach
to the inflationary plateau but are not based on an exotic
superpotential like in shaft inflation. We call this family of
models power-law plateau inflation.1 Power-law plateau
inflation is characterized by a simple two-mass-scale poten-
tial, which, for large values of the inflaton field, features the
inflationary plateau, but for small values, after the end of

inflation, the potential is approximately monomial. The
family is parametrized by two real parameters, the optimal
values ofwhich are determined by contrasting themodel with
observations. We find that the predicted spectral index of the
curvature perturbation is near the sweet spot of the Planck
observations. For a sub-Planckian inflaton, the Lyth bound
does not allow for a large value of the tensor to scalar ratio r.
However, for mildly super-Planckian inflaton values, we
obtain sizeable r, which is easily testable in the near future.
Even though our treatment is phenomenological, and the

form of the potential of power-law plateau inflation is data
driven, we develop a simple toy model in global and local
supersymmetry to demonstrate how power-law plateau infla-
tionmaywell be realized in the context of fundamental theory.
We use natural units, where c ¼ ℏ ¼ 1 and

Newton’s gravitational constant is 8πG ¼ m−2
P , with

mP ¼ 2.43 × 1018 GeV being the reduced Planck mass.

II. POWER-LAW PLATEAU INFLATION

We start from the following proposed potential,

V ¼ V0

�
φn

φn þmn

�
q
; ð1Þ

where m is a mass scale, n and q are real parameters, and φ
is a canonically normalized, real scalar field. V0 is a
constant density scale, and we assume φ ≥ m because
otherwise our model is indistinguishable from monomial
inflation with V ∝ φnq, which is disfavored by observa-
tions. Initially we impose sub-Planckian values of φ to
compare with perturbative models and avoid supergravity
(SUGRA) corrections.
For the slow-roll parameters, to first order in ðm=φÞn,

we find

ϵ ¼ m2
p

2
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1This should not be confused with plateau inflation in Ref. [9].
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where the prime denotes a derivative with respect to the
scalar field and the second term in the square brackets is the
first-order correction. Considering this correction allows us
to approach the bound φ≃m. In the above and throughout,
α is defined as

α≡ m
mP

: ð4Þ

These result in the following expressions for the tensor
to scalar ratio and the spectral index of the curvature
perturbation,

r ¼ 16ϵ≃ 8n2q2
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�
m
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n
�
; ð5Þ
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where the ϵ term has been omitted in Eq. (6) because it is
negligible. We can express

φ

m
≈
�
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where we found the critical value φe, which ends inflation,
by setting η to 1 in Eq. (2).2 Therefore, we can write

Eqs. (8) and (9) in terms of the remaining e-folds of
inflation, N, as

r ¼ 8n2q2α
2n
nþ2

�
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�
N þ nþ 1
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��
−2nþ1
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and

ns ¼ 1 − 2
nþ 1

nþ 2

�
N þ nþ 1

nþ 2

�
−1
�
1þ ðn2 − 2nq − nÞ

2ðnþ 1Þ

×

�
nðnþ 2Þq

α2

�
N þ nþ 1

nþ 2

��
− n
nþ2

�
: ð9Þ

To test if our potential is a successful model, we need to
see if it produces satisfactory values for the tensor to scalar
ratio and the spectral index when compared to the Planck
observations [1]. We have four variables and parameters,
namely n, q, α, and N. To start with, we consider N ¼ 50
and N ¼ 60. We restrict n and q to integer values and keep
α in the range 0.01 to 0.1 for our initial investigation.
At this point, we maintain φ at sub-Planckian values;
super-Planckian φ will be considered later. We also ensure
ðφ=mÞn > 1 at all times. Figure 1 gives an overview of how
r and ns vary for differing n, q, and α, within this scope.
Figure 2 shows the relevant sections of the graph
in more detail. The slanted black line marks the highest
allowed n value (noninteger) for the relevant q, α, N
combination.
We can see from Fig. 2 that sensible ns values exist in

most cases, but it would be better if r were maximized to
make contact with future observations. From the graph, it is
clear that increasing n decreases r. However, lowering n
increases φ, so we need to balance this while staying sub-
Planckian. Increasing q increases r only marginally for all
values of n except n ¼ 1, but as shown in Fig. 3, n ¼ 1 is

FIG. 1. The predictions of power-law plateau inflation in a graph depicting the tensor to scalar ratio r in terms of the spectral index ns.
Solid (dashed) lines correspond to N ¼ 50 (N ¼ 60) respectively. On the left, we have q ¼ 1, and on the right, q ¼ 4. n increases along
the length of the lines, counterintuitively, right to left. The vertical black dashed straight lines represent the 1-σ bounds on ns from the
Planck data. The slanted solid black line depicts the limit below which values of φ are sub-Planckian.

2Again, the second term in the curly brackets is the first-order
correction, which allows us to approach φ≃m.
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FIG. 2. The predictions of power-law plateau inflation in a graph depicting the tensor to scalar ratio r in terms of the spectral index ns.
Solid (dashed) lines correspond to N ¼ 50 (N ¼ 60) respectively. On the left, we have q ¼ 1, and on the right, q ¼ 4. n increases along
the length of the lines, counterintuitively, right to left. The vertical black dashed straight lines represent the 1-σ bounds on ns from the
Planck data. The slanted solid black line depicts the limit below which values of φ are sub-Planckian.

FIG. 3. The predictions of power-law plateau inflation in a graph depicting the tensor to scalar ratio, r, in terms of the spectral index ns,
assumingN ¼ 50. The blue shaded region in each plot shows the range of values for r and ns for the acceptable choices of n and qwhich
maintain sub-Planckian φ. The lower blue line in each window shows q ¼ 1, and the higher shows q ¼ 4; however n varies along the
length of each line; n ¼ 1 is the highest point of each line, and n ¼ 10 the lowest. The vertical solid black lines represent n ¼ 2 and
n ¼ 3. Note that, counterintuitively, n ¼ 2 is the line on the right-hand side, and n ¼ 3 on the left. Note also that, in panel (d), the n ¼ 2
line is off the top of the graph and only the n ¼ 3 line is visible. The vertical black dashed line is the upper ns Planck 1-σ bound.
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ruled out. However, again, this also increases φ. We can
also see that a larger value of α is better for maximizing
our r values, as expected since r ∝ α

2n
nþ2 to lowest order in

Eq. (8); this again also increases φ though. Table I
summarizes these results.
We can see from the graphs that irrespective of the n, q,

and α choices a lower value of N always produces a higher
value of r, brings ns more acceptably within the Planck
bounds, and actually decreases φ, too. The value of N is
discussed in the next section. For now, we will focus on the
N ¼ 50 results, implying a low reheating temperature.
Figure 3 combines the variations of α, n, and q with the
effects on φ to show how the allowed parameter space for
ns and r varies. All values of α keep ns within the Planck
bounds, the upper 1-σ bound of which is shown by the
black dashed lines in the panels of Fig. 3, while the lower
bound is out of frame.
At this stage, considering only integer values of n and q,

it seems that n ¼ 2 is the best choice, as lower n values give
higher r results (when allowed by α) and n ¼ 1 is ruled out
for all the sub-Planckian cases we are currently consider-
ing. Table II tabulates the values of α and q which
maximize r for each n and validates the expectation that
n ¼ 2 provides the highest value. Higher values of q do not
provide the highest result because their α values are capped
by the φ < mP criterion.

III. LOWERING N

So far, we have examined the results for ns and r when
N ¼ 50, but perhaps it is possible to lower the value of N

further if we can manipulate when the epoch of reheating
began. This section will investigate this and then examine
how a period of thermal inflation may affect N.

A. Low reheating temperature

We start from the familiar equation,

N� ¼ 62.8þ ln

�
k

a0H0

�
þ ln

�
V1=4
end

1016 GeV

�

þ 1

3
ln

�
g�

106.75

�
− ΔN; ð10Þ

where N� is the number of remaining e-folds of inflation
when the cosmological scales exit the horizon, k ¼
0.002 Mpc−1 is the pivot scale, Vend is the energy density
at the end of inflation, g� is the number of effective
relativistic degrees of freedom at reheating, and

ΔN ≃ 1

3
ln

�
V1=4
�

Treh

�
; ð11Þ

where V� is the energy density when the cosmological
scales exit the horizon and we assume that between the end
of inflation and reheating the Universe is dominated by the
inflaton condensate coherently oscillating in a quadratic
potential around its vacuum expectation value. The latest
data give V1=4

� < 2 × 1016 GeV [1]. Assuming that Treh is
greater than the electroweak (EW) scale (to allow EW
baryogenesis), we have

ΔN≲1

3
ln

�
V1=4
�max

Tmin
reh

�
≃1

3
ln

�
2×1016GeV
200GeV

�
≃10.8; ð12Þ

which validates our choice to use the N ¼ 50 value but
does not introduce any lower values.

B. Thermal inflation

Thermal inflation is a brief period of inflation possibly
occurring after the reheating from primordial inflation. This
second bout of inflation would allow the further reduction
of the number of primordial e-folds of inflation. It occurs in
the period between a false vacuum dominating over thermal
energy density and the onset of a phase transition which
cancels the false vacuum, when the thermal energy density
falls to a critical value. The dynamics of thermal inflation
are determined by a so-called flaton field, which is typically

TABLE I. Varying effects of the variables/parameters.

n increased q increased α increased

ns Substantially decreased Marginally decreased Complex pattern
r Decreased (order of mag.) Increased marginally (if n ≠ 1) Increases
φ Decreased Increased, impact reduced as n grows Increases

TABLE II. Maximum values that α can take for specific
combinations of n and q when N ¼ 50 while φ remains sub-
Planckian and the corresponding values of ns and r.

n q Max allowed α ns r

2 1 0.04 0.970463 0.000157
2 2 0.03 0.970474 0.000166
2 3 0.02 0.970472 0.000136
2 4 0.02 0.970478 0.000157
3 1 0.10 0.968504 0.000111
3 2 0.08 0.968518 0.000112
3 3 0.07 0.968523 0.000113
3 4 0.06 0.968524 0.000105
4 1 0.16 0.967203 0.000080
4 2 0.14 0.967218 0.000084
4 3 0.12 0.967223 0.000079
4 4 0.11 0.967225 0.000077
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a supersymmetric flat direction lifted by a negative soft
mass [10]. The scalar potential for the thermal flaton field is
of the form

V ¼ V0 −
1

2
m2ϕ2 þ 1

2
g2T2ϕ2 þ � � � ; ð13Þ

where m is the tachyonic mass of the field and g is the
coupling to the thermal bath, with the ellipsis denoting
nonrenormalizable terms that stabilize the zero-temperature
potential.3 From the above, the effective mass-squared of
the flaton field is

m2
eff ¼ g2T2 −m2: ð14Þ

For high temperatures, m2
eff is positive, and the flaton field

is driven to zero, where V ¼ V0 > 0. This false vacuum
density dominates when the thermal bath temperature drops
to the value T1 such that

ρTðT1Þ ¼
π2

30
g�T4

1 ≡ V0 ⇒ T1 ¼
�

30

π2g�

�
1=4

V1=4
0 ∼ V1=4

0 ;

ð15Þ

where ρT is the density of the thermal bath. At T1, thermal
inflation begins, and it continues until the temperature
decreases enough that m2

eff ceases to be positive. This
critical temperature is

m2
effðT2Þ≡ 0 ⇒ T2 ¼ m=g; ð16Þ

when the effective mass squared becomes tachyonic and a
phase transition occurs, which sends the flaton field to the
true vacuum, thereby terminating thermal inflation.
The total e-folds of thermal inflation are estimated as

NT ¼ ln

�
aend
abeg

�
¼ ln

�
T1

T2

�
¼ 1

4
ln

�
30

π2g�

�
þ ln

gV1=4
0

m
;

ð17Þ

where abeg (aend) is the scale factor of the Universe at the
beginning (end) of thermal inflation.
We also know

g ≤ 1; m2hϕi2 ∼ V0; hϕi ≤ mP ð18Þ

resulting in

Vmax
0 ∼ ðmmPÞ2: ð19Þ

Therefore,

NT ≤
1

4
ln

�
30

π2g�

�
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

≃0

þ ln

 
g

ffiffiffiffiffiffiffi
mP

m

r !
≤
1

2
ln

�
mP

m

�
: ð20Þ

The maximum value we can allocate to NT and hence
reduce our e-folds of primordial inflation by (since
N� → N� − NT), would arise from minimizing m. The
minimum m is given by the electroweak scale mEW ∼
1 TeV since ϕ particles are not observed in the LHC. Using
these values, we obtain

NT ≤
1

2
ln

mP

mEW
≃ 17: ð21Þ

So, considering that 17 e-folds of thermal inflation
occurred, we may lower the value of N� down to 33 or
so. However, this will affect the combinations of n, q, and α
that are still able to maintain sub-Planckian φ. From the
previous graphs, we know that n ¼ 2 gives us higher values
for r than any higher integer n value (since n ¼ 1 violates
the φ < mP bound). For n ¼ 2, we find 39 ≤ N� ≤ 56 are
within the range of values in the Planck 2015 data for ns.
We also find that increasing q has a minimal effect on r.
Hence, for simplicity, we set q ¼ 1. Because of this, we
highlight n ¼ 2 and q ¼ 1 (with α ¼ 0.05) as our best
result, corresponding to the potential

V ¼ V0

φ2

φ2 þm2
: ð22Þ

The ns and r results for this combination of variables are
shown in Table III. In this table, we also include results for
the running of the spectral index which the Planck
observations found as dns

dlnk ¼ −0.003� 0.007 [1]. In our
model,

dns
dlnk

¼−2
nþ1

nþ2

�
Nþnþ1

nþ2

�
−2

×

�
1þn2−2nq−n

nþ2

�
nðnþ2Þq

α2

�
Nþnþ1

nþ2

��
− n
nþ2

�
:

ð23Þ

As shown in Table III, our model is in excellent agree-
ment with the Planck observations.

IV. SINGLE MASS SCALE

In an attempt to make the model more economic, we
consider that our model is characterized by a single mass
scale M, such that V1=4

0 ¼ m≡M. Under this assumption,
the model is more constrained and more predictive. The
scalar potential is3There is no self-interaction quartic term for flaton fields [10].
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V ¼ M4

�
φn

φn þMn

�
q
: ð24Þ

The inflationary scale is determined by the COBE
constraint,

ffiffiffiffiffiffi
Pζ

p ¼ 1

2
ffiffiffi
3

p
π

V
3
2

m3
PV

0 ; ð25Þ

where Pζ ¼ ð2.208� 0.075Þ × 10−9 is the spectrum of the
scalar curvature perturbation. From Eqs. (1) and (7), we
obtain�
M
mP

�
¼ð2

ffiffiffi
3

p
πnq

ffiffiffiffiffiffi
Pζ

p Þnþ2
nþ4

�
nðnþ2Þq

�
Nþnþ1

nþ2

��
−nþ1
nþ4

:

ð26Þ

Inputting the calculated values of α ¼ M=mP for when
M ¼ m ¼ V1=4

0 into the equations for ns, r, and
dns
d ln k, we

find the results shown in Table IV.
While ns is well within the Planck bounds, the values for

r have dropped considerably due to the reduction in
α ¼ M=mP ≪ 1, which is expected as r ∝ α

2n
nþ2. Note that

we findM ∼ 1015 GeV, which is close to the scale of grand
unification as expected.

V. LARGE-FIELD POWER-LAW
PLATEAU INFLATION

In this section, we consider α no longer capped by
ensuring φ < mP, but we still satisfy the bound
ðφ=mÞn > 1. Higher α values produce higher r values
but also higher ns values, so we must be wary our ns results
do not migrate outside of the Planck bounds. To mitigate
this, a lower N value is again better, so we consider values
down to 33. Table V presents the best values of ns and r for
a combination of N and α values. To demonstrate how our
model improves the tensor to scalar ratio and spectral index

without any fine tuning,4 Table VI shows the results for
N ¼ 50 and 60 and how they sit inside the Planck bounds.
Figure 4 shows the best results for five α values with their
respective best N values. Figure 5 shows the range of our
results for the same α values over all allowed N values
which maintain ns within the 1-σ Planck bounds, fitting
perfectly into the Planck parameter space. If we allow our
ns results to extend into the 2-σ Planck parameter space, we
can also incorporate N ¼ 60.

VI. SUPERGRAVITY TOY MODEL

In this section, we will present a toy-model in SUGRA
which can produce the scalar potential of power-law
plateau inflation for n ¼ 2 and q ¼ 1.5 We will follow
the approach of Ref. [11] but only in form, not assuming
the same theoretical framework (hence, we only consider a
toy model) and with an important difference: we consider a
minimal Kähler potential so that we can avoid producing

TABLE III. Results for ns, r, and the running of the spectral
index for the case n ¼ 2, q ¼ 1, α ¼ 0.05 showing the extremal
allowed values of N for completeness (39 ≤ N� ≤ 49).

n q α N ns r dns
dN

2 1 0.05 39 0.962299 0.000283 −0.00095
2 1 0.05 49 0.969874 0.000202 −0.00061

TABLE IV. Values of ns, r,
dns
d ln k, and M when m ¼ V1=4

0 ≡M.

n q N ns r dns
d ln k

M (×1015 GeV)

2 1 39 0.962267 3.2 × 10−6 −0.00095 1.39� 0.01
2 1 49 0.969851 2.1 × 10−6 −0.00061 1.24� 0.01

TABLE V. Values of ns and r, with super-Planckian values of φ
(ensuring φ > m), n ¼ 2, and q ¼ 1. N values chosen to
maximize r while keeping ns within the 1-σ Planck bound.
Note, as well, that, because Planck observations suggest
−0.010 ≤ dns

d ln k ≤ 0.004 at 1-σ [1], the running of the spectral
index also matches observations.

α N ns r φ
m

dns
d ln k

0.6 39 0.962687 0.003500 5.36 −0.00093
0.8 39 0.962828 0.004717 4.62 −0.00093
1 38 0.962023 0.006169 4.08 −0.00097
2 38 0.962756 0.013058 2.80 −0.00094
3 37 0.962551 0.021450 2.20 −0.00096
4 36 0.962358 0.031315 1.83 −0.00098
6 34 0.962012 0.056328 1.37 −0.00102
8 33 0.962768 0.085796 1.08 −0.00100

TABLE VI. Values of ns and r, with super-Planckian values of
φ (ensuring φ > m) for N ¼ 50 and N ¼ 60.

N α ns r dns
d ln k

50 1 0.970932 0.004106 −0.00057
50 2 0.971421 0.008600 −0.00055
50 3 0.971910 0.013482 −0.00054
50 4 0.972399 0.018753 −0.00052
50 5 0.972888 0.024412 −0.00051
60 1 0.975682 0.003122 −0.00040
60 2 0.976055 0.006515 −0.00039
60 3 0.976429 0.010180 −0.00038
60 4 0.976802 0.014115 −0.00037
60 5 0.977175 0.018321 −0.00036

4This is because both mass scales assume natural values;
m≃mP and V1=4

0 is of the scale of grand unification.
5This is also a model of shaft inflation [8].
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too large ns but retain the successes of the n ¼ 2, q ¼ 1
power-law plateau inflation model.

A. Global supersymmetry

At first, we consider only global supersymmetry (SUSY)
and sub-Planckian fields. We introduce the nonrenormaliz-
able superpotential,

W ¼ S2ðΦ2
1 − Φ2

2Þ
2m

; ð27Þ

where S;Φ1;Φ2 are chiral superfields and m is a large but
sub-Planckian scale. The F-term scalar potential is then

VF ¼ jSj2
m2

½jΦ2
1 − Φ2

2j2 þ jSj2ðjΦ1j2 þ jΦ2j2Þ�: ð28Þ

The above potential is minimized when Φ1 ¼ Φ2. Rotating
the fields in configuration space (assuming a suitable
R-symmetry), we can introduce a canonically normalized,
real scalar field φ such that jΦ1j ¼ jΦ2j≡ 1

2
φ. Then, the

scalar potential becomes

VF ¼ jSj4φ2

2m2
: ð29Þ

We consider that there is also a D-term contribution to the
scalar potential. Mirroring Ref. [11], we take

FIG. 4. Super-Planckian power-law plateau inflation values of ns and r superimposed on the Planck graph.

FIG. 5. Super-Planckian power-law plateau inflation values of ns and r superimposed on the Planck graph, with N varying between its
minimum and maximum values for which ns is within the Planck 1-σ bounds.
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VD ¼ 1

2
ðjSj2 −

ffiffiffi
2

p
M2Þ2; ð30Þ

whereM is the scale of a grand unified theory (GUT). Thus,
in total, the scalar potential reads

V ¼ jSj4φ2

2m2
þ 1

2
ðjSj2 −

ffiffiffi
2

p
M2Þ2: ð31Þ

Minimizing the potential in the S direction requires

∂V
∂jSj ¼ 0 ⇒ hjSj2i ¼

ffiffiffi
2

p
M2

1þ φ2=m2
: ð32Þ

Inserting the above in Eq. (31), we obtain

V ¼ M4φ2

m2 þ φ2
; ð33Þ

which is the n ¼ 2, q ¼ 1 power-law plateau inflation
model.

B. Local supersymmetry

To confine ourselves in global SUSY, we have to require
that M < m < φ < mP. Given that logðmP=MÞ≃ 2, the
available parameter space is not a lot. However, general-
izing the above into SUGRA may allow super-Planckian
values for the inflaton, while m≃mP. In SUGRA, we
continue to consider the superpotential in Eq. (27), and we
will also consider a minimal Kähler potential,

K ¼ jΦ1j2 þ jΦ2j2 þ jSj2: ð34Þ

Then, the F-term scalar potential is

VF ¼ exp

�jΦ1j2 þ jΦ2j2 þ jSj2
m2

P

�

×

�jSj2jΦ2
1 − Φ2

2j2
m2

�
1þ 2jSj2

m2
P

þ jSj4
4m4

P

�

þ jSj4ðjΦ1j2 þ jΦ2j2Þ
m2

�
1þ jΦ2

1 − Φ2
2j2

4m4
P

�

− 3
jSj4jΦ2

1 − Φ2
2j2

4m2m2
P

�
: ð35Þ

Considering that jSj is sub-Planckian, since hjSj2i< ffiffiffi
2

p
M2,

we have

VF ≃ exp

�jΦ1j2 þ jΦ2j2
m2

P

��jSj2jΦ2
1 − Φ2

2j2
m2

þ jSj4ðjΦ1j2 þ jΦ2j2Þ
m2

�
1þ jΦ2

1 − Φ2
2j2

4m4
P

��
: ð36Þ

Again, the potential is minimized when Φ1 ¼ Φ2. Writing
jΦ1j ¼ jΦ2j≡ 1

2
φ, we obtain

VF ¼ e
1
2
ðφ=mPÞ2 jSj4φ2

2m2
: ð37Þ

We consider the same D-term contribution to the scalar
potential, given in Eq. (30). The total scalar potential is now

V ¼ e
1
2
ðφ=mPÞ2 jSj4φ2

2m2
þ 1

2
ðjSj2 −

ffiffiffi
2

p
M2Þ2: ð38Þ

Minimizing the above along the S direction, we find

hjSj2i ¼
ffiffiffi
2

p
M2

1þ e
1
2
ðφ=mPÞ2ðφ=mÞ2 : ð39Þ

Inserting this into Eq. (38), we obtain

V ¼ M4φ2

e−
1
2
ðφ=mPÞ2m2 þ φ2

: ð40Þ

Our finding is technically different from Eq. (33) because
of the exponential factor in the first term in the denom-
inator. However, this term is important only when
φ < m≃mP, when the exponential is unity. In the opposite
case, when φ > m≃mP, the first term in the denominator
is negligible. So, the exponential factor makes no differ-
ence, and the potential is practically the same as the one in
Eq. (33). This is certainly so if the inflaton remains sub-
Planckian (i.e. when m < mP).
Using the potential in Eq. (40), it can be checked that

the η-problem of SUGRA inflation is overcome due to
the D-term. In fact, one can show that jηj ≪ 1 when
φ > mP ≃m. However, for a super-Planckian inflaton,
things are different from power-law plateau inflation, since
the SUGRA correction dominates. So, our SUGRA toy
model is similar but not identical to the n ¼ 2, q ¼ 1
power-law plateau inflation model.
To have an idea of the value of the observables in this toy

model, we can investigate the slow-roll parameters, which
are found to be

ϵ ¼ 2

x
α4

ðα2 þ e
1
2
xxÞ2

�
1þ 1

2
x

�
2

and ð41Þ

η¼ 1

x
2α2

α2þe
1
2
xx

�
α2ð1þ2xÞ−3x

α2þe
1
2
xx

�
1þ1

2
x
�
−
1

2
x2
�
; ð42Þ

where x≡ ðφ=mPÞ2 and α is given in Eq. (6). Then, the
spectral index is
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ns − 1 ¼ 2η − 6ϵ ¼ 4

x
α4

ðα2 þ e
1
2
xxÞ2

×

�
α2ð1

2
x − 2Þ − 3x

α2 þ e
1
2
xx

�
1þ 1

2
x

�
−
1

2
x2
�
: ð43Þ

Taking φ > mP ⇒ x ≫ 1 and α ∼ 1 simplifies the above
considerably as

ϵ≃ α4

2xex
and η≃ −α2e−1

2
x; ð44Þ

and it is evident that jηj ≪ 1 as already mentioned. In this
limit, it is easy to find

N ¼ 1

4

Z
x

xend

α2 þ e
1
2
xx

α2ð1þ 1
2
xÞ dx ⇒ α2N ≃ expðx=2Þ; ð45Þ

where we have taken x ≫ xend. Then, the observables
become

ns≃1þ2η≃1−
2

N
and r¼ 16ϵ≃ 4

lnðα2NÞN2
: ð46Þ

These should be contrasted with the predictions of power-
law plateau inflation given by Eqs. (8) and (9). At lowest
order and taking N ≫ 1, we find

ns ≃ 1 −
3

2N
and r≃

ffiffiffi
2

p
α

N3=2 : ð47Þ

We see that the predictions of our SUGRA toy model are
more pronounced with respect to N, with both the spectral
index and the tensor to scalar ratio smaller. Also, the
dependence of r on α is more prominent in the case of
power-law plateau inflation. For more realistic values of
the inflaton, however, where φ ∼mP ∼m (i.e. x ∼ 1), we
would expect ns and r to lie in between the above extremes.
Note that the predicted values are well in agreement with
the Planck data, in all cases.

VII. CONCLUSIONS

We have studied in detail a new family of inflationary
models called power-law plateau inflation. The models
feature an inflationary plateau, which is approached in a
power-law manner, in contrast to the popular Starobinsky/
Higgs inflation models (and their variants) but similarly
to shaft inflation. We have shown that power-law
plateau inflation is in excellent agreement with Planck
observations.
To avoid supergravity corrections, we mostly considered

a sub-Planckian excursion for the inflaton in field space. As

expected, this resulted in very small values for the ratio of
the spectra of tensor to scalar curvature perturbation r. In an
attempt to improve our results and produce observable r,
we have considered minimizing the remaining number
of e-folds of primordial inflation when the cosmological
scales exit the horizon. To this end, we assumed late
reheating as well as a subsequent period of thermal
inflation, driven by a suitable flaton field. We have
managed to achieve r≃ 3 × 10−4 which might be observ-
able in the future (see Table III).
For economy, we have also investigated the possibility

that our model is characterized by a single mass scale. We
have found that the spectral index of the scalar curvature
perturbation ns satisfies well the Planck observations but
the model produces unobservable r.
Abandoning sub-Planckian requirements allows the

model to achieve much larger values of r. Indeed, for
natural values of the mass scales (Planck and GUT scale),
i.e. without fine-tuning, we easily obtain r as large as a few
percent (up to 9%, see Table V), which is testable in the
near future. Our predicted values for r and ns fall
comfortably within the 1-σ bounds of the Planck observa-
tions, while different models of the power-law plateau
inflation family are clearly distinguishable by future
observations (see Figs. 4 and 5).
From our analysis, we have found that the best choice of

model in the power-law plateau inflation family has the
scalar potential V ¼ V0φ

2=ðm2 þ φ2Þ, which is also a
member of the shaft inflation family of models [8].6

Such a potential was originally introduced by S-dual
inflation in Ref. [11], where, however, the inflaton was
noncanonically normalized so the predicted value for ns
was too large and incompatible with the Planck data.
Following Ref. [11] but crucially considering canonically
normalized fields (i.e. minimal Kähler potential), we have
constructed a toy-model realization in global and local
supersymmetry for our preferred power-law plateau infla-
tion model.
All in all, the level of success of power-law plateau

inflation and the fact that it offers distinct and testable
predictions make this a worthy candidate for primordial
inflation, which may well be accommodated in a suitable
theoretical framework, as our toy models suggest.
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