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Abstract

Food security for a growing population presents a significant challenge for crop
production, with increasing pressures upon agriculutral productivity. There is a vast need
to improve crop yield and quality using an efficient approach that does not present
negative environmental impacts. A novel interrogation technique that is able to provide
information of the overall health of a plant, would be extremely beneficial in an
agriculutral, as well as research, setting. This information could be utilised to better

understand the mechanisms of plant functions, including stress responses.

Vibrational spectroscopy encompasses a range of techniques that are able to
derive chemically specific information from a biological sample in a rapid, non-
destructive and cost-effective manner. Fourier-transform infrared (FTIR) spectroscopy
and Raman spectroscopy are two such approaches and have been readily implemented
across biological samples. However, their applications in the field of plant science have
been relatively underexploited. This is largely associated with the presence of water and
fluorescent metabolites found in plant tissues.

The application of attenuated total reflectance (ATR)-FTIR and spontaneous
Raman spectroscopy for in vivo plant monitoring to elucidate spectral alterations
indicative of healthy plant growth in a non-destructive manner. These approaches are
able to characterise the biochemical signature of leaves at distinct developmental stages,
and correspond to known biological processes within the leaf such as cell wall
expansion. This information is useful prior to monitoring studies as normal leaf growth
could be considered background variance. No significant local or systemic effects
manifest as a consequence of interrogation with these techniques, establishing this as a

non-destructive approach for plant system investigations.

Raman microspectroscopy as a tool for monitoring nutrient uptake at the leaf
surface is also considered, alongside complementary ion probe and elemental analysis.
Such a technique is useful in the agrochemical production of foliar fertilisers, where the
efficiency of specific formulae can be rapidly compared. This can also further the current
understanding of nutrient transport into plant tissues, as well as translocation.

Agriculturally relevant levels of calcium were applied to the leaf surface and uptake was



successfully illustrated at concentrations as low as 15 mM using Raman
microspectroscopy. lon probe analysis also complemented these findings, with elemental
analysis unable to detect this subtle uptake of nutrients. This assay is now being
implemented in agrochemical practise as a fertiliser screening method.

Deficiencies in essential nutrients such as calcium are detrimental to crop yield
and thus are a potential target for improving crop production. A range of spectroscopic
methods, including the use of synchrotron radiation, were utilised to pre-
symptomatically detect these deficiencies prior to their onset in live samples. Coupled
with multivariate analysis, these techniques discriminate between deficient and control
samples with high sensitivity and specificity, without extensive sample preparation that
traditional analytical techniques require. These results suggest that Raman and ATR-
FTIR spectroscopic approaches could highly valuable in the field, where plant health and
nutrient status could be assessed rapidly in situ.

Here it is shown that these issues can be overcome and that qualitative spectral
measurements can be obtained from plant samples. Due to the non-destructive nature of
these approaches, they can be applied for a wider range of crop screening investigations,
including the efficiency of nutrient uptake, as well as distinguishing nutrient deficiencies
presymptomatically. As such, these spectroscopic methods may be implemented to
unearth further details regarding nutrient use efficiency during crop production.
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1.1 Aims & Objectives

This project has the fundamental aim of developing vibrational spectroscopic techniques
for plant based research, with a focus upon agricultural applications. Specifically, the
suitability of IR and Raman spectroscopies are evaluated as rapid, non-destructive, in
vivo analytical techniques that are able to deduce molecular information without the need
of extensive sample preparation steps. Known barriers to translation of biospectroscopy
in plant research, such as water interference in IR and fluorescence in Raman, are

investigated and the viability is determined.

Additional to this initial aim, the non-destructive nature of these approaches will
be addressed; by monitoring any detrimental side effect of in vivo spectral acquisition on
plant tissue. The spectral information derived from this study would then be correlated
with known biological changes within these tissue, to determine the viability of the

information extracted.

Once the suitability of these approaches has been determined, Raman
spectroscopy as a novel method to analyse the fertiliser efficiencies will be investigated.
By using these techniques to observe and quantify Ca®* uptake at the adaxial leaf
surface, the addition of key fertiliser components can be examined. With industrial
collaboration, this approach would be fed directly into a fertiliser product production

pipeline, where compositions could be compared readily.

Nutrient deficiencies have a significant impact on crop yield in agriculutral
settings, and thus a range of spectroscopic measurements will be implemented to
describe the biochemical alterations indicative of nutrient deficiency. Due to the
importance of Ca as a plant nutrient, Ca stress will be the focus of these investigations.
Initially, the analysis of fixed tissue using FTIR spectroscopy coupled to SR will be
investigated and compared against traditional benchtop instruments. SR will also be used
to derive FTIR measurements from fresh tissues with high water content, to overcome

limitations of FTIR in plant research.

Subsequent to this investigation, blossom-end rot in S. lycopersicum, the
common tomato plant, is highlighted as a model system to investigate presymptomatic
detection of deficiency using spectroscopic analysis. Ca deficiency is induced using a

hydroponic nutrient supply system providing defined levels of Ca. Raman spectroscopy



will be used for rapid, non-destructive in vivo measurements additional to ATR-FTIR of

fixed samples for complementary analysis.



1.2 Introduction

The total world population has been on a steep rise since the early 1950s and currently
stands at 7.3 billion people; and this figure is expected to increase. By 2050, the
population is projected to reach 9 billion people and will likely surpass 11 billion by
2100 (Figure 1.1)%. With increasing population size, there is an equivalent increase in
pressure upon crop production due to the demand for sustainable food sources 22, In
order to provide a sufficient food supply for the growing population, it is imperative to
improve agricultural productivity 4. It is estimated that as much as 70 — 100% more food
will be required to feed our population by 2050 °. There are a number of significant
barriers to this process namely; the availability of water, nutrients, and arable land, as
well the effects of abiotic and biotic stresses upon crops and of course, climate change ©.
All of these factors contribute to reduced agricultural productivity and thus the concept

of food security is established.
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Figure 1.1. Population growth since 1950 to 2015, with high (red), median (black) and low
(blue) variant estimates for population growth until 2100. Data provided by the United
Nations Department of Economic and Social Affairs *.



Fundamental plant research remains the key to optimising crop production and
has spearheaded the ‘Green Revolution” "8, The diverse field of plant science has
contributed to improved crop efficiency, ultimately resulting in increased crop yield and
quality °. There have been huge advances made in the field of genetically manipulated
(GM) crops, creating more resilient crop species that are resistant to environmental
stresses including disease, pathogens and herbicides %2, Although the development of
GM crops provides a powerful approach to improving agricultural productivity, there is
a substantial ethical obstruction to real-world applications 3,

The selective breeding of organisms naturally resistant to stresses such as water
scarcity, is one favourable alternative that has been particularly well exploited in plant
research 4. The complementary use of pesticides has also contributed to overall
improvements in crop yield, although these present negative connotations with regards to
unnecessary chemical use in the environment and food chain >° . Movement away from
traditional soil based growth protocols, such as using hydroponic systems, has also
contributed to improved agricultural efficiency, as both water and nutrient supply are

optimised for the specific crop ’.

Nutrient availability can be considered one of the most significant factors impacting
crop yield and consequently fertiliser use is a primary resource for improving
productivity. Maintaining an optimum level of soil fertility is paramount to an effective
agricultural environment and can significantly increase crop yield. However, the use of
fertilisers is a relatively inefficient process, with the vast majority of current nutrient
supplementation protocols focused upon a few specific nutrients, namely nitrogen (N),
phosphorous (P) and potassium (K).

In order to optimise crop production by improving nutrient use efficiency, there is a
need for a novel crop screening technology that will allow rapid determination of crop
nutrient status, as well as to monitor the effects of nutrient supplementation. Generally
speaking, plant monitoring and interrogation tools are often limited to technical
approaches that require specialist users, or are often constrained to applications in model
species such as Arabidopsis thaliana which have been thoroughly characterised for

molecular studies *8. Currently, the determination of nutrient content is reliant upon



invasive, destructive, and time-consuming analytical processes that are not suitable for in

situ investigation in field environments *°.

A technique that was able to derive nutrient specific biochemical information
rapidly, non-invasively, with the potential of analysis in the field would be hugely
beneficial to the field on plant biology. Specifically, the nutrient status of crops could be
determined, allowing the exact nutrient requirements to be established. This is a
movement towards a precision farming approach where fertilisers are only applied at the
levels to which are necessary, leading to more efficient resource use as well as increase

crop yield and quality 2.

1.3 Food Security

Since first being coined at the first World Food Conference held by the United Nations
(UN) Food and Agriculture Organization (FAQO), the term ‘Food Security’ has evolved
21 Today the phrase encompasses the concept that everybody throughout the world has
continual access to safe and nutritious food that they require for a healthy and active

lifestyle 22, It is evident that, even at this point in time, there is a significant shortfall in

achieving this aim, with up to 795 million people currently experiencing food poverty 23,
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Figure 1.2. The prevalence of undernourishment around the globe between 2014-2016
showing areas most susceptible to the impacts of food insecurity.



The effects of insufficient food security are predicted to worsen, with the primary
pressures of a growing population, land availability and climate change. This will likely
be felt initially in rural areas of developing countries, where more than 70% of the world
of the world’s starving population reside (Figure 1.2)%*. However, there is predicted to
be a significant effect throughout the world as the gravity of the problem increases 2°.
The reader is directed to the following reviews for further information regarding the
topic of food security which provide in-depth analyses of pressures and challenges

surrounding this issue 226-28,

Crucial to achieving widespread food security is the ability to produce food in an
adequate quantity and quality in the most efficient way possible ?°. There have been
many advancements for optimised crop production such as the use of light emitting
diode (LEDs) lighting systems in agricultural settings for providing optimal light and
temperature conditions, as well as the use of vertical farming apparatus for space
efficiency in urban environments %31, Both of these approaches present increased energy
efficiencies during crop production and thus simultaneously tackle the issues of
greenhouse gas (GHG) emissions associated with food production. However, one of the
most significant factors in crop production is adequate supply of the essential nutrients to

the crop and as such is the primary target for increased crop production efficiency 2.

1.4 Nutrient Use Efficiency

The availability of nutrients during crop development is crucial to optimum crop yield
and quality . Plants require six essential macro-nutrients; nitrogen (N), potassium (K),
phosphorous (P), calcium (Ca), sulphur (S) and magnesium (Mg), and eight micro-
nutrients; boron (B), chlorine (CI), copper (Cu), iron (Fe), manganese (Mn),
molybdenum (Mo), nickel (Ni) and zinc (Zn) 3*. These nutrients are indispensable due to
their pivotal role in biochemical processes downstream of photosynthesis and all have
specific roles in plant growth and development 32. Their transport is primarily in ionic
form through the soil and their uptake is dependent upon the root parameters, shoot-root

and root-to-soil relationships; all of which are affected by environmental conditions .

Due to the central role that these nutrients have in crop growth, crop yield is
directly related to the nutrient supply available to the crop and the efficiency at which it



can absorb and utilise those nutrients, defined as the nutrient use efficiency . The
relationship between nutrient availability and crop growth was well characterised by the
work of Justus von Liebig, who established that crop growth was limited due to the least
available nutrient rather than a generic availability of all nutrients . Referred to as
Liebig’s Law of the Minimum, this theory is best described by Liebig’s Barrel, where

the shortest stave is responsible for water (yield) loss (Figure 1.3).

Figure 1.3. Liebig’s Law of the Minimum. Crop yield is dependent upon the most limiting
nutrient, with N, P, K. ¥’

10



1.4.1 Nutrient Deficiencies

Although nutrient deficiencies, particularly those of micro-nutrients, are relatively rare in
nature, they are commonplace in agricultural systems due to intensive farming practises
38 Insufficient availability of essential crop nutrients has a detrimental impact on crop
growth and thus can significantly reduce crop yield (Figure 1.4). The theoretical yield,
compared to the actual obtained yield of a given area is referred to as the yield gap *.
Nutrient availability is the main limiting factor in reducing this yield gap, but is difficult
to quantify due to the diversity of arable lands, crop species and also the relationships of
nutrients themselves “°. Nutrient uptake and deficiency are not independent of other
nutrients and synergistic, antagonistic and additive relationships have been identified in

nutrient stressed organisms .

Nutrient deficiencies can therefore manifest across a range of crop species, with a
variety of species specific symptoms (Table 1.1). The tissues in which these symptoms
manifest are often indicative of the mobility of the limiting nutrient. A mobile element
can be readily translocated from one tissue to another and thus many symptoms are
presented in mature tissues, where nutrients such as Mg and P are transported to younger
tissues in deficient conditions #. In contrast, a deficiency in immobile elements such as
Ca and ClI, results in insufficient nutrient supply to younger tissues from the soil, but also

from older tissues 3.

However, the detection of nutrient deficiency of crops via visual symptoms is restricted;
initially, due to non-specific symptoms and also due to delayed onset of deficiency °. As
Table 1.1 begins to illustrate, visual symptoms are analogous between different
elemental deficiencies, and can vary significantly between crop species. Furthermore,
the interpretation of visual symptoms suggests that a nutrient deficiency has fully

developed within an organism and by this stage remediation may already be impossible
44
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Table 1.1. The average concentration of essential macro- and micro-nutrients in dried plant matter

(adapted from 34, their function within plant growth and the common symptoms of deficiency (adapted

from 3.

Nutrient Conc. Function Symptoms of deficiency
(mg kg™)
N 15,000 * Chlorophyll production * Reduced growth rate
* Protein component * Chlorosis of older leaves
* Leaf development
* Yield formation
K 10,000 * \Water economy * Stunted growth
» Signalling and transport * Chlorosis at leaf boundary
* Stress resistance * Browning at tips of old leaves
Ca 5,000 * Cell wall component * Cell wall necrosis of developing
tissues, fruits an young leaves.
* Signalling component
* Cell division and growth
P 2,000 * Root development * Reduced growth rate
* Seed and fruit development * Red tint on older leaves
* Amino acid component
Mg 2,000 * Chlorophyll component * Chlorosis of older leaves
* Metabolic roles * Generic symptoms of senescence
S 1,000 * Amino acid component * Chlorosis of young leaves

 Formation of chlorophyll and

essential oils

* Reduced growth rate

e Fruit do not mature
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Cl

Fe

Zn

Cu

Mo

Ni

100

100

50

20

20

0.1

0.1

* Oxygen production in

photosynthesis

* Maintaining osmotic pressure

* Chlorophyll synthesis

* N assimilation

* Carbohydrate metabolism

* Water electrolysis in
photosynthesis

* Membrane integrity

* Cell wall growth

* Enzyme systems

* Protein synthesis

* Chlorophyll component

* Lignin, protein and
carbohydrate metabolism

* Enzyme systems

* Protein synthesis

* Enzyme systems

* Chlorosis of young leaves

* Wilting

* Chlorosis of vascular tissues

* Leaf chlorosis leading to white leaves

* Chlorosis of vascular tissues
* Chlorosis of young leaves
* Deformity of young tissues
* Cracking of stalks and fruit
* Stunted plant growth

* Variable between species

* Twisted leaves

* Pale white shoot tips

* Variable between species

* Chlorosis of leaf margins

* Rolling of leaves

* Reduced growth

¢ Chlorosis and necrosis of leaves
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Figure 1.4. The relationship between nutrient availability and optimal growth. Adapted from
38

Alternatively, nutrient stress can be identified using plant or soil analysis
approaches, where the exact elemental content of these tissues is determined using an
analytical approach such a inductively coupled plasma (ICP)-mass spectroscopy (MS),
ICP- atomic emission spectroscopy (AES), ICP- optical emission spectrometry (OES),
flame atomic absorption spectroscopy (FAAS), and flame photometry 324546 The result
of tissue specific sampling is that an exact nutrient profile can be established and
consequently remediation can be targeted. However, such approaches often require
extensive sample preparation steps that are not easily implemented in agricultural

environments.

1.4.2 Fertilisers

The application of nutrient fertilisers to provide supplementary minerals to growing
media has been a regular practice for up to 2000 years **. N, P and K are considered the
most limiting of the essential minerals and consequently have the largest incidence of

nutrient deficiency in both temperate and tropical growth environments 2. Consequently,
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the vast majority of fertilisers applied contain at least one of these essential nutrients. It
is estimated that in 2016 alone, over 194.1 million tonnes of N, P and K containing
fertiliser will be applied worldwide in order to improve soil fertility 4. Whilst this
approach is effective when a reduction in these nutrients is present, this is not efficient
when another essential mineral is the limiting factor; a deficiency can only be
remediated by supplementation of that exact nutrient, based upon the Law of the
Minimum 3337, Aside from being inefficient in regards to crop yield and agricultural
productivity, this is extremely costly to the grower and presents a host of negative

environmental impacts .

Furthermore, a plentiful supply of nutrients in the growth medium is not always a
precursor to active absorption of these nutrients and thus nutrient stress can still occur .
Nutrient uptake from the soil is dependent upon a number of root and soil parameters; a
potential outcome of this is that some nutrients are not accessible from the soil, despite
their abundance *. As such, foliar fertilisers have been suggested as an alternative
approach to nutrient supply, particularly as a short term aid to nutrient stress *°. There
are a number of associated benefits of foliar rather than soil based fertiliser applications;
largely centred upon the reduced volume requirement as well as potential improvement
in nutrient recovery rate °°. Additionally, foliar nutrient applications can be combined

with other crop treatments such as herbicides, for increased productivity °.

1.4.3 Environmental Impacts of Inefficient Crop Production

There are a number of undesirable side effects of inefficient crop production,
supplementary to the shortcomings in crop yield that are damaging to global food
security. Broadly speaking these can be economical, social and also environmental; it is

the latter of which is of interest in this instance.

The traditional approach to fertiliser application is a relatively inefficient process,
due to generic application of N, P and K containing fertilisers regardless of specific
nutrient requirements of the crop. This, in itself, is highly inefficient, and there is also a
significant carbon footprint associated with this process. Of the cumulative total of
worldwide GHG emissions, N fertiliser production is responsible for 1.2% of this total

value. This equates to nearly 700 kg of CO- and carbon equivalents (CE) per hectare of
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farmland each year, as 90% of total emissions from farm operations are attributed to
fertiliser use 1. The extensive effects of fertiliser use on GHG emissions are excellently
addressed by Snyder et al., and the reader is directed to this review for additional

information °2.

N-based fertilisers also present other significant environmental issues that occur
when they are leached from agricultural land. The loss of N into the surrounding
ecosystem has been shown to have negative impacts on human health, biodiversity and
contamination of water supplies 3. Eutrophication is one such example of the
detrimental effects of fertiliser run off and can cause devastating loss of marine life >,

Food wastage volumes throughout the world, 2007
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Agricultural Postharvest Processing Distribution Consumption

Figure 1.5. Worldwide food wastage in 2007, regarding the relative areas of the food
production chain. Adapted from .

Aside from the impacts of fertiliser use in crop production, there is also the issue
of food quality. Nutrient availability has a direct effect on crop yield, but also on crop
quality, and thus inadequate growing conditions are transferred to the quality of the food.
Up to 1.3 Gtonnes of edible produce was wasted worldwide in 2007 %°. During

agricultural production, also referred to as upstream of the food supply chain, 46% of
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produce is discarded purely based on appearance and shelf life, which is likely as a
consequence of the nutrient status of the crop during growth 5. Downstream of this
chain, specifically at retailers and in homes, an almost equivalent amount of food is

wasted, with UK alone discarding 7 million tonnes of food every year (Figure 1.5) *.

15 Calcium in Plants

Ca is an essential macronutrient in all living organisms that has a conserved function in
many biological processes. Ca has a vital role in coordinating cellular responses and
signalling and acts as an important counter-cation in aiding anionic exchange across the
plasma membrane in its divalent cation form (Ca?*). Ca?* is cytotoxic to a cell at high
concentrations as it has an affinity for biological molecules, causing precipitation of
phosphate, aggregation of proteins and nucleic acids, and damage to the lipid membrane
5 As a consequence, controlling the concentration of Ca?* has been a priority to a cell
since the early evolution of cellular life %8, It is thought that the energy expenditure of
cells to maintain this homeostasis has been coupled through evolution to signal

transduction in both eukaryotic and prokaryotic cells *°.

1.5.1 Calcium Deficiencies

Cahas a number of structural and functional roles in plants, particularly in binding
strands of pectin together in the cell wall ®°. A plant’s source of Ca is derived from the
soil and is distributed through the plant via the apoplastic and symplastic pathways 51-62,
Ca is relatively immobile in the phloem and consequently Ca distribution is largely

reliant on xylem flow and therefore transpiration in particular tissues 2.

As a consequence of this, there are a number of Ca related deficiencies that can
arise, which are commonly found in horticulture and agriculture 54, Ca deficiencies occur
when the element is unavailable in developing tissues, enclosed tissues and tissues that
are supplied predominantly by the phloem ®°. Insufficient Ca has been shown to cause up
to 50% loss of yield in crop production and has a distinctly negative impact on
agricultural productivity %7, Deficiencies such as ‘tipburn’ in expanding leaves of leafy

vegetables, ‘blackheart’ in the enclosed tissues of celery and ‘blossom end rot’ and
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‘bitter pit’ affecting the fruit of tomatoes and apples respectively #°. Due to the
detrimental effect of these disorder, as well as the role that Ca* plays in fruit ripening,
maintaining fruit firmness and reducing postharvest decay, Ca?* supplementation in

agriculture is becoming an emerging section of the crop enhancement market %70,

1.5.2 Calcium Signalling

Ca?" is a fundamental signalling component of plant responses to environmental and
developmental stimuli, which are crucial to a number of plant functions such as
regulation of stomatal aperture 1. Due to the cytotoxic nature of Ca2*, the cytosolic
calcium concentration ([Ca?*]cyt) must be kept at a tolerable level. [Ca?*]cy is maintained
at a resting level of 200nM which can be up to a 20,000-fold difference from the
extracellular Ca* concentration in the apoplast, a gradient that requires a substantial

amount of energy to maintain °.

This resting level in maintained by pumps and exchangers found on the cell
plasma membrane, regulating efflux to the apoplast, and on endomembranes, regulating
efflux to intracellular stores such as the vacuole and endoplasmic reticulum. These can
be described as ‘off mechanisms’, an aspect of the by Ca?* signalling toolkit described
by MJ Berridge and colleagues in 2000 in mammalian cells "2. The mechanisms in which
[Ca?*]yt are elevated in response to a stimulus can similarly be referred to as the ‘on
mechanisms’. To generate a transient Ca2* signal, there is a passive movement of Ca?*
into the cytosol, which is mediated by a collection of channels that allow rapid influx of
Ca2"ions. Ca?* floods the cytosol from both the apoplast via the plasma membrane and

from intracellular stores via various endomembranes such as the tonoplast ™.

A role for calcium has been found to be ubiquitous with an array of plant
functions, from stress signalling, to pollen tube growth , circadian clock regulation,
pathogen interactions, and the highly researched area of regulation of stomatal aperture
4 A prevalent question is how such a simple ion can encode specificity in so many plant
functions. The issue of specificity is best described by the response of a plant cell to the
plant hormones auxin and abscisic acid (ABA), which both induce an elevation of
[Ca?*]cyt although with opposite effects, as auxin stimulates stomatal opening whereas

ABA reduces stomatal aperture "¢, From the vast number of channels that have so far
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been found to be involved with the elevation of [Ca®"]cy it is evident that there is the
ability within a plant cell to generate complex calcium signatures. The comprehensive
review by McAinsh & Pittman discusses several mechanisms that may contribute to

encrypting specificity 7.

1.5.3 Measuring Cytosolic Free Ca?*

Many Carelated studies have been facilitated by the ability to measure intracellular free
Ca?" in living cells. These basic, non-destructive methods have enabled the visualisation
Ca?" influx in guard cells in response to ABA, Ca?* localisation pollen tubes and root
hair cells as well a host of other key studies that have helped shape the current
knowledge of Ca?* functionality 8. Current widely implemented methods include the
application of Ca?*-sensitive fluorescent dyes, the calcium-sensitive luminescent protein
aequorin, cameleon sensing proteins and Ca?*-sensitive microelectrodes ’°. These dyes
work on the basis that the sensor dye and its loading, in no way compromises normal

cellular function 8,

A key aspect of imaging cytosolic free Ca?* and Ca monitoring is that all of
these approaches are limited to certain model species such as Arabidopsis thialana and
Commelina communis "°. As a consequence, current restrictions in methods of imaging
free Ca2" in plant cells may be inhibiting the progress of research in plant related Ca?*

studies.
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1.6 Vibrational Spectroscopy

The principle of spectroscopy is the interaction between radiation and matter. Radiation

is provided in the form of a wave that has both electric and magnetic field components.

The electromagnetic spectrum describes the photon energy (E), wavelength (1) and

frequency (f) of these waves (Figure 1.6). A is inversely proportional to the f of the

wave, whilst the f is proportional to the E. Photons are fundamental particles possess

properties of both waves and particles, and can be described as having wave-particle

duality. Max Planck pioneered mathematical modelling of photon energy as a function

of f and Planck’s constant describes the inverse proportionality of E to A 8,
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Figure 1.6. The electromagnetic spectrum of light with the visible and infrared regions

expanded. Adapted from 8 and &2,
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Figure 1.7. A schematic overview of a Jablonski energy level diagram displaying the energy
transition processes in infrared, Raman (Stokes and anti-Stokes) scattering and fluorescence.
Adapted from & and &,

Vibrational spectroscopy is based on the principle that electromagnetic radiation
causes chemical bonds to vibrate at energy levels higher than the zero-point energy %%,
The molecules can only accept a photon that has the exact energy value required to
elevate to a higher vibrational or electronic energy level. For many molecules, including
biomolecules, this is in the mid-infrared (MIR) region, where fundamental bond
vibrations are excited to higher energy levels 8. An overview of energy transitions in

vibrational spectroscopy is provided in Figure 1.7.

A given molecule will have a discrete number of vibrational modes dependent
upon its chemical structure. A linear molecule will exhibit 3N — 5 modes, where N is the
number of atoms in the molecule, and a non-linear molecule will have 3N — 6 vibrational
modes 8. The disparity between the two is due to linear molecules being unable to rotate
upon their axis. Water, for example, has three distinct vibrational modes; the symmetric
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and asymmetric O-H stretch [vs(O-H) and vsym(O-H) respectively] and the scissoring
mode [§(H-O-H)] . A methylene group (-CH2) of a CH2X> compound, where X can be
any other atom, is often an example used to show the variety of vibrational modes and is

overviewed in Figure 1.8.

Symmetrical Stretching Scissoring Wagging

W A

Asymmetrical Stretching Rocking Twisting

Figure 1.8. Common vibrational modes of chemical bonds characterised by the CH, group of
CHzX; compounds.

These molecular bond vibrations may occur in the ground energy state; however,
when a sample is irradiated with light this can occur at higher energy levels, and
consequently an alteration to the energy of the incidence photon occurs. This energy
alteration can occur due to several distinct interactions with the sample, as portrayed in
Figure 1.9. The incident light, at a defined energy intensity (lo), is partially absorbed
(1), reflected (Ir), and or transmitted (I7) through the sample 8. The absorption of
energy is fundamental to IR spectroscopy and is further discussed in the next section of

this chapter. The incident light can also be scattered; both elastically (Is) at the same
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energy level, or inelastically (lis) at an altered energy level. It is the latter of these
interactions that is the principle of Raman spectroscopy and is also discussed here. It is

important to note that energy conservation is applicable in this instance and thus lo= la +

I

Ir+ IT+ (Is+ hs).

SAMPLE

IRM

IOM‘”‘ 2% %'y

IIS

Figure 1.9. The interaction of light with a sample results in absorption (1a), reflectance (Ir),
transmission (I+), elastic scattering (Is), and inelastic scattering (lis) of the incident photon
beam (lo).

1.6.1 Fundamentals of Fourier Transform Infrared Spectroscopy

Infrared (IR) spectroscopy measures the energy absorbed by a given sample, and is
dependent upon the chemical bond vibrations resulting in a change in the dipole moment
of the molecule and absorption of a photon *°. Consequently, some molecules that do not
possess molecular dipoles will not be IR active, which is often the case in molecules that
exhibit symmetry. The absorbance of energy by a given chemical bond can be
proportional to its concentration and follows the principle of the Beer-Lambert Law, thus

allowing quantitative measurements using this approach %2, Instrumentation
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developments such as the Michelson interferometer and transformation algorithms have
allowed rapid acquisition of IR spectra. In the following section, the principles of
Fourier Transform (FT) IR spectroscopy are discussed; however, an in-depth review is
presented in Chapter 2 that covers this topic in greater detail >.

1.6.1.1 Instrumentation

A standard benchtop FTIR spectrometer is composed of several key components: an IR
light source, a Michelson interferometer, and a detector. The FT approach to acquiring
IR spectra is key to modern advancements in IR spectroscopy that allows the sampling
of multiple light wavelengths in one measurement. This process is reliant upon the
Michelson interferometer, a schematic of which is shown in Figure 1.10. In overview,
an interferometer is comprised of two mirrors, one fixed and one adjustable, as well as a
beam splitter. IR light is passed through this beamsplitter and focused upon both the
fixed and adjustable mirror. When these two waves reflect back towards the
beamsplitter, they interact, effectively cancelling each other out when at equivalent
pathlengths. As the adjustable mirror moves, the different pathlength results in two
waves of different phases that consequently interfere when recombined. This
measurement of intensity as a function of distance (of the adjustable mirror) and time
(mirror speed) is known as an interferogram °3. FT of this produces a typical IR spectrum
that is plotted as a function of frequency in wavenumbers against spectral absorbance

intensity %,

1.6.1.2 Light Sources

For FTIR spectroscopy, polychromatic light in the MIR region (4000 — 400 cm™) is
used, where biological samples are known to vibrate 3. For traditional benchtop
instruments, this IR source is often based upon electrical heating of a silicon carbide rod,
known as globar IR sources. There are, however, alternatives that provide light of greater
intensity than seen in the use of globar sources, such as the use of quantum cascade
lasers (QCLs), that are able to rapidly acquire spectra of superior noise quality by

sampling over discrete frequencies %%,
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Figure 1.10. A Michelson interferometer consisting of a fixed mirror, an adjustable mirror and
a beamsplitter, that work to focus IR light at different wavelengths onto the sample under
interrogation. Adapted from 7.

Synchrotron radiation (SR) is an alternative radiation source that is able to
produce light up to 1000 brighter than conventional IR sources %. Due to the superior
collimation of the IR light, it is possible to interrogate smaller area using apertures below
the standard 10 pum spatial resolution achieved with globar sources %%, As with
traditional spectrometers, the minimum sampling area is still limited by the diffraction of
light; however, SR is able to obtain spectra with increased spectral quality and intensity
allowing increased sensitivity to subtle biochemical changes 1.

Put simply, a synchrotron is a circular particle accelerator, specifically in the case

of FTIR spectroscopy, an electron accelerator. National synchrotron facilities such as the
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Diamond Light Source at the Rutherford Appleton Laboratory are available on a
proposal based process %2, An overview of this facility is provided in Figure 1.11.
Initially, electrons are released from an electron gun via thermoionic emission and then
accelerated using a linear accelerator (linac) which focuses the electron beam to high
fluxes 1%, These electrons are then further accelerated in the booster synchrotron using a
series of electromagnets that direct the beam until it approaches the speed of light, at
which point electrons are then released into the storage ring where light is emitted 04,
This light is emitted at a range of wavelengths across the electromagnetic spectrum and

is thus applicable in IR studies.

o Electron Gun

@Linac

© Booster Synchrotron
O Storage Ring

© Beamline

Figure 1.11. Schematic overview of the Diamond Light Source, at the Rutherford Appleton
Laboratory, Oxfordshire, UK. Electrons are emitted from the electron gun and accelerated in
the linear accelerator (Linac) and booster synchrotron until the particles are travelling to
around 3GeV. At this point they are released into the storage ring where light is then emitted
and directed to radiation specific beamlines and end stations. Obtained from the Diamond
Light Source Ltd.
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1.6.1.3 Sampling Modes

Commonly, FTIR spectrometers are coupled to microscope attachments that allow
sampling from defined microscopic areas of a sample at high resolution. In this FTIR
microspectroscopy approach, spectra can be obtained in two distinct sampling modes:

transmission and transflection 1%,

In transmission mode, the IR beam is passed through the sample and collected on
the other side by a condenser and passed onto the detector, which is able to monitor
alterations in the beam (Figure 1.12.A) %, For this approach to be efficient, the sample
needs to be supported by a IR transparent substrate such as barium fluoride (BaF) or
calcium fluoride (CaF2) . For transflection measurements, the IR beam is again passed
through the sample; however, the addition of an IR reflective slide is used to return the
beam to the objective, where it is then collected by the detector (Figure 1.12.B). One
benefit of this approach in comparison to transmission FTIR microspectroscopy is that
reflective slides such as low-E have significantly lower cost implications, compared to
high grade substrates required for transmission measurements. On the other hand, there
is controversy in the field regarding the reproducibility of spectra obtained in
transflection mode, due to the presence of the electric field standing wave (EFSW)
artefacts 198110 Ultimately with both transmission and transflection measurements,
sample thickness plays a substantial role in the resultant IR spectra, with a maximum
thickness limit applicable for both modes as well as a minimum required thickness for

transflection measurements due to the effects of the EFSW 3.

Due to the strong dipole present in the water molecule, H20 is highly IR active;
for this reason, samples that contain water are often swamped by absorption of this
fundamental molecule. Consequently, samples obtained in transmission and
transflectance measurements are largely limited to fixed tissues that have been
dehydrated 1. Chemical fixative techniques such as formalin or ethanol fixation are

known to have significant impacts on IR spectra and thus limit spectral interpretation 12,

Attenuated total reflectance (ATR)-FTIR is one approach that has been shown to
minimise the presence of water absorbance within IR spectra 114, Due to the reduced
pathlength of the interrogative beam, the issues of water interference are reduced, which
minimises sample preparation times 114, Rather than reliant upon a microscope optics,

ATR-FTIR uses an internal reflection element (IRE) of a highly refractive material such
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as diamond, zinc selenide, or germanium. Total internal reflectance (TIR) can occur
within these prisms when IR is shone above a defined angle, known as the critical angle
115 The consequence of this is either a single, or multiple reflections, at the sample side
of the crystal, where an evanescent wave is produced. Thus when a sample is placed into
contact with this IRE, it is interrogated with the evanescent wave 4. As with the basic
principles of IR spectroscopy, alterations to the energy of this beam as a consequence of

vibrational of chemical bonds are detected using this approach.

One important consideration is the penetration depth (Dp) of the evanescent
wave, which is dependent upon the angle of incidence (), and the diffractive index of
the IRE and the sample '¢. Consequently, the optical thickness of the sample must be

considered, or a reflective substrate should be used.
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Figure 1.12. Schematic of the three primary sampling modes in FTIR spectroscopy; (A)
Transmission FTIR; (B) Transflection FTIR and (C) attenuated total reflectance (ATR)-FTIR.
The net direction of the IR light is shown in each example as a thickened red line, although it
is important to note that light will be shone from a variety of angles in the case of A and B.
The angle of incidence in in ATR (©), is fixed and is dependent upon the internal reflection
element (IRE) of use. The depth of penetration (D) is shown in each approach. These images
are based upon the works of 3109116
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1.6.1.4 Detector

Traditional benchtop FTIR spectrometers utilise single element detectors that obtain
spectral information on a point-by-point basis %’. At ambient temperatures, deuterated
triglycine sulphate (DTGS) detectors are often used due to their ease of use and
respectable spectral signal and sensitivity. However, liquid N cooled mercury cadmium
telluride (MCT) detectors are more favourable for obtaining superior spectral quality, as
using this photovoltaic approach yields is more sensitive to incident photons 1%,

In regards to spectral acquisition, the use of these detectors enables spectral
measurements to be obtained from a single area, referred to as point spectra approach,
but also allows for spectral mapping, where spectra are obtained in a point-by-point
manner across a sample to then produce an image map *’. Using a point mapping
approach, a spectral data cube is produced where the absorbance of a sample can be
mapped with regards to its spectral information. Although highly informative and well
implemented in the field of spectral histopathology, this approach is limited by
acquisition times due to the limitations of the detector 118119,

The development of array detectors, such a focal plane array (FPA), have
improved these acquisition times by allowing simultaneous measurements of spectra
from defined points across a sample *2°. An array is split into individual pixel areas
which can be as low as 0.54 x 0.54 um, providing extremely high spatial resolution by
oversampling 3. This enhanced spatial resolution can often come at the price of reduced

signal to noise ratio (SNR) in comparison to point approaches.

1.6.2 Fundamentals of Raman Spectroscopy

For an in-depth overview of Raman spectroscopy of biological samples, please see
Chapter 3 in which a recently published article will encompass instrumental, sample
and acquisition parameters of this technique. A brief overview of the technique will be

provided here, also comparing Raman with the IR technique.

First described by C. V. Raman and K. S. Krishnan in 1928, inelastic or Raman
scattering, occurs when the scattered light is returned at an altered energy to the original
beam 21, In comparison to its counterpart elastic (or Rayleigh) scattering, the Raman
effect has a markedly lower incidence rate, with as few as 1 in 108 photons undergoing

Raman scattering.
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Figure 1.7 illustrates the Raman scattering effect and its two forms: Stokes and
Anti-Stokes scattering. Stokes scattering occurs when the material exposed to radiation
Is in the ground energy state, and upon interaction with a chemical bond, is promoted to
a higher energy level 22, The opposite is true for Anti-Stokes Raman scattering, as the
material is already at an elevated energy level and returns to a lower energy level. The
probability of Anti-Stokes shift is decidedly lower than its counterpart due to the
increased likelihood that a material will be in its ground state at room temperature 23,
For this reason, the majority of benchtop Raman spectrometers measure Stokes
scattering, although coherent Anti-Stokes Raman spectroscopy (CARS) adaptations have

resulted in increased signal strength and sensitivity 124,

Due to the inherently low probability of the Raman effect, Raman spectroscopy
is a relatively weak signal and can be often enveloped by fluorescence contributions 2°,
A number of additional developments in the field of Raman spectroscopy have helped to
overcome such issues, such as surface-enhanced Raman spectroscopy (SERS) and

stimulated Raman spectroscopy (SRS) 26127,

In in the case of vibrational spectroscopy, Raman scattering occurs as a
consequence of interaction with chemical bonds which have inherent polarisability 28,
For a molecule to be considered polarisable, the electron cloud surrounding a molecule
can be distorted. Thus, a Raman active molecule will exhibit a change in the
polarisability during a molecular vibration 1°. Molecules with a strong dipole are often
more difficult to polarise and so Raman spectroscopy can be considered complementary
to IR spectroscopy, as not all polarisable molecules display changes in their dipole

moment and vice versa 1%,

An example of this in water; this is a highly polar molecule and consequently
demonstrates strong absorption in the IR . In contrast, the strong polarity of this
molecule means that an incoming photon is unable to alter the electron field of these
bonds, and subsequently Raman spectroscopy is relatively insensitive to water

contributions 123,

The complementary nature of IR and Raman spectroscopy is depicted in Figure
1.13 where spectra obtained from the same sample are compared. Processed spectra
obtained from a Solanum lycopersicum leaf are displayed and clear differences in the

relative spectra can be seen. The spectra are visibly distinct, with IR portraying broader
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spectral features in comparison to the Raman spectrum. The broad peak between 3600 —
3000 cm™ in the IR, is indicative of the vsym(O-H) bond of water, which is not apparent
in Raman spectra. This particular IR spectrum was obtained using ATR-FTIR
spectroscopy and thus signal from a water containing sample was possible.

Similarly to IR spectroscopy, Raman spectra can be obtained in a point spectrum,
point mapping and global imaging scale and thus allows imaging of samples to a high
spectral resolution (diffraction limited). Furthermore, considerations to substrate choice
must be made prior to spectral acquisition, as Raman active substrates will affect the
spectral output of the approach. CaF», quartz and metal-coated slides are considered

optimum, although the use of novel substrates such as aluminium foil has been shown
131-133
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Figure 1.13. Typical infrared and Raman spectra of live plant leaf of the Solanum lycopersicum,
common tomato plant.
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1.6.2.1 Instrumentation

There are a number of instrumentation options in a typical Raman spectrometer, the
majority of which are covered in detail in Chapter 3. As in IR spectroscopy, Raman can
be coupled to a microscope for spatial spectral measurements. A schematic overview of
a standard Raman microspectrometer can be seen in Figure 1.14. Unless otherwise
stated, spontaneous Raman microspectrometry will be discussed rather than alternative

spectrometer approaches.

A typical Raman microspectrometer is composed of an excitation source, a
microscope with corresponding objectives, Rayleigh filters, a monochromator and a
detector. Initially light of a defined light wavelength is focused upon the sample where
vibration of polarisable bonds occurs which induces Raman scattering. In contrast to IR
spectroscopy, Raman spectroscopy employs monochromatic light to interrogate samples
and a range of wavelength frequencies can be used. Lasers are often in the visible region
(wavelengths between 390 — 740 nm), although lasers from across the mid ultraviolet
(UV; 200 nm) to the NIR (1084 nm) can be used. In this thesis, Raman spectroscopy will
be described in regards to NIR Raman analysis using a 785 nm laser. The laser excitation
wavelength has a direct effect on spectral dispersion and spatial resolution of the system

as well as the overall spectral quality from a given sample 126:134,

Rayleigh Filters Focuging Mirror
EXCITATION
SOURCE

Beam Expander

Grating

Sample I

DETECTOR

Focusing Mirror

Microscope

Figure 1.14. Generalised overview of a spontaneous Raman microspectrometer. Obtained
from?
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Upon interaction with the sample, both elastic and inelastically scattered light is
passed through the spectrometer. As elastic scattering is a high probability event, this
would overpower the underlying Raman scattering of interest and is therefore removed
by Rayleigh filters. From this point, only Raman scattered light is passed through a
monochromator (or spectrometer), where light is separated into its different wavelengths
and focused upon the detector *°. A number of detector options are available, although

charge coupled device (CCD) detectors are commonly used in benchtop applications 27,

1.6.3 Spectral Pre-processing

The spectra obtained from vibrational spectroscopic measurements can infer a wealth of
biochemical information from a biological sample and thus allows comparative studies
between sample classes. However, this spectrum not only contains the biological
information of interest, but also contains information about the biological replicates,
substrate and background interferences, as well as instrument and environment
differences 3. These confounding factors in IR and Raman spectra should be minimised
through optimum sample preparation, spectral acquisition as well as during pre-

processing.

The following sections will provide a brief insight into the core pre-processing steps,
with given examples. However, the reader is directed to the following articles for more

in-depth discussion 37-13°,

1.6.3.1 Baseline Correction

Figure 1.15 shows raw IR and Raman spectra that have been cut to their relative
fingerprint regions. This region is where the majority of biological molecules are known
to vibrate and thus are often the target for spectroscopic studies 1°. In IR studies, the
region between 1800 — 900 cm™ is often used, due to detector limitations, whereas the
Raman spectral fingerprint region is slightly more variable, but falls within the 1800 —

400 cm™* region due to more sensitive detectors 141143,
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Figure 1.15. Examples of unprocessed IR (top)
and Raman spectra in their relative fingerprint
regions displaying discrepant baselines.

For IR spectra, the main
concern with raw spectral information
is the oscillating baseline that occurs
due to the effects of light scattering
144 Rayleigh or Mie scattering is
observed when light of a given
intensity interacts with a sample, a
relationship that was previously
shown in Figure 1.9. As IR
spectroscopy is concerned with I, the
absorption of photons at the sample,
this scattering effect is detrimental to
the overall IR spectra, and can be
visualised as alterations to the spectral
baseline. In this particular case, the
start and end point of the spectrum are
on different baselines and therefore
values of absorbance are not

comparable across the spectrum.

Raman spectra can also be affected
by variable baselines, largely

associated with substrate interaction and autofluorescence within the sample; the latter of

which is typified in Figure 1.15. In this example, the extremely sloped baseline is

indicative of intrinsic fluorescence within plant tissue, as well as background scattering

145, As a consequence, spectral features are difficult to determine and are again

incomparable.

For this reason, baseline corrections are routinely applied to spectra to account

for these spectral artefacts. A number of correction algorithms are available, such as

polynomial, rubberband, and differentiation, applications of which are shown in Figure

1.16. In the case of Raman spectra, polynomial baseline correction is favourable as the

baseline is often highly variable *8. This approach assumes the mathematical equation of

the baseline by selecting n points along the spectrum a fitted with a spline, that is then

subtracted from the original spectrum %6, The rubberband baseline correction works by
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determining convex areas of spectral features, indicative of the baseline **’. As Raman
spectra of biological samples often contain more Raman bands, this baseline
approximation is often inappropriate and is therefore principally implemented in IR

spectral processing.
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Figure 1.16. The application of baseline corrections on Raman (A) and IR (B, C, and D) spectra.
(A) Shows a polynomial correction; (B) a rubberband correction; (C) first order differentiation
and (D) a second order differentiation.
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Derivative spectra exhibit flattened
baselines in both IR and Raman spectra,
although at the cost of SNR (Figure 1.17).
For first-order derivatives, the spectral
intensity at each wavenumber is
differentiated so that the peak centroid
becomes zero, essentially splitting the
original spectral features. A second-order
derivative, is a repeat of the aforementioned
process, with the subsequent spectral
regions relating back to the original
spectrum 148, The resultant derivate spectra
often contain more spectral features due to
the deconvolution of the original bands, as
shown in Figure 1.16 C and D. This is
useful for interpretation of IR data where
the biological spectrum is often composed
of a handful of IR bands; however, can
often over complicate a Raman spectrum
where deconvolution is not necessary.
Band-specific deconvolution is often more
appropriate for Raman spectra, if
deconvolution and not baseline correction is

the ultimate goal 4°.

1.6.3.2 Normalisation

A- Baseline Corrected

Absorbance (a.u.)

B - Vector Normalised

Absorbance (a.u.)

C - Amide T Normalised

Absorbance (a.u.)

1700 1500 1300 1100 900
i
Wavenumber (cm )

Figure 1.17. The effects of normalisation on
baseline correction IR spectra derived from three
plants species; tomato (red), barley (blue) and
Commelina (green).

To account for differences in sample thickness, a normalisation step is usually conducted

during pre-processing. The most widely implemented is that of vector normalisation,

that is best shown comparatively between classes (Figure 1.17 B). In this example,

leaves from three plant species, S. lycopersicum (tomato; red), Hordeum vulgare (barley;

blue) and Commelina communis (Commelina; green) are compared. Vector

normalisation works by calculating the average absorbance (or scattering) intensities, by
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first finding the sum of all the square values and then finding the square root of this
value. By scaling the spectra to this value, the sum of the squared standard deviation is
equivalent to one and thus all spectra are normalised against one another. In comparison
to other approaches, such as normalisation to the amide | peak, spectra are normalised
across the whole wavenumber region, preventing exaggerated differences at other parts

of the spectrum (Figure 1.17 C).

1.6.4 Multivariate Analysis

Extracting biological information from spectral datasets can be challenging due to the
sheer size and complexity of the data. Dependent upon the parameters of the
spectrometer such as spectral resolution, a single spectrum can be composed of
thousands of individual intensity values relating to individual wavenumbers 4. As the
size of the sample set increases, it is clear to see how rapidly the computational burden
can augment. For simple observations between spectra, such as comparisons of peak
intensities and shifts, this is a relatively unchallenging. Approaches such as this are
referred to as univariate, as they only take into consideration one variable, such as
wavenumber. However, by taking into consideration the whole spectral range and the
relationship between all points on the spectrum, greater detail can often be revealed and

this the basis of multivariate analysis *°.

1.6.4.1 Principal Component Analysis

One of the most robust multivariate techniques in spectral processing is principal
component analysis (PCA). The output of this approach, is a dataset with reduced
dimensionality whilst retaining the valuable variance within the dataset *°*. In theory, in
order to distinguish variance in a spectral dataset the correlation between each spectrum
at each specific wavenumber would need to be observed. However, due to the large
dimensionality of this dataset, this is not possible.

PCA extracts variance from the dataset by orthogonal transformation of the
dataset, meaning that the data is viewed on an axis that best describes the variance in

correlation to the wavenumbers %2, Specifically, this is referred to as covariance, as it is
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the comparison of multiple dimensions within the spectral dataset. The covariance
matrix produced from the original dataset can be split into eigenvalues (the score matrix)
and eigenvectors (or principal components [PCs]). An eigenvector is a vector or view
through the original data, projected in multidimensional space. Eigenvalues correspond
to the exact variance explained by a given eigenvector. The first PC (PC1) explains the
most amount of variance in the dataset, determined from eigenvectors and its
corresponding eigenvalue; followed by PC2, which is orthogonal to the previous
eigenvector 13, As such, each PC accounts for less variance compared to the previous.
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Figure 1.18. An overview of principal component analysis observing the data transformation
(top panel) and the corresponding visual outputs. A comparison between tomato, barley and
Commelina is used to visualise the original data matrix, the PC1 vs PC2 scatterplot and the
loadings plot of PC1 accounting for wavenumber specific information regarding covariance in
the dataset. Adapted from %3

The importance of this approach is that the dataset is now reduced and is
representative of purely the variance in the dataset. As each spectrum is now composed
of a set number of PCs that account for a defined amount of variance within the dataset,

there are less data to handle in subsequent computational approaches. Usually around 10
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PCs is considered enough to encompass ~99% of the variance in the dataset; however,
this is highly dependent upon the dataset and should be explored thoroughly before
additional analysis 4.

PCA allows the variance within the dataset to be visualised in the form of either
scatter or loadings plots. By plotting PC values in 2- or 3-dimensions, the relationship
between samples can be deduced, with separation inferring samples heterogeneity and
clustering inferring sample homogeneity. Figure 1.18 depicts the same spectral dataset
presented in Figure 1.17 following PCA. In this example 99% of the variance in the
dataset in encompassed by the first 7 PCs, with PC1 accounting for a significant
proportion the variance. By plotting PC1 and PC2 values against each other separation
between the three plant species is clear. The subsequent loadings plot refers back to the
original wavenumber dimensions of the dataset and thus separation in the PC plot can be
associated with distinct spectral regions.

1.6.4.2 Linear Discriminant Analysis

PCA can be considered an unsupervised analysis technique and thus derives variance
from a dataset regardless of class information. In instances where variance between
spectral classes is not immediately evident, a supervised technique may be necessary to
help tease out underlying differences.
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Figure 1.19. A comparison between PCA and PCA-LDA scatterplots. Black arrows on the
PCA plot are indicative of the reduction in intra-class variance, whereas grey arrows depict the
maximisation of inter-class differences. Tomato (red), barley (blue) and Commelina (green) are
shown to separate more readily followina PCA-LDA.
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Linear discriminant analysis (LDA) is one such technique that takes into account
class labels and can enhance separation between classes. This supervised technique
minimises the intra-class differences, but maximises the inter-class differences, resulting
in a more separated dataset ***. When coupled to the covariance matrix derived from
PCA, this linear transformation improves the ability to distinguish between spectral
datasets is enhanced, allowing for better classification >*. As all PCs are fed into LDA, it
Is important to observe the data explained by each PC, as introduction of too few PCs
can result in the loss of significant spectral variance, whereas the addition of too many
PCs can result in noise introduction and overfitting. Figure 1.19 portrays the differences

between PCA and PCA-LDA scatterplots from the three plant species.

1.6.4.3 Classification Algorithms

Dependent upon the aim of spectral investigation, the use of classification algorithms
may be required to derive numerical values to define the diagnostic capabilities of the
approach to a given scenario °. This is particularly important for biomedical application
of IR and Raman spectroscopy, where often disease status is determined by spectral
analysis of a sample 1°°. In the case of cancer diagnostics using tissues or biofluids, it is
often necessary to obtain sensitivity and specificity values to assess the performance of
the approach 571%8,

There are a numerous classification approaches available some of which are well
characterised in the following articles 1471%°1%° Commonly implemented chemometric
approaches include Bayesian modelling, artificial neural network (ANN), random forest
(RF), hierarchical cluster analysis (HCA), and PC-discriminant function analysis (PC-
DFA). Key considerations in chemometric modelling, are the efficient training, testing
and validation of a model, as well as the sample size 13615161,

A linear discriminant classifier (LDC) is a relatively simple approach to
classification of spectra, that fits a classification model to the dataset to be trained,
without the need for optimisation of parameters within the model 3. This chemometric
approach is directly related to the outputs of PCA-LDA and thus can be considered
complementary. One caveat of this approach is that validation is essential to avoid

overfitting.
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A support vector machine (SVM) is a particularly well implemented
chemometric model applied to spectral datasets. In brief, an SVM uses a small section of
the dataset, termed support vectors, and searches for the optimal dimension for
separation between them, defined as the hyperplane. This approach is applicable to both
linear and non-linear datasets and is less prone to overfitting comparative to other

methods, although can present a computational burden through parameter optimisation
162

1.6.5 Vibrational Spectroscopy in Plant Research

The application of vibrational spectroscopy in biological materials has undoubtedly been
extended to include investigations using Planta from single compound quantification, to
in vivo applications 126183, However, it is a just statement that application in this field has
not been exploited to the extent of biomedical applications, which are already being

implemented in real-world environments and clinical translation 164165,

1.6.5.1 Applications of FTIR Spectroscopy

Between the two techniques, FTIR spectroscopy has been more widely implemented in
plant research in comparison to Raman spectroscopy. Despite the issues associated with
water interference in IR absorption, the technique has still been able to infer valuable
molecular information from fixed tissues and plant specific substances 16167, The latter
of these applications is where FTIR of plant matter has been particularly prevalent, with
a number of applications for quantification of isolated plant metabolites 168170 Specific
tissues have also been investigated using this technique including the cell wall, the
cuticle layer of leaves and fruit 1"*-1"4, Discriminatory investigations have also been
conducted on fixed samples, such as for mutant screening, as well a wide range of

applications in the field of food analysis and adulteration >177,

The imaging capabilities of FTIR spectroscopy have also been utilised in plant
research, particularly in conjunction with SR. These studies have described the
molecular structure of plant tissues and allowed the visualisation of chemical

distributions 178-183
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The development of ATR-FTIR has significantly benefitted plant research as
spectra can be acquired from aqueous samples, allowing a wider range of applications.
Similarly to traditional FTIR applications, ATR-FTIR has been used to interrogate fixed

samples, particularly to characterise cell wall structure and content 184-186,

However, it is movement towards in vivo measurements of plant systems using
ATR-FTIR that fully-exploits the attributes of ATR-FTIR. In situ measurements have
been readily obtained from leaves and petals, reflecting the capability to sample from
water containing, fresh samples whilst still being able to derive biological information
187 Recently, ATR-FTIR imaging has also been exploited to image plant tissue in situ
presenting a significant advancement in the field 881%,_ |t is clear from the literature that
there remains a shortfall of in vivo spectral investigations using FTIR spectroscopy and

its derivatives.

1.6.5.2 Applications of Raman Spectroscopy

Unlike IR that is limited by water interference, Raman is subject to competition with
fluorescence, which is intrinsically high in the majority of plant tissues '°. As such the
application of Raman spectroscopy in plant research has been almost solely limited to

isolated plant materials and tissues that do not possess fluorophore components 14,

Similarly to FTIR spectroscopy, Raman has also been used to investigate
valuable plant substances and cell wall architecture 1°8, The imaging or mapping
capabilities of Raman have also been well implemented, with a number of wood based
studies having been presented %2, The work of Gierlinger has particularly revealed the

potential applications of Raman-based imaging investigations 191193195

A number of instrumental adaptations to the conventional spontaneous Raman
approach have allowed spectra to be derived without contributions from fluorescence.
With FT-Raman spectroscopy, SRS and SERS the influence of fluorescence is
minimised and thus spectral measurements can be derived %1%, However, the
application of Raman spectroscopy for in vivo plant measurements are again not fully

exploited, highlighting the need for further development in this area.
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IR spectroscopy is an excellent method for biological analyses. It enables the nonperturbative, label-free extraction of biochemical
information and images toward diagnosis and the assessment of cell functionality. Although not strictly microscopy in the
conventional sense, it allows the construction of images of tissue or cell architecture by the passing of spectral data through a variety
of computational algorithms. Because such images are constructed from fingerprint spectra, the notion is that they can be an objective
reflection of the underlying health status of the analyzed sample. One of the major difficulties in the field has been determining a
consensus on spectral pre-processing and data analysis. This manuscript brings together as coauthors some of the leaders in this field
to allow the standardization of methods and procedures for adapting a multistage approach to a methodology that can be applied to

a variety of cell biological questions or used within a clinical setting for disease screening or diagnosis. We describe a protocol for
collecting IR spectra and images from biological samples (e.g., fixed cytology and tissue sections, live cells or biofluids) that assesses
the instrumental options available, appropriate sample preparation, different sampling modes as well as important advances in
spectral data acquisition. After acquisition, data processing consists of a sequence of steps including quality control, spectral
pre-processing, feature extraction and classification of the supervised or unsupervised type. A typical experiment can be completed
and analyzed within hours. Example results are presented on the use of IR spectra combined with multivariate data processing.

INTRODUCTION

The use of Fourier transform IR (FTIR) spectroscopic techniques
for the nondestructive analysis of biological specimens is a rapidly
expanding research area, with much focus on its utility in
cytological and histological diagnosis through the generation
of spectral images!2. Molecular bonds with an electric dipole
moment that can change by atomic displacement owing to natu-
ral vibrations are IR active. These vibrational modes are quan-
titatively measurable by IR spectroscopy?, providing a unique,
label-free tool for studying molecular composition and dynamics
without perturbing the sample. For interrogating biological mate-
rials, the most important spectral regions measured are typically
the fingerprint region (600-1,450 cm ') and the amide I and
amide II (amide I/II) region (1,500-1,700 cm~!). The higher-
wavenumber region (2,550-3,500 cm !) is associated with
stretching vibrations such as S-I1, C-I1, N-I and O-II, whereas
the lower-wavenumber regions typically correspond to bend-
ing and carbon skeleton fingerprint vibrations*. Together, these
regions comprise a biochemical fingerprint of the structure and
function of interrogated cellular specimens. A typical biological
IR spectrum with molecular assignments is shown in Figure 1.

IR microspectroscopy
Although the spectral domain allows chemical identification,
the combination with microscopy (microspectroscopy) permits

the examination of complex tissues and heterogeneous samples®.
Detection by microscopy (see schematic of instrumentation in
Fig. 2) may be accomplished by raster-scanning a point illumi-
nated on the sample or by using wide-field illumination and focal
plane array (FPA) or linear array detectors®. At present, wide-field
scanning of a sample is possible in seconds, providing tens of
thousands of spectra. A variety of choices are available for the IR
source, including globar?, synchrotron®-12 and quantum-cascade
lasers (QCLs)!13, as well as for the detector (2D FPA, linear array
or single element)!4. The three major IR-spectroscopic sampling
modes (Fig. 2b) are transmission, transflection and attenuated
total reflection (ATR). Each mode offers convenience for some
samples and challenges for others. In transflection mode, for
illustration, the sample is placed on an inexpensive IR-reflecting
surface (such as that found on low-emissivity (Low-E) slides)
and measurements are generated by a beam passing through the
sample and reflecting back from the substrate (i.e., the reflective
surface) through the sample. As is clear from both theoretical
and experimental studies!®16, the recorded spectral intensities
depend on both sample morphology and chemistry. Hence, care
should be taken on substrate choice!718. Recently, topographi-
cal features of the sample and its effects have been shown to be
minimized by inputting second derivative spectra in the clas-
sification model; better segregation of normal versus various
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Figure 1 | Typical biological spectrum showing biomolecular peak
assignments from 3,000-800 cm -1, where v = stretching vibrations,

8 = bending vibrations, s = symmetric vibrations and as = asymmetric
vibrations. The spectrum is a transmission-type micro-spectrum from

a human breast carcinoma (ductal carcinoma in situ). The sample was
cryosectioned (8 um thick) and mounted on BaF, slides (1 mm thick)
before IR microspectroscopy. Equipment: Bruker IR scope II, circular
diameter of aperture ~60 um; a.u., arbitrary units.

disease categories facilitates potential spectral histopathological
diagnosis!®. Research by Cao et al.20 has demonstrated that if this
pre-processing data analysis approach is performed (e.g., after
both transflection and transmission measurements on dried
cellular monolayers), the resulting classification is the same.
This example suggests that irrespective of sampling geometry,
mathematical tools can be applied to minimize confounding
effects and to interpret their influence. As such, spectral process-
ing may determine the diagnostic efficacy of spectral processing,
not only from a biological perspective but also from the ability
to control optical or distorting influences.

FTIR imaging provides spatially resolved information based on
chemically specific IR spectra in the form of an information-rich
image of the tissue or cell type being interrogated2!-23. Further
multivariate data analysis allows potential diagnostic markers to
be elucidated, thus providing a fast and label-free technology to
be used alongside conventional techniques such as histology?22.
At present?4, rapid imaging permits imaging in hours for a whole-
organ cross-section, such as that from the prostate; this not only
allows one to objectively visualize pathology in situ but the afore-
mentioned classification models could also allow one to grade
disease on the basis of the cateogries into which spectra might be

FPA detector
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detector

IR source
sty

Transmission Transflection
Infrared tht ; ;
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aligned. One excellent interpretation application of IR imaging
datais to consider it as a metabolomic tool that allows the in situ,
nondestructive analysis of biological specimens, (e.g., determin-
ing the glycogen levels in cervical cytology)?>.

Data can be recorded from a variety of samples, ranging from
live cells to formalin-fixed, paraffin-embedded (FFPE) archival
tissue typical of a pathology specimen. IR spectra representing
distinguishing fingerprints of specific cell types (e.g., stem cells
versus transit-amplifying cells versus terminally differentiated
cells) within a defined tissue architecture (e.g., crypts of the
gastrointestinal tract and cornea)®2¢ are now easily recorded.
Consequently, spectral analyses delineate cellular hierarchy on the
basis of protein, lipid and carbohydrate composition and/or DNA
conformational changes?”. For biomedical analyses, the major goal
today is to derive an image of tissue architecture expressing the
underlying biochemistry in a label-free fashion28, a development
that can considerably extend our diagnostic potential beyond
present capabilities. For example, to distinguish cells committed
toward a pathological process (e.g., transformation) that conven-
tional methods (e.g., visual scoring) might identify as normal. The
screening of cervical cytology specimens to distinguish normal
versus low-grade versus high-grade cells#2%, to grade primary neo-
plasia30, or to determine whether tissue margins and potential
metastatic sites are tumor free31:32 are examples of this concept
across many types of tissues. It is this bridge from the technology
and potential of IR spectroscopy and imaging to biological, mainly
clinical, applications that is the subject of this protocol (Fig. 3).

IR spectroscopy in cancer classification and imaging
By using IR spectroscopy either as an imaging tool or by clas-
sifying spectral categories, it has been possible to distinguish

Figure 2 | The instrumentation underlying the main forms of IR
spectroscopic sampling. (a) Schematic of modern FTIR-imaging
spectrometer. Reproduced with permission from ref. 6. (b) Schematic
representation of the three main sampling modes for FTIR spectroscopy.
Reprinted from Trends Biotechnol, 31, Dorling, K.M. and M.J. Baker,
Highlighting attenuated total reflection Fourier transform infrared
spectroscopy for rapid serum analysis, 327-328, Copyright 2013 with
permission from Elsevier (ref. 132).
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Figure 3 | FTIR spectroscopy work flow for
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as samples are obtained rapidly and relatively noninvasively, and
minimal sample preparation is required. By using such methods, a
spectral fingerprint of the biofluid can be obtained, which allows
the subsequent classification of spectra from different categories
with computational methods and possibly the identification of
biomarkers#!-44.

FTIR imaging of tissue and cells

Imaging of live cells is possible using both globar and synchro-
tron-based light sources, with the latter permitting greater
lateral spatial resolution and data quality owing to higher
flux2145-47_Diffraction-limited resolution with ATR-FTIR imag-
ing can also be advantageous as it allows analysis of live cells
in aqueous systems2h48. In addition, the spatial resolution of
the image can be increased by incorporating optics with a high
refractive index2!34,

We describe a protocol that has three components: (i) speci-
men preparation and removal of possible sample contaminants;
(ii) acquisition of spectra with a sufficiently high signal-to-noise
ratio (SNR); and (iii) data processing for classification and imag-
ing. As the precise steps in acquisition of spectra and data process-
ing are, respectively, dependent on the instrument and software
available, this protocol covers (ii) and (iii) to deliver a general
understanding of the steps involved. Supplementary Methods 14
correspond to four different examples of standard operating pro-
cedures (with troubleshooting) specific to common instruments
and acquisition/analysis software. Together, this protocol and the
material contained in Supplementary Methods 1-4 are designed
to build researchers’ confidence in conducting their studies using
their own instrumentation and computational settings.

Application of this protocol to other research areas
The application of this protocol is not limited to the biomedical
field. IR spectroscopy has previously been used in the fields of

environmental toxicology#9-52, consumer safety3>4, taxonomy3>-37,
and in the food industry38; a non-instrument— and non-software—
specific protocol for imaging and classification could be of
considerable use to these areas of research.

Experimental design: instrumental options

The main steps required to analyze a sample of interest are sam-
ple preparation, instrumental setting, acquisition of spectra and
data processing (Fig. 4). Before instrumental options are cho-
sen, it is important for the user to understand the expectations
from the intended experiment. These include the desired spectral
and spatial resolution and type of study (e.g., diagnostic versus
exploratory). In addition, proper consideration must be given to
potential sample restrictions such as acquiring appropriate sam-
ple thickness for respective modes.

Sampling modes. Figure 2b shows a schematic representation of
each sampling mode and details of each can be seen in Table 1;
however, it is important to note that different manufacturer
systems may vary slightly in some parameters, such as sampling
apertures. Transmission and transflection sampling modes have
been applied to a variety of biological specimens that can be sec-
tioned into a thin layer allowing for accurate spectral data acqui-
sition%. ATR-FTIR mode differs in that the IR beam is directed
through an internal reflection element (IRE) with a high refrac-
tive index (e.g., diamond, zinc selenide, germanium or silicon)¢0.
The evanescent wave extends beyond the IRE surface penetrating
the sample, which must be in direct contact with the IRE. The
penetration depth of this wave typically ranges from 1 to 2 um
within the 1,800-900 cm ! region, but it should be remembered
that there is still ~5% intensity at a depth of 3 pm (refs. 18,61,62).
It has been shown that samples with thicknesses of <2 um may
give rise to spectral artifacts with IR-reflective substrates such as
MirrIR Low-E slides (Kevley Technologies); therefore, when these
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Figure 4 | Visual effect of different pre-processing steps on a set of FTIR spectra. Two common pre-processing sequences are rubber band baseline correction
followed by normalization to the amide I/II peak and first or second differentiation followed by vector normalization. Rubber band baseline correction
subtracts a rubber band, which is stretched ‘bottom-up’ at each spectrum, eliminating slopes. Amide I/II normalization forces all spectra to have the same
absorbance intensity at the amide I/II peak. Differentiation (Savitzki-Golay (SG) method) has the advantage of eliminating slopes while also resolving
overlapped bands, but has the drawback of altering the shape of the spectra (the y axis unit is no longer a.u. (arbitrary units), but ‘a.u. per wavenumber’
(first differentiation) or ‘a.u. per wavenumber squared’ (second differentiation)) and enhancing noise (note how second-differentiated spectra are visibly
more noisy). Vector normalization is typically applied after differentiation. This normalization technigue does not require a reference peak as amide I/11

normalization does.

substrates are used with ATR-FTIR spectroscopy, a thicker sample
is recommended!8.

A magnification-limited digital camera may be used for vis-
unalization in order to guide manual navigation across a given
sample so as to locate a region of interest and help identify basic
microscopic features such as separation between cancer cells and
stromal elements. An alternative setup for ATR involves placing
the sample directly onto the IRE aperture of the ATR accessory.
This is particularly useful for biofluid analysis as it bypasses any
potential contributions from any slide substrate that the sample
could be placed on (Supplementary Method 1). This method-
ology may also help to reduce experimentation time owing to
reduced sample preparation.

Light sources. In IR microspectroscopy, the user has the
option of several light sources: a conventional thermal (glo-
bar) or synchrotron radiation source for FTIR interfero-
metric measurements or alternative sources such as QCLs6?
and filters®4, which obviate the use of interferometers.
The majority of benchtop instruments use conventional thermal
light sources often in conjunction with single-element detectors.
A globar source is composed of a silicon carbide rod that gener-
ates IR radiation, and can typically generate a collimated mean of
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~1,000 um in diameter, providing a uniformly illuminated aperture
of 20100 pm of the diameter at the sample®S. It has been shown
that single-cell investigations can be conducted using standard
globar IR sources to derive subcellular information®6.

A synchrotron radiation light source is ~100-1,000-fold
brighter than current benchtop thermal ones, but it illuminates
a much smaller area. Thus, a synchrotron source has a natural
sampling aperture of 10-20 um in diameter with a high SNR67.
It is therefore possible to achieve single-cell and large organelle
(e.g., nucleus) lateral spatial resolution with these modern
sources, allowing subcellular molecular distribution analysis®8:69.
There are ~50 synchrotron facilities worldwide, all easily acces-
sible for routine use as they operate on a call-for-projects basis?0.
Alternatively, other available sources that may be advantageous
to individual studies include optic parametric oscillator (OPO)
lasers, QCLs and free-electron lasers (FELs); traditionally they
have been primarily used for gas sensing because of intrinsically
narrow linewidths71,72; however, modern QCLs can cover much
broader wavelength regions (hundreds of cm=1).

Mapping versus imaging. Broadly speaking, detectors can be

separated into single-element, linear array and FPA detectors;
the detector choice will be influenced by the requirement being
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TABLE 1 | FTIR spectroscopy modes used for the interrogation of cellular materials.
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Typical
Suitable interrogation
Mode samples Substrate area (jum) Pros Cons
ATR Tissues, Calcium 250 x 250 High SNR Can be destructive because of
cells and or barium Reduced scattering pressure
biofluids fluoride, zinc Analysis of large target area Air between sample and IRE will
lenid
:/Iiri?lli % Better for agueous samples with affect spectra
i Minimum sample thickness is
Loiw:E-coated appropriate substrate i 3P i
glass Highest spatial resolution (because q e M )
of the refractive index n, which is 3.5 Interactions of samples with
or even 4 in case of Si or Ge) the IRE leading to structural
alterations (e.g., secondary
protein structure)
Transmission ~ Tissues, Calcium 5x5to High spatial resolution Lower SNR than ATR
individual or barium 150 x 150 Nondestructive of prepared sample ~ Maximum sample thickness is
cells, cellular fluoride and Automated stage allows for spec- required
compc.menf:s zinc selenide tral acquisition at several different Sample thickness should be
and biofluids locations of choice with little user twice as large as for transflection
interaction to achieve the same absorbance
Longer sample and machine
preparation is required
Transflection  Tissues, Calcium 5x5to High spatial resolution May give rise to standing wave
individual or barium 150 x 150 Nondestructive of prepared sample artifacts
cells, cellular ﬂ.uon'de ar?d Automated stage allows for spec- Lower SNR than ATR
compt?nenFs zinc selenide tral acquisition at several different Maximum sample thickness is
and biofluids

locations of choice with little user
interaction

required

Approximate sample thickness can be
1-4 pum, whereas for transmission it
needs to be 2-8 um

Longer sample and machine
preparation is required
Scattering effects such as
RMieSc will be much more
intense in transflection type
measurements

imaging (i.e., FPA) or point spectra with high SNR (i.e., single
element). The use of a single-element detector allows for indi-
vidual point spectra to be obtained across a whole sample (for
instance, useful when analyzing biofluids); a particular application
has been to derive single-cell-specific fingerprint spectra across
a heterogeneous tissue section. Acquiring large data sets contain-
ing point spectra is a method regularly used in biomedical and
environmental studies coupled with multivariate data analysis#0.73.
Although time consuming, point spectra often have a high SNR,
resulting in high-quality spectra, as spatial resolution is limited
by IR apertures?. Maps can be generated when point spectra are
collected in a stepwise manner in a grid from a target area, which
is useful for comparing the different cell types from that particu-
lar area, e.g., gastrointestinal crypt?3. Spectral maps take a much
longer time than individual point spectra and, thus, in order to
make large maps feasible to run, the acquisition time for each point
can be reduced leading to a lower SNR. The absorbance intensity
ateach spectral point within the map becomes an individual pixel
in the resultant pseudocolor images, which can give details of how
different biomolecules vary across the target area.

In contrast to aperture-based systems, non-aperture-based
instruments such as FPA and linear array detectors provide imaging
using spatially arranged detectors. Multielement detectors allow
for simultaneous spectral acquisition, which, combined with suit-
able optics, produce spectral images with good SNR and lateral
spatial resolution close to the diffraction limit7>. Measurements
using an FPA detector (typically 32 X 32, 64 X 64 or 128 x 128)
are rapid as such detectors allow for the acquisition of thou-
sands of spectra simultaneously?; for a typical methodology
see Supplementary Method 2. The acquired spectral data can
be used to generate pseudocolor images of the target area such
as shown in the characterization of prostate tissue’” and cervical
biopsy samples?8. The benefits of using a synchrotron radia-
tion light source with FPAs also mean that much smaller pixel
sizes can be used (e.g., 0.54 pm X 0.54 tm at some synchrotron
facilities) resulting in higher spatial-resolution images of the
target area’s.

ATR-FTIR spectroscopy coupled to an array detector can
allow for sample imaging down to diffraction-limited resolution
for the spectral range of interest’S. The spatial resolution of
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non-aperture-based techniques is determined by the optics cho-
sen, and it has been shown that a germanium optic is preferential,
although ZnSe and diamond crystals can also be used?. Although
transmission and transflection imaging have been widely imple-
mented in biological tissues, imaging in ATR mode is a versatile
option, because little sample preparation is required owing to
minimal sample-thickness restrictions, which thus means that it
has been implemented in biological fields such as pharmacology
and subcellular interrogation>%78:79,

Experimental design: sample preparation

Sample formats. The main sample formats for clinical IR spec-
troscopy are fixed cell and tissue samples, biofluids and live cells.
Spectroscopic approaches can be used to examine tissues of
human extraction (all require the appropriate ethical approval
before their use). The type of sample used greatly determines
which type of IR spectroscopy is appropriate and how it should
be prepared for analysis. Table 2 shows the main types of samples
and how they should be prepared for analysis.

Sample thickness. Sufficient thickness of material needs to be
placed onto the support matrix to allow a sufficiently large absorb-
ance intensity to be recorded. In transmission and transflection
modes, the specimen thickness needs to be adjusted appropriately:
if it is too thick, the detector response function will be nonlinear
so that Beer-Lambert’s law cannot be applied anymore. This has
serious consequences for subsequent quantitative and classifica-
tion analyses. In contrast, to achieve an adequate SNR and to
avoid interactions of the evanescent wave with the underlying
substrate, samples must also not be too thin. For example, when
using ATR-FTIR spectroscopy, it is ideal if the specimen is three-
or fourfold thicker than the penetration depth (that said, there
is no maximum thickness for ATR-FTIR, and samples that are
even a millimeter thick can be analyzed). This is pertinent for
internal reflection measurements, which are commonly used for
the disease diagnosis of biofluids; such samples can be naturally
thinner in composition (especially with regard to cerebrospinal
fluid (CSF), although this is not so much the case with blood
or serum/plasma; serum, for example, is a solution containing a
high protein concentration, ~80 mg ml~1). The effect of substrate
interference on spectra, especially in reference to transflection
measurements, has now been shown independently in the last
year by several groups17:1880_ Given this, we would urge extreme
caution regarding the use of Low-E slides with transflection meas-
urements; with ATR-FTIR, it is unlikely that there will be optical
effects associated with substrate.

Substrate choice. Proper consideration of the substrate (the slide
or matrix) upon which the sample will be placed and any prepara-
tion steps associated with this are essential in order to acquire the
best and most-reproducible spectra. For transmission measure-
ments, this needs to be an IR-transparent material such as BaF, or
CaF, (the latter, in particular, for live-cell IR spectroscopy), whereas
for reflection or transflection measurements an IR-reflective
substrate (e.g., Low-E slides) is required because glass alone
absorbs the radiation and has a spectral signature in the mid-IR
region®1:82 Previously, it had been recommended that biological
materials be placed on IR-reflective substrates. However, there
now appears to be a shift in the general consensus that suggests
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that transmission or ATR spectroscopy measurements are more
applicable to interrogation of biological material.

Microfluidic devices. Traditionally, aqueous sampling environ-
ments were unsuitable for IR spectroscopy because of the con-
tribution of water. Development of microfluidic devices and
processing to remove the water contribution has made it possible
to achieve real-time, live-cell monitoring with IR spectroscopy.
Nondestructive to cells, it better replicates physiological condi-
tions; no labeling is required and the resolution is such that single
cells can be studied®3. The nondestructive nature of these meth-
ods has allowed studies to look at samples over time (e.g., stem
cells in situ as they differentiate and chemical reactions in flow
systems have been monitoreds485.

The key challenge of IR spectroscopy using microfluidics is
associated with the materials’ transparency over the spectral
range to be studied, and especially when live-cell monitoring is
desirable. Many potential window materials are unsuitable on
the basis of their water solubility (e.g., KBr and NaCl), toxic-
ity toward the cells under observation (e.g., CdTe) or spectral
dispersion (e.g., ZnS and BaF,)%. A flow chamber is used that
combines IR transparency and robustness of diamond as window
material. Although manufacture is complicated, the windows
must be sufficiently thin (0.4-0.8 wm) to avoid multiple inter-
nal reflections®. CaF, is extensively used as a window material,
and a simple flow cell with inlet and outlet flow is constructed
by clamping two CaF, plates together. One of the plates is etched
to form a 10-pm well, designed for the IR observation of live
cells in aqueous media®>. A similar device has been used for
synchrotron IR spectroscopy of living cells using a surface
micro-etched silicon substrate®”. Further advances in the field
have led to the development of sandwich devices and entirely
polymeric devices.

Experimental design: spectral acquisition

Instrumental and operational settings to maximize spectral
quality. When acquiring spectra, it is important to maximize as
best as possible the SNR in order to produce high-quality spectral
data (Table 3). There are a number of noise-related and signal-
related parameters, with an effect on SNR, which can be altered
depending on the instrument mode being used (e.g., point mode
versus imaging)88-21. The instrumental and operational settings
will be specific to the user experimental setup; Table 1 compares
properties of different sampling modes for optimized spectral
acquisition. An initial noise-related parameter that can be altered
is the sampling aperture in point or mapping mode; this will
reduce the SNR when the aperture size is reduced®2. However, in
imaging mode there is no aperture. The interferometer mirror
velocity may also have an effect on SNR3. Weighting the inter-
ferogram with an apodization function will also contribute to a
reduction in SNR, as this smoothing effect can incorporate spec-
tral artifacts while one is attempting to optimize the information
contained®. In general, the square root of the number of co-
additions is proportional to the SNR, and therefore an increased
number will enhance the SNR%4.

IR spectroscopy has a spatial resolution that is limited by the
diffraction limit; hence, as the resolution approaches this value,
the SNR is reduced to a point where there is no further gain in
image quality®> A synchrotron radiation source (e.g., at the IR
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TABLE 2 | Sample types and preparation.
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Sample type

Preparation

Removal of contaminants

Sample mount

Considerations

Biofluids

FFPE tissue
samples

Biofluids such as blood, urine,
saliva and synovial fluid should be
collected as per hospital SOPs

Samples that are not immediately
used should be frozen and stored
at -80 °C

Samples should be thawed fully
before use

FFPE tissue should be de-waxed for
a minimum of 5 min in xylene and
three washes should be performed

Sample thickness should not exceed
8-12 pum (transmission, less for
transflection; see Table 1) in

order to avoid a nonlinear detector
response (at absorbance values >1.2
(for MCT) or >1.5 (for deuterated
triglycine sulfate)), to even total
absorption

Cryosectioned  Tissue must be thoroughly thawed

tissue
samples

before IR analysis

Once a sample is thawed, compo-
nents may start to degrade, so we
suggest imaging sections as soon as
possible after thawing and drying, in
a dark environment130

However, under dry conditions,
cryosections can be stored for
months without major problems
other than lipid oxidation, as seen
by the decrease of the ester carbonyl
bands (degrades within 2 weeks; this
can be avoided when samples are
stored in a N, atmosphere)

When using blood-based
biofluids such as serum
and plasma, spectra from
erythrocytes may mask
that of other biomolecules,
so they should be removed
if not being directly
investigated4!

Samples must be de-waxed
in order to probe the

full wavenumber range,

as paraffin is known to
have significant peaks at
~2,954 cm-1, 2,920 cm-1,
2,846 cm-1, 1,462 cm-1
and 1,373 cm-1, which

may mask solvent-resistant

methylene components of
native tissue128.129

Samples are then cleared
with acetone to remove
any final xylene
contamination

Another recent and
emerging alternative is
to model the paraffin
contribution and
numerically de-paraffinize
the sample. In this way,
the sample is not
affected by chemical
de-paraffinization, and
intact tissue biochemical
information is used for
spectral histology

Serial sections should be
carefully isolated from the
cryoblock to prevent OCT
compound contamination
of the final tissue slice

Biofluids may be placed
onto slides and dried, or
dried directly onto the
IRE4

De-waxed tissue should
be floated onto slides

Snap-frozen tissue
should be cut and
placed onto slides

Dry film analysis (where
the fluid is dried onto
the slide) often results in
large signals compared
with the wet biofluid,
but measurements may
be impeded by uneven
distribution

Only small sample
volumes are needed,
normally in the region of
a few nanoliters136

If using tissue for
imaging and extraction of
tissue cell type, sample
thickness is not just an
SNR issue. The thicker
the tissue, the greater
the chance of probing
heterogeneous layers and
possibly multiple cell
types, rendering cell type
signal less pure

Although snap-freezing
negates the use of
fixatives such as formalin
or the use of paraffin,

it may damage the
structural integrity

of the tissue

(continued)
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TABLE 2 | Sample types and preparation (continued).
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Sample type  Preparation Removal of contaminants Sample mount Considerations

Fixed cells Medium contaminants must be After formalin fixation, Cells can be grown onto  If grown on slides, cells
removed before cells are placed in cells should be washed in IR substrates that have  will typically be thin,
fixative such as ethanol or formalin HBSS before IR analysis to  been first sterilized in as they grow and stretch
For formalin fixation, cells should be remove residual phosphate  70% (vol/vol) ethanol,  over a 2D surface
washed twice in PBS before suspension  ions as growing directly onto  Cells fixed and then
in formalin for at least 30 min After ethanol fixation, the slides can preserve  placed onto slides may
Slides should be dipped three times  slides should be left to dry cell morphology be uneven in thickness,
in double-distilled water (this should for 24 h on the benchtop  They can also be grown  which may be resolved
not be extended beyond quick dips) ~ and 24 h in a desiccator in a 3D culture matrix,  using cytospinning,
as formalin fixation can be reversed S0 that all residual ethanol ~which can then be fixed ~which allows cells to be
in the presence of water®2 evaporates or frozen and sectioned; proportionally dispersed
For ethanol fixation, cells should be this may Prqvide t.he over the substrate
washed three times in ethanol most feahSth ENYITON=
(min. 70% (vol/vol)) before being ment in which cells can
left to stand in ethanol for at be studied
least 1 h

Live cells Cells that are to be analyzed in Cells in suspension must Spectra recorded The critical B-DNA

conformational marker
bands are enhanced in
the hydrated state?,
and thus can be used
to determine the
concentration of DNA
in simple cells?38.139

be washed with PBS to
remove residual medium or
trypsin

in an aqueous
environment show
minimal dispersion
because the refractive
index of aqueous
medium for the
background single-
beam spectrum closely
matches that of the
cell for the sample
spectrum4?

Therefore, cell
suspension can be
placed onto the IR
slides as microdroplets
Cells can be grown
directly onto a
detachable IRE such
as diamond for
ATR-FTIR analysis

Live cells can also be
analyzed in situ by
the use of microfluidic
devices?!

suspension should be detached from
the growth substrate using trypsin
and then stored at 4 °C to prevent
autolysis137

For ATR-FTIR measurements, cells
can be seeded and grown directly
onto the ATR IRE using a cell
chamber3? Single-cell micro-
spectroscopy is
inherently difficult
because of the strong
absorptivity of the water
molecule, which can
swamp the spectrum
especially when the
sample path length

is >10 pm (ref. 140)

A bright source of IR
photons is required to
achieve a good SNR
because the IR beam
must usually pass through
two IR transparent
windows, cell medium
and the hydrated cell,
causing attenuation of
the IR signal

Thus, most measurements
performed on single
living cells with an FTIR
microscope configuration
use a synchrotron

light source

enhanced SNR spectra when using apertures approaching the
diffraction limit; however, when using an FPA detector, this can-
not be exploited as the brightness is applied over a larger area. By

Environmental Imaging Facility (IRENI) at the Synchrotron
Radiation Centre (SRC)) in the mid-IR region is 1,000 times
brighter than a thermal globar source and thus may generate
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TABLE 3 | Typical conditions of the main variables affecting SNR in spectroscopy instruments.

Instrument options

FTIR ATR-FTIR
Single-element Single-element

Variable detector FPA detector FPA
Light source Globar Synchrotronb Globarc Synchrotrond Globare Globarf
Sampling aperture 15 x 15 to 5x5to 700 x 700 um 50 x 50 to 250-250 um 60 x 60 to 700 x

150 x 150 pm 20 x 20 um FOV 175 x 175 pm 700 pum
No. of co-additions 512 256 64 or 128 128 32 32
Spectral resolution 4or8cm-1 4or8cm-1 4or8cm-! 4or8cm-! 8 cm-1 4or8cm-1

Ref. 141. PRefs. 119,142. ‘Refs. 142,143. Refs. 76,144. *Refs. 145,146. "Patented by Agilent Technologies®?.

using multiple beams, such as at IRENI, the single-beam disad-
vantage when using an FPA may be overcome.

It is important to consider that an optimized and well-aligned
benchtop instrument is not considered to be inferior with
regard to SNR or image quality to a general synchrotron-based
machine®3. A number of options regarding the detector can also
have an effect on the SNR, such as the choice between a ther-
mal detector versus a quantum detector. A mercury cadmium
telluride (MCT) quantum detector usually provides a superior
SNR than, for example, a thermal detector such as a deuterated
triglycine sulfate detector®. An optimized cooling system in the
detector, such as thermoelectrical cooling, will also reduce the
dark current produced by the detector, which has been shown to
have a detrimental effect on SNR97:%8_ In addition, signal-related
parameters can affect the SNR; for instance, an increase in the
optical path length can reduce spectral quality, which has been
particularly important in the analysis of aqueous samples such
as biofluids?3. When producing spectral images with the help of
multielement detectors, such as an FPA, one must consider opti-
mizing the SNR. The authors point readers to the authoritative
reference on FTIR spectroscopy by Griffiths and De Haseth? for
theoretical and instrumental discussions; this book has supported
the authors since their undergraduate studies and continues to
support them today3.

Water vapor and instrument purging. The presence of water
vapor in the instrumentation and sample area can result in
reduced transmission of IR light, potentially obscuring impor-
tant spectral details even at low spectral resolutions often used
in biomedical IR spectroscopy. Water vapor interference can be
minimized by computational subtraction of a pure water vapor
spectrum from the sample spectrum®. The efficacy of this com-
pensation is limited and it is therefore considered crucial before
spectral acquisition to purge the instrumentation with dry air or
nitrogen and/or desiccants to remove any water vapor that may
contaminate spectra between 1,350 and 1,950 cm !, and between
3,600 and 3,900 cm ! (ref. 100). By doing so, ambient CO, is also
purged, thereby reducing its contribution to the spectra.

Acquisition of sample and background. Measurements of an FTIR
absorption spectrum involve collecting a ‘single-beam’ spectrum.

A background single-beam spectrum provides the source inten-
sity, as modified by the instrument; placing a sample in the
beam path and measuring the single beam again, theoretically,
provides just the additional effect of the sample absorbance.
A logarithm (to the base 10) of the ratio of these quantities pro-
vides the absorbance, which is directly related to concentration by
Beer’s law. With point spectra, a background spectrum is typically
retained for recording 5-10 sample spectra and with each different
sample to reduce the effects of constantly changing atmospheric
conditions. As spectral maps are composed of a large number
of point spectra acquired in a stepwise manner, it is necessary
to set up background scans to be taken at set intervals (e.g., at
the end of every row) to account for the atmospheric variation
over the extended acquisition time®. When acquiring spectral
images, background spectra should be acquired over a defined
time period, depending on the sample acquisition time.

Experimental design: data processing

Data processing is carried out in a sequence of steps (Fig. 3) and
the mostimportant factor determining its workflow is the analysis
goal; typical spectroscopy software programs used are shown in
Table 4. Here we describe two analysis goals: imaging and diag-
nosis. Other goals not covered here include pattern finding and
biomarker identification!01:102,

Imaging is defined as data analysis that uses an unsupervised
data processing method to reveal tissue structure on a ‘spectral
cube’ acquired by a mapping or imaging technique. Imaging allows
for the study of shape and penetration of important histopatho-
logical features on the basis of the underlying chemistry28.

In contrast, a diagnosis using IR spectroscopy requires a more
complex (ramework that uses supervised classification methods.
A supervised data processing method is one that uses classes
assigned a priori to each IR spectrum as teaching information to
build models that are used later Lo predict the classes of a data set
that does not have classes associated with its spectral03,104 The
modeling process for diagnosis requires separate training and
testing stages and respective training and test data sets. The opti-
mal size of a training data set (i.e., one that will maximize clas-
sification accuracy at a reasonable cost of data set generation) has
been underinvestigated to date, but it has been suggested that it
may be problem dependent!95. For example, in a study, one could
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TABLE 4 | Some existing FTIR spectroscopy data analysis software.

Software Website Description License

Cytospec http://www.cytospec.com Software for hyperspectral imaging Commercial;
(IR and Raman) free demo available

[Rootlab https://code.google.com/p/irootlab/ ~ MATLAB toolbox for biospectroscopy Open source
data analysis

OPUS http://www.bruker.com Spectral acquisition software with data Commercial
processing capabilities

Pirouette http://www.infometrix.com Chemometrics modeling software Commercial

Unscrambler X http://www.camo.com Multivariate data analysis and design of Commercial
experiments

PLS, MIA, EMSC toolboxes  http://www.eigenvector.com MATLAB toolboxes for spectroscopy Commercial
data analysis

OMNIC http://www.thermoscientific.com Spectral acquisition software with data Commercial
processing capabilities

PyChem http://pychem.sourceforge.net/ Package for univariate and multivariate Open source
data analysis

ENVI, IDL http://www.exelisvis.com Integrated development, data analysis Commercial

MCR-ALS toolbox http://www.cid.csic.es/homes/rtagam/

tmp/WEB_MCR/welcome.htm

and image processing suite

MATLAB Toolbox implementing the
MCR-ALS algorithm

Open source

start with ten samples (acquiring 5-10 spectra from each sample),
creating a trained model with eight samples and testing the model
using the remaining two samples; one could then repeat this pro-
cedure four more times, each time using two different samples
for testing and the remaining eight samples for training (this is
called five-fold cross-validation). The number of times that the
classifier correctly guessed the class of the testing sample would
be counted to calculate a classification rate (i.e., the number of
correct guesses divided by the total number of guesses). Next, one
could acquire spectra from an additional five samples and repeat
the cross-validation process, comparing the new classification rate
with the old one (it is expected to improve). The process of adding
samples and repeating cross-validation could continue until the
classification rate stops improving.

It is important to note that a diagnostic framework may be
set to use either point spectra or image maps; in the latter case,
the trained classification system can be used to predict tissue
structure.

We describe the following data analysis steps: pre-processing,
feature extraction (FE), clustering (unsupervised classification)
and supervised classification, and we exemplify some visualization
options in the ANTICIPATED RESULT' section. Quality control
is another step that is not covered in this protocol, but there are
guidelines on this available in the literature!05.106,

Pre-processing. Pre-processing essentially aims to improve the
robustness and accuracy of subsequent multivariate analyses and
to increase the interpretability of the data by correcting issues
associated with spectral data acquisition!%7. Pre-processing
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methods may be divided into de-noising, spectral correction,
normalization and other manipulations; two or three methods are
often combined (e.g., de-noising followed by spectral correction
and normalization). The choices of pre-processing methods may
depend on the analysis goal, the physical state of the sample, and
the time and computing power available.

De-noising of IR spectra may be carried out with Savitzki-
Golay (SG) smoothing, minimum noise fraction!%® or wavelet
de-noising (WDN) 101 The latter is known to be the best method
for eliminating high-frequency noise while still keeping intact
high sharp peaks (this is essential in Raman spectra processing,
but WDN works well on IR spectra too). Another option is to
decompose the spectra by principal component analysis (PCA),
and then reconstruct them from only a few of their principal
components (PCs), thus discarding those PCs that represent
mostly noise85109,

Measurement characteristics that may require spectral correc-
tion include:

- Sloped or oscillatory baselines that result from scattering, with
resonant Mie scattering in biological materials being the most pro-
nounced effect. The effects of sample (scattering centers, edges and
substrates) have often been lumped together and the effects of the
same on spectra are termed ‘artifacts’. Although this terminol-
ogy was initially acceptable, it is now clear that there is a rational
explanation for these effects and they arise merely from the cou-
pling of morphology and optics. Hence, we will refer to these
as morphological effects on spectra. There are two major efforts
in understanding and resolving these effects to recover absorp-
tion spectra free from the effects of morphology. The first group
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of methods is termed ‘physics based’. In this approach, explicit
optical image—formation modeling from first principles is used
to predict and correct data. Here each sample effect (boundary
scattering, scattering centers in the sample and substrate) needs
to be explicitly accounted for. The theory has been shown to be
generally valid and there are methods now for correcting the
same for films, spheres and fibers!®:!10.111_ Extension to more
complex samples is still the subject of ongoing research. A sec-
ond group of methods may be termed ‘model based’. In these
methods, a model is assumed to explain all sample effects, typi-
cally, Mie scattering. Subsequently, rigorous theory is used to
recover spectra, e.g., including extended multiplicative scattering
correction (EMSC)!12, resonant Mie scattering correction (RMi-
eSC)13115 and rubber band baseline correction!!. An indirect
way to deal with baseline slope is to apply first or second deriva-
tive to spectra using the SG algorithm. This alters the shape of
the spectra, but may also resolve overlapped bands. Model-based
methods will generally be faster than explicit modeling methods
and may prove to be broadly useful but need to be validated in
each case. A third approach, which was traditionally used but is
now recognized to be of limited value, is to simply correct base-
lines with a piecewise linear approach. Obviously, this method is
the fastest, as it requires the least effort to apply and no modeling.
It is as yet unclear which of these methods works best.

«Spectral contributions may arise from atmospheric water vapor,
carbon dioxide, paraffin or other interfering compounds. Although
these artifacts may be compensated mathematically through
EMSCH7 or other least-squares—based technique!!8, the most
common actions are (o remove contaminated spectral bands from
the data set, improve the control of atmospheric conditions or take
backgroundspectramoreoften.Inthisaspect,beforepre-processing,
it is often useful to implement quality tests to verify SNR and
minimize water vapor contribution. By following this approach,
‘bad quality’ spectra are discarded as they can influence subse-
quent analysis. The threshold values for defining ‘bad’ and ‘good’
spectra can be adjusted according to the biological application.

«It is vital to normalize IR spectra to account for confounding
factors such as varying thickness of sample. Common normaliza-
tion methods are amide I/II peak normalization and vector nor-
malization. Amide I/IT normalization is often used after baseline
correction, whereas vector normalization is often used after dif-
ferentiation of spectra (after correction by differentiation, there
is no longer a consistent amide I/IT peak in the spectra to allow
for amide I/IT peak normalization). For imaging, leaving spectra
non-normalized for chemical imaging or unsupervised cluster-
ing will reveal tissue structures primarily based on absorbance
intensity, whereas normalization will highlight differences in
biochemical structure. For diagnosis, some form of spectral nor-
malization is conducted.

The optimal pre-processing method or sequence to apply is a
subject of discussion and no universal best approach exists for
all samples. Often the choices are based on the problems visually
spotted in the spectra; a more objective criterion is to optimize
the pre-processing method (e.g., through a genetic algorithm)!19.
In this protocol, we offer several alternatives based on cues iden-
tified by visual expression of raw (non-pre-processed) spectra,
although objective validation will probably become more com-
mon in the future.

FE. FE methods process the IR spectra to form new variables
based on the original variables (which are absorbance intensities).

PROTOCOL |

FE has an important or even essential role in both imaging
and diagnosis. For imaging, FE is responsible for generating
a single value based on the whole of an input IR spectrum.
This value can subsequently be used to set the color of a pixel
in the image; FE is repeated for all spectra, thus forming the pseu-
docolor image. Popular FE methods for imaging include calculat-
ing the ratios between wavenumber absorbance intensities, area
under a subregion of the spectrum, selecting a single wavenumber
or an ensemble of wavenumbers, or performing PCA. PCA may
be applied to the spectral data set, followed by selection of a single
PCA factor for the color gradient.

For diagnosis, FE constitutes an important data reduction step
in order to match the complexity of the subsequent supervised
classifier with the amount of data available so as to avoid over-
fitting or undertraining. PCA is one particular popular form of
unsupervised FE that is used for this purpose!93. The number of
PCA factors to retain may be subject to optimization. One way out
is to order the PCA factors from the most to the least discriminant
on the basis of their P values as determined by a statistical test. The
percentage of explained variance can also be taken into account.
Within FE, the subgroup of feature selection (FS) methods
is particularly interesting because it can confer biological inter-
pretability (i.e., identify the wavenumbers most important for
classification) to the classification system. Popular FS methods
include forward FS120 and COVAR!2!. Variance analyses may also
be used to select spectral variables for elimination!22. Another
approach to FS is to use spectral features that are obtained from
a biochemical understanding of the problem123. These cases in
which direct spectral interpretation is possible are termed metrics
for measures of biochemical activity in the samples. It is impor-
tant to note that not all metrics may be useful biomarkers. Thus,
even FE may be a multistep process, (i.e., one in which metrics
are converted to statistically relevant biomarkers).

Clustering (unsupervised classification). Clustering aims at sort-
ing different objects (i.e., spectra) into categories or clusters on
the basis of a so-called distance measure!24. Clustering methods
such as hierarchical cluster analysis (HCA) and k-means cluster-
ing (KMC) are frequently used in IR-imaging studies to identify
tissue morphology?>125. TICA groups spectra into mutually exclu-
sive clusters; in IR-imaging studies, HCA-based segmentation is
achieved by assigning a distinct color to the spectra in one cluster.
Because each spectrum of an IR-imaging experiment has a unique
spatial (x,y) position, pseudocolor segmentation maps can be eas-
ily generated by plotting specifically colored pixels as a function
of the spatial coordinates.

Supervised classification. Supervised or concept-driven classi-
fication techniques are machine-learning techniques for creat-
ing a classification function from training data. These methods
involve a supervised learning procedure in which models are cre-
ated that map input objects (spectra) to desired outputs (class
assignments). Popular supervised techniques are artificial neural
networks, support vector machines (Supplementary Method 3),
linear discriminant classifier!1:103:126 and Bayesian inference-base
methods?”. Among the many criteria guiding the choice of clas-
sifier, the most important is probably the accuracy (related to
sensitivity and specificity) when tested on an independent test
data set. Other criteria include ease to train, computational time,
spatial resolution considerations!?? and software availability.
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Classifiers such as artificial neural networks and support vector
machines may require a two-stage training, where the first stage
is dedicated to finding optimal tuning parameters or architecture
and the second stage fits the classifier model to the training data.
Linear discriminant classifier (LDC) is a parameterless classifier

that requires only the fitting stage. A general rule of thumb is
that if two different classifiers are equally well performing on an
independent test data set, the simplest one should be preferred
over the more complex one, as simpler classifiers are more likely
to be better generalizers!03.

MATERIALS

REAGENTS

A CRITICAL For sample preparation and analysis, please refer to Tables 1

and 2 and the INTRODUCTION for further information.

« FFPE blocks: see Reagent Setup for further information

« Sample preparation: advice regarding collection of biofluids, cryosectioned
tissue samples, fixed cells and live cells can be found in the Reagent Setup
section ¥ CAUTION Human tissues (including biofluids, cytology or FFPE
blocks) should be obtained with appropriate local institutional review board
(e.g., in the UK, this is a Local Research Ethics Committee (LREC)) approval;
generally, ethical permission will be granted for a carefully designed study
in which patient participants sign a consent form. Worldwide, studies using
human tissues should adhere to the principles of the Declaration of Helsinki.
Similarly, for research using animals, appropriate approvals are required; The
Animals (Scientific Procedures) Act of 1986 is the legislation that regulates
the use of animals in scientific procedures in the United Kingdom and this is
enforced by the Home Office, which issues the licenses required.

Other reagents

« ThinPrep (PreservCyt Solution, Cytyc)

« SurePath (TriPath Care Technologies)

« Formalin, 10% (vol/vol), neutral buffered (Sigma-Aldrich, cat. no.
HT501128)

! CAUTION It is a potential carcinogen, an irritant and an allergenic.
Always work in a fume hood while handling it.

« Acetone (Fisher Scientific, cat. no. A/0600/17) ¥ CAUTION Its vapors may
cause dizziness. Always work in a fume hood while handling it.

« Ethanol, 2.5 liters (Fisher Scientific, cat. no. E/0600DF/17)

« Virkon (Antec, DuPont, cat. no. A00960632) ! CAUTION Tt is an irritant.

« Paraplast Plus paraffin wax (Thermo Fisher Scientific, cat. no. SKU502004)

« Xylene (Sigma- Aldrich, cat. no. 534056) ! CAUTION It is a potential
carcinogen, an irritant and an allergenic. Always work in fume hood while
handling it.

« Histoclear (Fisher Scientific, cat. no. HIS-010-010S) ¥ CAUTION It is an irritant.

« Isopentane (Fisher Scientific, cat. no. P/1030/08) ¥ CAUTION It is an
extremely flammable, irritant, aspiration hazard and toxic reagent.

Always work in fume hood while handling it.

+ Optimal cutting temperature (OCT) compound (Agar Scientific,
cat. no. AGR1180)

« Liquid nitrogen (BOC, CAS no. 7727-37-9) ¥ CAUTION May cause
asphyxiation and contact with skin will cause burns. Wear cryoprotective
clothing and use it in a fume hood.

EQUIPMENT

Electronic equipment

For a list of commercial instruments available, please refer to Table 5

Substrate

« Low-E slides (Kevley Technologies, CFR)

« BaF, slides (Photox Optical Systems)

« Silicon multi-well plate (Bruker Optics)

« Superfrost slides: these can be obtained from various manufacturers,

e.g., Menzel Glazer Superfrost slides (Menzel-Glaser, cat. no. AAO0008132E);
Thermo Scientific SuperFrost slides (Thermo Fisher Scientific);
or Fisherbrand Superfrost slides (Fisher Scientific)

Accessories

« Coverslips (Thermo Fisher Scientific, cat. no. 102440)

« Specac Golden Gate single-reflection diamond ATR accessory (Specac)

« Microtomes: these can be obtained from various manufacturers,

e.g., Microtome (Surgipath Medical Industries); Leica rotary microtomes
(Leica Microsystems, Davy Avenue Knowlhill); or Bright Cryostat
(Bright Instruments)

« Microtome blades: these can be obtained from various manufacturers,

e.g., Feather disposable microtome blades $35 (VWR, cat. no. SURG08315E),
Edge-Rite disposable microtome blades (Thermo Fisher Scientific);
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or Leica Surgipath DB80 blade (Leica Microsystems) ! CAUTION Blades are
extremely sharp; handle and dispose of them with care.
« Paraffin section mounting bath (40-75 °C; Electrothermal,
cat. no. MH8515)
+ Desiccator: these can be obtained from various manufacturers,
e.g., desiccator (Duran Group) or WHEATON Dry-Seal vacuum desiccators
(Wheaton Industries)
« Labofuge 400e (Heraeus Instruments)
REAGENT SETUP
FFPEblocks These are prepared according to the standard methods used
routinely in all pathology laboratories; the overall steps are: immerse {resh

TABLE 5 | Instruments and corresponding data acquisition
software.

Manufacturer Instruments Software

Agilent Resolutions Pro

Technologies

Agilent 670-IR
spectrometer

Cary 600 series FTIR
spectrometers

Agilent 600 series FTIR
microscope

Bruker Optics  Bruker Tensor 27 spectrometer OPUS

ALPHA FT-IR spectrometer

HYPERION series FT-IR
microscope

LUMOS FT-IR microscope

JASCO UK JASCO FTIR-4100 series Spectra Manager

JASCO FTIR-6000 series

IRT-5000 FTIR microscope
PerkinElmer PerkinElmer Frontier Spectrum 10
Spectrum Two

Spotlight FTIR microscope
system

Thermo Fisher Thermo Nicolet iS50 OMNIC 8

Scientific spectrometer system
Thermo Nicolet Scientific
FTIR 5700 spectrometer with
continuum microscope
Shimadzu IRTracer-100 spectrometer Lab Solutions IR

IRAffinity-1S spectrometer
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tissue in formalin solution that acts as a chemical fixative; dehydrate the
tissue in sequential washes of xylene and ethanol; and embed the tissue in
paraffin wax, which creates an airtight barrier. Tissue blocks can then be
stored indefinitely at room temperature (20-22 °C).

Biofluids These are primarily blood plasma or serum, but can also
potentially include cerebrospinal fluid, saliva or urine. Typically, after
acquisition, such samples should be stored in appropriate tubes at —85 °C
until they are thawed before analysis.

Cryosectioned tissue samples Tissue samples can be snap-frozen and
stored at =80 °C before use. Tissue should be coated with optimal cutting
temperature (OCT) compound before freezing, and it should be frozen with
isopentane cooled with liquid nitrogen.

Fixed cells Typically, these would originate from cytology specimens placed
in a fixative buffer; an ideal example of this is cervical cytology. However,

it could be extended to any cell type isolated in the form of a suspension in a
preservative buffer solution.

PROCEDURE
Sample preparation

PROTOCOL |

Live cells This is an emerging area within the field whereby viable cells

can be spectrochemically analyzed, primarily in a constructed microfluidic
platform (for a typical method, see Supplementary Method 4).
EQUIPMENT SETUP

Software Two types of software are required: spectral acquisition and data
analysis. Spectral acquisition software is normally provided by the instrument
manufacturer. Most instrumentation software also provides a number of
preprocessing and sometimes more advanced data analysis options. Various
data analysis software programs and packages exist, ranging from those

for general purpose use to those targeting specific data analysis tasks

(e.g., multiplicative curve resolution-alternating least squares (MCR ALS)).
A popular development environment and programming language is
MATLAB (http://www.mathworks.com) in which customized software can
be written for specific tasks. Python (http://www.python.org) is another
programming language that is becoming increasingly popular in the FTIR
spectroscopy field, and it has the advantage of being open source. For a list of
commonly used software and packages, please refer to Table 4.

1| Prepare the samples by following the steps listed in one of the options given below. Perform the steps in option A
for FFPE tissue samples; option B for cryosectioned tissue samples; option C for cytological specimens; and option D for

biofluids.

Live cells may be prepared in three main ways for IR-transmission studies: grown directly onto IR substrates; grown in a
3D culture matrix (and then processed as described in options A and B); or fixed in suspension, e.g., as cervical cytological
specimens in fixative obtained from hospital pathology laboratories. Cells that are fixed in suspension should be processed

by following the steps in option C.

To grow cells on IR substrates, sterilize the IR substrate for 1 h in 70% (vol/vol) ethanol before growing cells directly

onto the chosen IR substrate.

Cells grown onto IR substrates

Sterilize the IR substrate for 1 h in 70% (vol/vol) ethanol before growing cells directly onto the

chosen IR substrate. Generally, cellular materials are then fixed in order to preserve their architectural
integrity, and the samples are stored in a desiccator prior to spectral acquisition (Step 2).

Cells grown in 3D culture matrix

Cells may be grown on 3D culture matrices (a tissue culture environment or device in which live

cells can grow or interact with their surroundings in three dimensions), and subsequently fixed or
snap-frozen and sectioned as described for tissue samples in Step 1A and Step 1B

(A) FFPE tissue ® TIMING 50 min

(i) Obtain FFPE tissue blocks of interest from a pathology laboratory.
(i1) Place a FFPE block onto an ice block for 10 min. Use a microtome to trim into the block to expose the entire tissue
sample to the face of the block. This will ensure that a full tissue section is cut for analysis. Place trimmed blocks

back on ice for 10 min.

A CRITICAL STEP Make sure that the blocks are cold before cutting sections. This hardens the wax, reducing the
friction between the block surface and blade allowing a much smoother cut.
(iii) Cut a ribbon of 10-um sections and float it onto a heated water bath (40-44 °C). Separate the individual sections

with forceps.

A CRITICAL STEP Optimal tissue thickness for the maximum SNR should be determined in-house by applying variable
thicknesses of sections (depending on the tissue type) to slides for IR interrogation, e.g., ~3 um (e.g., for bone),

5 or 10 um (e.g., for prostate tissue), and 15-um serial sections to BaF,, CaF, or Low-E slides. SNR is judged on the
quality of the raw spectra; in particular, the presence of many narrow, sharp peaks indicates high noise. If using tissue
for imaging and extraction of tissue cell type, sample thickness is not just an SNR issue. The thicker the tissue,

the greater the chance of probing heterogeneous layers and perhaps multiple cell types, rendering the cell type

signal less pure.

A CRITICAL STEP Depending on the melting point of the paraffin wax used for embedding tissue samples,
the temperature of the water bath will need to be adjusted to prevent melting of the wax.
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(iv) Prepare tissue slides by re-floating a single 10-um-thick tissue section onto a BaF,, CaF, or Low-E slide for FTIR
microspectroscopy or ATR-FTIR spectroscopy. In our experience, a 5-10-um section is the optimal thickness for
maximum SNR.

A CRITICAL STEP As BaF, slides can be 1 cm x 1 cm in size to fit common slide holders, a H&E-stained parallel section
may be required to identify an area of interest for analysis. Once a section is floated onto the water bath, sections

can be picked up on normal microscope slides, dissected using a scalpel for the area of interest and floated back onto
water for application to BaF, slide.

(v) Place the tissue slide in a 60 °C oven for 10 min.

(vi) De-wax the tissue slide by immersing it in xylene for 5 min at room temperature. Repeat this step twice with fresh
xylene. For small, round slides that are difficult to handle during solvent immersion, slides can be encased into plastic
histology cassettes that can be threaded round a large metal clip. The same procedure can be conducted using hexane.
A CRITICAL STEP For IR analysis, it is necessary to de-wax the tissue in order to probe unhindered the full
wavenumber range. This is paramount as paraffin is known to have significant peaks at ~2,954, 2,920, 2,846, 1,462
and 1,373 cm~L. If there is uncertainty about paraffin removal, these regions of the spectrum can be removed from
subsequent analysis. However, this comes at the cost of probing many solvent-resistant methylene components of
the native tissuel28:129,

(vii) Sequentially, wash and clear the tissue slide by immersing it in acetone or 100% ethanol for 5 min at room temperature.

(viii) Allow the tissue slide to air-dry before placing it into an adequate-sized Petri dish for storage in a desiccator.
B PAUSE POINT Slides can be stored in a desiccator before IR interrogation; in our experience, storage should
be <1 year.

(B) Snap-frozen and cryosectioned tissue samples ® TIMING 120 min + drying time (3 h)

! CAUTION Snap-freezing should be carried out in a fume hood while you are wearing cryoprotective gloves,
clothing and a facemask.

(i) The fresh tissue should be no more than 2 cm in any one dimension; gently blot away any fluids from the surface,
place a cryomold and fill the mold with OCT compound.

(i1) Fill a plastic cryobucket with 3-4 cm of liquid nitrogen. Pour isopentane into the stainless steel beaker until it is
about 1-2 cm deep. Place the stainless steel beaker into the liquid nitrogen and allow temperatures to equilibrate
(3-5 min).

(iii) Take the cryomold containing the tissue sample in OCT compound and use long forceps to lower it into the isopentane;
hold until the OCT compound freezes (60-90 s).

(iv) Remove the cryomold and transfer it to the bucket of dry ice. Wrap snap-frozen tissue in aluminum foil and label it
before storing it in =80 °C freezer.

B PAUSE POINT Snap-frozen tissue can be stored in a -80 °C freezer for several months.

(v) Retrieve previously prepared snap-frozen tissue blocks from the —80 °C freezer and transfer them to the cryostat in dry
ice to prevent thawing.

(vi) Unwrap the frozen block from its protective foil covering and mount it into the cryostat. Allow the block to equilibrate
to the cryostat temperature for 30 min. The optimum cryostat cutting temperature will depend on the sample,
but —20 °C will be suitable for most tissues.

(vii) Cut sections with a cryostat until the region of interest is reached. Next, take serial sections of the tissue sample at
the desired thickness for your study.

(viii) Carefully mount the sections onto the substrate window. Immediately upon acquiring the cryosection, transfer the
slides to a slide box on dry ice, wrap them in foil and store them at —80 °C to preserve the biochemical content.

(ix) Before imaging, bring slides to room temperature in a dark slide box with desiccant for several hours (minimum 3 h)

until they are dry.
A CRITICAL STEP The tissue needs to be adequately thawed before IR analysis (freezing and thawing may also damage
the structural integrity of the tissue). During the thawing process, store the sample under dark, dry conditions at room
temperature. Light exposure is only advised during the short time required for the instrumental setup; this maintains
the stability of spectral acquisition. Room lights and bright-field microscope illumination should be switched off
during measurement collection?30.

(C) Cytological specimens ® TIMING 30 min + desiccation time (24 h)

(i) For formalin fixation, cellular pellets should be washed twice in PBS to remove culture medium before resuspension in
formalin solution (in which they should remain for at least 30 min). Before IR analysis, cells should be washed with
HBSS to wash out the residual phosphate ions.

A CRITICAL STEP SurePath and ThinPrep fixative solutions, used in hospital pathology laboratories, have IR signatures
in the biochemical cell-fingerprint region and should therefore be removed from the sample by sequential washes
before analysis. Alcohol-based fixatives may remove some lipids from the sample.
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(ii) Resuspend the remaining cell pellet in 0.5 ml of distilled water, transfer the cells to the appropriate IR slide and
allow them to air-dry before storing in a desiccator. Cells may be transferred to a slide as microdroplets, or they
can be cytospun.

(iii) For cytospinning, take a maximum volume of 200 ul of cells in suspension (spin-fixed cells at 800g (g force =
0.0000118 x radius of rotation (mm) x r.p.m.2) for 5 min). After spinning, leave the slide to air-dry for 24 h;
the centrifugal force will have squashed the cells onto the slide, but if you try to wash the slides with water straight
away you might lose them. After this time, wash the slide with 1-ml aliquots of deionized water three times (at around
5-10 s per wash, more water can be used if found necessary and cells stick adequately). The cells will remain on the
slide and can always be washed further if traces of salts remain.
A CRITICAL STEP When transferring the cellular material to the slide, ensure that an even deposit of cells is placed on
the slide. Cytospinning allows the cells to be proportionally dispersed over the substrate. If the cells are particularly
small, they may ‘bounce’ off the slide during the spinning instead of getting stuck down. In this case, do a 5-min spin
at 400g, then another 5-min spin at 800g to ensure firm plating.

(D) Biofluids ® TIMING 10 min

(i) Biofluids (i.e., urine, serum, plasma and saliva) should be immediately stored at -80 °C in cryovials after collection
from pathology laboratories and thawed at room temperature before use.

(i) Samples of biofluids are painted directly onto the aperture (e.g., for ATR analysis) or a standard amount is pipetted
onto suitable IR substrates (50-250 ul would be typical, but depending on the biofluid, preliminary analysis would be
needed).

(iii) Samples are allowed to dry before analysis.

A CRITICAL STEP Contact of the sample with the crystal is a very important parameter for ATR-FTIR analysis.
If you are using an aperture ATR-FTIR accessory, 1 ul of sample has been shown to be dry within 8 min44.

Acquisition of spectra
2| Acquire spectra by ATR-FTIR spectroscopy (option A) or transmission FTIR microspectroscopy (option B) or FPA.
A standard operating procedure for direct-drop ATR-FTIR for biofluid analysis is included in Supplementary Method 1;
this would primarily be used when very small aliquots of the sample are available. A standard operating procedure for
FTIR-FPA imaging with an Agilent 670-IR spectrometer coupled with an Agilent 620-IR microscope and FPA detector is
included in Supplementary Method 2 (this file also contains a troubleshooting section).
(A) ATR-FTIR spectroscopy @ TIMING 20 min (10 spectra)
(i) Open the instrument-operating software.
(i1) Apply instrumental settings (guidelines are described in ‘Experimental design: spectral acquisition’).
(iii) Check the path where files are to be saved; set the file name according to a previously devised file-naming convention.
(iv) Visualize the sample through the instrument digital camera to locate the region of interest from which you wish to
acquire the spectrum.
A CRITICAL STEP If the instrument has been switched off, make sure you check the interferogram signal for the
correct location and amplitude. The system may need to be re-aligned if it has been moved or if components have
been changed.
(v) Clean the ATR IRE with distilled water and dry it with tissue.
A CRITICAL STEP Make sure that the crystal is thoroughly cleaned and dried before a background acquisition.
(vi) To acquire a background spectrum, the IRE should not be in contact with the sample or slide, and it should be open to
the surrounding environment. Record a background spectrum.
A CRITICAL STEP It is very important that a background spectrum is taken before every sample. Also, a background
spectrum should be taken if atmospheric changes occur (e.g., if a door has been suddenly opened).
(vii) Place the slide in contact with the IRE.
A CRITICAL STEP Ensure that the ATR IRE is completely covered by the sample and that the minimum sample
thickness is 3-4 times the depth of penetration to ensure that there is no interference from the substrate.
(viii) Acquire a spectrum.
(B) FTIR microspectroscopy ® TIMING 1 h per sample (~12 spectra) or 6 h per sample (image map, ~72 spectra)
(i) Switch on the microscope and instrument.
(i1) Fill the detector with liquid N,.
A CRITICAL STEP If you are using a MCT detector, filling it with liquid N, is essential; allow the detector (and
therefore the signal) to stabilize (~10 min) to an optimal peak-to-peak value. Top up with N, every 9 h (depending
on the instrument).
(iii) Open the instrument-operating software.
(iv) Apply settings.
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(v) Use the software to get a view of the slide as seen through the microscope.
(vi) Load the sample onto the stage and focus the microscope.
(vii) To check the signal quality, move to a sample-free area of the slide and adjust the position to bring the surface of the
blank area of the substrate into focus.
(viii) In our experience, the optimal sample aperture for a benchtop FTIR spectrometer with a globar source is 20 um x
20-100 um x 100 um (dependent on sample quality and instrumental limitations). Apply the aperture size.
A CRITICAL STEP Optimization of the aperture size should be performed to confirm the smallest possible aperture
that can be used to acquire spectra with a high SNR.
? TROUBLESHOOTING
(ix) Use the joystick to move the sample around the microscope stage to identify points or areas to interrogate.
(x) Select a clean, sample-free point on the slide and acquire a background spectrum according to your device.
A CRITICAL STEP Acquire a background spectrum each time the detector is filled with liquid N, and at reqular
intervals (or before each sample) to account for atmospheric changes.
(xi) Acquire a sample measurement either as a point map or as an image map.

A point map  Select a number and location of points of interest

Image map Use automatic allocation of adjacent points in a grid

A CRITICAL STEP Be sure to define a number of points (or map size) that does not exceed the scheduled time frame
of the liquid N, top-up.
A CRITICAL STEP The integration time is essentially a measure of the time for which the shutter is open to collect the
incoming photons. The aim is to optimize the SNR without saturating the detector. If the integration time is too high,
the user will observe saturation effects in the FTIR images; if it is too low, the data quality and SNR will be reduced
as the FPA has not been fully illuminated. This calibration is a nonuniformity correction, and results are shown with
measures of high and low flux (in counts) and the number of out-of-range pixels.

(xii) Acquire spectra.
B PAUSE POINT Once the spectra are saved they can be stored in a database until data processing.

Data pre-processing ® TIMING 15 min-4 h (depending on the size of the data set)

A CRITICAL Steps 3-7 below all contain different options at each step; however, there are combinations of these steps that
may be more or less appropriate than others, depending on the sample type, instrumentation setup, noise level, need for
visualization of spectra, personal preference and classification performance among other factors (Table 4). Although they
are usually carried out in the sequence presented, none of the steps from 3 to 7 are mandatory. For guidelines on choosing
specific preprocessing steps and options, please refer to the ‘Experimental design data processing’ section. The reader may
also refer to the Supplementary Method 3 for an illustrated example of a pre-processing sequence applied to a real-world
data set using specific software.

3| De-noise the spectra (optional, depending on the SNR of the spectra). Consider using one of the following de-noising
algorithms: Savitzky-Golay de-noising, WDN (not commonly used, but is a nonlinear method with its own advantages),
PCA noise reduction or minimum noise fraction.

4| Perform spectral correction, which can be carried out using physical theory-based methods such as RMieSC or rubber
band baseline correction49.53,113-115,

5| Perform SG differentiation (first differentiation is most used; second differentiation is also common).

6| Perform data normalization. This can be done using min-max normalization (e.g., normalization to the amide I/II peak)
or vector normalization.

7| Scale the variables: this could be done by standardization (normalization of variables to zero mean and unit s.d.) or
by normalization to a 0-1 range.

Data analysis ® TIMING 1 h-2 d (depending on file size)
8| Choose a data analysis procedure appropriate to your analysis goal; here we cover diagnosis (supervised classification;
option A below) and imaging (options B-D). For option A, data sets obtained with a single-element IR detector are normally
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used and the physical location of one spectrum within its sample is used in the data analysis. The procedures for creating an
image use a data set acquired by point or array mapping, or an FPA detector. Each spectrum has its Cartesian (x, y) location.
There are three different options for achieving this step (options B-D). Options B and C are suitable for chemical imaging
using the FE method and unsupervised classification, respectively. Option D (supervised classification) is suitable for spatial
diagnosis of tissues. It uses a training set of images to build a model to subsequently apply this model to unknown images.
After performing options B, C or D, follow the instructions in option E.
(A) Diagnosis (supervised classification)
A CRITICAL Training and test data sets are required. In rare cases, one single training and test data set pair could be
enough to obtain a meaningful estimation of real-world classification; however, most of the time such estimation is obtained
through cross-validation, in which the procedure below (training and testing) is repeated multiple times to get an average
performance (or error) estimation.

(i) FE training. Input pre-processed training data set into the FE algorithm of your choice (see ‘Experimental design: data

processing’) in training mode. Generate a model that will be able to subsequently extract features from a test data set.

(i1) Classifier training. Apply the FE model obtained in a previous step to the training data set. Next, input the
FE-processed data set to the classification algorithm of your choice (see ‘Experimental design: data processing’)
in training mode. Generate a model to be subsequently applied to test data set.

(iii) Testing. Apply the trained FE model to the test data set to obtain an FE-processed output data set; input the
FE-processed data set into classification model to obtain one-class estimation per spectrum. If there are several
spectra per sample, conduct a ‘majority vote’ procedure to obtain one class estimation per sample.

A CRITICAL STEP Training and testing should be repeated through a cross-validation procedure, depending on the
sample size.
(B) Chemical imaging using an FE method
(i) Map each spectrum into a single scalar value. Choose an FE technigue to obtain a scalar value for each spectrum
(this value will be subsequently used to address a particular color within a gradient color map). Refer to ‘Experimental
design: data processing’ for guidelines on choosing the FE method.
(ii) Continue to Step 8E.
(C) Clustering (unsupervised classification)
(i) Apply a clustering algorithm (e.g., HCA or k-means) to organize the spectra into clusters.
(ii) Assign a different integer number to each cluster and continue to Step 8E.
(D) Supervised classification for imaging
(i) Conduct histological assessment of the training set to identify different regions within the training set images; this
will be used as teaching information for the supervised learning algorithms.
(i1) Apply Step 8A(i,ii), using the training data set obtained in the previous step to obtain a classification model.
(iii) Apply the model to the test data to obtain one class estimation per spectrum in the image.
(iv) Assign a different integer number to each class and continue to Step 8E.
(E) Mapping different scalar values to different color tones
(i) Map different scalar values obtained in previous steps into different color tones. For chemical imaging (Step 8B), a
gradient color map is used (e.g., red to yellow, rainbow and so on), whereas for Step 8C and Step 8D, an indexed color
map in which each cluster or class is represented by a color of choice is suitable. Although the idea is presented here
for understanding, this step is normally carried out by imaging software.

? TROUBLESHOOTING
Optimizing the sample aperture
To overcome the problem of over- and undersampling for fine imaging, the spatial sampling area should be at least two times
larger than the (spatial) frequency of the feature under study. The step size should be equal or smaller than the aperture size
divided by 2.

For Troubleshooting for FTIR imaging with an Agilent 620 IR microscope coupled with an Agilent 670/680 IR spectrometer,
see Supplementary Method 2.

@ TIMING

Step 1A, FFPE tissue: 50 min

Step 1B, snap-frozen and cryosectioned tissue samples: 120 min + drying time (3 h)

Step 1C, cytological specimens: 30 min + desiccation time (24 h)

Step 1D, biofluids: 10 min

Step 2A, ATR-FTIR spectroscopy: 20 min (10 spectra)

Step 2B, FTIR microspectroscopy: 1 h per sample (~12 spectra) or 6 h per sample (Image map, ~72 spectra)
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Figure 5 | Classification rates (% classification + s.d.) of all possible
combinations between three different pre-processing, three different feature
extraction and two different supervised classifier options. Pre-processing
options: rubber band baseline correction followed by normalization to the
amide I peak; first Savitzky-Golay (SG) differentiation (7 points; second
order) followed by vector normalization; and second SG differentiation
followed by vector normalization. FE options: PCA (optimization of number of

Classifier

Pre-processing | Feature extraction

PCA 83.25+ 11.50

FFS(MANOVA) R dRR R 76.42 + 19.42
Identity 75.42 +12.66 | 77.25+13.28
PCA 77.58115.77 [K:lNCESPRL]

RBBC —
Amide | norm

PCs); forward feature selection (FFS) using multivariate analysis of variance 1st diff > 5 5
(MANOVA) P values as a criterion to including the next variable (this is similar Vectornorm | FTS(MANOVA) et 6'13
to the COVAR method for optimization of number of selected features); and Identity 81.08+09.98 RN
‘Identity’ (FE skipped). Supervised classifier options: linear discriminant PCA | 72,50+ 17.23
classifier (LDC); and support vector machine (SVM; using Gaussian kernel; Virgo‘::f;m FFS(MANOVA) PO AR 76.83 + 14.69

optimization of the € and y parameters133.134}_ The figure’s cells are gradient-
colored according to their respective classification rate inside (yellow to red).
RBBC, rubber band baseline correction.

Identity 77.42+17.05 | 76.42 +11.35

Steps 3-7, data pre-processing: 15 min-4 h (depending on the size of the data set)
Step 8, data analysis: 1 h-2 d (depending on the file size)

ANTICIPATED RESULTS

Preprocessing options

Figure 4 is a basic example that shows a set of ATR-FTIR raw spectra (cut to the 1,800-900 cm-! region) and their
appearance after being pre-processed by different methods. Rubber band baseline correction is one of the options to remove
sloped baselines. Normalization to the amide I/II peak shifts and scales all the spectra so that their vertical minimum is at
zero and the amide I/II peak of all spectra match at the same height. To resolve overlapping bands, mathematical derivatives
are used to narrow their full width at half height value (FWHH). Narrower bandwidths (i.e., higher resolution of differential
spectra) potentially allow for subtle differences between spectra to be more easily resolved. However, each differentiation
amplifies noise and therefore the SG differentiation algorithm (with implicit de-noising) is often used. Vector normalization
is applied after differentiation to normalize the Euclidean norm of each spectrum to unity.

Classification of blood plasma

This example shows a comparison of supervised classification performance between different combinations of pre-processing,
FE and supervised classification methodologies (Fig. 5). This data set consisted of blood serum and plasma samples of
patients with ovarian cancer or endometrial cancer (n = 30 for both) and control patients without ovarian cancer (n = 30)
analyzed with ATR-FTIR spectroscopy (7 spectra per sample)41:131. The classification rate, defined as the average between
sensitivity and specificity, was used as a classification performance measure to class patients on the basis of their disease
status (i.e., ‘normal’ versus ‘cancer’). The example illustrates
that no single pre-processing, FE or supervised classification
methodology is the absolute best, but a combination

of these may be the best solution to the problem posed.
The counterpoint to this is that different data sets may
require different pre-processing, FE and/or supervised
classifier methodologies, as pointed to in the machine-
learning literaturel%3. This is evidence that different
combinations of methodologies should be attempted and
compared in any diagnostic study.

Imaging of human colon mucosa in Cytospec using
agglomerative HC and KMC

An example of imaging of human colon mucosa sections

by using agglomerative hierarchical clustering and KMC

is shown in Figure 6. The image was produced using the
Cytospec software. Figure 6¢ shows the original histological
image from which FTIR spectra were recorded at a spatial

Figure 6 | IR image reconstruction of a section of human colon mucosa.

(a) Chemical map based on the integrated absorbance of the amide I band
(1,620-1,680 cm~1). (b) IR imaging using agglomerative HCA (six clusters).
(c) Standard histological preparation of the colonic mucosa. (d) IR map
generated on the basis of k-means clustering (15 clusters). Adapted with
permission from ref. 135.
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resolution of 232 x 233 pixels. Some images (Fig. 6b,d) have been reconstructed using the multivariate methods of
agglomerative hierarchical clustering (AHC) and KMC, respectively, with both demonstrating clear differentiation of the

histological structures of the sample analyzed.

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper.
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Supplementary Method 1

Direct drop ATR-FTIR spectroscopy biofluid analvsis

Materials

#  Ethanol 2.5 L (Fisher Scientific, UK; EOGO0DENT)
*  Virkon (Antec International, a DuPont Company, UK; AO0960632) ICAUTION Irritant

Equipment

*  JASCO FTIR-4100 {JASCO UK Lid, UK)

* SpecacColden Gate™ single reflection diamond ATR AccessorviSpecac, UK)
*  Microcentrifuge

* Filters

Software

*  JASCO Spectra Manager Software
*  Matlab

Procedure

* Ensure that the ATR-FTIR crystal is clean and dry prior to use, if required it can be washed with Virkon
solution and Ethanol or distilled water
ACRITICAL STEP Make sure the crystal is thoroughly cleaned and dried before background acquisition

*  Collect background spectrum with a resolution of 4 em™ and using 32 co-added scans

ACRITICAL STEP It is very important that the background spectrum is collected. It should be re-collected at
least every hour and upon changes in the environmental conditions. Background collection between each
sample 1s recommended

* Place | pl of the biofluid on the crystal and allow to dry

ACRITICAL STEP Intimate contact of the sample with the crystal is a very important parameter for ATR-
FTIR analysis. One pl of sample has been shown to be dry by 8 minutes by Hands IR er al. Analytical and
Bioanalytical Chemisiry 405; 73477355 (2013); doi:10.1007/5002 1 60137163z

*  Acquire sample spectrum with a resolution of 4 em™ and 32 co-added scans. It is common to collect
multiple technical replicate samples. For biofluid analysis it is also recommended to have multiple
biological replicates. 3 biological replicates (biofluid aliquots on the crystal) and 3 technical replicates
{spectra collected from each aliquot) is recommended.

* After sample spectral acquisition wash the crystal with Virkon and Ethanol and ensure the crystal is dry,
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Supplementary Method 2

FTIR FPA Imaging using Agilent 670-IR spectrometer coupled with Agilent

620-1R microscope and FPA detector

* TIMING 4 min per sample image (16,384 spectra for 128 = 128; 8,192 spectra for 64 x 64)

1

i,

Switch on the Agilent 670IR, Agilent 620-1R spectrometer and microscope, and connected PC.

. Fill the focal plane array (FPA) detector with liquid Na.

ACRITICAL STEP Filling the FPA detector with liquid N2 1s essential; allow the detector {and
therefore the signal) to stabilize (approximately 10 min) to an optimal peak-to-peak. Top-up with N;
every 4-6 h to maintain temperature.

Place sample under the microscope, and bring the surface of a blank area of the substrate into focus.

/. Open Resolutions Pro. Agilent Resolutions Pro is Agilent Technologies software, which comes with the

instruments from this company. Other devices come with their own interface software; however, the steps

will be similar or for the same purpose.

v. Goto "‘Collect’, “Imaging’, ‘Rapid scan’. This brings up a window displaying all the modifiable
parameters for the experiment. Click on the "Oprics " tab,

vi, Select the internal DTGS detector within the spectrometer. Normally, three parameters need to be
maodified: change “Beam’ to *Internal’, *Derecior” to *DLaTGS’, and “Aperture source " to "0.1 em™ at
4000 cm™ *. The correct parameters for this step are shown in Figure 51, Click on “Semp’ to view the
interferogram of the internal DTGS detector. Click *Find Centreburst’ and press 0K to go back to the
set=up window.

ACRITICAL STEP A centreburst must be used to transform and process FTIR spectral data, The FPA
is connected to the PC directly and not through an electronics board like conventional detectors and does
51
datura Protocols: dod:10.1038/mprot. 2014110
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not have its own interferogram. This 15 why the centreburst must be obtained from another detector, such
as the intemnal DTGS detector.

vii, Select the FPA detector in the *Oprics’ tab. The same three parameters need to be modified: change
‘Beam ' to “Left’ (if the attached microscope is on the left of the spectrometer), *Derecror’ to “Ground”,
and “Aperfure source " to *Open’. The “Optics mode " should be changed relative to the experiment;
*Transmitiance ' for transmission experiments and “Reflectance ' for transflection experiments. The correct
parameters for this step are shown in Figure 82. Click on “Setup’ and bring up the Lancer Control
window,

viil, Click on “Show Raw dara” to observe the live illumination of the face of the FPA detector. Ensure that a
clean (sample-free) area of the slide is in focus, and that the manually modifiable microscope aperture is
fully open. For transflection experiments, move the “Signal Intensiny” slider to change the integration time
and the intensity distribution curve until a smooth, rounded curve appears. The integration time should
equate to about 0.024 ms but can vary between instruments. An example of a good illumination and
intensity distribution is shown in Figure 83. For transmission experiments, the position of the condenser
lens must also be adjusted to allow as much light to the sample as possible. The intensity distribution
curve should resemble a very shallow, straight curve. The integration time should equate to about 0.032
ms but can vary between instruments, Click *Calibrare ' and ensure the number of out-of-range (O0OR)
pixels is low (<6). Click *OK" and 0K again in Resolutions Pro to retumn to the Imaging Setup window,
ACRITICAL STEP The integration time is essentially a measure of the time that the shutter is open to
collect the incoming photons. The aim is to optimise the SNR without saturating the detector. If the
integration time is too high, the user will observe saturation effects in the FTIR images; too low and the
data quality and SNR will be reduced as the FPA has not been fully illuminated. This calibration is a non-
uniformity correction, and results are shown with measures of high and low flux (in counts), and the

number of out-of-range (OOR) pixels.
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x. Click on the *Efectronics” tab (Figure 54). This tab shows a number of parameters that can be changed
by the user. The wavenumber range can be modified by the user, but is limited by the band-gap of the
FPA detector, and the optical filters in use. The optimal usable wavenumber range for the system is
around 900 ¢cm’™'- 3800 em™'. The number of co-added scans can be varied, but is subjective to the
experiment. Usually, 16 to 128 scans give an acceptable SNR for most experiments. The spectral
resolution can also be subjectively modified, although resolutions of 4 cm™ or 8 cm®' are most common. It
is recommended that all other parameters are left at the default values for novice users. Standard FTIR
imaging parameters are shown in Figure S1.

%. Click on the *Background tab. Set the number of co-added scans to be collected for the background
image. This value should not be below the value set for the number of sample scans. Click “Callect inta
new file”. Browse a location and filename for each new background that 1s taken.

x1, Click *Callect Background'. Save the background if prompted. Click on the resulting FTIR image and
check the uniformity of the spectra across the whole sample area.

A CRITICAL STEP Acquire a background image each time the detector is filled with N; and at regular

intervals (or before each sample) to account for atmospheric changes.

xii. Move the stage until the desired sample area is in the field of view, and ensure the sample surface 15 in
full focus. Go to ‘Callect’, “Imaging ' and *Rapid Scan’ once more, Now click *Scan’. When prompted to
save, browse to a desired location and name the file. Check the spectra from the resulting sample image to
ensure acceptable and even levels of noise and atmospheric contributions.

xiii. Repeat step xu for multiple images from the same sample. After changing the sample, bringa clean
{sample-free) area of the slide is in focus once again and repeat from step x1. If longer periods of time are

left in between measurements, or the FPA detector is refilled with liquid N, repeat procedure from step v.

MNature Protocols: doi:10.1088/mprot.2014.110

81



Imaging |3||x|

| Electionics | Oplics | Advanced | Background | Imaging | Computations |
IR Souwrce Source Power Haedware
@ MIR Swce O Buust Beamspltter.  KBr v
(O NIR Source ® Nomal = ,
Accessony, one '
O off O ot s e
O Extena ATR Ciystat  None v
Beam Optical Filter:  None v |
Intemal
g Ln:' Aperturs
t |
@ Source om”-1 at 4000 cm”-1 :
O Right
O Not Installed
Beam Alterwiator |
Detectos R \ 1_007. v
() DLaTGS, TE Cooled
(O MCT, Broad Band Microzcope
O Not Installed [T1Pass Through Side Port  Not in use
(O MCT, High Sensivity Detector Optics mode
) Leit O Transmittance
Not Installed
0 O Right (®) Reflectance
O Ground
[T Aisomatically capture image before scan
[ Scan ][Bockgtoundl[ Setup ][ScopoSe!w][ Save ][ Reset H Cancel ][ Help

Figure S1 Screenshot associated with Step vi.
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Troubleshooting for FTIR Imaging using an Agilent 620-1R microscope coupled with an

Agilent 670/680-1R specirometer

{f the user experiences problems with calibration or with data collection:

* Check that all parts of the instrument are turned on and operational { green light on spectrometer).
* Check all physical flaps and sliders are in the correct (open) positions.

* Check that the sampling mode 15 set correctly to yvour sample and substrate (e, g., transmission,
reflection).

* Check that the microscope aperture is fully open.

* Check that the air is flowing properly through all incoming purge lines.

* Check that the protocol has been followed correctly.

* Restart the PC and software. Sometimes drivers need to be reloaded and memory refreshed. If

problems persist, contact an Agilent customer support representative for advanced troubleshooting
tips.

If the user experiences problems with the guality of data:

* Check that the FPA has been fully filled with liguid N2, and has a temperature of ~76K. If the
detector is not cool, it will not work properly.

* The incoming IR radiation may be saturating the FPA detector. Make sure the integration time and
intensity set in the calibration step are not too high. If saturation is eccurring, this is noticeable in the
resulting FTIR images in the form of cloud-like spots originating in the centre of the images.

* [fspectral data quality is inconsistent across the image, there may be an issue with the consistency of
the purge. Make sure again, that all air flowing through incoming purge lines, and there are no
regular variations in the environment surrounding the sample (e.g., people breathing, open
door'window. For best results, take measurements inside a closed purge box).

* Check that the microscope objective in use 1s locked in place.

* Check that both the substrate surface and sample are fully in visual focus when taking background
and sample images respectively.

* [fspectra are very noisy, the user can try increasing the number of co-added scans or decrease the
wavenumber resolution to improve the signal to noise ratio.

* Spectral data can also often be improved through pre-processing methods.
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Supplementary Method 3

SVM Classification in MATLAB using the IRootLab toolbox
Loading dataset.

1. Start MATLAB and IRootLab as indicated in [RootLab manual.

2. In MATLAB command prompt, type “objtool”.

3. Click on “Load. .. and select dataset.

Pre-processing: cut to the 1800 - 900 em™; 1* differentiation (Savitzki-Golay); vector normalization
{speﬂrum -wise); normalization to the [0, 1] range {variable-wise).
Locate and double-click “Feature Selection™ in the rght panel.
Click on “0OK".
Select “ds01_fsel01™ in the middle panel.
Locate and double-click on “SG Differentiation->Vector normalization™ in the right panel.
Click on “OK".
Locate and double-click on “MNormalization™ in the right panel.
1{} Select “[0, 1] range™ from the “Type of normalization”™ pop-up box.
11. Click on “0OK".
Optimization of SVM classifier.
12. Click on “Sub-dataset Generation Specs™ in left panel.
13. Click on “New._.” in middle panel.
14. Locate and double-click on “K-fold Cross-Validation™.
15. Enter “57 in the “K-Fold’s "K' box.
16. Optionally type any number {e.g., 12345} in the “Random seed” box (recommended)
17. Click on “0OK".
18. Click on “Classifier” in lefi panel.
19. Click on “New._.” in middle panel.
20. Locate and double-click on “Support Vector Machine”.
21. Click “OK" (the values in the boxes will not be used anyway).
22, Click on “Dataset” in left panel.
23, Click on dataset named “ds01_fsel01_diffvn0l_norm01™ in middle panel.
24. Locate and double-click “Grid Search™ in right panel.
25. In the “SGS” drop-down box, select “sgs_crossval(01™ .
26. In the “Classifier” drop-down bow, select “clssr_svm1”. You may optionally change the search space
of ¢ and gamma or accept the default values.
27. Click on “OK”. Warning: grid search is potentially time-consuming.
28. Watch MATLAB command window for progress indicator.
Visualization of optimization progress.
29. Click on “Log™ in left panel.
30. Select “log_gridsearch_gridsearch(11™ in middle panel.
31. Double-click on “Grid Search Log Report™ in right panel. This will show the best classification rate.
found at each iteration, with respective parameters (see Figure below)
Estimation and visualization of confusion matrix for best parameters.
32. Click on “Log™ in the left panel.
33. Click on “log_gridsearch_gridsearch1™ in the middle panel.
34. Double-click on “extract_block™ in the right panel.

R
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35. Click on “Dataset” in the lefl panel.

36. Click on “ds01_fsel01_diffvn01_norm01™ in the middle panel.

37. Double-click on “Rater” in the right panel.

38. In the “Classifier” box, select “clssr_svm_gridsearch01™ (this is the block that was created from the
block extraction action above).

39. In the SGS box, select “sgs_crossval01”. This will cause the cross-validated estimation 1o use the same
dataset splits as the grid search optimization before.

40. Click on “OK".

41. Click on “Log™ in the left panel.

42, Click on “estlog_classxclass_rater01” in the middle panel.

43. Double-click on “Confusion matrices™ in the right panel.

44. Click on “0OK” (generales report).

A
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Figure - SVM classifier design and classification using SVM and LDC. (A) Ierations of Grid search optimization o find optimal
¢ and y for the SVM classifier. (B) Classification rate as a function of C and y (3" iteration of (A)). (C) Confusion matrix for
classification using the optimal classifier found though Grid search (5-fold cross-validation). (D) Confusion matrix using the LDC
classifier (5-fold cross-validation using the same train and test sets of (C)).
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Supplementary Method 4

Protocol for FTIR spectroscopy of
single living cells using a synchrotron
source
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Supplementary Method 4

Protocol for FTIR spectroscopy of
single living cells using a synchrotron
source
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Deposition of cells

10 pL of a cells suspended in isotonic saline are placed on the
bottom window of the sample holder with the mylar spacer in

place

The second window is placed on top of the cell suspension
and the clamping plate fixed into position

With the aid of a stereomicroscope the clamping plate is
tightened so that the top plate just makes contact with the
cells

The sample holder is then placed onto the microscope stage
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Instrumentation

* The beamline on the Australian Synchrotron uses a novel beam extraction
technique to produce two synchrotron IR beamns derived from edge radiation and
bending radiation that are split apart in an optical chamber and directed to two
separate instruments.

*  For the microspectroscopy beamline the beam is directed to a Bruker Hyperion
2000 IR confocal microscope (Bruker Optics GmbH., Ettlingen, Germany) equipped
with a liquid-nitrogen-cooled mercury-cadmium-telluride (MCT) detector with a
36x IR objective (NA.O.5).

* The Hyperion 2000 microscope is coupled to a Bruker Vertex 80v spectrometer
and data collection is carried out using Bruker's OPUS version 6.5 software, with
an additional 3D package (Bruker Optics GmbH., Ettlingen, Germany).

= The Hyperion microscope and the sample are purged with dry nitrogen gas to
minimize water vapour contributions in the spectra.
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FTIR measurements

Once the cells are in focus select a group of cells in the field of
view and a background position

It is important that the background spectrum is recorded
through the media and in close proximity to the group of cells
to be analysed

It is also important that a background is recorded before
every cell measurement

For synchrotron measurements using the condenser
Cassegrain is adjusted so that the signal is optimized in the
1600-1000 cm™ region
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FTIR instrumental parameters

* The knife edge aperture is set to the same size as the cell

* For each spectrum 128 interferograms are co-added with a
spectral resolution of 4 cm™

* To assign DNA bands spectra are recorded in both the

hydrated state and dehydrated state as the DNA bands shift

in response to hydration whereas the RNA bands remain at
the same wavenumber values.
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Raman spectroscopy can be used to measure the chemical composition of a sample, which can in turn be used to extract biological
information. Many materials have characteristic Raman spectra, which means that Raman spectroscopy has proven to be an effective
analytical approach in geology, semiconductor, materials and polymer science fields. The application of Raman spectroscopy and
microscopy within biology is rapidly increasing because it can provide chemical and compositional information, but it does not
typically suffer from interference from water molecules. Analysis does not conventionally require extensive sample preparation;
biochemical and structural information can usually be obtained without labeling. In this protocol, we aim to standardize and bring
together multiple experimental approaches from key leaders in the field for obtaining Raman spectra using a microspectrometer.

As examples of the range of biological samples that can be analyzed, we provide instructions for acquiring Raman spectra, maps

and images for fresh plant tissue, formalin-fixed and fresh frozen mammalian tissue, fixed cells and biofluids. We explore a robust
approach for sample preparation, instrumentation, acquisition parameters and data processing. By using this approach, we expect that
a typical Raman experiment can be performed by a nonspecialist user to generate high-quality data for biological materials analysis.

INTRODUCTION

Raman microspectroscopy has been shown to be a powerful
analytical technique in the study of biological materials, and it
allows rapid, noninvasive and high spatial resolution acquisition
of biochemical and structural information through the generation
of point spectra or spectral images. Although it has been
traditionally used for analytical chemistry applications, there has
been a notable rise in the use of this technique within biological
studies, particularly in the field of biomedicinel4.

Raman spectroscopy

Raman spectroscopy uses monochromatic light, often in the
near-IR (NIR), visible or UV range, to exploit the phenom-
ena of inelastic scattering, or Raman effect, that describes the
excitation of photons to virtual energy states and the resultant
loss (Stokes) or gain (anti-Stokes) of energy that occurs because
of the interaction of light with vibrational modes associated
with chemical bonds within the sample. This shift in energy is
indicative of discrete vibrational modes of polarizable molecules,
and thus a qualitative measurement of biochemical composition
can be obtained. Raman spectra can infer quantitative informa-
tion, provided that the instrument response function is adequately
corrected. Typically, the significant regions of the Raman spec-
trum that are observed within biological specimens fall within
400-2,000 cm~! wavenumbers, associated with bond vibrations
of proteins (1,500-1,700 cm™!), carbohydrates (470-1,200 cm™1),
phosphate groups of DNA (980, 1,080 and 1,240 cm 1) and addi-
tional cellular biomolecules!. Higher-frequency bond vibrations
associated with CH, NH and OH stretching in lipids and proteins
can also be observed at higher wavenumbers (2,700-3,500 cm1)5.
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Consequently, a distinctive biological ‘fingerprint’is derived from
the biological sample under investigation, and it can contribute
to our understanding of the specimen. Figure 1 illustrates
the principle of elastic (Rayleigh) and inelastic scattering when
analyzing biological specimens.

Raman spectroscopy has a high molecular specificity,
making it an excellent technique for materials analysis. However,
Raman scattering is a rare phenomenon with an exceptionally
low probability of occurrence (~1 in 108) in comparison with its
counterpart Rayleigh scattering, and thus it is typically described
as an insensitive technique. Its increased applicability is largely
attributed to the technological advancement of highly efficient
laser sources, low-noise detectors, effective Rayleigh filters and
high-throughput opticsé. The development of microspectrom-
eters, which combine the power of optical magnification and
direct visualization of the sample, has also contributed to further
exploitation in biological fields. Because of this, it is possible to
not only derive single point spectra but also to produce highly
informative Raman images of the sampling area with improved
interpretability?. The ability to acquire high-quality spectra
at subcellular resolution coupled with the capability to obtain
valuable information noninvasively, label-free and without
interference from water, makes Raman spectroscopy an ideal
approach for in vivo biological investigations.

There are many factors that influence spectral resolution, which
are outlined in detail in this protocol. The spatial resolution
of optical Raman microspectroscopy is governed mainly by the
diffraction limit of light, and therefore it is dependent on the laser
wavelength (A) in use, as well as on the numerical aperture (NA)
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Figure 1 | Schematic identifying light scattering after laser exposure

on a sample surface. Photons of light are focused on the sample through
the microscope objective at a defined magnification. When they interact
with chemical bonds within the biological specimen, electrons are excited
to virtual energy levels. These biological molecules return to the original
energy level by emitting a photon of light, known as elastic or Rayleigh
scattering, or it can undergo an energy shift and return at lower (Stokes)
or higher (anti-Stokes) energy levels, known as Raman scattering. Raman
scattering is a low-probability process with around 1 in 108 photons
inelastically scattered (arrow widths are not representative); Stokes Raman
scattering is more intense than anti-Stokes scattering because of the
increased probability of a molecule being in the ground vibrational state.
Fluorescence can occur when electrons are excited to electronic energy
levels and return to the ground energy level by emitting a photon of light
at a longer wavelength.

of the objective. Theoretically, for a confocal microscope, the dif-
fraction limit for visible (488 nm) to NIR (~1,033 nm) light, using
long-working-distance to water- or oil-immersion objectives with
NA values from 0.5 to 1.2, would be in the range of 0.2-1 pum.
In practice, it is rarely possible to achieve the diffraction limit,
owing to both imperfect optics and beam scattering at the inter-
face of the sample. However, alternative sampling modes such
as surface-enhanced Raman scattering (SERS) and tip-enhanced
Raman spectroscopy (TERS) have been shown to provide spatial
resolution below the diffraction limit, as targeted single-molecule
detection is possible®?. This is due to the interaction of biomol-
ecules with roughened surfaces, such as metallic nanoparticles,
that effectively enhance the electric field by a factor of up to 1014,
This is associated with the excitation of localized surface plas-
mons, which significantly enhance the local electric field of the
light incident on the molecules adsorbed onto the metal surface.
Furthermore, some small enhancement can originate from the
charge transfer between the two materials.

A typical Raman study can rapidly accumulate a large,
information-rich spectral data set. However, as this data set
expands, the extraction of biological information becomes increas-
ingly challenging. For this reason, multivariate analysis approaches
are often used in order to effectively extricate the underlying
chemical and structural information!®. Spectral data sets often
present a substantial computational burden, and thus analysis
usually includes a data-reduction step, particularly as there are
many covariant features in the spectra. This information can then
be fed into unsupervised (clustering) or supervised classifications
to differentiate individual spectra, which can then infer biological
information!!. Raman imaging (global illumination) and mapping
(stepwise) have particularly benefited from these classification
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capabilities, as spectral discrimination is indicative of the under-
lying biological architecture, which has proved to be valuable in
the field of cancer diagnosis, in which this approach has comple-
mented conventional histopathological techniques!2.

Applications
Raman spectroscopy presents a method of sample examination
with a high degree of flexibility, enabling data to be recorded
from a diverse array of sample types including fixed, fresh or live
tissues and cells. The application of Raman microspectroscopy to
the characterization of biological materials is a rapidly expand-
ing field, and it has been used in the fields of pharmacology!3-15,
microbiology!6-20, toxicology?!:22, plant science?3-2> and human
biology. Considerable advances have been made, particularly in
regard Lo cancer diagnosis and prognosis?6. Clinical implementa-
tion is firmly on the horizon?7, as spearheaded by recently formed
networks such as ‘Raman4Clinics’ (http://www.raman4clinics.eu/)
and Clinical Infrared and Raman Spectroscopy for Medical
Diagnosis (CLIRSPEC; http://clirspec.org/). Raman spectros-
copy and its derivatives, coupled with multivariate analysis, can
classify neoplasia in brain28-3!, breast32, bladder?3, colorectal 3435,
larynx36, lung7, lymph node3%:3?, esophageal#0-42, prostate43-46,
and uterine and cervical¥-30 tissues using both point spectra
and imaging approaches. These examples have used a range of
sample formats, including fixed cells and tissues, in vivo meas-
urements with advances in fiber optic attachments and spatially
offset Raman spectroscopy (SORS), as well as noninvasive biofluid
measurements®!. In addition to cancer studies, the technique has
been used to shed light on infectious diseases such as malaria52-55,
Owing to the relatively fast sampling time and mapping ability of
Raman microspectroscopy in aqueous environments, the 2D and
3D analysis of in vitro cell models is possible6-59, which has been
particularly useful in toxicology and therapeutic studies0:01,
The application of SERS has been shown to vastly improve the
spectral intensity obtained from typically weak Raman scatterers,
such as dilute biofluids62. SERS has been used across a wide range
of biomedical studies, including DNA and drug detection63-66, This
approach has also been shown to overcome autofluorescence, which
has often limited research capabilities in samples with intrinsic fluo-
rescence, such as chlorophyll in plants, as this strong signal can
often engulf the relatively rare Raman event?4. Reduced Raman per-
formance in plant research has markedly restricted its application
in this area, with previous research focused on the quantification
and identification of plant constituents®’-72, as well as the imag-
ing of nonfluorescent tissues?>73-75, As fluorescence has a defined
wavelength profile, it is also possible to overcome fluorescence by
using alternative radiation sources using lasers at wavelengths that
are outside typical biological matrix absorbance, e.g., in the NIR
(1,064 nm) region76. Water has also been found to be a significant
fluorescence quencher, which has benefited in vivo studies, as was
recently demonstrated in fundamental plant monitoring??.78.

Limitations

The molecular specificity of Raman spectroscopy is powerful for
the study of biological materials. Towever, there are a number of
disadvantages associated with the technique. As Raman scatter-
ing is a relatively low-probability event, low sensitivity can be an
issue, which is exacerbated by interference from fluorescence!3.
Because of the intense laser powers typically used, local thermal
decomposition of the sample may be encountered, especially
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Figure 2 | Raman microspectroscopy workflow
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Raman spectroscopy80-82,

The aim of this article is to describe a
specific protocol for Raman microspec-
troscopy that can be applied to a variety of biological samples
independent of a specific manufacturer’s instrumentation and
software. The protocol will address (i) sample preparation,
(ii) spectral acquisition and (iii) data analysis of spectral data sets,
with anticipated results derived from a range of biological studies
(Fig. 2). It is important to note that this technique can also be
applied to nonbiological materials, providing insights into the
steps involved in Raman studies. In this protocol, we approach
principal aspects of planning and implementing Raman inves-
tigations that can be applied to a variety of biological samples.
We direct the reader to additional protocols that approach
specific biological applications?>83-86, It is our aim that by
unifying protocols from leading researchers in the field, spectro-
scopists and biologists can build new interdisciplinary studies
into biological samples incorporating Raman microspectro-
scopy into the suite of molecular biology tools.

Experimental design

In the PROCEDURE, we focus on four experimental examples:
(i) in vivo spectral exploration of live plant samples (suitable
for fresh tissue analysis); (ii) imaging of fixed human tissue;
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(iii) SERS classification of endometrial cancer using biofluids;
and (iv) analysis of cultured mammalian cells. These examples
encompass both point and image mapping acquisition
approaches, while exploring a range of pre-processing and
analysis steps including exploratory image processing and
spectral classification. This section of the INTRODUCTION
provides background on these steps and more detailed guidance
on how to decide which of these approaches to take.

Experimental design: instrument options

Figure 3 presents an overview of a typical Raman system and
identifies key instrumental components. There are numerous
Raman spectroscopic variations available, as described in Table 1.
This protocol will focus primarily on spontaneous Raman micro-
spectroscopy, which is a standard approach that does not require
additional instrumentation, unless otherwise stated.

Before setting up the instrument and starting the analysis
(Step 3), you need to consider what scientific questions you are
trying to answer and what types of samples you are going to
be analyzing. In this protocol, we refer to two types of inves-
tigative aims: exploratory (where you are trying to find out
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Figure 3 | Generalized overview of instrumentation options within a

typical spontaneous Raman spectroscopic microscope system. The beam path
will vary slightly between manufacturers, and thus it may contain additional
optical components.

what compounds are present in your sample) and diagnostic
(where you are using the presence of a compound or a molecular
fingerprint to draw conclusions about the sample; see Step 17 of
the PROCEDURE). Within these aims, you will have analytical
goals or expectations that may be one of the following types:
pattern finding, biomarker identification, or spectral classifica-
tion for diagnostics or imaging757.

Raman microspectroscopy can be used to analyze a wide variety
of sample types including [resh plant material (Step 1A), fixed
mammalian tissue (Step 1B), biofluids (Step 1C) and cultured
mammalian cells (Step 1D). The constraints of the sample under
investigation need to be considered (e.g., format, impurities)
along with the investigative aims and analytical goals when decid-
ing what equipment to use and how it should be set up. The first
decision to make is what excitation source to use.
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Excitation source. It is possible to use a variety of excitation
sources to irradiate samples, depending on the suitability of the
specimen to increased photon energies, as well as on the sen-
sitivity and resolution required in the study. Broadly speaking,
there are three main parameters to consider when choosing a laser
system: (i) the type of laser source, (ii) the desired wavelength and
(iii) the desired spot size.

There are several laser source options available within Raman
systems, of which diode lasers are increasingly commonplace, par-
ticularly within biological investigations. Diode lasers are based
on solid or semiconductor technology, and consequently they
provide greater energy efficiency than their popular noble gas—
based counterparts®$:89, Although gas-based lasers have been
frequently used in laser-based technologies, they are restricted
by a finite lifetime. A helium neon (HeNe) laser has a relatively
low power output in comparison with diode lasers, and more
powerful alternatives, such as the argon-ion laser, discharge large
amounts of heat that require a cooling system to counteract,
which is energy inefficient and also reduces portability®8. The
introduction of diode-based lasers has contributed to the devel-
opment of portable Raman systems because of their durability
and compactness?91.

When choosing a laser source, it is also important to consider
whether the experiment requires the use of pulsed rather than
continuous-wave lasers. For example, a pulsed laser would be
required in a stimulated Raman spectroscopy system, as the more
intense electric field strength of the laser pulse energy can con-
tribute to the increased frequency of Raman scattering events.

The line width of the laser is also an important consideration,
asit has a direct influence on the spectral resolution, regardless of
spectrometer configuration. Generally, gas-based and solid-state

TABLE 1 | Raman microspectroscopy method derivatives and the respective experimental benefits and limitations.

Technique Adaption Benefits

Limitations Applications/references

Nonlinear approach that uses
multiple laser frequencies; a
pump (@,) and Stokes ()

field that combine, tuned to a
frequency equivalent to a specific
molecular vibration, thus
generating a strong anti-Stokes
signal (@, = 20,_o;) that
detects vibrational coherence

Coherent
anti-Stokes

Raman scattering
(CARS)

103-106 increased signal53
High sensitivity
3D imaging

Nonresonant
background can
dominate weak
resonance signals

Cell imaging154.155
Tissue imaging156.157
Cancer diagnosis!58.159
Pharmaceuticals60.161

Confocal Raman
microscopy

Drop-coating
deposition Raman
spectroscopy

Addition of a confocal
microscope that allows depth
measurements within a tissue.
A pinhole is used within the
spectrometer to reject stray
light, effectively reducing the
collimation of the beam and
information to be derived from
an alternative focal plane

Sample preparation for fluid
analysis that drops a small vol-
ume of sample onto a flat sub-
strate and allows it to dry

High sensitivity

High lateral and depth
resolution

3D imaging

Rapid acquisition

Accurate preparation
of biofluids

Small volumes of fluid are

required (2-10 pl)

Diffraction-limited
resolution

Not completely free
from the ‘coffee ring’
effect

Cell imaging162.163
Tissue imaging164
Cancer diagnosis165-167
Pharmaceuticals!68.169
Plant cell imaging7475

Biofluid analysis1®

Protein quantifica-
tion117.120

(continued)
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TABLE 1 | Raman microspectroscopy method derivatives and the respective experimental benefits and limitations (continued).

Technique

Adaption

Benefits

Limitations

Applications/references

FT-Raman

Kerr-gated Raman
spectroscopy

Polarized Raman
spectroscopy
(PRS)

Raman optical
activity (ROA)

Resonance Raman
spectroscopy
(RRS)

SERDS

SORS

Surface-enhanced
SORS (SESORS)

Nondispersive system that uses
FT using a Michelson interfer-
ometer

A linear technique that uses
repeated laser pulses and a
Kerr gate that capture
Raman light temporally

(up to 3 picoseconds)

Polarized light with a specific
electric field vector will only
obtain spectral information
from specific vibrational modes,
depending on their orientation
in relation to the incident beam

By using right- and left-
circularly polarized incident
light, the small changes in
Raman scattering can be
indicative of optical activity

of discrete molecular vibrations

Exploits the ‘resonance effect’
observed when the laser fre-
quency matches (or approaches)
that of an electronic transition
of the sample or compound

in question

Nonlinear approach that
obtains two spectra at
marginally different laser
frequencies and creates a
difference spectrum by subtract-
ing the two, thus removing
background fluorescence

Continuous, low-intensity laser
beams are used to illuminate
the surface of the sample, and
Raman spectra are then derived
at distinct distances away from
this point. A scaled subtraction
between these spectra reveals
alterations indicative of the
underlying subsurface layers

High throughput
High resolution
Free from fluorescence

Depth measurements
up to several millimeters

Fluorescence rejection
High sensitivity

Information regarding
molecular structure and
orientation

Structural information from
specific conformations of
chiral molecules

Up to six orders of magni-
tude increase in signall82

Fluorescence rejection
Increased sensitivity

Depth measurements up to
several millimeters

A combination of SERS and SORS  Detects SERS signals up to

approaches, able to detect SERS
nanoparticles introduced into
turbid samples

50 mm beneath the sample
surfacel9?

Low scattering
intensity
Limited to IR
measurements
Detector noise
limited

Not completely free
from fluorescence
Better performance
when in conjunction
with shifted excitation
Raman difference
spectroscopy (SERDS)

Not applicable to
most samples
Loss of spectral
information

Time consuming

Circular intensity dif-
ferences are very small
Vibrational coupling
in ROA signals can
prevent accurate
band assignment

Susceptible to
fluorescence
interference

Difference spectra
are reconstructed
using peak fitting
Prone to error

Relatively weak
signal

Requires nanoparticle
introduction

Pharmaceuticals!3.170
Plant materials71.171

Depth profiling in human
tissuel72-174

Collagen orientation?’5
Plant photosystems176

Biopolymer analysis177-179
Pharmaceuticals180.181

Plant photosystems182

Human
biology54-55.183,184

Live cells85
Animal tissue186
Human tissuel8?

Cancer diagnosis32.188,189

Chemical analysis
beneath physical
obstructions190.191

Depth measurements193-196
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TABLE 1 | Raman microspectroscopy method derivatives and the respective experimental benefits and limitations (continued).

Technique Adaption Benefits Limitations Applications/references
SRS Nonlinear approach using a Not affected by Prone to interference  Cell imaging®8
pump (@,) and Stokes () field fluorescence and non- from strong Raman Plant imaging?3.197.198
that are tuned to a defined resonant background scatterers
frequency representative of High sensitivity (1 in Limited to measure-
molecular vibrations {,-a;). 106 photons) ment of one Raman
Wl?en this occurs, @, opserves @ High spatial resolution peak per acquisition
stimulated Raman loss in energy,
and @, observes a stimulated
Raman gain. The transferred
intensity is proportional to the
biochemical constituents
SERS Because of surface plasmon 103-1010 enhancement Lack of Single-molecule
resonance, a metal surface Below diffraction limit reproducibility detection199.200

Surface-enhanced
resonance Raman
scattering

TERS

Total internal
reflection Raman
spectroscopy

Transmission
Raman

with nanoscale roughness can
substantially increase the
electric field when excited by
a laser. Thus, when adsorbed
to a biomolecule, these
nanoparticles result in greatly
enhanced Raman scattering

Combination of RRS and SERS
approaches, using a laser fre-
quency in resonance with a
biomolecule of interest and the
addition of a SERS active substrate

Based on the same electro-
magnetic and chemical theory as
SERS, TERS uses an atomic force
microscope tip coated with SERS
active metal. When placed in
close proximity to the sample, it
results in enhanced scattering

The sample is placed in
contact with a reflective prism,
through which a laser beam

is reflected, producing an
evanescent wave that
penetrates the sample below

Raman scattered light is
captured on the opposite
side of laser illumination

resolution

Quenches fluorescence
Low detection limit
Molecular labeling

Up to 1015 enhancement208

Cumulative benefits of both
SERS and RRS

Tip-dependent spatial
resolution

Low detection limit
Quenches fluorescence
Below diffraction-limit
resolution

Defined penetration depth

Depth measurements
up to 30 mm
Suitable for opaque
materials

Can reduce band
intensity of high-
frequency modes
Molecular selectivity
to nanoparticle
adherence

Increased
experimental
complexity

Increased experimen-
tal complexity
Sample heating at
tip apex

Reduced surface
sensitivity

Interference from
surface molecules

Tumor targeting?0!
Live-cell analysis?20?
Pharmaceuticals203
Cancer diagnosis52.204.205

Bacterial identification16.206
Plant materials207

Biomolecule detection?20?
Protein analysis210.211

Microbiology?®
Biochemical imaging?12

Plant materials®8

Cancer diagnosis?13
Pharmaceuticals?14.215

lasers have narrow bandwidths and thus higher spectral resolu-
tion, whereas some multimode diode lasers can have wide band-
widths with broad spontaneous emission.

The wavelength of the laser is critical to the experimental design
(Fig.4). The wavelengths available are laser-specific, yet they gen-
erally fall between the mid-UV (>200 nm) and the NIR (<1.1 pm)
regions. Fluorescence contribution (shown in black in Fig. 4) to
a Raman spectrum can be avoided if you are exciting the sample
with a wavelength that falls outside its profile. Therefore, by using
NIR wavelengths, the resulting Raman spectrum (shown in red
in Fig. 4) is free of any fluorescent contribution. Similarly, UV

wavelengths can be used, as the fluorescence resulting from light
of these wavelengths is red-shifted beyond the fingerprint region
of the Raman spectrum; therefore, the spectrum is comparatively
free from fluorescence, despite the fact that higher-energy wave-
lengths are used7®.

Because of the effects of phototoxicity, a key constraint to
consider is the interaction between the laser wavelength and
the sample. Exposure to high-energy radiation, especially over
prolonged periods of exposure, can have a destructive effect on
samples. This is particularly important when conducting in vive
studies and interrogation of sensitive samples such as single cells.
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Figure 4 | Simplified overview of the effect of laser excitation wavelength
on the fluorescence background. Visible lasers, such as the 532-nm

(green} laser, are largely susceptible to background because of the defined
wavelength profile of fluorescence (black), whereas high-energy UV (purple)
and lower-energy IR (red) wavelengths, such as those at 244 and 1,064 nm,
respectively, are relatively free of fluorescence.

Although reducing the laser power at the sample can decrease
photodamage and the effects of phototoxicity, not all laser
wavelengths are suitable for a given sample, and this should
be considered beforehand; for example, cellulose is rapidly
damaged at UV wavelengths. It is advised to reduce exposure
times wherever possible and to conduct controls to determine
the toxic effects of the laser wavelength in use.

In addition, the effect that laser wavelength has on other
key experimental parameters such as resolution and sensitivity
must also be considered. The spatial resolution is dependent
on the spot size of the illuminating beam, which is dependent
on the optics and the wavelength of the laser. Sensitivity is
also dependent on the excitation wavelength, as the Raman scat-
tering intensity is proportional to 1/A%, resulting in substantially
reduced sensitivity at lower laser photon energies, such as at the
1,064-nm laser wavelength.

NIR lasers, most commonly those at 785 and 830 nm, have been
extensively applied in biological studies, particularly in fixed and
live cells, as these lasers have relatively low photon energy and gen-
erally do not cause substantial photodamage®2-93. Tissue Raman
microspectroscopy is also typically performed in the NIR region,
because it is within the diagnostic window of low melanin and water
absorption®. For some molecules such as DNA, it makes more sense
to perform excitation in the UV region, because the laser frequency
and the electronic transition of the molecule under investigation are
similar®”.98. This would provide a molecule-specific enhancement
of the scattering, termed resonance Raman scattering.

Practically speaking, it is better to have >30 mW laser power
at the source for the shorter visible wavelengths and >100 mW for
the longer ones, and then to use a series of attenuators to optimize
the illumination power delivered at the specimen. The total laser
intensity (power/area) illuminating the sample is a central factor
when aiming to acquire high-quality results from biological
samples, given that they are generally low-scattering materials
that suffer from radiation damage. It is important to consider this
last point, as the laser intensity is dependent on laser spot size
(sampling area) and magnification; therefore, these factors can
have a major impact on the laser exposure of the sample.

Itis possible to alter the profile of the laser spot in some Raman
systems. By focusing the laser in a line (rather than a spot), a larger
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surface area is illuminated, which results in more Raman scattered
light. Thus, spectral information is obtained from a larger surface
area,and photodamage is reduced®. Raman maps can be obtained
by raster-scanning the line-focused laser across the sample. Line
mapping can be achieved in shorter acquisition times compared
with point mapping, without compromising image qualitys3100-102,
However, the intensity across the laser line is variable, and there-
fore this approach leads to spectra with variable signal-to-noise
ratios (SNRs) across the laser line, unless corrections are applied
to compensate for this. An alternative is to globally illuminate the
sample area, often via a fiber-optic array probe, resulting in high-
quality spectral imaging with enhanced power distribution across
the sample!03:104_ Specialized filters (e.g., liquid-crystal tunable,
dielectric acousto-optic filters) are used to actively select specific
wavelengths from the sample, which along with a 2D detector
allows the production of true Raman images from relatively flat
samples101. Although global illumination allows for the produc-
tion of high-quality images, this often comes at a cost of the
underlying spectral quality due to the reduced laser intensities
across the sampling area.

After considering how best to illuminate the sample, we need
to turn our attention to the choice of detector.

Detector. To detect the weak intensity of scattering, the detector
included in the Raman system needs to be extremely sensitive.
Greater levels of sensitivity may be necessary in some studies
in which scattering is especially weak, or in which noise is par-
ticularly high, and thus the challenge of detection is increased.
Charge-coupled devices (CCDs) are commonly integrated in
Raman systems, because they exhibit high quantum efficiencies
and low SNRs, compared with early alternative detectors such as
photomultiplier tubes (PMTs) and photodiode arrays (PDAs)105.
CCDs are multichannel arrays made up of thousands of pixels,
each of which can collect charge from scattered photons!6. This
charge is directly proportional to the Raman scattering intensity.
The CCD detector then reads out this charge by translating it from
one pixel to the next until it reaches the edge of the detector chip
and can be read out by the readout electronics. There are a range
of CCD choices available, including intensified CCDs (ICCDs)
and electron-multiplying CCDs (EMCCDs). At extremely low
scattering intensities, EMCCDs can provide superior sensitivity
than conventional CCDs by creating further electrons and there-
fore providing a signal relatively higher than the readout noise.
However, if spectra are shot noise— or Poisson noise—limited, as
is usually the case with biological tissues and cells, the use of an
EMCCD will not improve SNRs!07. Dark, or thermal, noise can
be markedly improved by detector cooling, often by using liquid
nitrogen cryogenic or thermoelectric Peltier cooling, with deep
cooling toward —80 to —100 °C providing up to one order of
magnitude improved noise reduction!08.

The quantum efficiency of the silicon-based CCD detectors is
wavelength-dependent, and it drops off rapidly in the NIR region.
In this spectral region, back-illuminated CCDs could suffer from
fringing effects, as the detector thickness effectively behaves as a
wavelength resonator. Thus, longer wavelengths of light may not
be effectively absorbed and can result in signal modulation and
artifacts that could appear in the spectra, with detrimental effects
on spectral quality. The use of deep-depletion CCDs can reduce
[ringing effects, as a thicker photosensitive region is used so that
reflection of NIR light is reduced. For NIR studies beyond 950 nm,
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in which the photon energy is less than the silicon bandgap,
multichannel array detectors such as indium gallium arsenide
(InGaAs) detectors are advantageous in order to overcome ther-
mally generated noise in the higher-wavelength region!09.

There are a number of additional hardware options and param-
eters that can affect experimental output. These include the choice
of filters and monochromators, the sampling aperture and the
microscope objective.

Filters and monochromators. Rayleigh scattering is more
intense than Raman scattering and can easily overpower the more
informative signal, so it must be optically filtered. Dispersive
Raman spectrometers use specialized Rayleigh filters or a
multistage monochromator, whereas nondispersive spectrome-
ters often use Fourier transformation (FT) based on a Michelson
interferometer!%. There are a range of manufacturer-specific
Rayleigh filters available!!%; however, holographic notch and
dielectric edge filters are most commonly used. Edge filters
only transmit light wavelengths above that of the laser in use,
whereas notch filters will effectively filter only the laser wave-
length, allowing both Stokes and anti-Stokes measurements!!!.
Metal oxide edge filters have been shown to have much longer
lifetimes than notch filters.

Rayleigh filters must be selected to be specific to the laser
wavelength. Multistage monochromators with variable laser
wavelengths can be used, but there is a major throughput dis-
advantage to using multistage monochromators®. Single mono-
chromators comprise a diffraction grating, which is used to
disperse the Raman scattered light, and they are universally used
in conjunction with Rayleigh filters. Gratings differ with respect
to the number of grooves (per mm) or lines (per mm) on the
surface, which can be anywhere in the range of 150-4,000 per mm,
corresponding to the diffraction or angular dispersion capabilities
of the grating. Higher groove frequency can improve the spectral
resolution at the cost of reduced spectral intensity and range.

Sampling aperture. The sampling aperture of the system determines
how much light, and therefore Raman scatter, is passed through
the spectrometer. Slits and pinholes range from 10 to 100 pm,
with a larger aperture allowing more light through the system and
thus increasing sensitivity, but at the expense of spectral and depth
resolution. For thin samples such as fixed cells, the use of pinhole
and optimal in-depth focus of the laser illumination is crucial to
maximizing the Raman signal from the sample volume.

Microscope objective. The choice of microscope objective is
crucial in Raman microspectroscopy. The objective’s throughput
depends on its magnification and solid angle of light collection—
i.e., NA. A high-magnification/high-NA objective provides higher
axial spatial resolution, but it has a shorter working distance
and may be better suited for thin samples. Low-magnification/
moderate-NA objectives provide lower axial spatial resolution,
but they have a longer working distance and may be better suited
for bulky specimens to avoid the specimen touching the objective.
Low magnification may be more appropriate for samples that do
not require high spatial resolution, such as liquids and homogene-
ous samples. Conversely, high magnification is beneficial in studies
that require high spatial resolution so that specific biological
architecture can be examined.
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Importantly, microscope objectives can be specially coated
in anti-reflective materials or wavelength filter coatings for
optimal performance in a specific wavelength region, and those
coatings can produce significant background signals if another
wavelength is used. We encourage careful consideration of the
microscope objective and additional preliminary tests with
the sample under investigation.

Experimental design: sample preparation

One of the major advantages of Raman microspectroscopy in
biological studies is the ability to derive label-free and non-
destructive spectral information with minimal sample prepara-
tion. However, it is important to appreciate sample constraints,
as well as substrate options, that can have a substantial effect
on experimental procedures. Sample stabilization and relative
flatness are also important sample preparation considerations,
because the technique relies on maintaining optical focus.

Sample format. Although it is possible to analyze fresh
tissues directly, fixation can be an important step in prepar-
ing mammalian tissue samples or samples of cultured cells.
Advantages are that it is a standard method for sample archiving,
that it is easy to obtain thin sections from fixed and embedded
tissue, and that fixation isolates a sample at a distinct experimen-
tal time point.

Formalin-fixed, paraffin-embedded (FFPE) tissues have been
historically archived in pathological settings, and these specimens
have been widely analyzed using microspectroscopy. A problem
for Raman analysis of these samples is that formalin modifies
proteins by cross-linking, and it can thus alter spectral peaks asso-
ciated with proteins between 1,500 and 1,700 cm 1. Furthermore,
paraffin has strong signals in the fingerprint and higher-
wavenumber regions of the spectrum. These signals can be found
at 892, 1,065, 1,135, 1,174, 1,298, 1,421, 1,443 and 1,464 cm~1, and
thus they have substantial overlap with the underlying sample
biology!12. The contributions of paraffin in the Raman spectrum
can be removed by either de-waxing the sample or by digital
de-waxing, which can remove the strong paraffin peaks from
the spectrum!13. De-waxing, as well as the fixation process itself,
has been shown to have a marked effect on lipid content in
samples, and it should therefore be used cautiously when draw-
ing conclusions based on lipid alterations!14. Digital de-waxing
avoids modifying the sample molecularly, yet it can limit
the number of viable spectral regions that can be interpreted.
In the PROCEDURE, we describe sample de-waxing using
xylene (Step 1A).

Analysis of fresh or snap-frozen tissues may overcome
these substantial drawbacks, although sample acquisition becomes
more difficult, sectioning is encumbered and sample degrada-
tion must be controlled. Live-cell analysis is a rapidly expanding
field that allows the user to interrogate cells in situ in aqueous
environments and 3D cell cultures while maintaining key growth
parameters, including temperature and gas availability36. In these
studies, it is important that the cells adhere sufficiently to a growth
substrate before analysis. In addition, the background signal from
the cell medium should also be considered beforehand, as it may
provide unwanted background interference.

Liquid samples can be easily examined by Raman micro-
spectrometry. This can be achieved using either an immersion
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objective or a microfluidic device to overcome spectral artifacts
due to the presence of bubbles and surface tension. This has per-
mitted the analysis of biofluids, such as blood plasma, sputum,
saliva and urine, in diagnostic studies®!. Another approach for
biofluid analysis is a combined drop coating deposition Raman
spectroscopy (DCDRS), which is also known as drop deposition/
Raman spectroscopy; this is covered in Step 1C. Small biofluid
volumes are deposited onto a flat substrate and allowed to dry
on the basis of sessile drop formation principles'!>. Sessile drop
formation has many benefits for Raman spectroscopy, with pre-
concentration of proteins, coarse separation of impurities and
reproducible prediction of protein solution concentrations!16:117,
The resultant ‘coffee ring’ dried drop can be examined by Raman
microspectroscopy, with the knowledge that a variable coffee
ring thickness affects spectral intensities and the distribution of
macromolecules within the ring deposit!18-120,

Raman substrates. Substrate choice is a critical factor in experi-
mental design, and it is dependent on the experimental outputs
and sample characteristics. The matrix on which a sample is sup-
ported contributes to physical stability, and therefore it directly
affects the spectral quality by keeping the sample in focus for the
duration of the experiment. The most important properties of the
substrate to consider are the spectral background signals, as well
as the substrate cost, availability and composition. Care should be
taken in choosing a substrate and appropriate preliminary experi-
ments should be performed, because contaminants can produce
unwanted background signals. The glass slides typically used
in optical microscopy are exceptionally cost effective, but they
have a strong background fluorescence at most wavelengths except
532 nm (ref. 121). One approach is to use metal-coated glass
slides, such as aluminum- or gold-coated glass, which effectively
eliminate the glass signal. Gold-coated slides with roughened
surfaces have also been shown to be good SERS substrates!22,
Calcium fluoride (CaF,), quartz or fused silica slides are used
as Raman substrates, because they show minimal background
interference. Barium fluoride (BaF,) slides have also been used
as Raman (and IR) substrates, but their partial solubility in
water makes them unsuitable for in vivo and aqueous studies!?3.
Although these specialty substrates are more expensive than glass,
they are often reusable in a laboratory setting. In a clinical set-
ting, these costs may be prohibitive, particularly for large-scale
screening programs. The development of low-cost, single-use
sterilized Raman substrates is an ongoing process in which there
have been a number of recent developments, including the use
of aluminum foil124.

SERS. To acquire enhanced spectra using the SERS technique, a
greater degree of sample preparation is required than in tradi-
tional approaches. As mentioned previously, SERS relies on the
interaction of materials with nanoscale roughness with biomol-
ecules within the sample, and the user must first decide on an
appropriate SERS substrate. Gold and silver nanoparticles are
considered ideal SERS substrates for biological studies using radi-
ation in the visible and NIR regions, as their plasmon resonance
frequencies are within this range, although other noble metals
such as platinum can be used. The enhancement capabilities
of metallic nanoparticle solutions are highly dependent on
nanoparticle size, shape and aggregation!2126_ Theoretically,
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as nanoparticles increase in size, the resonance will red shift;
however, at diameters >100 nm, this comes at a cost of increased
resonance linewidth and therefore specificity. Metallic nano-
spheres have been commonly used in SERS studies, although
novel nanostructures such as nanorods and nanostars have exhib-
ited optimized enhancement of the Raman signall27.

Label-free detection of analytes is a relatively simple SERS
approach, which does not require substantial sample prepara-
tion. Colloidal nanoparticles can be mixed at a user-defined ratio
with other liquids or applied directly onto a sample and allowed
to dry. Provided that substantial adsorption occurs between the
nanoparticles and the sample, it is possible to acquire consist-
ent, enhanced spectra from homogeneous samples. Conversely,
the enhancement effect and resultant spectra become more
variable in complex samples, as nonspecific enhancement of
each biomolecule within the sample can occur (Fig. 5). This
issue can be overcome by using SERS labels to specifically target
molecules of interest, and it has proven to be a valuable tool in
analytical studies®4:65.

Experimental design: spectral acquisition

The desired spectral output must be considered when approach-
ing spectral acquisition, as the experimental parameters for simple
point spectra and image construction are different (Steps 7A and
7B). A point-mapping approach allows the user to actively, or ran-
domly, select specific areas of the sample to interrogate with the
laser spot. In contrast, an image-mapping approach will derive
spectra in a stepwise manner across a larger sample area, thus
allowing image generation. In general, superior spectral quality
can be obtained using a point-mapping approach, as data sets can
benefit from longer acquisition times. In comparison, hyperspec-
tral data cubes generated from mapping and imaging techniques
can provide user-friendly data interpretation, although a balance
between extensive acquisition times and spectral and image quality
is required!0l. For example, a map spanning a biological feature
10 x 10 um in size would be made up of 100 spectra when usinga
step size of I um (with oversampling). This map could be acquired
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Figure 5 | Raman spectra derived from blood serum containing 150- and
40-nm diameter gold nanospheres, and a control sample containing no SERS
substrates. An enhancement effect can be seen in comparison with the
control sample, with a 10- and a 30-fold increase in scattering intensity with
40- and 150-nm nanoparticles, respectively (not to scale). However, clear
spectral differences are evident because of the complex nature of the sample
and the distinctive effects of nanoparticle diameter. a.u., arbitrary units.
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relatively quickly when using acquisition times <10 s, although
some samples may require longer laser exposures because the
sample volume is small or because the sample has weak scatter-
ing tendencies (as the latter is relevant for single-cell studies, for
example). However, it is important to note that huge numbers of
poor-quality spectra can still provide exquisite detail if multivariate
approaches are used to analyze the data.

Resolution. The desired spectral and spatial resolution of the
experiment, and hence the required sensitivity, must be decided
before spectral acquisition. As mentioned with regard to instru-
mentation options, spatial resolution is ultimately diffraction lim-
ited and therefore linearly dependent on the laser wavelength, and
itis inversely proportional to the NA of the objective. Accordingly,
high spatial resolutions can be achieved with lasers at shorter
wavelengths and high-magnification optics.

In contrast, spectral resolution is greater at higher excitation
wavelengths, provided that the Raman optical configuration
remains constant. An increased number of smaller-sized pixels
within the detector and lower levels of cross talk between pixels
can also contribute to higher spectral resolution!28. Spectrometer
focal length (SFL) is the distance between the diffraction grating
and the detector. This distance is typically 200-800 mm, with
greater distances generally providing improved spectral resolu-
tion!2%. A larger SFL requires a larger entrance slit, in order to
allow the maximum passage of light, which can also influence
spectral resolution!30. However, it is often impractical to alter
these parameters within a single Raman system. Gratings with
higher groove frequencies can improve spectral resolution at a
cost to sensitivity and spectral range, and they can be relatively
easy to change on a single Raman instrument.

It is evident that when choosing a laser excitation wavelength
there is a potential trade-off between desired spectral and spa-
tial resolution. High spectral resolution (up to 0.5 cm~!) may be
required in studies in which specific molecular information is
required and thus adjacent Raman bands need to be differentiated,
such as in pharmaceutical studies monitoring drug uptake at the
cellular level. Increased spatial resolution (up to 1 um) is required
when specific localized information is required, which is particu-
larly important when interrogating tissue features to extract bio-
logical information. This is particularly valuable in mapping and
imaging approaches, as specific architecture can be imaged, such as
when identifying cancer progression in tissue samples42:45.

Although they are not exhaustive, these factors determine the
spectral output and must be considered before analysis. Once
these parameters have been chosen, there are steps that can be
taken to optimize the experimental conditions. These include
instrument calibration (Step 4), adjustment of experimental
parameters to optimize for spectral quality and determination of
the levels of spectral contamination, which are discussed below.

Calibration. Commercially available instruments produce the
Raman spectrum as given wavelengths of light strike the detector
at defined pixel values. The process of calibrating the spectrum
{rom pixels to Raman shift, typically reported in wavenumbers,
is a multistep process. We recommend daily calibration of the
instrument (according to the numbered guidelines below), as even
subtle shifts in the instrument optics may produce an observable
change in the Raman shift.
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(1) Itisimportant that the user ensure that the laser spot corre-
sponds to the visual and spectrometer sampling point before
sample acquisition. If necessary, beam alignment can be per-
formed using manual or computerized beam-steers, and it
should be checked regularly to optimize spectral acquisition.

(2) Depending on the instrument manufacturer, there are
manual and/or automatic calibration options. The first
calibration step is conversion of pixels to wavelength.
This is achieved by measuring the light emissions of a cali-
bration lamp (such as neon or argon) that has multiple
atomic emission lines, and using a nonlinear model to fit
the spectral peaks to the CCD pixel.
The second and third steps are converting wavelength to
wavenumber units by forming the inverse of the wave-
length and correction of the laser wavelength using refer-
ence materials with defined Raman signatures. The easiest
reference material to use is silicon, which has a sharp peak
at 520.5 cm™!, and any band shifts can be easily offset!31.
Other Raman reference materials include cyclohexane,
acetaminophen or Teflon. Luminescent or broadband
emission standards can be used to derive a system response
function measure to correct for filter, detector etaloning
and quantum efficiency effects!32. Further performance
validation tests can include the measurement of a well-
characterized protein in order to check SNR and calibra-
tion consistency between measurements. National Institute
of Standards and Technology (NIST) standards are also
routinely used as calibration references.

(3

o

Spectral quality. Optimizing experimental parameters is an itera-
tive process, requiring an element of trial-and-error to obtain a
method for optimum spectral quality and high SNR. Spectral
quality is governed by instrumentation, sample suitability and,
ultimately, time constraints. Within these constraints, the follow-
ing steps can be followed to improve spectral quality:

(1) Depending on the sample type, it is possible to attenuate
the laser power so that higher power is used for weak scat-
terers to get the highest possible Raman signal, and lower
power is used for intense scatterers in order to prevent
detector saturation!28,

(2) After power adjustments, the exposure time of the laser on
the sample can be increased, thus multiplying the intensity
of scattered photons and therefore the spectral quality.

(3) The user also has the option to accumulate multiple spectra,
increasing the signal intensity and reducing baseline interfer-
ence. Longer exposure times and acquiring multiple spectra,
commonly referred to as coadditions, can substantially affect
sampling times, thus resulting in a potential trade-off between
spectral range, quality and time availability.

Spectral contamination. There are a variety of common contaminants
that can be observed in Raman spectra, some of which can be sample
or instrument dependent. As previously described, fringing effects
from the detector and unwanted background from sample substrates
are examples of potential spectral contamination. Others include:

(1) Cosmic rays are sporadic background artifacts recognized
by sensitive detectors, which manifest in Raman spectra
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as narrow-bandwidth spikes!33. Most of the instrument
software packages contain cosmic ray removal algorithms
that allow the user to selectively eliminate cosmic rays, as
well as algorithms in processing packages for automated
cosmiic ray removall34.
(2) Peaks from known contaminants, such as paraffin in
FFPE tissues, can be removed using wavenumber exclusion
techniques or computational algorithms, which are
widely available on instrumentation software, as well as
analysis programs!12.
For samples that contain extrinsic fluorescence, photo-
bleaching could be used to suppress interference from
contaminants. Exposing samples to the incident light
source for a few seconds before acquiring spectra on the
detector, effectively ‘bleaching’ the fluorescent contami-
nants, has been shown to reduce oscillating baselines!3>.

3

=

Experimental design: data processing
Spectroscopic studies can rapidly generate large data sets that
require computational processing in order to derive biochemical

TABLE 2 | Data analysis software for Raman spectral data sets.

information. Depending on the specific spectral acquisition and
experimental objectives, it is possible to extract informative images,
spectral biomarkers and patterns, and also to classify samples on
the basis of their spectral fingerprint. As a rule, data processing
can be divided into three distinct steps: (i) data set pre-processing,
(i) feature extraction and (iii) classification?. Table 2 provides a list
of available analysis software. There is also a strong relationship
between Raman and IR spectral analysis (for reviews of this technique,
see Baker ef al.7%, Martin et al.87, Lasch134 and Trevisan ef al.136).

Pre-processing. Immediately after acquiring the spectra, the
quality of the spectral data sets should be assessed, and pre-
processing should be applied to improve the accuracy of the
study by minimizing insignificant variability!3* (Steps 11-16).
At this point, spectra should be corrected for cosmic rays, and the
quality of the spectra can be visually assessed. There are some
circumstances in which visual inspection of spectra shows clear
outliers, including substantial spectral contamination, {luores-
cence or very poor SNR!37. In those cases, obvious outliers can
be removed from the data set. Other spectra that are outliers in

Software Website License

CytoSpec http://www.cytospec.com/ftir.php Commercial
Imagelab http://www.imagelab.at/en_home.html Commercial
MATLAB Commercial

Biodata Toolbox

Open source

Extended Multiplicative Signal
Correction (EMSC) Toolbox

IRootLab

Multivariate Image Analysis
(MIA) Toolbox

Multivariate Curve Resolution-
Alternating Least Squares
(MCR-ALS) Toolbox

PLS Toolbox

Raman Processing Program

Origin for Spectroscopy
PeakFit
Python

PyChem

PyVib2

HyperSpec
The Unscrambler X

http://www.mathworks.com/matlabcentral/fileexchange/22068-biodata-toolbox

http://www.models.life.ku.dk/emsctoolbox

https://code.google.com/p/irootlab/

http://www.eigenvector.com/software/mia_toolbox.htm

http://www.cid.csic.es/homes/rtagam/tmp/WEB_MCR/welcome.htm

http://www.eigenvector.com/software/pls_toolbox.htm

http://cares.wayne.edu/rp/

http://www.originlab.com/index.aspx?go=Solutions/Applications/Spectroscopy

https://systatsoftware.com/products/peakfit/

http://pychem.sourceforge.net/

http://pyvib2.sourceforge.net/

http://hyperspec.r-forge.r-project.org/

http://www.camo.com/

Open source

Open source

Commercial

Open source

Commercial
Open source

Commercial
Commercial
Open source
Open source

Open source

Open source

Commercial
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the data set could be identified using a Q-test or another outlier-
detecting algorithm; to reduce user bias, this could be done in
addition to or even instead of visual inspection. We recommend
sagacious and limited removal of spectra from a data set, particu-
larly with respect to hyperspectral images and small data sets.

Raman spectra are particularly prone to noise, and data may
require noise reduction to enhance spectral quality. The first
approach to improve the quality of the Raman signal would be
to alter spectral acquisition settings, such as by using increased
integration times and higher laser power. Sample preparation may
also be adjusted by preconcentrating or photobleaching the sam-
ple.If these approaches are inadequate, then spectra can be com-
putationally manipulated after acquisition to improve the SNR.
Principal component analysis (PCA) is a powerful technique in
Raman pre-processing that can effectively reduce the spectra into
a defined number of principal components (PCs) that account
for significant spectral variance!38. This technique can be used
to reconstruct spectra using only significant PCs, thus retaining
important spectral data while removing background noise!3*.
Other noise-reduction approaches include Savitzky-Golay (SG)
smoothing, minimum noise fraction transform and wavelet
denoising (WDN) techniques that can filter high-frequency
noise!36. Although smoothing spectra does reduce the apparent
noise, we note that these processes also degrade spectral features,
and we recommend limited and cautious use of smoothing.

Sample and background fluorescence, as well as thermal
fluctuations of the CCD, can markedly affect the spectral base-
line, and therefore baseline correction is necessary. Polynomial
baseline fitting attempts to estimate the unknown background.
This is often dependent on user-defined polynomial points, and it
can effectively abolish sloped or oscillatory baselines!40:141. Care
should always be taken with any baseline subtraction routines, as
they can introduce unintended artifacts. Alternatively, first- or
second-order differentiation, coupled with SG smoothing, can
be applied to mathematically remove contributions from scalar
offsets or baseline slopes, while simultaneously resolving over-
lapped peaks!42. Unlike polynomial fitting, which yields spectra
with conventional morphologies, derivative spectra are trans-
formed and do not have a regular Raman appearance.

After baseline correction, spectra may also require normalization
to correct for sample and experimental variables, such as thickness
and density. Vector normalization and min-max normalization are
two popular methods that can be applied to spectra after any base-
line correction algorithms without substantially affecting spectral
features!34. Amide I peak normalization is also commonly used in
IR and Raman studies”®. However, this technique is not appropri-
ate after differentiation, because of the shift of the typical amide
bands, or for experiments in which you are measuring changes in
protein structure, as all values are scaled to 1.

Finally, an optional data reduction step can be included in
the pre-processing procedure to optimize statistical analysis.
As highlighted previously, large spectral data sets can often present
a significant computational burden, because of the many absorb-
ance intensities contained in a single spectrum. By truncating
the spectrum to shorter wavenumber ranges, this burden can
be reduced, especially if the range focuses on individual Raman
peaks!43. Alternatively, data-reduction algorithms, such as partial
least squares (PLS) or PCA, can be used to reduce individual spectra
down to a few key factors, and they have been widely implemented
as both pre-processing and feature-extraction steps!36.
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The selection of pre-processing steps and the order in which
they are conducted has been shown to have a major impact on the
outcomes of spectral analysis, thus complicating the development
of auniversal approach!44. Wherever possible, we advise the use of
derivative baseline correction and vector normalization; although
this does require high-SNR data, it can be particularly effective
in diagnostic studies. In addition, whenever necessary, the use of
noise and data reduction tools can be applied.

Feature extraction. In both exploratory and diagnostic studies,
itis important to transform individual spectra into appropriate
variables that confer biological information. Feature-extraction
methods (see Step 17) range from the very simple, such as defin-
ing a band area, to considerably more complicated computa-
tional functions. Feature extraction can broadly be split into two
distinct approaches: feature construction and feature selection.
These approaches are comprehensively reviewed by Trevisan
et al.136_ Briefly, feature construction can be defined as the
creation of new features in a data set that can infer otherwise
obscured information: for example, the previously mentioned
linear methods PCA and PLS. This can be exceptionally impor-
tant for diagnostics, biomarker extraction and pattern rec-
ognition in otherwise homogeneous data sets, and it has an
important role in hyperspectral imaging, as individual pixels
can be reduced to single values relating to spectral intensity
or variance’?. Feature selection approaches extrapolate existing
features from the data set, such as specific wavenumbers, that
can be used to determine spectral biomarkers and/or feed
into diagnostic frameworks!4>. Techniques such as genetic
algorithm, multivariate curve resolution and successive
projection algorithm have proven to be particularly popular as
feature-extraction methods, as only informative variables are
included in the resultant model!46.

Classification. Classification of samples based on their spectra
is often desirable, in both imaging and diagnostic studies, as
spectra can be categorized based on prior user input (supervised
classification) or spectral variance alone (unsupervised; see
Step 17). Unsupervised classification typically relies on a clus-
tering technique, of which hierarchical cluster analysis, k-means
clustering and fuzzy C-means clustering are three popular
options®). PCA is another unsupervised approach that is com-
monly used to extract key variables describing the largest vari-
ance within a data set. In imaging studies, this approach requires
no prior knowledge of the sample in question, and it produces
information-rich pseudo-spectral images that are ideal for
exploratory studies!#’. The loadings or spectral features used to
calculate the scores or weight images can provide key information
on molecular distributions in a sample.

For diagnostic analysis, supervised classification is most com-
monly used, as the desired outputs are dependent on class labels
provided by the user. This could be gold-standard histopathology,
cell type or an alternative measure of class. These class assign-
ments are taken into consideration when implementing the clas-
sification technique, using a proportion of the data set, referred
to as a ‘training data set.” A classifier is then able to categorize a
separate ‘test data set” accordingly. It is a common approach to
validate the classification outputs using an independent data set.
Linear discriminant classifiers (LDCs), artificial neural networks
and support vector machines (SVMs) are particularly common
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machine-learning techniques that effectively classify spectral data,
although other techniques are available!8. Semisupervised clas-
sification is an alternative option when some, but not all, data
classes can be determined 14150,

Sample size. Classifier performance and validity is highly influ-
enced by sample size, and thus choosing how many samples to
use and also how many spectra to acquire is an essential aspect
of experimental design. The number of spectra within a data
set can easily surpass millions, as a sufficient number of spectra
per sample and class type is required to account for the inherent
sample intra- and inter-class variability. However, it must be

remembered that the number of spectra is not representative
of the sample size, and frequently the number of independent
samples is much smaller and may, for example, be determined
by the overall patient number in a given study. It has been shown
that a sample size of 75-100 is sufficient to train a classification
model with good precision and validation!5!. Cross-validation
may be a suitable solution in smaller data sets, as resampling
approaches can repeat or iterate different training and test data
sets for a defined number of times, effectively using as much of
the data set as possible!36:152, However, full independent testing
of a previously developed classification algorithm is the ideal
approach, if the sample numbers permit.

MATERIALS

REAGENTS

! CAUTION We note that most of the listed reagents are chemicals with

potential hazards. Users should consult with the chemical’'s MSDS and

the appropriate facility safety guidelines before handling chemicals.

Raman spectra for each reagent used may be provided by the reagent supplier

or accessed via a Raman database provided by the instrument manufacturer.

A CRITICAL For all materials listed alternative suppliers can be used,

unless otherwise stated.

« Sample acquisition: fixed tissue, fresh tissue, cryosectioned tissue, fixed
cells, live cells, biofluids and powders from a variety of biological specimens
A CRITICAL Research carried out with human subjects must be compliant
with the Declaration of Helsinki. Research carried out with animals must
be approved by the local institutional review board or animal use ethical
board. Approvals must be established before the experiment’s start.

« Paraffin wax pelletized with added polymers, 57-58 °C (Fisher Scientific,
cat. no. 12624077)

« Liquid nitrogen (BOC, CAS no. 7727-37-9)

« Isopentane (Fisher Scientific, cat. no. P/1030/08)

« Virkon disinfectant (Fisher Scientific, cat. no. NC0480633)

Fixative agents

« Formalin, 10% (vol/vol; Sigma-Aldrich, cat. no. HT5011128)

« Glutaraldehyde, 25% (vol/vol; Sigma-Aldrich, cat. no. G5882)

« Ethanol (Fisher Scientific, cat. no. E/0600DF/17)

« Methanol (Fisher Scientific, cat. no. A456-212)

« Acetone (Fisher Scientific, cat. no. A19-1)

+ Osmium tetroxide, 2% (wt/vol; Sigma-Aldrich, cat. no. 75633)

SERS nanoparticles

+ Gold, 150 nm (1.66 x 10 particles per ml; BBI Solutions,
cat. no. EM. GC150)

« Gold, 40 nm (9.00 x 1019 particles per ml; BBT Solutions,
cat. no. EM. GC40)

« Silver, 40 nm (2.6 x 10? particles per ml; BBI Solutions,
cat. no. EM. SC40)

De-waxing agents

« Xylenes (Sigma- Aldrich, 534056)

« HistoChoice clearing agent (Sigma-Aldrich, cat. no. T12779)

EQUIPMENT

! CAUTION We note that the listed equipment has potential hazards. Users

should consult with the equipment instruction manual and the appropriate

facility safety guidelines before use.

« Microtome (Thermo Fisher Scientific, cat. no. 902100A)

» Wax dispenser (Electrothermal, cat. no. MH8523B)

« Sectioning bath (Electrothermal, cat. no. MH8517)

« Centrifuge (Thermo Fisher Scientific, cat. no. 75002410)

« Desiccator (Thermo Fisher Scientific, cat. no. 5311-0250)

Substrates

« Glass slides (Fisher Scientific, cat. no. 12657956)

« CaF, slides (Crystran, cat. no. CAFP10-10-1)

« Quartz slides (UQG Optics, cat. no. FQM-2521)

+ Gold-coated slides (Platypus Technologies, cat. no. AU.0500.ASLI)

« Aluminum-coated slides (EMF, cat. no. AL134)

« Quartz vial (Starna Cells, cat. no. 1-Q-1)
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Accessories

« Laser power meter (Coherent, cat. no. 1098293)

+ Microtome blades (Leica Biosystems, cat. no. 14035843490)

+ Desiccant (Sigma-Aldrich, cat. no. 13767)

« Embedding base molds (Leica Biosystems, cat. no. 38VSP58167)

+ Magnets, weights or mounting putty

Electronic equipment

+ Raman microspectrometer (Table 3 illustrates a number of commercially
available systems)

+ Computer system: a standard computer should be sufficient for basic spec-
tral acquisition and basic data analysis. As computational demand increases
in proportion to the complexity of the data processing, it is advised that
a system with sufficient RAM access (upwards of 4 GB) and a high speed
processor be used

REAGENT SETUP

Fixatives Fixatives must be diluted to the appropriate concentration using PBS or

saline H,O solution. They can be refrigerated at 4 °C forseveral weeks before use.

SERS nanoparticles Dilute the nanoparticles to an appropriate concentra-

tion depending on the experimental parameters. These can be prepared in

advance and refrigerated at 4 °C for several weeks before use.

Fixed tissue Generally, tissues are fixed using an appropriate concentration

of chemical fixative, followed by alcohol dehydration. Tissues can then

either be desiccated and stored at room temperature (20-22 °C) for a

number of months or paraffin embedded. An embedding base mold should

be filled with molten wax using a wax dispenser. The sample should be
carefully placed into the wax at the desired orientation and allowed to cool.

FFPE tissue blocks can be stored at room temperature indefinitely.

Fresh tissue [n vitro studies, such as when tissue has been excised from the

independent sample, will be prone to sample degradation, and thus should be

analyzed as soon after excision as possible. Refrigeration at 4 °C may be suf
ficient for 2-3 d of storage. Tissues may be snap-frozen using liquid nitrogen
and isopentane for up to 1 year with minimal effect on sample integrity.

Fixed cells Cells can be fixed using appropriate chemical fixative or a

preservative buffer, and they can be stored at room temperature for 1 month,

or for 3 months at 4 °C. Cells can be gently centrifuged at 1,000g for 5 min at
room temperature to form a concentrated cell pellet, wherever necessary.

A CRITICAL Splitting cells at ~60% confluence greatly diminishes the

number of lipid droplets per cell, which can be caused by cell ‘stress.

Live cells Depending on the desired experimental aims, live cells must be

kept in optimum living conditions throughout the study, including the

maintenance of nutrient requirements via media, as well as temperature, pH,
light and gas conditions.

Biofluids Once obtained, biofluids can be stored at —80 °C for several

years to prevent degradation. Before sample preparation, biofluids should

be thawed at room temperature or by using a water bath at 35-37 °C.

EQUIPMENT SETUP

Software Table 3 describes the available software options that come standard

with each specific commercial instrument. These software options are essen-

tial for spectral acquisition, and they may also provide data processing provi-

sions. However, for specialized spectral analysis, we direct the user to Table 2,

in which alternative software options are listed.
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TABLE 3 | Commercially available instruments and corresponding operational software.
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Manufacturer Instruments Format Software
BaySpec Agility S Spec 20/20
RamSpec S
RamSpec-HR S
Nomadic M

MovingLab MP

Bruker Optics SENTERRA M OPUS
RamanScopelll M
MultiRAM )
RAM IL S
BRAVO SP

Horiba Scientific XploRA Series M LabSpec 6
LabRAM HR Evolution M
Triple Raman Spectrometers S
OEM Miniature Raman SP

JASCO NRS-5000 Series Raman M Spectra Manager IT
NRS-7000 Series Raman M
RMP-10 SP

Kaiser Optical Systems RamanRXN1 M iC Raman
Raman WorkStation M HoloMap

Ocean Optics Maya2000 Pro S OceanView
QE Pro S
Ventana Series S

Ondax THz-Raman Spectroscopy Systems M NA
TR-MICRO M

Renishaw InVia confocal Raman microscope M WiRE
RA100 portable Raman analyzer SP

SciAps Inspector300 S NuSpec
Inspector500 S NuSpec Pro
ReporteR SP

Thermo Fisher Scientific DXR Series M ValPro System Qualification
FirstDefender RM Chemical SP
Identification System Sk
FirstDefender RMX Handheld SP
Chemical Identification SP

WITec Alpha300 Series M WITec Suite
apyronee SM

M, microspectrometer; NA, not applicable; P, portable; S, spectrometer.

NATURE PROTOCOLS | VOL.11 NO.4 | 2016 | 677

109



| PROTOCOL

PROCEDURE
Sample preparation
1| Prepare the samples and mount them onto appropriate Raman substrates according to option A for in vivo plant
analysis; option B for FFPE tissue samples; option C for SERS biofluid analysis; or option D for analysis of cultured
mammalian cells.
(A) Plant tissue ® TIMING 5 min
(i) Remove the plant sample from the plant specimen (e.qg., take a leaf or a section of root).
(i1) Place the sample on a suitable Raman substrate (depending on the thickness of the tissue). We typically use gold-
coated slides for plant tissues, as they are not adhered to the surface and the substrate can therefore be reused.
A CRITICAL STEP Leaf tissue in most plant species should be sufficiently thick to avoid background interference from
the substrate. However, root tissues, for example, may require a high-quality substrate.
(iii) Secure the sample using a weight, adhesive or magnet if using a magnetic stage accessory.
(B) FFPE tissue ® TIMING 30 min + de-waxing (1.5 h)
(i) Acquire FFPE tissue blocks from a pathology laboratory with appropriate ethical approval.
(i1) Place an FFPE block on a cool (preferably frozen) surface for at least 10 min.
A CRITICAL STEP Cooling hardens the wax, which therefore facilitates smooth sectioning.
(iii) Position the block in a microtome sample holder, and begin to trim using large sections (up to 25 um) until the
surface on the tissue is exposed.
(iv) Alter the microtome sectioning thickness appropriately, 5-10 um is common in histopathology, and begin to cut
sample ribbons.
(v) Float individual ribbons in a heated sectioning bath at 40-44 °C.
A CRITICAL STEP Gentle heat will help relax the wax and enable effective mounting. Heat must not surpass 45 °C,
as the sample will begin to degenerate as the wax approaches its melting point.
(vi) Carefully mount the samples onto an appropriate Raman substrate, by using the slide to lift the ribbon out of the
water. We typically use Raman-grade CaF, slides.
A CRITICAL STEP If the sample requires de-waxing, proceed to Step 1B(vii), if not, proceed to Step 1B(ix).
(vii) Allow the slide to dry for 30 min.
A CRITICAL STEP The sample must be adequately adhered to the slide surface before de-waxing or the sample
can be lost.
(viii) Immerse the tissue in xylene for 5 min. Repeat this step twice to ensure that wax is adequately removed.
(ix) Clear xylene residues using a 15-min 100% ethanol wash, followed by a further 15-min wash with 90% (vol/vol)
ethanol and a final wash for 15 min with 70% (vol/vol) ethanol.
(x) Store the samples at room temperature in a dry environment until analysis.
B PAUSE POINT Samples can be stored for up to 1 year without significant degradation.
(C) SERS biofluids ® TIMING 10 min + drying (24 h)
(i) Obtain biofluid specimens with suitable ethical approval.
M PAUSE POINT Samples can be stored at -80 °C for 1-2 years, depending on license constraints.
(i1) Apply 200 ul of biofluids and 200 ul of colloidal nanoparticles onto appropriate Raman substrate (volumes and
ratios can be altered depending on the experimental design).
A CRITICAL STEP The user has three distinct methods for nanoparticle and biofluid mixture: apply the nanoparticle
solution to the substrate, allow it to dry and subsequently add the sample; carry out the reverse of the above process,
in which the sample is added first followed by the nanoparticles; or combine the two solutions together and apply
the mixture onto the substrate.
(iii) Allow the samples to dry before analysis. Larger sample volumes require extended drying times, and thus we
recommend overnight drying as a standard for continuity.
A CRITICAL STEP As water evaporates from the biofluid, biopolymers can concentrate at the extremities of the drop,
thus creating a concentration gradient across the sample. This is known as the coffee ring phenomenon, and we
advise the user to appreciate this inconsistency across the sample before sample acquisition.
(D) Cells ® TIMING 12 h for cell attachment + 15 min for sample preparation
(i) Seed a known number of cells onto the appropriate Raman substrate in supplemented cell culture medium, under
sterile conditions, and incubate them overnight at 37 °C.
(ii) After 12 h or more, allowing for sufficient cellular adhesion to the substrate, remove cells from the incubator and aspirate
off the cell culture medium. Wash the samples with warmed sterile PBS. For live-cell imaging, samples can be imaged in
this warmed sterile PBS solution or warmed sterile-filtered 0.9% (wt/vol) NaCl saline solution. Proceed to Step 2.
A CRITICAL STEP Ensure that all reagents are warmed to 37 °C. Warming reagents to 37 °C reduces the shock to the cells
and helps maintain overall morphology.
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(iii) For cell fixation, immerse the cells in warmed 10% (vol/vol) formalin for 10 min. Wash the cells three times in warmed
sterile PBS to remove any trace of the fixative. Samples can be then measured either dry or in sterile-filtered
0.9% (wt/vol) NaCl saline solution.
A CRITICAL STEP Ensure that all reagents are warmed to 37 °C. Warming to 37 °C reduces the shock to the cells and
helps maintain overall morphology.
B PAUSE POINT Fixed cultured cells can be stored for up to 3 months at 4 °C in sterile NaCl saline solution.

Spectral acquisition

2| Switch on the Raman microspectrometer and open the instrument operating software.

A CRITICAL STEP Carefully read the instrument operating manual and become aware of the operating features,
specifications and safety operating procedures.

3| Determine suitable instrumentation options, including laser wavelength, detector type and suitable optics. Please refer
to the ‘Experimental design: instrument options’ section of the INTRODUCTION for further guidance on these options, and
set up the microspectrometer accordingly.

4| Calibrate and align the spectrometer using a calibration source. See the ‘Experimental design: spectral acquisition’
section of the INTRODUCTION for more information on the calibration procedure and the range of sources available.

5| Mount the sample on the microscope stage for spectral acquisition.

6| Use the microscope at the chosen magnification to examine the sample and focus on a feature of interest.
? TROUBLESHOOTING

7| Determine the sampling area using the microscope and operating software using a point-mapping (option A)
or image-mapping (option B) approach. Fewer spectra are acquired in point-mapping experiments. This means that
spectral quality can, and should, be optimized in order to get meaningful results. In contrast, image mapping can
generally acquire a high number of spectra. This means that the researcher has to find a balance between acquisition
time and spectral quality (see ‘Experimental design’ for further guidance). Very long sampling periods may be
impractical in terms of sample throughput, and it might be that the sample degrades during the acquisition.
This problem can be reduced using multivariate approaches, which can extract much spectral detail from a large
number of noisy data.
(A) Point mapping ® TIMING 1-5 min
(i) Selectively, or randomly, choose numerous points in the sampling area to interrogate (anywhere between 5 and
50 spectra would be typical).
A CRITICAL STEP In SERS studies, enhanced spectra are obtained from molecules in close proximity to nanoparticles.
In a point-mapping approach, we advise that the user determine where the nanoparticles have aggregated and
choose points from this region.
? TROUBLESHOOTING
(B) Image mapping ® TIMING 1-5 min
(i) Select a mapping area using a ‘shape fill' option (usually rectangular filled).
(i1) Determine the number of spectra to be acquired within the mapping area by altering the step size.
A CRITICAL STEP Be aware of the step size in use (typically ~1 um), as sizes above this will result in undersampling,
and sizes below this will result in oversampling.

8| Input the optimum spectral parameters to ensure the best SNR and spectral quality within an appropriate acquisition
time, depending on the sample suitability. Determination of the laser power at the sample using the designated spectral
parameters may be conducted using a laser power meter. This is a useful thing to do, so that the precise amount of power
applied to the sample can be defined.

9| Acquire the sample measurement (1 s to 5 min per spectrum).
? TROUBLESHOOTING

10| Save the measurements before data processing, and convert them to a universal format if appropriate.
M PAUSE POINT Data sets can be stored until data processing.
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Data pre-processing ® TIMING 10-60 min (depending on data set size)

A CRITICAL Steps 11-16 highlight possible pre-processing steps that can be performed on the spectral data set in an
advised order. All these steps are optional and can be applied in multiple combinations with varying effects on visual output.
We recommend that the user observe the spectral output at each stage to inspect any adverse effects on the data sets.

For further information, we direct the reader to ‘Experimental design: data processing” in the INTRODUCTION.

11| Load the data into the selected software (Table 2).

12| Screen the data for anomalies and poor-quality spectra using quality tests.
? TROUBLESHOOTING

13| Apply a noise-reduction technique on the data set, such as PCA, to improve SNR.
14| Conduct a baseline correction algorithm to account for fluorescence interference.
15| Perform a data-normalization approach to account for confounding sample variables.

16| If necessary, perform a data-reduction technique such as simple truncation or PCA to reduce the number of variables
in the data set.

Data analysis
17| Choose an appropriate data analysis approach that will extract the required information from your point spectra or
images, depending on the desired analysis goal. The options described here are exploratory analysis for pattern finding
and bhiomarker extraction (option A), and diagnostic analysis for spectral classification (option B). For more information,
please refer to ‘Experimental design: data processing’ in the INTRODUCTION.
A CRITICAL STEP All timings are estimated for typical data sets containing anywhere between 500 and 5,000 spectra.
Any deviations from this range will alter these estimates accordingly.
(A) Exploratory ® TIMING 15-60 min (depending on the data set size)
(i) Input the pre-processed data set into a feature-extraction algorithm.
A CRITICAL STEP For imaging, continue to Step 17A(ii); for point spectra, move to Step 17A(iv).
(i1) For image analysis, use feature-extraction outputs to assign a scalar value to each spectrum (such as wavenumber
intensities or PC score).
(iii) Use a color gradient or code for scalar values.
(iv) Visualize analysis output for biomarker and pattern extraction.
(B) Diagnostic ® TIMING 1-4 h (depending on the data set size)
A CRITICAL For supervised classification, the data set must be split into training and test data sets.
(i) Input the pre-processed data set into a feature-extraction algorithm, either construction or selection, in training mode.
(i1) Apply this trained feature-extraction model to a training data set.
(iii) Train a classification algorithm using this training data set.
(iv) Input the test data set into the trained feature-extraction model followed by the trained classification algorithm.
A CRITICAL STEP Cross-validation is recommended on small sample sizes.
(v) Obtain a class estimation per spectrum.
(vi) For imaging, this class estimation can be assigned a scalar value and visualized using a color code.
(C) Diagnosis (unsupervised) ® TIMING 15-60 min (depending on the data set size)
(i) Use a clustering classification algorithm to categorize spectra on the basis of spectral variance.
(i1) Assign each cluster a numerical value or color for visualization.
? TROUBLESHOOTING

Step 6: maintaining optical focus

It can be difficult to maintain optical focus if the sample is not secured sufficiently, or if the surface is not adequately flat.
Good optical focus is essential for obtaining good-quality spectra; this can be ensured by observing the focus on the sample
before and after spectral acquisition. To improve stability, bulky samples should be held in place using magnets or weights
when possible, or they should be secured with adhesive materials such as tape. A small amount of mounting clay or putty
on the underside of hard specimens may help secure them onto a substrate. This should also help flatten some samples, but
it may be necessary to physically smooth sample surfaces, such as when analyzing powders. Increased stability stages are

680 | VOL.11 NO.4 | 2016 | NATURE PROTOCOLS

112



© 2016 Nature America, Inc. All rights reserved.

&

PROTOCOL |

available, and they are recommended in systems using high magnification (100x), as small stage movements can have more
significant effects at high magnification.

Step 7A(i): obtaining enhanced spectra

As enhancement depends on direct sampling of an area in close proximity to a nanoparticle, the probability of acquiring
enhanced spectra is particularly low. We recommend isolating nanoparticle aggregates, which, unlike monomers, may be
visible under magnification. A good knowledge of the sample in question is needed, and we advise carefully studying

subtle differences between control and SERS samples. The use of larger nanoparticles (>100 nm) may also aid in nanoparticle
aggregate identification62. Otherwise, using an automatic mapping procedure may produce enhanced spectra without the
need of substantial user input.

Step 9: insufficient spectral quality

As data are obtained, the user should look out for four key indicators of poor spectral quality: (i) low SNR, (ii) fluorescence
baseline, (jii) saturation of the CCD and (iv) photoablation. If any of these are seen, troubleshooting intervention

is required.

(i) Low SNR—this is indicated by a strong background signal in comparison with Raman peaks, and it is indicative of
insufficient Raman signal as a consequence of the sample or the experimental parameters. First, check that the system is
appropriately aligned, that the optical focus is optimized and that the laser illuminates the sample. If possible, increase
the laser power, followed by the exposure time and then an increased number of coadditions. If this is not possible,
consider system alterations, including an alternative laser wavelength or a Raman approach that is better suited to your
sample (Table 1).

(i1) Fluorescence baseline—a range of fluorescence manifestations can be observed, depending on the excitation
wavelength in use, but it is principally indicated by a strong, broad and featureless spectrum, similar to the fluorescence
wavelength profile (Fig. 6a). Fluorescence is predominantly due to sample characteristics, although it can be influenced
by background conditions, such as ambient lighting. We advise using a UV or NIR laser wavelength, or implementing an
alternative Raman approach that can overcome fluorescence, such as SERS or SRS. Photobleaching may also reduce
fluorescence contributions, with enhanced risk of photoablation.

(iii) Saturation of the CCD—each CCD will have a limit as to how many Raman-scattered photons it can measure.

When exceeded, this limit can be observed on the spectrum by a feature such as a flat-line effect (Fig. 6b). As saturation
is indicative of increased Raman
scattering, this issue is usually found
in strong-scattering materials,
samples of a large volume and in
SERS studies. This can be overcome

L - by attenuating the laser power and/or
exposure time on the sample.

r ] Saturation cannot be corrected in

[ - hosi G k| postacquisition processing.
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Figure 6 | Examples of common troubleshooting issues during spectral acquisition. (a) Typical fluorescence
from a urine sample using a 785-nm laser. (b} Saturation of a CCD detector from a tomato leaf exposed to
excessive laser power. (¢) Cosmic ray at~1,220 cm-! from a mapping experiment on endometrial tissue. wavelength could be used. If these
(d) Paraffin contamination from an embedded prostate tissue sample. a.u., arbitrary units. approaches are inadequate, the laser
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power can be attenuated at the sample surface by using a larger laser spot, which is achieved by using a lower-magnification
setting or altering the laser focus.

Step 12: spectral contaminants

Cosmic rays or interference from sample contaminants can render spectra unusable unless they are removed.

Cosmic rays can be identified as sharp spikes with narrow bandwidths that can often overshadow true Raman peaks

(Fig. 6¢). These should be removed using cosmic ray-removal algorithms, which are generally available in instrument
operation software. Raman peaks associated with spectral contaminants such as paraffin (Fig. 6d) can occur because of
inadequate sample preparation; however, these can also be removed with respective computational algorithms, or they can
be simply ignored if you are studying spectral regions unaffected by their presence.

® TIMING

We provide approximate times for each of the steps. All timings will depend on the size of the data set, as sample processing
and computational analysis are both proportional to the number of samples used.

Step 1A, plant tissue: 5 min

Step 1B, FFPE tissue: 30 min to 2 h

Step 1C, SERS biofluids: 10 min to 24 h

Step 1D, cells: 12 h for cell attachment + 15 min for sample preparation

Raman scattering (a.u.)

wDC

Steps 2-8, spectral acquisition: 15-25 min

Step 9, point and map acquisition: 1 s to 5 min per spectrum (point mapping: average 15 spectra per sample, ~30 min; image
Step 10, saving and converting measurements: 5 min R R Spactia
Steps 11-16, data pre-processing: 10 minto 1 h ' ' i "
Step 17A, exploratory: 15 minto 1 h \

Step 17C, diagnosis: 15 minto 1 h A,

Minimum experimental time of ~1 h per sample; maximum e

experimental time of ~32 h per sample i
ANTICIPATED RESULTS e
Pre-processing options

Figure 7 shows an example of the effects of pre-processing

(785-nm laser). Spectra were truncated to a defined

spectral region (700-1,700 cm~!) to account for Raman

peaks present in this particular sample (tomato leaf). A WDN

mapping: average 1,000 spectra per sample, ~3 h)
Step 17B, diagnostic: 1-4 h
B(‘]O 1,000 1,2.00 1,4.00 1,6‘00
on spectra with strong fluorescence baseline interference
step was performed to smooth the appearance of the data

and reduce unwanted noise. With first derivative baseline 300 1,000 1200 1400 1,600
correction, the SG smoothing function is run simultaneously
to account for loss of spectral qua“ty USing this approaCh' Polynomial baseline correction First-order differentiation

This example illustrates how effectively differentiation can
account for baseline fluorescence; however, spectral noise is
increased and interpretability is reduced because of the
transformation of the spectrum. In contrast, polynomial
baseline correction results in spectra with conventional
appearance and sufficiently relieved of background | . / ) ) ) ) .
interference. Vector normalization was used in both 800 1,000 1,200 1,400 1,600 800 1,000 1,200 1,400 1,600

Vector normalization Vector normalization

Figure 7 | A brief overview of pre-processing options in Raman
spectral data analysis and their contribution to spectral transformation

using an example spectrum from a tomato plant leaflet. WDN is

conducted as a smoothing process, before polynomial baseline correction

and vector normalization. First-order differentiation and Savitzky-

Golay smoothing are conducted simultaneously to account for noise " . L " .
introduction in the spectra. 800 1,000 1,200 1,400 1,600 800 1,000 1,200 1,400 1,600
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TABLE 4 | Sensitivity and specificity rates (% classification + s.d.) of control and endometrial cancer patients from blood serum
and plasma samples.

Classification approach (%)
SVM PCA-LDC
Sample  Pre-processing Sensitivity Specificity Sensitivity Specificity

Serum Polynomial— vector normalization 87.38 + 8.64 91.78 + 05.71 84.46 + 15.38 92.66 + 07.32
First-order differentiation— vector normalization ~ 77.89 + 06.07 81.37 + 12.39 80.36 + 13.41 79.21 £ 09.51

Plasma Polynomial— vector normalization 97.8 +03.23 96.75 + 04.50 91.77 + 09.77 95.33 +6.59
First-order differentiation— vector normalization ~ 98.42 + 11.89 98.57 + 03.19 92.90 + 05.39 97.24 + 04.91

Two pre-pracessing approaches and two classification approaches are used to illustrate varied performances. Polynomial baseline correction was conducted with a polynomial order o five and first-order S6

differentiation used nine filter coefficients with a polynomial order of two. A SVM (optimized C and y parameters) classifier was implemented without a feature extraction step, whereas PCA (optimized number
of PCs) was used before a LDC.

incidences to attribute for confounding sample features, such as thickness; the effect of this is a slight reduction in
variance between classes.

Classification of blood plasma and serum using SERS

Table 4 illustrates the effect of pre-processing, feature-extraction and classification approaches on blood plasma and serum
in endometrial cancer patients®2. From this study, plasma samples produced better classification rates compared with blood
serum; this might be explained by the inclusion of clotting proteins in blood serum. The effect of pre-processing can be seen
when comparing the classification rates in serum and plasma, with the former performing better with polynomial baseline
correction and the latter performing best with differentiation correction. In this example, the classification approach used
had a small effect on rates of classification, but this may not be the case in other circumstances. To assess diagnostic ef-
ficiency, a variety of pre-processing and classification approaches should be used and compared.

Mapping of endometrial tissue

Figure 8 depicts FFPE endometrial tissue in control patients
in order to identify the epithelial lining of the endometrial
crypts. These tissue structures seen throughout the three ex-
amples are found ubiquitously throughout endometrial tissue
initiating at the lumen and spiraling toward the myometrium
(not visible). Each map was acquired using an increas-

ing exposure time (Fig. 8a—c), ultimately increasing the
spectral quality at each pixel. The Raman data were analyzed
using the multivariate technique PCA, with PC2 effectively
identifying the connective tissue (red) largely due to protein
alterations at 1,003 and 1,280 cm~1, and PC3 depicting

the epithelial layer (yellow) surrounding the crypt lumen,
due to fatty acid and lipid differences at 1,060, 1,131 and
1,295 cm-1. This was apparent across all three image maps,
despite the range of laser exposure times used.

Figure 8 | Raman map of fixed endometrial tissue, focusing on

uterine glands that spiral throughout the tissue. Samples are FFPE and
were mounted on BaF, slides before de-waxing. (a-c) Left images are
white-light images of the tissues, whereas right images show PCA maps.
Epithelial tissue is depicted in yellow, whereas connective tissue is
shown in red; these correspond to PC3 and PC2, respectively.

Spectra were all obtained using a 785-nm laser with 25 mW of power
at the sample, a 1,200 |/mm grating and a step size of 1 um. Image
acquisition parameters were as follows: 5-s exposure time, comprising
47 x 48 pixels (a, right); 10 s, with 74 x 81 pixels (b, right); and 15 s,
with 55 x 53 pixels (¢, right).
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Vibrational spectroscopy is a powerful analytical tool that is yet to be fully developed in plant science.
Previously, such tocls have been primarily applied to fixed or in vitro biclogical materials, which do not
effectively encapsulate real-time physiological conditions of whole organisms. Coupled with multivariate
analysis, this study examines the potential application of ATR-FTIR or Raman spectroscopy toc determine
spectral alterations indicative of healthy plant growth in leaf samples of Solanum lycopersicum. This was
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additionally, autofluorescence was not a confounder. Feature extraction techniques including PCA-LDA
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vibrational spectroscopy is an ideal technigue for in vivo investigations in plant tissues.
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Introduction

with an increasing population anticipated to reach 9 billion by
2050, it is estimated that agricultural productivity will need to
increase by 70% in order to meet global food demands.” For this
reason, plant science and food security are prominent research
topics that are fundamental to providing sustainable nutrition
for the foreseeable future. There are powerful genomic, pro-
teomic and physiological analysis tools available that have been
widely implemented in plant research, yet many are invasive
and destructive to the whole tissue, In particular, determination
of the nutrient status of plant tissue is profoundly reliant upon
chemical analyses, which often requires substantial sample
preparation and training that can prove time-consuming and
expensive.? Plant-focused research remains limited due to a lack
of analytical methods that can be applied in a truly non-
destructive manner, that can convey both chemical and struc-
tural information in vivo across all plant species.?

It is evident that a high-throughput, cost effective and non-
destructive technique would benefit the field of plant science
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and therefore food security. Vibrational spectroscopy in bio-
logical systems, or biospectroscopy, has been shown to be a
valuable tool for exploratory analysis in the disciplines of eco-
toxicology,”® food science”® and biomedical research.” The
latter of these fields has expanded markedly in the past decade
with research spanning pharmaceuticals,' cytology,"* histo-
pathology'™® and cancer diagnostics in cervical," prostate,’”
breast™ and mucosal® tissues. This is in part associated with
advancements in biospectroscopy that allows for non-invasive
analysis of live cells and tissues,* additional to biological tluids
samples such as blood,” serum?® and plasma®® that translate
into a clinical setting. In comparison, vibrational spectroscopy
has only been tentatively implemented across fundamental
plant biology and agronomy to provide an insight into the
microscopic and subcellular properties of plant tissues.***° This
could not only infer qualitative and quantitative information
regarding the biological components of the tissues in question,
but also any mechanical, environmental and nutritional stress
that they are subjected to.>**

Infrared (IR) and Raman spectroscopy are two complemen-
tary vibrational spectroscopy methods that are commonly
employed when investigating biological samples. Although
based on distinctly different physical processes, both observe
the excitation of a molecule to higher energy levels due to
chemical bond absorption of radiation. IR spectroscopy uses
polychromatic light in the IR region that causes molecules
within a sample to vibrate due to their chemical composition.™
Coupled with the Fourier-transform (FT) algorithm conversion
of an interferogram, a spectrum is rapidly obtained as

Anal. Methods, 2015, 7, 4059-4070 | 4059
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transmittance or absorption of energy plotted against energy in
wavenumbers. The consequent spectrum derived is indicative
of the chemical bonds present and therefore provides an insight
into biochemical “fingerprint’ of the sample® FTIR spectros-
copy in plant research has been limited due to the strong dipole
moment of water and thus investigations have been predomi-
nantly conducted in non-aqueous and dried material.” This has
been beneficial in the quantification of plant substances®*
and deriving information regarding cell wall architecture.’
FTIR spectroscopy has also contributed to our understanding of
key biotic and abiotic stresses such as plant-pathogen interac-
tions and salinity respectively.”******"  Furthermore, the
imaging capabilities of FTIR spectroscopy, particularly when
utilised in conjunction with synchrotron radiation, have
allowed the development of high resolution chemical imaging
for plant tissues including leaf,” seed**** and vascular tissues,*
that accurately portray biochemical distributions of the
intrinsic structure. However, the necessity of dried samples
inhibits the use of FTIR for in vivo studies and also results in
substantial preparation time for i situ studies. This issue has in
part been overcome by the development of attenuated total
reflection (ATR)-FTIR that utilises an internal reflective element
(IRE), commonly made of diamond, Ge or ZnSe, to produce an

35-38
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evanescent wave that interrogates the sample in contact with
the ATR attachment.”® Consequently, analysis of fresh plant
tissue in sity is possible and has so far been implemented in
plant leaves to observe cell wall expansion,* monitor temporal
variations,™ identify indicators of senescence,* and also to
characterise components of the epicuticular waxes.***

In comparison, Raman spectroscopy uses monochromatic
light in the near-IR region in order to excite molecules to higher
virtual energy states. The technique exploits the phenomena of
inelastic, or Raman scattering, when a chemical bond is excited
by an incidence ray to a virtual energy state but does not return
to the original ground energy state, therefore resulting in an
energy shift represented in spectra.® Although the occurrence
of Raman scattering is a low probability process, the technique
is highly sensitive with potential resolution approaching the
nanometer scale.” Unlike IR spectroscopy, Raman spectroscopy
is not inhibited by aqueous samples, as water molecules do not
exhibit strong Raman scattering features, making the technique
ideal for analysis of live material. However, progress in plant
research has been impeded due to interference from auto-
fluorescence of plant enzymes, which can completely suppress
the Raman signal.”® The use of radiation in the near-IR (NIR)
like that emitted from a Nd:YAG laser at 1064 nm, has been

(1) ATR-FTIR spectroscopy

IR beam

T'o detector

ATR
crystal

Leaf

sample

(2) Raman spectroscopy

785 nm Laser

Filtered To detector
Rayleigh // Raman
Scattering

" Seattering

Leaf
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(1) Non-destructive analysis

"~ v

o Spectral
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-
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(2) Growth characterisation

=4 weeks

Spectral
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=06 weeks

Fig. 1 An overview of the experimental principles and procedure. ATR-FTIR and Raman spectroscopy rely on distinctly different physical
processes and therefore have discrete targets in the leaf tissue, with the cuticle being interrogated by both techniques and the epidermis and

palisade parenchyma by Raman alone.
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shown to reduce the influence of fluorescence on the Raman
spectrum; however, this can also reduce spatial resolution and
produce thermal emissions and absorption bands from
hydrogen bonding.”*** Further development of the Raman
technique has increased our ability to obtain stronger Raman
signals free from autofluorescence. Surface-enhanced Raman
scattering (SERS),**%*" resonance Raman**® coherent anti-
Stokes Raman scattering (CARS),** and stimulated Raman
scattering (SRS)* have all contributed to improved resolution
and the advancement of imaging capabilities in plant and crop
science.** In particular, the use of metallic nanoparticles in
SERS approaches have successfully quenched fluorescence that
occurs in the presence of chlorophyll and pheophytin, two key
chromophores constituents of photosystems situated on the
thylakoid membrane of chloroplasts.®*%

IR spectroscopy is dependent on molecules being IR-active,
therefore having a dipole moment; however, Raman spectros-
copy is reliant on molecules having polarisability. Thus in
combination the techniques are complementary and informa-
tion that could be otherwise lost, is regained by employing both
techniques.* Both systems are regarded as non-destructive due
to the use of relatively low energy lasers that are sufficient to
vibrate but not damage chemical bonds. In this study, ATR-FTIR
and Raman spectroscopy are critically assessed as analytical
tools for non-destructive monitoring of plant health and
development in Solanum lycopersicuim (tomato) leaves. An
experimental overview can be seen in Fig. 1. We demonstrate
that biochemical information regarding cell wall expansion
during development can be characterised in vivo without
concerns from water and autofluorescence interference.

Materials & methods
Plant growth conditions

Solanum  lycopersicum cv. Moneymaker (Moles Seeds, Col-
chester, UK) were germinated and cultivated individually in M3
compost (Levington Horticulture Ltd, Ipswich, UK) in a
controlled environment growth room and watered daily up to
water-holding capacity. Artificial light was generated by 600 W
metal halide lamp {Osram Ltd, UK) for 16 hours per day at an
intensity of 150 + 25 pmol m™® 7', The temperature was
maintained at 25 £+ 2 °C and 20 + 2 °C for photophase and
scotophase respectively. All plants were analysed in the middle
of the light period (12-4 pm) in order to maintain continuity.
Prior and during spectral acquisition in the lab, a portable light
system was used to maintain optimum light levels.

Review of non-destructive analysis

Tomato plants (¢t = 4 weeks) were observed over a four week
period in response to analysis by ATR-FTIR spectroscopy.
Initially one set of plants ( = 3) was analysed by ATR-FTIR
spectroscopy on a mature leaflet (A) for at least three time points
across a seven day period. The following week another set of
plants (n = 3] was introduced to the experiment, with all plants
(n = 6) analysed on the same or equivalent leaflet three times
across another seven day period. Additionally during this

This journal is © The Royal Society of Chemistry 2015
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second week of analysis (¢ = 5 weeks) newly-expanded leaflets
{B) from all plants in both sets were analysed to determine any
systemic effects of the ATR-FTIR technique. This process was
repeated for the following two weeks (¢ = 6 and 7 weeks), each
time introducing a new set of previously unanalysed plants,
comparing leaflets that had been previously analysed and newly
expanded leaflets for systemic effects (n = 12, leaflets C and D
respectively). Furthermore this methodology was repeated
on separate tomato plants (n = 9) over a period of three weeks
{t = 4-6 weeks) using Raman spectroscopy, to compare the
destructive effects both locally and systemically on living tissue.
A full overview of this process can be seen in the ESI Fig, S1.}
Simultaneously to all spectral acquisitions, measurements for
rate of CO, assimilation, H,O assimilation, internal CO, and
stomatal conductance were obtained using a CIRAS-2 Portable
Photosynthesis System (PP Systems, MA, USA) to determine any
physiological indication of damage to the samples. Cuvette
conditions corresponded to ambient CO, (390 ppm) light
{200 umol m~? s™'), temperature {22 °C) and humidity [50%)
conditions within the controlled environment room.

Characterisation of healthy plant growth and development

Two time-course experiments over the course of three weeks
were conducted in a total of nine tomato plants (¢ = 4 weeks),
which were analysed using ATR-FTIR and Raman spectroscopy
at 12 and 11 different time points respectively. Three plants
were analysed at each time point to allow for sample rotation
and high-throughput analysis. Each plant was analysed on 2
separate leaves; a newly expanded (NE), a fully-expanded mature
{M) and a fully expanded senescing (S) leaf, to illustrate spectral
alterations in leaves at distinct morphological and develop-
mental stages.

ATR-FTIR spectroscopy

IR spectra were derived using a Bruker TENSOR 27 FTIR spec-
trometer with Helios ATR attachment (Bruker Optics, Coventry,
UK]). The approximate sampling area was 250 um x 250 pm as
defined by the IRE, diamond crystal. Spectra were obtained at a
spectral resolution of 8 cm™, resulting in 3.84 ecm™' data
spacing, with 32 co-additions and a mirror velocity of 2.2 kHz for
optimum signal to noise ratio.>* Five spectra were obtained
from separate locations on each sample leaf with the diamond
crystal cleaned using distilled water and dried between each
measurement. Additionally, a background measurement was
taken before each new sample to account for any changes in
atmospheric conditions, Whele plant samples were positioned
carefully around the spectrometer, with individual leaflets rested
upon MirrIR Low-E glass slides (Kevley Technologies, OH, USA)
on the sample stage. Raw spectra were cut at the spectral
fingerprint region between 1800-900 cm™' where biological
molecules are known to absorb, second order differentiated for
baseline correction and vector normalised using Matlab 2013a
software (The Maths Works, MA, USA) with open-source IRoot-
Lab graphical interface (https://code.google.com/pfirootlab/).*>**
The penetration depth (d,,) of the ATR-FTIR evanescent wave

varies between 0.5-2.9 um at 4000-700 cm™ ' wavenumbers.®*

Anal. Methods, 2015, 7, 4059-2070 | 4061
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This infers that this technique can derive information predom-
inantly from the plant leaf cuticle (0.1-10 pm), the extracellular
matrix of epidermal cells walls that is an essential barrier for
water loss and protection.®”®

Raman spectroscopy

An Invia Renishaw Raman spectrometer with a 785 nm excita-
tion laser (Renishaw Ple, Gloucestershire, UK), with charged
couple detector (CCD) and microscope attachment (Leica
Microsystems, Milton Keynes, UK) was employed to acquire
Raman spectra. The system was calibrated using a silicon
source prior to any sample analysis. Plants were positioned
around the microscope stage and individual leaflets were rested
upon gold-coated glass slides (Platypus Technologies, W1, USA).
Ten spectra per sample were obtained at using a 1200 1 mm™*
grating, x50 objective (0.75 numerical aperture), 50% laser
power (13 mW at sample), 10 seconds exposure time and one
accumulation within the spectral range 500-2000 ecm ™' for
optimum resolution (~1 pm). The zap function in Renigshaw
Wire 3.1 software was used to remove any cosmic ray artefacts
from spectra, and the IRootLab Matlab interface was employed
to truncate spectra between 1750-700 cm ', baseline correct
(1st order differentiation), vector normalise and wavelet de-
noise.*” The d, of Raman spectroscopy can be up to several
hundred micrometres in living tissues, therefore spectral anal-
ysis of leaf tissue could interrogate both the cuticle and the
underlying adaxial epidermal cells and potentially the palisade
parenchyma.”™ However in this investigation, focus is placed
upon examination of the cuticle and epidermal cell wall.

Computational analysis

Dataset analysis was conducted using the IRootLab toolbox for
Matlab, unless otherwise stated. Spectral datasets are often
complex, with each spectrum containing around 235 and up to
900 data points for ATR-FTIR and Raman spectra, respectively.
Subsequently any underlying variance within these datasets can
be difficult to unearth and feature extraction is essential.”
Exploratory principal component analysis (PCA), following
spectral standardisation, is an unsupervised technique that
effectively reduces the dataset into principal components (PCs),
which encapsulate variance throughout data classes.” Coupled
with supervised linear discriminant analysis {LDA), a technique
to attain inter-class separation and minimize intra-class
differences, a critical insight into spectral variance can be
ascertained.” The number of PCs used was optimised using the
PCA Pareto function within the IRootLab toclbox, in order to
prevent noise introduction, and K-fold, leave-one-out, cross-
validation was conducted to prevent over-fitting.™

For biomarker identification, three main approaches were
conducted in order to visualise developmental differences in
leaves over time. Difference between mean spectra (DBM) is an
unsophisticated approach where mean spectra from two classes
are subtracted, creating a curve of fundamental wavenumber
differences between them.” The cluster vector (CV) approach
takes input from data reduction by PCA and consequent linear
combination of variables from LDA, to create a loadings vector

4062 | Anal Methods, 2015, 7, 4055-£070
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for each class that passes through respective data points.”” The
pseudo-spectra that are created allow one to identify which
variables, or wavenumbers, are responsible for variance in the
data set in direct relation to the original absorbance/intensity
spectrum.” Forward feature selection (FFS) periodically incor-
porates sub-sets of wavenumbers into a data set and ranks them
based on their contribution to improved classification,
producing a feature selection histogram that visualises the
number of times each wavenumber was selected.” ™ A Gaussian
fit classifier was used with random sub-sampling, repeated 100
times to randomise training and test data (90% training, 10%
data), and 10 variables were employed to improve stability of
biomarker identification.” Wavenumbers were extracted using
a peak detection algorithm as described by Coombes et al
2003.”7 Following biomarker extraction, linear regression was
conducted on mean absorbance/intensity values between leaves
at distinct developmental stages, to characterise heterogeneity
between leaves.

Potential anomalies were identitied using the Grubb's test
and one-way analysis of variance (ANOVA) with Tukey's multiple
comparison tests were conducted in GraphPad Prism 4 software
(GraphPad Software Inc, CA, USA) to determine significant
differences between classes. Statistical tests were conducted
using mean data from each sample, as opposed to individual
scores.

Results and discussion

Review of non-destructive analysis

In order to identify any destructive effects of either ATR-FTIR or
Raman spectroscopy on living plant samples, a number of
comparisons between leaflet observations were made. Initially,
physical damage to the leaf was assessed visually to detect any
signs of tissue damage and stress. Raman spectroscopy did not
contribute to any visual alterations in leaf tissue viability in
comparison to control leaves; however, ATR-FTIR spectroscopy
resulted in clear indentation of the tissue {Fig. 2). This occurs as
the technique requires contact between the diamond crystal
and the sample, resulting in pressure being applied to the
adaxial leaf surface and therefore causing damage to the cuticle
and epidermis. Although local damage can be seen at the
analysis site, no differences can be seen at other leaflets and
systemic leaves, indicating that any damage is confined to the
defined leaflet. Interestingly, no significant alterations can be
observed when rates of CO, assimilation were compared
between leaflet samples (Table 1) following interrogation by
ATR-FTIR spectroscopy in both local and systemic leaves,
despite compromises to the leaf surface. No significant alter-
ations were apparent in additional gas exchanges measure-
ments either (ESI Table S1t). It can be assumed that there is no
significant effect on CO, assimilation as a consequence of
analysis using ATR-FTIR and therefore no apparent impact on
leaf functionality.

Vibrational spectroscopy is a valuable tool for analysis of
plant material and can infer subtle alterations in structure and
biochemical composition that can be indicative of environ-
mental stress.*™* Minimal variations can be seen in pre-
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f— Week 5 f— Week 6

Fig. 2 Visible effect of ATR-FTIR spectroscopy on leaf tissue. {A)
depicts leaflet sample immediately following analysis at three distinct
points (t = 4 weeks) and (B} shows the same leaflet one week later
{t = 5 weeks).

processed mean spectra from both ATR-FTIR and Raman
spectra (ESI Fig. S2 and $37) when comparing the effects of both
analysis techniques in previously analysed and systemic leaves.
This displays similarity in leaf stage of development, but also
indicates the necessity of a feature extraction technique to
identify subtle wvariation between samples that
biomarkers of damage. One-dimensional (1D) scores plots
produced by cross-validated PCA-LDA of IR spectral data across
the course of three weeks are shown (Fig. 3). Fig. 3A shows
variance between equivalent leaflets at week 5 of plant devel-
opment in two plant sets, one of which had been previously
analysed using the ATR-FTIR technique. Spectra are plotted as
points against the first linear discriminant (LD1), where sepa-
ration in the y-axis suggests difference between the individual
classes and consequently the samples. In this scores plot,
initially no separation can be identified between ‘plant set 1’
and ‘plant set 2’ in either leaflet A (full square), which is a direct
comparison between an interrogated leaflet and an equivalent
non-interrogated leatlet. This suggests that there is no spectral
alteration between the two that can be associated with
continued analysis with ATR-FTIR spectroscopy, which is also
confirmed by a one-way ANOVA test with Tukey's post-hoc test
on each average sample score (ESI Table S2At). Similarly in a
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Fig. 3 Cross-validated PCA-LDA 1D scores plot of ATR-FTIR spectra
obtained over a three week period (t = weeks 5, 6 and 7 of develop-
ment} to distinguish spectral effects of the technigue. Each square
corresponds to an individual spectrum, and colour variation indicates
advancing time points through the respective time frame. Full squares
(M) represent a comparison between leaflets specifically analysed the
previous week with equivalent leaflets from a newly introduced plant
set, and empty squares ([J) compare a newly expanded leaflet to
observe any systemic effects as well as local effects of the technique.
{A) Compares previously analysed leaflet A and systemic leaflet B in
plant sets 1 and 2; {B) leaflets B and C and (C) leaflets C and D.

systemic leaf, leaflet B in both plant sets, no differences can be
seen showing that the technique is not causing any distin-
guishable damage to the overall plant health. Individual time

Table 1 Average rate of CO; assimilation (umol CO, m~2 s~ + standard error) for equivalent leaflets (A—D) in four plant sets over a time course
of three weeks {t — 5-7) to determine any detrimental effects of ATR-FTIR spectroscopy interrogation. An ANOVA test was performed to
determine any significant differences between values, however no significance was depicted (P > 0.05). Leaflets previously analysed using the

technique are shown in italic

t = 5 weeks t = 6 weeks t = 7 weeks
Leaflet A B B C C D
Plant set 1 8.03 + 0.61 10.54 £ 0.99 — 11.39 £ 1.72 — 10.65 £ 0.44
2 6.44 + 0.40 12.26 + 0.59 6.97 + 0.97 12.70 + 1.22 — 11.86 + 0.79
3 8.66 £ 1.59 10.36 £ 1.73 12.28 + 1.84 10.63 = 1.49
4 6.70 £ 1.78 6.82 £ 1.25

This jeurnal is © The Raoyal Socicty of Chemistry 2615

Anal Methods, 2015, 7, 4059-4070 | 4063

126



Analytical Methods

points are identified using colour shading of individual spectra
in order to identify any time related patterns; however, none are
apparent.

During the following week of analysis (Fig. 3B), small alter-
ations can be observed between leaflet B in both ‘plant set 27,
which had been analysed since week 5 of development, and the
newly introduced ‘plant set 3'. This alteration may be due to the
effect of the ATR-FTIR technique on the integrity of the leaf.
However, a degree of overlap occurs and following statistical
analysis, this spectral feature is in fact not significant (ESI Table
S2Bt). Interestingly, no statistically significant shifts in LD1 are
present in leaflet C across all three plant sets, notwithstanding a
potential outlier that could be associated with analysis at the
beginning of the time period {(ESI Table S2Ct). In Fig. 3C, the
final week of analysis is shown {t = 7) and a comparison
between ‘plant set 3’ and ‘plant set 4’ in leaflet C indicates no
movement in LD1, demonstrating no spectral effects due to
previous analysis using ATR-FTIR spectroscopy. This is repli-
cated in leaflet D across all four plant sets, which highlight the
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Fig. 4 Cross-validated PCA-LDA 1D scores plot of Raman spectra
obtained over a two week peticd {t — weeks 5 and 6 of development)
to distinguish spectral effects of the technique. Each point corre-
sponds to an individual spectrum, and colour variation indicates
advancing time points through the respective time frame. Full circles
(@) represent a comparison between leaflets specifically analysed the
previous week with equivalent leaflets frem a newly introduced plant
set, and empty circles {O) compare a newly expanded leaflet to
observe any systemic and local effects of the technique. (A) Compares
previously analysed leaflet A and systemic leaflet B in plant sets 1 and 2
and (B} leaflets B and C.
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lack of systemic effects on overall plant health. Deterioration of
leaf integrity would be identifiable via IR spectroscopy as key
biochemical alterations occur during senescence including
higher absorption at 1650-1500 cm™' corresponding to
phenolic and proteinaceous compounds.* Therefore any indi-
cation of leaf degradation or senescence induced by the tech-
nique would be observable using the multivariate method of
analysis shown in Fig, 3,

Following cross-validated PCA-LDA manipulation of Raman
spectra, 1D scores plots comparing leaflets against LD1 display
little separation or variance between data classes (Fig. 4). This
observation corresponds with the lack of visual damage to the
leaf surface, unlike the clear physical effects of the ATR-FTIR
technique (Fig. 2). It is for this reason that analysis was con-
ducted using the Raman across three weeks of development {¢
= 4-6) as such minimal effects were perceived. Fig. 4A
compares spectral differences between leaflet A in ‘plant set 17,
analysed during week 4 of plant development, and in ‘plant set
2’ newly introduced at week 5. The scores plot shows almost
identical spectral responses between the equivalent leaflets,
depicting heterogeneity between both classes (ESI Table §37).
This pattern is also replicated in leaflet B, representing the
systemic health of the plant away from the site of interrogation.
Following an additional week of analysis, further alterations
between leaflet B in ‘plant sets 2’ and ‘3’ cannot be distin-
guished (Fig. 4B). Furthermore, systemic effects on plant
health shown by comparison of leaflet C in ‘plant sets 1’, “2" and
‘3, indicate no spectral separation in LD1 and therefore display

no observable effect of interrogation using Raman
Spectroscopy.
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Fig. 5 Spectral data derived from ATR-FTIR (A and C) and Raman (B
and D) spectroscopy over time points spanning a three week period in
order to identify alterations indicative of healthy growth. {A) ATR-FTIR
class means spectra of pre-processed data, cut to 1800-900 cm™t
wavenumbers, 2nd order differentiation baseline correction and
vector nermalisation; (B) Raman class means spectra cut to 1750700
cm™ wavenumbers, 1st order differentiated, vector normalised and
wavelet de-noised; (C} cross-validated PCA-LDA 1D scores plot of
ATR-FTIR spectra in regards to LD1 (D} cross-validated PCA-LDA 1D
scores plot of Raman spectra across LD1.
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Characterisation of healthy plant growth and development

Establishment of both ATR-FTIR and Raman spectroscopy as
entirely non-destructive, non-invasive techniques with high
throughput and resolution capabilities, indicates huge poten-
tial in the research fields of plant science. Firstly, it is important
to typity healthy plant growth and identify key spectral
biomarkers that are indicative of normal leaf development in an
in vivo system. Pre-processed FTIR spectra shown in Fig. 5A,
depict well-defined time dependent alterations across two
distinct spectral regions: the polysaccharide fingerprint region
from 1000-1150 cm™" (ref. 41) and the protein absorbance
region between 1500-1700 em™' wavenumbers.*? Interestingly,
there is an opposite response at each of these regions, with a
reduction in absorbance over time apparent at 1570, 1639 and
1709 cm ™', associated with protein absorbance and an increase
observed at 1018, 1107 and 1125 cm™" in the polysaccharides
region. During leaf development, it has been shown that plant
cell walls undergo secondary cell wall formation, mediated by
expansion proteins that allow for expansion of the cell wall by
introduction of matrix polysaccharides such as cellulose, pectin
and hemi-celluloses.”™ This correlates to the increased absor-
bance over time, with cellulose alterations identified primarily
at 1125 em™ 1% as well as 1107 and 1018 em ! with additional
contributions from pectin and hemicelluloses.**" At the higher
end of the spectrum, a decrease in overall protein contribution
can be seen at the amide I and amide II peaks, 1639 and
1570 em™ " respectively, which could be tentatively associated
with progression towards leaf senescence during the analysis
pericd.* In comparison, class mean spectra obtained using
Raman spectroscopy do not reveal any obvious spectral differ-
ences due to growth and development of the leaves (Fig. 5B) and
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Fig. 6 Spectra derived from ATR-FTIR (A and C) and Raman (B and D)
spectroscopy with grouped time points in order to depict clear
spectral differences symptomatic of leaf development. (A} ATR-FTIR
pre-processed class means spectra, cut to 1800-900 cm™*, 2nd order
differentiation and vector normalised; (B) Raman class means spectra
cut to 1750-700 em 2, 1st order differentiation base line correction,
vector normalised and wavelet de-noised; {C} cross-validated PCA-
LDA 1D scores plot of ATR-FTIR spectra against LD and (D) cross-
validated PCA-LDA scores plot of Raman spectra across LD1
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therefore further multivariate analysis is necessary to distin-
guish biochemical features. It is important to note, that the
Raman spectra derived from in vivo analysis of plant samples
has good signal to noise ratio and good spectral resolution,
despite potential issues surrounding autofluorescence. Any
minimal effect of this phenomenon has been alleviated or
removed by baseline correction.

Cross-validated PCA-LDA with optimised PC factors was
conducted on both FTIR absorbance (Fig. 5C) and Raman
scattering (Fig. 5D) spectra in order to elucidate variance
patterns within the data that correspond to the time progres-
sion. Fig. 5C shows a 1D scores plot that illustrates a gradual
migration in LD1, indicating an additive effect of subtle spectral
alterations between data classes. These differences are highly

Table 2 Key wavenumber features determined by difference between
mean (DBM), cluster vector (CV) and forward feature selection (FFS)
biomarker extraction methods, as identified in Fig. 7. Wavenumbers are
displayed in descending order of significance and bold type represents
wavenumbers identified in two or more extraction methods

Top six discriminating
biomarkers (cm™")

Classes DBM cv FFS
ATR-FTIR Days 1-3 versus Days 4-7 1107¢ 968 1192
1547 1057 1408
1643 1705 1327
1018 1408 1508
1126 1254 1076
1593 1512 1666
Days 1-3 versus Days 8-11 1103% 1331 1408
1639 968 1508
1018 1057 1470
1126 1466 1358
1547 1308 1296
1593 1254 1666
Days 1-3 versus Days 12-17 1639 1327 1647
1015 1636 1751
1103 1308 1574
1123 1466 1431
991 1597 1099
1038 1011 990
Raman Days 1-3 versus Days 4-7 704 1318 1464
723 1173 1191
1229 1130 1654
1173 1217 1321
1103 1423 911
1513 718 1628
Days 1-3 versiis Days 8-11 1158 1328 1527
1327 1157 1328
1526 1526 1157
1513 1287 1689
744 1186 1669
1186 1169 1643
Days 1-3 versus Days 12-17 1327 1327 1326
1513 1148 1416
1159 1598 1680
1533 1609 1624
744 1529 1601
1010 1510 1528

¢ Derived from one feature extraction technique.
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significant between relatively equal time periods of around 7
days, effectively splitting the classes into two, which potentially
allows for grouping of different time points that would aid
spectral analysis by reducing class size (ESI Table S41). PCA-LDA
of Raman spectra displays few significant alterations between
classes initially, indicating lack of change within the plant leaf
samples (Fig. 5D). However, a clear shift is seen mid-way
through the study shown in blue (Day 9), followed by a steady
progression back to the starting baseline. This feature is likely
to be attributed to the spectral variation shown in Fig. 5B, which
has increased absorbance between 890-850 cm™, tentatively
associated with cellulose.®* The reason for this artefact could be
tentatively associated with secondary cell wall expansion,
resulting in sampling at a different region of the leaf tissue,
from initially the epidermal cell layer itself, to the then thick-
ened cell wall.

As both data sets depict overlap between adjacent time
points on 1D cross-validated PCA-LDA scores plots, classes were
merged to reduce number of classes and aid in visualisation of
spectral alterations. P-values relating to 1D scores plots,
ATR-FTIR classes effectively split the data set into two halves,

Paper

which were then split again to produce four classes, each
ranging from 3-5 days of acquisition (ESI Table S4%). This
grouping was simulated in Raman data, despite more varied
significance patterns between classes. In doing so, the devia-
tions in protein and polysaccharide intensity seen previously in
FTIR data are emphasised further and optimised for biomarker
extraction (Fig. 6A and C). Although few differences were visible
in class means spectra of leaf samples using Raman spectros-
copy, by grouping the individual time point classes these subtle
changes are accentuated and simplified (Fig. 8B). Upon closer
inspection, it is possible to see a reduction in Raman scattering
at 1233 em ™" which is conventionally associated with the amide
III peak, mirroring the decline in protein content and structure
found in ATR-FTIR spectra.” Furthermore, a decline in chlo-
rophyll content is observed at 1534 cm ™' representing a well-
characterised indication of senescence as chloroplasts are
degenerated.®** This is a particularly good example of the
complementary nature of both the ATR-FTIR and Raman tech-
niques. Additional spectral differences are visible in the Raman
polysaccharide region, between 1160-970 ¢cm™' associated
predominantly with cellulose.> At this stage no overall change
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in cellulose can be identified; conflicting intensity patterns at
1054 cm™', which displays a reduction over time, and
1139 ecm ™ that depicts an increase over time, provide unclear
evidence for celluloge alterations. By grouping together equiv-
alent classes, 1D scores plots following PCA-LDA show that
group ‘Days 8-11' significantly deviates from the other data
classes (Fig. 6D).

A number of feature extraction methods are available to feed
into biomarker determination and classification models.”™ In
this study, three approaches are explored to ascertain robust
biomarkers suggestive of standard leaf development: DBM (top
panels, O), CV approach (middle panel, (J) and FFS histo-
grams (bottom panels, A). In each instance, the first data group
‘Days 1-3’ was used as a reference class and any consequent
changes along the biological spectrum would be indicative of
developmental alterations from this starting point of spectral
acquisition. The top six biomarkers for each approach were
identified using a peak detection algorithm and are listed in
Table 2.

Initially, by comparing ‘Days 1-3’ with ‘Days 4-7’ from ATR-
FTIR analysis it is clear to see a number of potential wave-
numbers emerging from all three feature extraction methods
(Fig. 7A). The DBM approach identifies wavenumbers princi-
pally from the protein and polysaccharide regions, emulating
patterns identified in class means spectra. This is also repli-
cated in CV and FFS analysis, additional to a number of wave-
numbers across the spectrum that are also classified. Table 3
describes the top three biomarkers from each comparison,
derived from wavenumbers uncovered by two or more
biomarker extraction approaches, with a tentative band
assignment. As shown previously, the main alterations in
Fig. 7A are found at 1107 and 1408 cm ™ accounting for pectin
found in the plant cell wall, as well as at ~1510 cm ™2, tentatively
assigned to lignin or protein,* Lignin is present in vascular
bundles within a tomato leaf and so may be noticeable due to
spectral acquisition on the leaf midrib or because of damage to

Analytical Methods

the leaf surface during analysis. When comparing ‘Days 1-3’
with ‘Days 8-11' alterations in the protein regions manifests
across all three approaches with the amide III peak at
1302 em™" being the most discriminating (Fig, 7B), The DBM
and CV methodology also show similarities in polysaccharide
alterations, particularly at 1103 cm ™" associated with ester and
pectins, although this is not selected by the FFS histogram.
Ester bonds crosslink cutin in the leaf cuticle and thus this peak
infers information about this upper leaf surface layer.” Fig. 7C
illustrates parity between the DBM, CV and FFS extraction
methods with each approach consistently identifying protein
alterations at 1642 cm™ ' the amide T peak, and carbohydrate
markers at 1101 and 1014 em ™ assigned to cellulose and pectin
respectively. As this is a comparison between the two extreme
time classes, the differences are expected to be more identifi-
able by all approaches.

Raman data compared between ‘Days 1-3’ and ‘Days 4-7’
show very little variation, indicated by relatively noisy curves in
both DBM and CV analysis and a featureless FFS histogram
(Fig. 7D). As shown in ATR-FTIR data, these two data classes are
most similar and therefore spectral differences would be
minimal, In contrast, Fig, 7E consistently locates three distinct
wavenumbers associated principally with carotenoid at 1158
and 1527 em Y, as well as chlorophyll at 1328 em ™. The latter of
these observations may be expected as a leaf develops towards
senescence, due to a breakdown of chloroplasts and therefore a
decrease in chlorophyll content.** The same wavenumbers are
again deduced when comparing ‘Days 1-3’ with ‘Days 12-17,
although surprisingly these are not picked out as robustly in the
FFS histogram (Fig. 7F). Alterations at the 1158 and 1526 cm ™!
band begins to infer that there is a variance in carotenoid
content between classes, attributed to leaf development. It is
well established that carotenoid content remains constant
whilst chlorophyll reduces through development of the leaf,
evidenced by colour transition from green to brown in young

Table 3 Top discriminating biomarkers as derived from feature extraction techniques, with tentative wavenumbers assignments derived

Wavenuniber (em™") Tentative assignment Reference
ATR-FTIR Days 1-3 versus Days 4-7 1408 CHj3 deformation, »,(COO ) in pectin 88
1512-1508 »(C=C) in lignin, carotenoid or protein 43
1107 »(CO), ¥(CC), pectin 32
Days 1-3 versus Days 8-11 1470-1466 CH, bending in lipid 47
1308-1296 Amide III 80
1103 »(C-0-C) in ester 89
Days 1-3 versus Days 12-17 1647-1636 Amide I 61
1103-1099 »(CO) in cellulose 36
1015-1013 ¥(CO), »(CC), §(OCH), ring in pectin 34
Raman Days 1-3 versus Days 4-7 1229-1217 Amide I1 55
1191-1173 m(PO;] in DNA 40
1462 8(CH,) in hemicellulose 61
Days 1-3 versus Days 8-11 1158-1157 »(CC) in carotenoid 90
1328-1327 Chlorophyll 56
1526-1527 »(C=C) in carotenoid 91
Days 1-3 versus Days 12-17 1327-1326 Chlorophyll 56
1159-1148 »(CC) in carotenoid 90
1533-1529 »(C=C) in carotenoid, chlorophyll 56

This journal is © The Reyal Society of Chemistry 2015
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and senescent leaves.” Thus any alteration in carotenoids
pigments is unexpected in regards to development of the leaf.

Linear regression analysis was conducted on the most dis-
tinguishing biomarkers previously determined, to ascertain any
patterns in absorbance between leaves at different morpholog-
ical stages (Fig. 8). In general, a negative relationship can be
seen between protein absorbance over time, particularly NE
leaves, typified by IR absorbance values at 1639 em ™", repre-
senting progression from young towards senescent leaf
{Fig. 8A). This is also replicated to a lesser extent in M leaves,
which is attributed to the leaf being closer to senescence and
therefore not experiencing as severe protein reduction in the
acquisition time frame. No significant decrease in protein can
be identified in S leaves over the course of the study due to
already having undergone substantial protein degradation
{ESI Table S57). Fig. 8B and C highlight positive variations in
absorbance bands at 1107 and 1015 em™ ' correspoending to
polysaccharides cellulose and pectin, respectively. NE leaves
again depict the greatest alterations at these wavenumbers
corresponding to cell wall expansion. This pattern is less visible
in M leaves and even less so in S leaves, mirroring the response
shown in protein. A diminution of protein and increase of
carbohydrate are simple characteristics of leaf development and
have been effectively characterised here by ATR-FTIR in
different leaf stages.

Fig. 8D shows linear regression analysis of scattering inten-
sity at 1529 cm™ ' resultant from Raman analysis of NE, M and S
leaves. Although only minimal significance can be seen in M
leaves, there is a slight negative trend in the data, showing a
reduction in chlorophyll and carotenoid intensity. This
acknowledged indicator of leaf senescence appears to occur
more significantly in M leaves, highlighting that chlorophyll
degradation in this case appears to be a late on-set process

4068 | Anal Mcthods, 2015, 7, 4059-4070

within leaf senescence.* In contrast, at peak 1328 cm™* corre-
sponding primarily with chlorophyll, no significant patterns
can be identified with NE expanded leaves showing slight
increases compared with small reductions in M and S leaves
{Fig. 8E), Overlap with DNA and protein can be observed around
this region and may contribute to masking any chlorophyll
scattering effect.*” Carotenoid alterations are portrayed in
Fig. 8F relative to intensity at 1158 cm™* and do not show any
significant differences between leaf samples.

Conclusion

ATR-FTIR and Raman spectroscopy are highly informative, non-
destructive and robust techniques that have been limitedly
employed in the field of plant science.’” Whilst many studies
demonstrate the successful use of vibrational spectroscopy to
characterise plant tissues in fixed and in vitro samples, thus far
research has been hindered by water interference and auto-
fluorescence.? In this investigation, in vive spectral measure-
ments are obtained with no destructive effect on systemic plant
health. Although ATR-FTIR appears to cause minor local
damage, this had no significant effect on the leaf and therefore
does not necessarily rule out non-destructive analysis. The
technique may not be suitable for direct analysis of fruit or
vieldable products, however in future field studies, a single leaf
is more easily sacrificed in a plant or crop system, with no
detriment to crop yield or quality. Raman spectroscopy in
particular had little visible effect on plant health and viability
and may prove to be a crucial tool for live plant analysis.
Additionally, both complementary methods coupled with
multivariate analysis, provide data that can accurately depict
known plant developmental processes, providing groundwork
for characterisation of complex stress responses, such as
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nutrient deficiency, that could be used in the field. A prereq-
uisite for future studies would be to characterise a stress
response and locate spectral biomarkers indicative of this given
stress. This presents a novel method of fingerprinting plant
health in a high-throughput manner, which can be effectively
employed in agricultural and environmental studies.
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Figure S1. An overview schematic of the experimental procedure for the review of non-
destructive analysis. A new set of plants was introduced each week and is symbolised by
coloured boxes (‘Plant Set 1’orange, ‘Plant Set 2’green, ‘Plant Set 3’ blue and ‘Plant Set 4
purple). Individual leaflets are labelled and represent equivalent leaflets between plant sets.
Greyed out labels show previously analysed leaflet, which are no longer being interrogated at
that particular week of analysis.
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Figure S2. ATR-FTIR class means spectra to compare previously analysed and equivalent
leaflets (full line), as well as differences in systemic leaflets (dashed line). At week 5 (t = 5) of
development, plants were compared at mature leaflet A (A) and newly expanded leaflet B (B); at
week 6 (t = 6), plants were compared at leaflet B (C) and newly expanded C (D); and finally at
week 7 (t = 7), leaflet C (E) and D (F) were compared. Spectra were processed with second

order differentiation baseline correction and vector normalisation.
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Figure S3. Raman class means spectra to compare previously analysed and equivalent leaflets
(full line), as well as differences in systemic leaflets (dashed line). At week 5 (t = 5) of
development, plants were compared at mature leaflet A (A) and newly expanded leaflet B (B); at
week 6 (t = 6), plants were compared at leaflet B (C) and newly expanded C (D). Spectra were

processed with first order differentiation baseline correction and vector normalisation.
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Table S1.A. Average rate of H,O assimilation (mmol H,O m s+ standard error) for equivalent leaflets (A-D)
in four plant sets over a time course of three weeks (t = 5-7) to determine any detrimental effects of ATR-FTIR
spectroscopy interrogation. Leaflets previously analysed using the technique are shown in italic. No significant
responses were determined by statistical analyses.

t =5 weeks t = 6 weeks t =7 weeks
Leaflet A B B C C D
PIaNtSE! 0.84.£0.12 1.92+0.18 2.04+0.23 1.58 +0.16
2 2.08+0.40 2.40 £0.62 1.09+£0.23 1.31+£0.18 2.02£0.32
3 232+0.30 1.47 +0.26 1.32+0.25 1.63+0.29
4 0.77+0.27 1.18+0.21
Table S1.B. Average rate of stomatal conductance (mmol m2 s + standard error)
t =5 weeks t =6 weeks t =7 weeks
A B B C C D
1 89.25+27.16 106.50 + 19.37 47.56 + 8.45 73.83 +£8.49
2 6450+ 16.59 70.83 + 13.59 120.67 +20.59  70.56 + 14.73 101.83 + 20.23
3 93.67+18.49 42.78 + 8.50 62.33 + 15.83 80.67 £ 17.95
4 33.33+13.14 50.83 + 10.54
Table S1.C. Average rate of internal CO, (umol mol™ + standard error)
t =5 weeks t = 6 weeks t =7 weeks
A B B C C D
1 206.36 +30.66 108.22 +9.30 135.00 + 29.00 122.33 + 23.98
2 133.11+1957 187.25+37.30 155.71+24.78  214.75+43.17 293.33 £ 132.29
3 20857+4227 267.67+3840 77.75+9.26 191.75 + 39.32

4 372.33+99.15

289.17 + 64.62

Table S1.D. Average rate of vapour pressure deficit (mPa Pa? + standard error)

t =5 weeks t = 6 weeks t =7 weeks
A B B C C D
1 25.27+0.73 23.22+0.99 24.09 +0.42 23.08 £0.32
2 26.87+0.63 23.67 £ 0.87 25.67 £ 0.57 23.24 +0.63 22.13+1.03
3 23.29+0.59 21.99+1.01 23.17+1.03 22.45+0.72
4 2557+0.77 24.38 + 0.68

Table S2. P-values corresponding to cross validated PCA-LDA scores plots in Figure 3 derived
by one-way ANOVA with Tukey’s multiple comparison test. (A) week 5; (B) week 6; (C) week
7 of plant development. Significant values are highlighted in bold type and colours correspond to
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specific plants sets highlighted in Figure 3 (red = ‘Plant Set 1°, green ‘Plant Set 2°, blue = ‘Plant
Set 3°, purple = ‘Plant Set 4”). Columns and rows in full colour represent comparison of leaves

previously analysed and bordered cells represent comparisons of systemic leaves.

Leaflets

(A) Week 5

(B) Week 6

(C) Week 7

UUUU|I OOUJ|I OWI

P >0.05
P >0.05
P >0.05

P >0.05
P >0.05
P >0.05
P >0.05

P >0.05
P >0.05
P >0.05
P >0.05
P >0.05

P >0.05
P >0.05

P >0.05
P >0.05
P >0.05

P >0.05
P >0.05
P >0.05
P >0.05

B - | -

P >0.05 - -
C C -
P >0.05 - -
P >0.05 P >0.05 -
D D D
P >0.05 - -
P >0.05 P >0.05 -
P >0.05 P >0.05 P >0.05
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Table S3. P-values corresponding to cross validated PCA-LDA scores plots in Figure 4 derived
by one-way ANOVA with Tukey’s multiple comparison test. Table (A) week 5; (B) week 4 of
plant development. Significant values are highlighted in bold type and colours correspond to
specific plants sets highlighted in Figure 3 (red = ‘Plant Set 1°, green ‘Plant Set 2°, blue = ‘Plant
Set 3, purple = ‘Plant Set 4”). Columns and rows in full colour represent comparison of leaves

previously analysed and bordered cells represent comparisons of systemic leaves.

Leaflets

(A) Week 5
P >0.05
B P >0.05
B P >0.05

(B) Week 6
P >0.05
C P >0.05
C P >0.05
C P >0.05

P >0.05
P >0.05

P >0.05
P >0.05
P >0.05

B —
P >0.05 -
C C
P >0.05 -
P >0.05 P >0.05
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Table S4. P-values corresponding to cross validated PCA-LDA scores plots of Figure 5C (A)
and Figure 5D (B) deduced by one-way ANOVA with Tukey’s multiple comparison test.
Significant values are highlighted in bold type and colours correspond to classes (days) as shown

in Figure 5.
Days
A) ATR-
P>
0.05 B - - - - - B - - N
P> P>
3 005 005 - - - - - - - - -
P< P> P>
4 0.05 0.05 0.05 - - - - B N N -

P< P> P> P>

0.05 0.05 0.05 0.05 - - - B B B -
P> P> P> P> P>

0.05 0.05 0.05 0.05 0.05 B B B B B B
P< P< P< P< P< P<

0001 0001 0001  0.05 0.05  0.001 - - - - -
P< P< P< P< P< P< P>

0.001 0001 0001 005 005 0001 005 - - B B
P< P< P< P< P< P< P> P>

0.001 0001 0001 001 001 0001  0.05 0.05 - B -
P< P< P< P< P< P< P> P> P>

0001 0001 0001 0001 000l 0001  0.05 0.05 0.05 - -
P< P< P< P< P< P< P> P> P> P>

0.001 0001 0001 0001 0001 0001 0.5 0.05 0.05 0.05 B
P< P< P< P< P< P< P> P> P> P> P>

0.001 0.001 0.001 0.001 0.001 0.001 0.05 0.05 0.05 0.05 0.05

P <

0.01 - B B B B B - -
P> P>

0.05 0.05 - - B B B - -
P< P> P>

0.01 0.05 0.05 - B B B - -
P< P> P> P>

0.001 0.05 0.05 0.05 - - - B B
P> P< P< P< P<

005 0001 0001 0001  0.001 B B - N
P< P< P< P< P< P<

0001 0001 0001 0001 0001  0.001 - N
P< P< P< P< P< P< P<

0001 0001 0001 0001 0001 0001 0001 - -
P< P< P< P< P< P< P< P<

0001 0001 0001 0001 0001 0001 0001 0001 -
P< P> P> P> P> P< P< P< P<

0.001 0.05 0.05 0.05 0.05 0.001 0.001 0.001 0.001
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Table S5. P-values for linear regression curve analysis in most discriminating wavenumbers,
calculated at 95% confidence rates, with significant values highlighted in bold, derived from

Figure 10. Colours correspond to Figure 8.

wavenumber (o) INERE ER—

ATR-FTIR 1107 P <0.01 P <0.05 P >0.05
1639 P <0.0001 P <0.0001 P >0.05

1015 P <0.0001 P <0.001 P >0.05

Raman 1328 P >0.05 P >0.05 P >0.05
1158 P >0.05 P >0.05 P >0.05

1529 P >0.05 P >0.05 P <0.05
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Abstract

Foliar application of nutrient fertilisers is standard practice in agricultural environments,
and has been shown to increase crop yield and quality more efficiently and economically
than soil-based fertilisers. The adsorption of macro- and micro-nutrients through the
upper epidermis of leaves is largely species dependent; reliant upon penetration through
the cuticle and stomata, and also upon the plant’s ability to translocate the nutrient.
Herein we describe a method to observe calcium (Ca) uptake at the adaxial leaf surface
to determine the efficacy of foliar fertilisers. We use Raman microspectroscopy as a
sensitive approach to indirectly monitor Ca, through the use of nitrate (NOz") associated
vibrational modes, complemented by ion probe measurements and measurements of leaf
nutrient status using flame atomic absorption spectroscopy. Our results show that Ca
uptake can be observed down to concentrations as low as 15 mM using Raman
microspectroscopy over a defined surface area, and that the rate of Ca uptake can also be
quantified using this approach. We believe that Raman microspectroscopy provides a
novel method for monitoring nutrient movement throughout plant tissue, and provides a

potential tool for nutrient screening.
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Introduction

In order to produce optimum yield and quality, it is essential that crops receive adequate
levels of macro- (N, P, K, Ca, Mg and S) and micro- (B, Cl, Cu, Fe, Mn, Mo, N and Zn)
nutrients during cultivation. The application of nutrient fertilisers is a practice well-
exercised through time, traditionally centred around the three primary macronutrients, N,
P and K, which have the greatest immediate effect on crop yield®. This is in accordance
with Liebig’s Law of the Minimum, where nitrogen can be considered the most limiting
nutrient for crop growth?. In 2013, as much as 140 kg of nitrogen-based fertiliser was
applied to each hectare of arable land in the UK as a prerequisite for cultivation®. Whilst
this process has been shown to have positive impacts on overall crop yield, quality and
shelf life; this is by no means an efficient process. Over-application of these nutrients
does not meet the additional nutrient requirements of the crop, which can result in
equally detrimental nutrient deficiencies of other macro- and micro-nutrients.
Furthermore, as well as the considerable carbon footprint that is associated with fertiliser
production, N losses through leaching and denitrification present a significant
environmental impact to the land surrounding agricultural sites and the human water
supply* °. Due to the threat of continued population growth, the maintenance of global
food security demands a drastic increase in agricultural productivity and thus a

movement away from such agricultural customs®.

An alternative approach is application of fertilisers via a foliar spray; where a
single or mixture of solutions (as well as pesticides and herbicides) can be applied
directly onto the leaf and fruit tissue’. In providing nutrients directly to the crop rather
than the growth medium, a reduced volume of fertiliser is required, presenting a more
efficient process that has been shown to increase the nutrient recovery rate in crops® °.
Foliar fertiliser application also has the added benefit of reduced lag time between
application and uptake by the plant, as well as overcoming issues surrounding poor
absorption from nutrient complex in the soil® 1. As the majority of fertiliser application
protocols are soil-based, the analysis of nutrients in the soil has been particularly
valuable to determine the nutrient availability in different environments*2. However, this
is not always reflective of the uptake into the plant, as some nutrients are fixed within
the soil and therefore not available for uptake, whilst some are only partially utilised, and

some are readily lost within the environment!. By focusing upon foliar applications of
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nutrient fertiliser, it is possible to directly observe the effect of product formulation on

net elemental uptake.

Foliar sprays do not however provide a magic bullet for the application of
nutrients. The efficiency of foliar sprays is variable depending upon environmental
conditions, the crop species and fertiliser formulations; all of which have substantial
impact on nutrient penetration through the cuticle surface and subsequent translocation,
see Fernandes and Eichert®3, As with soil application of fertilisers, environmental
conditions such as humidity, temperature and light availability all can prevent the
efficient uptake of nutrient at the leaf surface, due to the effect these conditions have on

rates of transpiration and photosynthesis, as well as the effects upon stomatal aperture’*
15

The exact composition of the fertiliser applied will also have distinct effects on
nutrient uptake at the leaf surface, primarily dependent upon the exact nutrient that is
being provided. Whilst all essential elements should be able to pass through the leaf
cuticle, the movement to systemic regions of the plant may be inhibited*®. Translocation
in the leaf is predominantly through the apoplastic or symplastic pathway; either through
the extracellular material and the cell wall, or through the cell cytoplasm via
plasmodesmata, respectively'®. It has been shown that the rate of translocation within
plant tissues differs between each essential nutrient, with Cl, Na, K and N being
considered more mobile than Fe, and Ca being relatively immobile’. This may be
associated with the charge associated with the ionic form of the nutrient in solution, due
to accumulations of negative charges within the plant apoplast. Foliar fertilisers often
contain a number of complementary components in addition to the nutrient content, that
are added to aid the absorption process. Wetting agents, or surfactants, reduce the
surface tension of the solution and allow maximum dispersal across the foliage, thus
utilising the entire surface area of the crop wherever possible®. Furthermore, penetrants
can be applied to improve uptake through the waxy cuticle, pH modifiers can be used to
alter the ionic composition of specific nutrient and thus aid uptake, humectants are used
to prolong the drying process, and adjuvants are utilised to extend the time the fertiliser

remains on the leaf surface, preventing run off in wet conditions®®.

The cuticle is the primary site of nutrient uptake via foliar sprays and therefore its
composition is a significant factor in the rate of nutrient uptake®. The purpose of the
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cuticle is to prevent water loss, and thus the composition of the epicuticular wax is
variable between crop species, dependent upon the natural environment of the plant. As
such, the efficiency of a foliar fertiliser is variable across different crop species.
Moreover, the total leaf surface area of a crop will also impact the overall efficacy of a
foliar fertiliser, as a lesser surface area will result in reduced application. The presence of
leaf trichomes, hair-like projections on the leaf surface, will increase the surface
available for uptake and may result in enhanced absorption?. In addition, the stage of
leaf development, will play a role in uptake, as will the general tissue and plant health.

Due to the contribution of these factors to the variable efficacy of foliar
fertilisers, this method of nutrient supplementation is not yet considered a direct
replacement of soil-based fertilisers®?. However, a step change in fertiliser technology, or
the development of rapid screening methods to assess the potency of foliar fertiliser may
increase the adoption of this approach. One such method that may be able to contribute
to nutrient uptake studies is Raman microspectroscopy. Based on the phenomena of
inelastic light scattering, Raman microspectroscopy is a highly sensitive technique that
can be used to detect and monitor single molecules by observing the interaction of light
with the chemical bonds within a sample?3. The occurrence of Raman scatter is an
inherently low probability process, which can be problematic in samples with intrinsic
fluorescence, such as plants, where Raman information can be swamped by stronger
fluorescence signals 2*. The development of alternative Raman modes such as stimulated
Raman spectroscopy has helped overcome some of these restrictions to plant based
applications. In addition, it has recently been shown that spontaneous Raman can be
applied in vivo to derive spectral information from leaves, due to the quenching effect of

water found ubiquitously through the plant?>-%7,

In this study, we employ Raman microspectroscopy as a novel method of
monitoring Ca at the adaxial leaf surface using tomato (Solanum lycopersicum) as a
model plant, complemented by ion probe and flame atomic absorption spectroscopy
(FAAS) measurements conventionally used as alternatives. Ca is an essential
macronutrient required for successful plant growth, and low availabilities can result in
deficiencies that are known to manifest across a range of crop species and cause
significant yield losses?®. Foliar nutrient supplementation is one way in which such
deficiencies have been combatted, with frequent applications of Ca fertilisers preventing

the incidence of deficiency and also increasing overall Ca content in fruits?®-31. However,
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as mentioned previously, Ca has been shown to be relatively immobile within plant
tissues following absorption through the leaf cuticle, and it is thought that Ca
transportation is solely unidirectional in the flow of the transpiration stream via the
xylem®2 33, The lack of mobility is associated with the toxicity of Ca at high
concentrations in the cell, and the tightly linked signalling pathways that have developed
as a consequence of this active control of Ca in biological systems®*. Currently, the
mechanism by which foliar Ca sprays are able to improve a crops tolerance to nutrient
stress is not therefore fully understood given translocation to affected tissues is not

possible.

Our aim is to use the three-pronged Raman microspectroscopy, ion probe and
FAAS approach in order to observe and quantify Ca uptake at the leaf surface. This will
present a novel assay for assessing the efficacy of a foliar fertiliser, by observing its rate

of uptake and subsequent mobility within the plant.

Rehydration ! ehydration

Raman lon Probe FAAS

Ca?* Treatment Rehydration

Figure 1. A schematic overview of the experimental procedure described in this study to measure uptake
of supplementary Ca at the adaxial leaf surface of Solanum lycopersicum samples. Measurements using
Raman microspectroscopy (®) were conducted upon dry leaves in order to detect residual traces of
Ca(NO3)2 on the surface. Upon application of Ca(NOs), solution, and subsequent rehydration with H,0,
ion probe measurements (4) were made by aspirating the solution directly from the leaf. This process
was repeated over a 72-hour period (To, T4, Tas, T72) before finally harvesting the remaining leaflets,
separating the ‘banded area’ (outlined in red) and the ‘remaining leaflet’ (outlined in black), and
analysing both separating using flame atomic absorption spectroscopy (FAAS) to determine overall Ca
content.
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Materials & Methods
Calcium compound characterisation

Cacan be delivered to the crop via a range of compounds such as calcium nitrate
[Ca(NOs3),], calcium chloride (CaCly), calcium sulphate (‘Gypsum’; CaSOs), calcium
oxide (Ca0) and calcium carbonate (CaCOs3). In order to investigate the uptake of Caat
the leaf surface, Ca(NO3)2 was chosen as a model compound due to its widespread use in
agriculture as both a Ca and nitrate fertiliser, and as well as its distinct Raman

vibrational modes.

Ca(NO3).®4H,0 at 99% reagent grade (Sigma-Aldrich Ltd, Dorset, UK) was
characterised using an InVia Raman spectrometer with a 785 nm excitation laser and
charge coupled device (CCD) detector (Renishaw Plc, Gloucestershire, UK) with a
microscope attachment (Leica Microsystems, Buckinghamshire, UK). Spectral
calibration was conducted using a silicon source prior to spectral acquisition. 500 mg of
solid Ca(NO3).®4H>0 was applied onto an Au-coated slide (Platypus Technologies, WI,
USA); even pressure was applied to produce a flattened surface for analysis. This was
repeated three times for each sample, with 10 spectra obtained per repeat. A 1 M
Ca(NO3).@4H0 solution was prepared using Milli-Q filtered water up to a volume of
500 mL for increased accuracy. To investigate the effects of Ca chelation,
ethylenediaminetetraacetic acid (EDTA) was prepared at 1, 0.5 and 0.25 M using filtered
water, and this was mixed 1:1 with 1 M Ca(NO3).®4H>0., resulting in 0.5 M
Ca(NO3).@4H,0-EDTA solution. For each solution, 50 pl was applied onto an Au-
coated slide and 10 spectra were obtained per solution, with each solution repeated three
times. Spectra were obtained using a 50x magnification (0.75 numerical aperture), 1200
mm grating, 50% laser power (13 mW at the sample) and a 10 second exposure time.
Spectra were visualised across the 2000 - 500 cm™ region, accounting for regions of
overlap with plant associated vibrational modes, using Matlab 2016a software (The Math
Works, MA, USA).

Plant growth conditions

The tomato plant, Solanum lycopersicum cv. Moneymaker (Moles Seeds, Essex, UK), was
chosen as a model species to observe Ca uptake at the leaf surface due to its susceptibility

to Ca deficiencies in the form of ‘blossom end rot’, as well as the presence of trichomes
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on the leaf surface and relatively fast growth rate. This crop variety had been previously
used in spectroscopic studies and had been shown to display no signs of damage following
Raman interrogation?’. Seeds were germinated in M3 compost (Levington Horticulture,
Suffolk, UK) and watered daily in a controlled environment growth room with relative
light intensity of 150 + pmol m s provided by 600 W metal halide lamps (Osram Ltd,
Merseyside, UK) with a 16 h / 25 + 2°C day, 8 h / 20 £ 2°C night cycle. To account for
time dependent alterations in rates of CO, and H.O assimilation that may affect nutrient
translocation, all experimentation was conducted during the middle of light period where
the plants were assumed to be in a stabilise state. Plants were grown for 8 weeks following

germination, before being selected for this study.
Raman Microspectroscopy and lon Probe measurements

An overview of the experimental procedure is illustrated in Figure 1. In brief, the uptake
of six Ca(NOs)2 solutions at defined concentrations of 0, 5, 10, 15, 20 and 25 mM were
monitored using parallel Raman microspectroscopy and ion probe measurements. A
circular banded area, 1.77 cm? (r = 0.75 cm), was isolated using silicone grease and all
treatments were applied to this defined area throughout. A total of 60 plants were used
for this study; 10 per Catreatment. On each plant, five leaflets were banded and used for
this study. Only mature leaflets of a similar morphological stage were chosen, as these
were fully expanded and less prone to movement resulting in treatment run-off.
Throughout this study, live plant systems were analysed and no leaflets were removed at

any point.

All solutions were prepared using filtered water, a calibrated balance and made
up to volumes of 500 mL. All solutions contained 0.01% Silwet L-77 wetting agent (de
Sangosse Ltd, Cambridgeshire, UK), to optimise spread of the nutrient solution across
the banded area, which was shown in preliminary studies to reduce variability with
uptake across the leaf surface. An InVia Raman spectrometer with Leica microscope
attachment was used to obtain Raman spectra, using a 50x objective, 1200 mm™ grating,
50% laser power, and a 15 second exposure time. A minimum of 5 spectra was obtained
per sample, spanning across the whole of the banded area. LAQUAtwin compact Ca?*
and a NOs™ meters (Horiba Instruments Ltd, Northamptonshire, UK; models B-751 and
B-741 respectively) were used as ion-selective electrodes, to monitor alterations in these

ions. Each probe was washed with deionised water between all measurements.
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Initially, a control Raman measurement was taken from four randomly chosen
leaflets at To to derive the plant biochemical fingerprint prior to Ca application.
Immediately following this, the 30-uL Ca treatment was applied onto the leaf surface
within the banded area. This volume was chosen as it sufficiently covered the banded
area, whilst not affecting leaf stabilisation and therefore preventing run-off. On four
randomly selected leaflets, this solution was aspirated off the leaflet after 30 seconds and
analysed using the ion-selective probes. Once a leaflet had been analysed, it was
excluded from the study. The solutions were then allowed to dry overnight. The
following day (T24), 24-hours post the initial Raman measurement, a second Raman
measurement was obtained from a further four randomly selected leaflets. In order to re-
suspend any remaining Ca(NO3)2 upon the leaflet, 30 pL of distilled water was applied
and gently dispersed across the banded area. The contribution of specific gravity at such
small volumes of dilute solution was deemed to be too small to quantify accurately, and
so rehydration of the remaining Ca(NOs). was maintained at 30 pL and compared
against measurements made from reference materials, glass and plastic, that were
conducted in parallel. Again, the solution on four leaflets was aspirated from the surface
30 seconds following H20O application, and analysed using the ion probes. This process
of Raman interrogation followed by rehydration of the banded area and subsequent ion

probe measurement, was repeated at Tsgand T72.

At each time point, four leaflets were chosen at random across the sample cohort
for Raman analysis, and a further four were used for ion probe measurements. Therefore,
of the total 50 leaflets initially selected for study (10 plants x 5 leaflets) in each
treatment group, a minimum of 36 leaflets were analysed per treatment across the 72-
hour period. This resulted in a dataset containing over 1080 spectra (36 leaflets x 6

treatments x 5 spectra).
Tissue digestion and FAAS

Following analysis across the four time points using Raman microspectroscopy and ion
probe measurements, a selection of the remaining leaflets were analysed using FAAS in
order to determine the overall Ca content of the tissue. FAAS is a common analytical
method of determining elemental content of plant tissue, and has been used routinely to
monitor crop nutrient status®. Leaflets were excised from the plant and washed

thoroughly using deionised water to ensure any residual treatment was adequately
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removed. The ‘banded area’ from each leaflet was isolated from the ‘remaining’ area
using a scalpel, and both tissues were dried at 80°C in a drying oven for 3 days in order
to remove all water content. This tissue was then homogenised into a fine powder, and
the total mass was recorded. Each sample was digested in 10 mL concentrated, trace
metal grade HNOs (Sigma-Aldrich Ltd, Dorset, UK) at 200°C on a digital hot plate
(Bibby Scientific Ltd, Staffordshire, UK; SD500), in a volumetric flask sealed with a
‘bubble top’, to allow reflux of the acid for a minimum of 2 h and to guarantee complete
digestion. When digestion was complete, the tops were removed and the HNOz was
allowed to evaporate until near dryness, when the samples were then removed from heat.
The residual material was re-dissolved in <5 mL of 5% HNOszand 0.5 mL of 1% LaCls
was added to ensure full Ca release from the material. This solution was then filtered
using a Whatman® 541 hardened, ashless filter paper (Fisher Scientific, Leicestershire,

UK), and made up to standard volumes of 25 mL.

These digested samples were then analysed using a AAnalyst 200 flame atomic
absorption spectrometer (Perkin EImer, MA, USA) with acetylene gas, compressed air
and a Ca-Mg lamp (422.7 nm) to provide an absorbance value corresponding to a Ca
concentration, as determined by a calibration curve obtained prior to acquisition.
Absorbance above 0.4 arbitrary units (au) is considered outside of the linear range of
detection for the spectrometer, and thus any samples reading above this value were
diluted accordingly; as a result, the majority of samples were diluted 1 in 50. Three
replicates were taken per sample, with a read delay of three seconds. Absorbance values
were converted to ppm using a calibration curve, and subsequently % Ca values were
derived by multiplying by the dilution factor, and the total volume, and dividing this by

the mass of homogenised sample initially used.
Data Analysis

Unless otherwise stated, Raman spectra were processed using the IRootLab toolbox for
Matlab®®. All spectra were initially cut to 1700-500 cm™ as this region encompassed all
biological information from the leaf samples as well as any overlapping Ca(NO3)2
vibrational modes. For the purpose of comparison between these two samples, a
polynomial baseline correction was conducted in order to maintain the conventional
morphology of a Raman spectrum, whilst reducing any residual background

fluorescence that can commonly occur when analysing plant materials with intrinsic
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fluorescence?. It is worth noting, that live plant tissues have been shown to have
reduced susceptibility to fluorescence, associated with the high water content and
potential quenching effect?’. To characterise the vibrational modes of Ca(NOs3). spectra,
a second order derivative (with Savitzky-Golay noise reduction) was conducted followed
by vector normalisation and a wavelet denoising, in order to effectively highlight subtle
differences in the scattering intensity of each solution at the 780 — 680 cm™. Spectra
obtaining during the Ca treatments were second order differentiated, with vector
normalisation and wavelet denoising. A second order derivative was chosen so that the
peak centroid could be obtained, and a Raman scattering intensity value at a specific
wavenumber could be derived that was reflective of the original spectrum, whilst still

benefitting from background elimination.

One-way analysis of variance (ANOV A) with Tukey’s multiple comparison tests
were conducted in GraphPad Prism 4 software (GraphPad Software Inc, CA, USA). All

figures were also produced using Prism 4 software.
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Results & Discussions
Effects of surfactant on treatment dispersal

The addition of surfactants to foliar fertiliser sprays, reduces the surface tension of the
solution and consequently increases the surface area exposed to the solution®’. The
evidence of this can be seen in Figure 2., which displays distinct droplets of solution
upon the leaflet surface of a S. lycopersicum without the addition of Silwet L-77 (B), and
the homogenous spread within the banded area as a consequence of Silwet use (C). In
regards to Ca uptake, an even spread across the adaxial leaf surface means a larger
surface area for Ca absorption. Upon drying, any residual Ca that remains on the leaf
surface is also evenly dispersed, preventing concentrated areas of Ca that would make
consequent Raman measurements highly variable. Due to this, 0.01% Silwet was applied

in all Ca treatments to ensure reproducibility.

Figure 2. Example of the effects of surfactant use in Ca solution dispersal in a defined area. (A)
displays the ‘banded area’ defined by silicone grease (photograph versus diagram for emphasis), the
radius of which is 0.75 cm resulting in an overall area of 1.77 cm?; (B) dispersal of 30 uL Ca
treatment without a surfactant and; (C) the spread of 30 pL Ca with the use of surfactant on a S.
lycopersicum leaflet.
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Ca(NOs)2 characterisation

Numerous studies have been conducted to characterise solid and aqueous forms of
Ca(NO:s). using Raman spectroscopy, of which four distinct vibrational modes have been
deduced: a double degenerate mode at 1400 cm™, a symmetric stretch at 1050 cm™, a
double degenerate mode at 720 cm™, as well as a Raman inactive band at 830 cm™ 3841,
These same modes were visible in this study, in both solid and aqueous forms (Figure
3). The peak at 1050 cm is synonymous with NOs" stretching and show a clear
concentration effect when observing a varying range of Ca(NOz3).. The subtle peak at the
720 cmt region is intriguing as it may provide further details towards the physical state
of the compound and its related ions. In solution, this peak is known to split into 743 and
719 cml, associated with ‘bound’ and ‘free’ NO3™ respectively*’. Bound NOs™ refers to

the [CaNOs]* complex, whilst free is related to NO3™ interaction with H,O%,
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The Raman spectrum of a S. lycopersium leaf is also shown, as well as the
consequent spectra following application of 1 M Ca(NOz)2 solution upon the adaxial
surface. The vsym(NOz)™ can be seen strongly additional to the underlying plant spectrum,
where there would be potential overlap with v(CO) and 6(CO) modes of leaf
polysaccharides*?; however, no specific Raman band within plant tissues is known to be
present at this specific wavenumber*® 4, There is also evidence of a Ca(NOs). peak at
around 740 cm™ although there is thought to be some overlap in this region with

chlorophyll scattering®.

As a consequence of this investigation, it is clear that there is the capability to
detect trace residues of Ca(NOs)2 upon the leaf surface, through monitoring scattering
associated predominantly with the NOs~ component of the compound. However, Ca?*
ions would not have a Raman signature, therefore we investigated the possibility that
NOz” may be an indirect indicator of the presence of Ca. To this end, we investigated the
effect of the Ca chelator, ethylenediaminetetraacetic acid (EDTA), at this lower
wavenumber region in order to determine whether Ca can be monitored via NO3™ peaks.
EDTA will essentially sequester Ca?* ions and thus it was predicted that in its presence
there should be a higher proportion of free NOgz™ in solution. Figure 4 illustrates
Ca(NO:s)2 solutions in the presence of varying concentrations of EDTA in the 780 — 690
cmt region, encompassing the bound and free NO3™ bands. In the absence of EDTA, the
peak at 743 cm™ is slightly lower than the peak at 719 cm™, highlighting that NO3" is
found both in complex with Ca?* ions and as a free ion. As EDTA is added, the
relationship between these two peaks alters, with a reduction in bound NO3™ peak and an
increase in the free peak at 719 cm™. The effect of this is markedly larger in the more
concentrated EDTA solution. This indicates that the theoretical loss of Ca?* ions
mimicked by the addition of EDTA, can be monitored indirectly by observing NO3
associated Raman bands. Therefore, all subsequent in all subsequent experiments, Ca

was monitored via indirect measurements as described above.
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Figure 4. Second derivative Raman spectra of aqueous Ca(NOs), with and without varying
concentrations of ethylenediaminetetraacetic acid (EDTA), a known calcium chelator, in the
780 — 690 cm™ region. The fourth vibrational mode of Ca(NOs). can be found in this region,
and this double degenerate is known to appear in concentrated solutions, associated with
‘bound’ nitrate at 743 cm™ and ‘free’ nitrate at 719 cm™™. Spectra have been off-set for clarity.

Raman spectroscopy as a monitor of Ca uptake

The ability of Raman spectroscopy to determine the presence of Ca on the leaf surface
was initially demonstrated using a 1 M solution of Ca(NO3)2: a relatively high
concentration in regards to standard nutrient fertiliser compositions. Determining an
agriculturally relevant concentration range is challenging as application levels are
dependent upon the manufacturer of choice, as well as the growers own preference.
Commercially available Cafertilisers are sold as stock solutions, often containing
between 5-30% Caw/v, and have varied recommended dilution levels (1 in 50-500).
The concentration range used in this study was based upon recommended values and

previous studies into fertiliser efficacy*’*°.
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Figure 5. Raman intensity at 1050 cm™
representative of Vsym(NO3") at four
individual time points (To, T4, Tas, T72
hours), displaying spectral alterations as a
consequence of increasing Ca(NOs).
concentration. Intensity values were
obtained from second derivative, vector
normalised and wavelet smoothed data in
order to standardise comparisons between
individual leaf samples. *P<0.05,
**P<0.01, ***P<0.001.

Following the experimental
procedures previously defined, Raman
spectral measurements were obtained from
the adaxial leaf surface, following treatment
with six Ca(NOs3) treatments (0, 5, 10, 15,
20, 25 mM) over a 72-hour time course (To,
Tos, Tas, T72). Figure 5 represents the Raman
scattering intensity at the veym(NO3) region
(1050 cm™) at each time point, in order to
compare each Ca treatment and determine a
concentration dependent effect. At To, no
treatment has been applied and is therefore
an indicator of generic variance between
each sample. Some slight differences are
apparent between each of the samples that
may be due to slight differences in leaf age,
but importantly no treatment pattern is
observed at this time point. Raman spectra
obtained at T4 depict the leaf surface
following application of each treatment and
subsequent drying, and should therefore
represent the time point when the
concentration gradient should be most

evident.

The Raman intensity at 1050 cm™
overall show an upward trend with
increasing Ca concentration, with the two
highest treatments, 20 and 25 mM,
displaying the most significant differences.
Although the 10 mM treatment is not
statistically significant, there is an overall
increase in the mean that obeys the

concentration gradient. The interquartile
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range between treatments is relatively consistent, whereas the upper extremes are
considerably more variable, indicating that there are numerous intensity values that are
higher than the mean of each data point. Such variability between data points may indicate
that residual Ca(NO3)2 upon the leaf surface is not spread evenly across the leaf surface.
At Tas, this concentration gradient is still visible, however at a lower intensity than the
previous time point, and only statistically significant at 15, 20 and 25 mM treatments. This
suggests that there is still Ca remaining upon the leaf surface, but that some has been
absorbed through the cuticle into the underlying tissue.

The data range within each treatment also supports this there are fewer extreme
data points associated with areas of high Ca content. The final time point, T+, displays
some indication of a concentration effect, although at lower levels of significance, and
with much variability between treatments. In contrast to T4, the upper extremes for all
treatments are almost equivalent, whereas lower extremes depict the greatest differences,

possibly the reason for the statistical difference between 15 and 20 mM treatments.
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Figure 6. Alterations of the Raman intensity at 1050 cm™, representative of Veym(NOs), over a
72-hour period (To, T2a, Tas, T72 hours) at a range of Ca(NOs), treatments. Intensity values were
obtained from second derivative, vector normalised and wavelet smoothed data in order to
standardise comparisons between individual leaf samples.
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As there is some overlap at the 1050 cm™ peak
with plant polysaccharides, this lower limit
may be indicative of slight differences in the
leaf age, as older leaves are known to have
increased levels of cellulose due to secondary
cell wall expansion?” %%, The spectral intensity
values are parallel with To measurements,
showing a reduction in the Raman scattering
over time, indicating that the majority of the
remaining Ca on the leaf surface 72 hours post

application.

As alternative view through the data,
Figure 6 displays each individual Ca
treatment monitored over the 72-hour period,
in order to show a rise in Ca on the leaf
surface following application and a sequential
decline, indicative of uptake. The control
treatment, 0 mM presents some distinct
variance between each time point, which
consequently shows the typical range of
Raman scattering intensity at 1050 cm™. 5 and
10 mM treatments, display very small
increases in scattering range at T4, post-Ca
application, but not to an extent significantly
different to that of the overall variance shown
in the 0 mM treatment. At the higher
concentrations, 15, 20 and 25 mM however,
there is a much more marked increase from
To-24, when focusing on the range of intensity
values derived, a successive decrease over the
remainder of the time course. Although, the
higher of these treatments does not depict this

pattern to the same extend as 15 and 20 mM,
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there is still some subtle time dependent alterations, showing potential uptake of Ca at

the leaf surface.

When observing purely the mean of all the data points, the time related pattern of
an increase in absorbance between To and T24 and then a progressive reduction at Tsgand
T2, 1s not shown significantly and suggests that the information specific to Ca uptake is
relatively inconsistent. This may be due uneven drying on the leaf surface of Ca(NO3)2
despite the addition of a wetting agent, that is subsequently resulting in salt deposits at
distinct locations. Additionally, the overlap of the 1050 cm™ with underlying plant cell
components, such as cellulose, may influence the reproducibility of the spectra derived.
Although leaflets of a similar morphological stage were chosen, small differences in
growth rate, position and general health would have significant impacts on the spectral
baseline of this study. There is also the possibility that by providing increased Ca(NOs3)
to the area, there may be some stimulatory effects on cell growth; however, the relatively

short time frame makes this suggestion unlikely.

The Raman peak at 743 cm™, corresponding to bound NO3, are apparent within
the leaf spectral fingerprint following foliar application of Ca(NOz)2 in a region where
only broad underlying Raman bands were visible. Therefore, to observe Ca uptake
spectral intensities from this band were extracted and analysed using the same approach
as shown previously with the vsym(NO3)™ region. Initially, it is evident that a
concentration dependent relationship can be seen at T4, highlighting that following
application of the nutrient treatment the residual Ca(NO3)2 salt can be monitored on the
leaf surface (Figure 7). Interestingly, the range of values is noticeably less than
portrayed in 1050 cm™* values, potentially inferring that this peak is less prone to

reproducibility issues.

Mean values of these data further support this relationship, which show a clear
upwards trend. This could be attributed to the lack of overlap with other scattering
bands, particularly those which are sensitive to morphological differences, such as the
1050 cm peak. The control time point To, shows the expected variance from the 743
cm band and as anticipated, no concentration effects are evident. At Tas, the scattering
intensity increases in a concentration dependent manner, to an extent not dissimilar to
that of T4, suggesting that Ca absorption is low between these two time points. It is
more likely in reality that this artefact is due to inconsistency in the Raman spectra,
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rather than a reduced absorption rate, which is later clarified by data from ion selective
probes. At T2, there is also residual evidence of the Ca treatment indicated by
significant differences in the intensity of values for 15, 20 and 25 cm™, although closer
to the intensities displayed at To. A distinctly higher lower limit for the data points may
be responsible for the significant differences shown, which again may occur due to the
spectral baseline from the leaf itself. This spectral region is where DNA associated bond
vibrations occur, as well as contributions from chlorophyll*2, The latter of these
molecules could be found at differing levels within tissues of varying ages,
morphologies and growth status in relation to their photosynthetic capability®. The
application of fertiliser could also have a direct effect on chlorophyll content in plant

cells, corresponding to elevated scattering intensities seen in higher treatments®3,
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Figure 8. Alterations of the Raman intensity at 743 cm™, representative of bound NOs’, over a
72-hour period (To, T2, Tas, T72 hours) at a range of Ca(NOs). treatments. Intensity values were
obtained from second derivative, vector normalised and wavelet smoothed data in order to
standardise comparisons between individual leaf samples.

In contrast, when comparing individual treatments over the 72-hour time course,
the pattern of Ca uptake is not as clear as earlier observations, even at higher
concentrations (Figure 8). The first slight indication of an increase in scattering intensity

from To to T24 is only evident in the 25 mM treatment, and even so, this effect is not
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significant across the four time points. This could be largely attributed to the relatively
high intensity of the To measurements, which is mimicked across nearly all of the
different treatments, including the control. This suggests at this particular time point,
regardless of foliar Ca(NOs), application, the starting Raman intensity at 743 cm™ was
higher than at the end of the study. As this peak can be associated with chlorophyll, this
may be due to a heightened rate of photosynthesis on this particular date, despite the

environmental conditions within the glasshouse being actively controlled >,

lon selective probes to monitor Ca?* and NOs-

In parallel to Raman microspectroscopy measurements, Ca** and NOs™ selective probes
were used to elucidate the relative quantities of each ion remaining on the leaf surface
over the course of the study. lon selective electrodes have proven useful tools within
plant research, allowing the accurate measurement of ionic fluxes within plant tissues, as
well as to determine ionic content of xylem sap®>>’. These standard commercial probes
were utilised to measure differences in ionic content of the nutrient solution remaining

upon the leaf surface in aqueous format.

Figure 9 depicts Ca?*-selective probe measurements derived from the adaxial
leaf surface (A) and also from control surfaces; plastic (B) and glass (C). At To,
immediately following application upon the leaf surface, the concentration determined
by the probe correlated to the known concentrations of the treatment solutions (0 — 1000
ppm). After drying, and subsequent Raman measurements, the banded area of the leaflet
was rehydrated and reanalysed at T»4. Here, there is a clear reduction in the levels of
Ca2" in the eluate from the leaf surface, implying that there is less Ca on the leaf surface
as a consequence of uptake of the foliar treatment. In comparison to this time point in
both the glass and plastic controls, no alteration in the ionic content is displayed showing
that this effect is specific to absorption upon the leaf surface. The rate of Ca uptake was
determined to be at its highest during this initial 24-hour period, with the highest
concentrations showing the fastest rate of uptake (Table 1). Interestingly, 20 and 25 mM
treatments display an almost identical rate of Ca uptake that infers the maximum
absorption across the leaf surface had been achieved at this concentration. After this
initial time period, the levels of Ca remaining on the leaf continues to diminish at Tss, at

a much reduced rate, and again at T72, where almost all treatments are at similar resting
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level. This indicates that across the 72-hour time period, the majority of the applied
Ca(NO:s). has been actively absorbed into the leaf tissue and is no longer present upon

the adaxial leaf surface.
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Figure 9. Ca?* ion concentration (ppm) on; (A) the adaxial leaf surface; (B) a plastic surface;
and (C) a glass surface, across a 72-hour period determined by the use of a Ca?* ion probe
(Horiba Scientific, UK) as consequence of Ca(NOs), treatment, Standard error bars are shown to
present the variation within acquisitions.
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Figure 10. NOs™ ion concentration (ppm) on; (A) the adaxial leaf surface; (B) a plastic surface;
and (C) a glass surface, across a 72-hour period determined by the use of a Ca?* ion probe
(Horiba Scientific, UK) as consequence of Ca(NOs), treatment, Standard error bars are shown to
present the variation within acquisitions.
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Table 1. The overall rate of ion uptake at the adaxial leaf surface of S. lycopersicum samples determined
using an ion probe following foliar application of Ca(NO3).e4H-0 solutions.

Ca Rate of Ca?" uptake (ppm cm? h?) Rate of NOs™ uptake (ppm cm™ h?)
Treatment

(mM) 0-24h 24-48h 48-72h  Overall 0-24h 24-48h  48-72h  Overall
0.000+ 0.003x 0.000x 0.000= 0.037+ 0.000x 0.000x 0.000 <

0.000 0.000 0.002 0.005 0.000 0.000 0.000 0.000

1.023+x 0.084+ 0.009+ 1.116% 112+ 1011+ 0127+ 2.258%

0.038 0.056 0.009 0.024 0.002 0.002 0.001 0.001

2007+ 0183+ 0.037x 2227+ 2623+ 1678 0.103+ 4.405%

0.015 0.106 0.049 0.028 0.001 0.004 0.002 0.001

2975+ 0193+ 0.223+ 3391+ 5871+ 0467+ 0308+ 6.646=%

0.044 0.192 0.109 0.018 0.002 0.008 0.005 0.001

3465+ 0.659+ 0287+ 4411+ 7530+ 1.039x 0965z 9.159+

0.078 0.564 0.284 0.112 0.003 0.024 0.012 0.005

3475+ 1730+ 0.171+ 5376% 7019+ 3547+ 0450 1094+

0.174 0.683 0.171 0.045 0.007 0.028 0.008 0.002

This notion is further supported when studying results from the NO3" selective
probe, which illustrates an almost identical pattern to the Ca?* results obtained (Figure
10). The concentration values derived from the probe again correlate with the known
concentration of the foliar treatments, displaying double the ppm value of Ca?* due to
two molecules of NOs™ being present in the compound. As such, the variability within
this dataset is marginally higher than previously seen, due to a larger concentration range
being observed. However, the overall trend of decreasing levels of NO3™ in the eluate
from the leaf surface over time is still evident. The rate of uptake also correlates with the
Ca uptake data, with the initial 24-hour time period being the point where highest rates
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of uptake are seen, with some evidence of a saturation point being reached at the 20 and
25 mM concentration. This rate also reduces over time and is often found to be twice as

efficient as Ca uptake.

FAAS to monitor Ca uptake

In preliminary investigations, spectroscopic measurements were taken outside of the
banded area, in order to determine if Ca supplementation resulted in an increased Ca
content of the surrounding tissues. Raman spectroscopy was unable to infer any
information regarding potential Ca translocation, as spectroscopic measurements in the
banded area were focused upon the leaf surface, rather than penetration into the leaf
tissue. The same is also true with the ion selective probe approach, which is absolutely
defined to the leaf surface.

In order to determine whether foliar application of Ca(NOz3) resulted in an
increase in Ca within the leaf tissue, FAAS was employed to analyse the banded area, as
well as tissue from the remaining leaflet. Increases in total Ca in the banded area would
substantiate that applied nutrient were in fact absorbed into the plant tissue, whereas
increases in the surrounding tissue would provide evidence of translocation to regions
isolated from the area of foliar application. Previous literature suggests that Ca is

immobile in plant tissues and any increases in this tissue would be unexpected3* %,

Figure 11 compares the % Ca content of both tissue samples across the range of
Ca treatments applied in this study. In tissue derived from the banded area, a net gradual
increase can be seen across the concentration range, as well as an over increase in
variability within the data; an observation that has been highlighted by all analytical
techniques used in this study. Although there are no statistically significant differences
between each treatment group, this pattern in the data may still suggest that some applied
Ca has been taken into the plant tissue. In the remaining area of the leaflet however, very
little difference can be observed between the Ca content of each treatment group. This
supports the notion that Ca is immobile in plant tissue and is unable to translocate
following foliar nutrient application. However, it is worth nothing that the remaining

leaflet surface area was distinctly larger than that of the banded area, with as much as ten
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may dilute the

ed in the tissue.

if they had occurr

times more dried plant material available for FAAS. Such differences

already subtle Ca content alterations,



and detrimental to crop quality in deficient conditions. In order to understand the
efficacy and mechanistic action of novel bio-enhancement fertilisers, which move away
from traditional NPK fertilisers, there is a need for a rapid screening tool to observe
nutrient movement within plant tissues as well as to determine the effectiveness of
fertiliser formulations. Current methods require monitoring plant or soil nutrient content

post-treatment, which often require extended trials and extensive sample preparation*?,

The purpose of this study was to observe and quantify Ca uptake at the adaxial
leaf surface in S. lycopersicum as a model crop using Raman spectroscopy, ion-selective
probes and FAAS. By employing these methods, we were able to identify time
dependent uptake of Ca at the leaf surface at different levels of efficiency. Initially,
Raman spectroscopy was utilised as a rapid, sensitive and non-destructive approach to
detect foliar applied Ca(NOz3). on the leaf surface of live plant samples. The presence of
this compound could be established using this technique at concentrations as low as
5mM in isolated experiments. Overall uptake of Ca over time was indirectly measured
through NOs™ associated vibrational modes, and consequently was able to observe a
gradual depletion in Ca on the leaf surface over time, indicative of uptake. One
limitation of this approach however, is that data are extremely variable due to the uneven
drying of the compound across the surface area, which resulted in 15 mM Ca(NO3):
being the detection threshold for repeatable uptake observations over time. One potential
method to overcome the issues of reproducibility with Raman measurements, is to use an
imaging approach to observe Ca(NOz). deposits within the banded area that the
treatment was applied. By image mapping a smaller banded region, areas containing
residual salt deposits can be identified rapidly and in a highly interpretable false colour
image 2*. This may a useful approach to not only assess the efficiency of nutrient uptake
in live plant systems, but also to assess the efficiency of fertiliser compositions. Despite
this, single measurements could be acquired in as little as 15 seconds and whole
screening studies in a few short hours. With the additional benefit of being ideal for in
situ analysis, Raman spectroscopy could prove a valuable tool for fertiliser screening and
general crop monitoring in the research and field studies?’. Potentially, this technique
could also be used as a non-destructive analysis method to determine the total nutrient
status of the plant, as shown previously using near infrared reflectance (NIR)

spectroscopy %6,
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The use of ion-selective probes for direct quantification of Ca(NO3)2
demonstrated that the concentration of a given compound could be accurately and
rapidly determined on the leaf surface over time. This simple methodology proved to be
a powerful adaption of these common instruments and could be readily implemented for
fertiliser screening purposes, as rates of uptake can be determined and thus the efficiency

of different formulations can be interrogated.

Analytical techniques such as FAAS and inductively coupled plasma mass
spectrometry (ICP-MS), are two of many approaches that are able to quantify total
elemental content in plant and soil tissue®. Tests such as these could be considered the
most informative tools available to growers and fertiliser producers, as valuable
information regarding total nutrient content of crops can be determined that®2. This can
reflect the efficiency of the nutrient supply system and help to optimise growing
practises. However, there is a substantial sample preparation burden with such
approaches, with tissue digestion steps required prior to analysis®® 4. In this study we
were able to illustrate the net movement of Ca(NOz). from the leaf surface into the leaf
tissue as a consequence of foliar fertiliser application using this technique. These data
were complementary to the previously acquired Raman spectroscopy and ion selective
probe measurements and clarified that Ca was effectively being absorbed into the leaf
tissue. However, the sensitivity of this approach compared to Raman spectroscopy and
probe techniques was considerably less, and was unable to statistically depict differences
between treatments. This suggests that FAAS is less effective for fertiliser screening

studies, than the two novels approaches presented in this investigation.

Our studies show that the approaches discussed in this article provide a novel
alternative for the observation and quantification of Ca uptake at the adaxial surface of
plant leaves, although there are still opportunity for improvements, particularly in
regards to reproducibility and the detection limit of Raman spectroscopy. The efficiency
of foliar fertiliser formulation could be assessed using this approach, and in doing so,
this raises the possibility of elucidating the elusive mechanisms by which Ca is absorbed
at the leaf surface. Furthermore, we envisage that this methodology could be used to
detect nutrient deficiencies by in vivo leaf analysis, at a higher sensitivity than current
techniques, and without the requirement of extensive preparation steps. Taken together,

the advances we report here will contribute towards the more efficient production of
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crops that is desperately required to meet the need for increased agricultural productivity

in order to maintain global food security.
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Abstract

By 2050, it is estimated that the global population will have surpassed 9 billion people,
presenting a significant challenge with regards to food security. In order to provide
sufficient quantities of nutritious food in the future, it is necessary to improve
agricultural productivity by several orders of magnitude. Nutrient deficiencies are one
particular threat to food security that can have a negative impact on crop yield and
quality. Currently the standard agricultural approach to prevention is to supply an excess
macronutrient fertiliser, such as nitrate or phosphate, during crop production. However,
the efficiency of this approach is poor as deficiencies of specific nutrients, such as Ca,
are not prevented in this circumstance, and fertiliser use is associated with a host of
adverse environmental impacts. Herein, we describe a novel method to detect Ca
deficiency using synchrotron radiation-based Fourier-transform infrared (FTIR)
microspectroscopy in live and fixed tissue of the model plant Commelina communis, as a

precursor to targeted nutrient remediation in the field.

Keywords: Calcium, Deficiency, Fourier-transform infrared (FTIR) microspectroscopy,

Nutrient, Plant, Synchrotron radiation
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1. Introduction

Food security can be defined as providing a constant supply of nutrition for all, in order
to live a healthy lifestyle, regardless of social, economic and physical circumstances [1].
The expanding global population has increased demand for food of sufficient quality,
and has further emphasised the challenge of maintaining food security in the modern era
[2]. Climate change, competition for arable land, and agricultural productivity are
significant factors affecting global food production [3]. Improving efficiency during crop
production is an area where small alterations to farming practices, may result in large-
scale yield and quality increases. The difference between the attainable yield and the
observed yield is known as a yield gap, and it is by reducing this deficit that agricultural

productivity can be improved [4].

Plants require fourteen essential nutrients in order to grow optimally and produce
the maximum attainable yield; these can be split into macro- (N, P, K, Ca, Mg and S)
and micro- nutrients (B, Cl, Cu, Fe, Mn, Mo, N and Zn) [5]. Poor availability of one or
more of these nutrients, can not only reduce the quantity of produce per hectare of land,
but can also decrease food quality and shelf life. The use of nutrient fertilisers is a
traditional practice of agricultural intensification that has been shown to increase yield
(and thus reduce the yield gap) in crop species by between 30-50% [6]. Fertilisers
containing primary macronutrients (N, P and K) are most commonly applied, as
deficiencies in these elements are more commonplace in agricultural environments.
However, it has been shown that use of such fertilisers is relatively inefficient and less
than 50% of the nutrient applied is recovered in the produce output [7]. Furthermore, the
use of fertilisers, such as NHa, has a number of detrimental effects on the environment,
such as eutrophication from nitrate leaching, and also enormous carbon footprints
associated with their production and application [8]. It is estimated that crop production,
including farm operations, equates to the generation of around 769.4 kg of CO., and its
equivalents (such as N2O), per hectare of farmland each year; of this total, over 90% is
associated with fertiliser use [9]. It is also important to note that deficiencies in all
nutrients can occur, with a diverse array of physiological symptoms and severities,
which would not be remediated by the use of a generic N, P or K containing fertiliser
[10].
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Reduced Ca availability can have a significant impact on crop yield, due to the
pivotal role this element has in structural stability within the plant tissues[11]. Ca pectate
is a key component of plant cells walls and thus reduced availability of Ca can often
result in degradation of the cell walls, particularly in developing and enclosed tissues,
and those that are supplied predominantly by the phloem [12]. Ca is absorbed into the
plant via the root system and is transport is unidirectional in the xylem and transport is
therefore dependent on the rate of transpiration [13, 14]. Consequently, rapidly growing
tissues and fruit, are particularly susceptible to reduced Ca availability and therefore
degradation. Ca deficiencies manifest in a range of crop species, from blossom end rot in
tomatoes, tip burn in lettuce and bitter pit in apples and in some instances can result in
up to a 50% loss of yield [15, 16]. Although relatively uncommon in nature, due to
intensive farming practises, Ca deficiencies are increasingly widespread in agricultural
settings [17]. Due to the detrimental effect of this deficiency, as well as the role that Ca
plays in fruit ripening, maintaining fruit firmness and reducing postharvest decay, Ca
supplementation in agriculture is becoming an emerging section of the crop
enhancement market [18]. This approach not only directly targets the nutrient status of

the crop, but also reduces environmental impacts associated with N-based fertilisers.

It has been proposed that accurate determination of the nutrient status of plants
can be used to better understand and target the specific nutritional needs of crops [19,
20]. In doing so, nutrient use efficiency would be vastly improved as the appropriate
nutrient can be applied as and when required, improving the agricultural productivity
whilst also reducing financial and environmental burdens. Currently, crop nutrient status
is determined by foliar and soil analyses using analytical techniques such as flame
photometry and flame atomic absorption spectroscopy [21, 22]. Although these
approaches derive elemental information to a high degree of sensitivity, they require a
nutrient extraction step, usually via acid digestion, which can often be time-limiting and
also removes any information regarding spatial origin and distribution [23]. It is evident
that there is a need for a novel crop screening approach that is able to detect the effects
of nutrient deficiency before deterimetal any effects are observed, which can be rapidly
acquired in the field without any detrimental effects on plants, and without extensive

sample preparation requirements.

Vibrational spectroscopy may be such a tool to fill this gap. It has been widely

shown that infrared (IR) or Raman microspectroscopy can be used to characterise
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valuable plant substances, but can also be implemented to analyse in vivo and fixed plant
tissues samples in order to monitor plant health [24-27]. The application of Raman
microspectroscopy in plant research had been relatively limited due to intrinsic
fluorescence issues found within tissues. However, analysis of live samples has recently
been shown to effectively quench fluorescence due to the presence of water allowing the
acquisition of high quality point spectra and spectral maps [24, 28]. Conversely, Fourier-
transform IR (FTIR) microspectroscopy has been largely restricted to the interrogation
of fixed plant samples, as water has a detrimental effect on the IR spectrum due to its
strong dipole moment. This has been overcome by the use of attenuated total reflection
(ATR) acquisition mode FTIR, which uses a refractive prism to attenuate the IR beam

into the sample and has recently allowed the investigation of foliar tissues [29, 30].

The combination of FTIR microspectroscopy with synchrotron radiation (SR)
can improve the spatial resolution and signal-to-noise ratio (SNR) achievable in
comparison to conventional benchtop instruments that employ globar IR sources [31,
32]. This is because SR is up to 1000 times brighter than thermally produced IR
radiation, and thus is delivered to the sample at high flux density [33]. SR-based FTIR
(SR-FTIR) microspectroscopy may therefore shed light upon molecular changes at
spatial resolutions <10 um, providing subcellular detail unachievable with traditional
FTIR microspectroscopy [23, 34]. In plant research, SR-FTIR microspectroscopy has
been employed to interrogate the molecular composition in a range of tissues including
kernels, roots, and leaves [35-38]. The imaging capabilities of SR-FTIR have also been
exploited to image the spatial distribution of cell wall components, and tissue
microstructures [39-42]. However, in contrast to the biomedical and material science
fields, SR-FTIR has not been widely in plant-based studies due largely to the
aforementioned limitations of FTIR with water containing samples, which restricts in
vivo analyses [35]. Nevertheless, it has been suggested that the high brilliance of a
synchrotron light source, may overcome interference from water, thus allowing

improved measurements in fresh or even live plant tissue [43].

Herein we investigate the effects of Ca depletion on the model plant species
Commelina communis using SR-FTIR microspectroscopy for pre-symptomatic detection
of Ca deficiency. C. communis is commonly used to study intracellular signalling in
stomatal guard cells due to the ease with which the abaxial epidermis in which the

stomata are primarily located can be isolated from the leaves of this species [44]. In this
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investigation, this characteristic is exploited in order to examine the effects of sample
preparation on deficiency detection by comparing freshly isolated tissue (unfixed) with
chemically fixed tissue that is conventionally interrogated using FTIR and SR-FTIR

microspectroscopy.
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2. Material and Methods

2.1  Plant growth conditions

C. communis seeds were sown into rock wool cubes and supplied with distilled water
until germination (~10 days). Seedlings were then transferred to purpose built
hydroponic nutrient supply systems containing three distinct Ca concentrations (optimal
Ca, 200; low Ca, 100, Ca deficient, 0 ppm), supplied using a modified Hoagland’s
solution for 21 days [45]. These treatments were chosen to mimic common nutrient
requirements of agriculturally relevant crops such as Solanum lycopersicum. Each Ca
treatment was replicated in three separate systems, each of which contained 16 L of
nutrient solution and housed 6 seedlings from which three were randomly selected for
analysis. Dissolved oxygen levels were maintained at 5.5 £ 0.5 mg/L using aquatic air
pumps (Boyu, China); conductivity at 2 + 0.1 mS; and pH 6.1 £ 0.1. Plants were grown
25 + 2°C/ 20 + 2°C, day / night; 16 h photoperiod; 150 * 25 pmol m s using 600W
metal halide lamps (Osram Ltd, UK) and transferred to the laboratory immediately prior
to acquisition where they were maintained under similar conditions. The youngest, fully
expanded leaves were excised from each four-week-old plant and were prepared for SR-
FTIR microspectroscopy or fixation immediately post-excision.

2.2 Epidermis isolation for unfixed samples

Isolated epidermis was prepared according to Weyers and Travis [46]. In short, a
rectangular strip around 8 mm in width was cut from the lamina on either side of the
major leaf vein using a sharp blade. A small incision was then placed onto the adaxial
surface, without damaging the lower epidermal surface, creating a tab that can be
carefully peeled backwards using forceps. The epidermal strip was then trimmed to an
appropriate size before being mounted on a BaF; slide (Crystran Ltd, UK), with 50 pL of
50 mM KCL, 10 mM Mes/KOH, pH 6.15 (KCI-Mes) buffer. Samples were then

immediately analysed using SR-FTIR microspectroscopy.
2.3  Sample fixation and embedding

Formalin fixation followed by paraffin embedding was chosen as a model approach for
sample preparation prior to SR-FTIR microspectroscopy, as this technique has been well
implemented in plant and biomedical studies [41]. Rectangular leaf sections were first
excised and immediately fixed in 10% formalin for 24 h, dehydrated in an ethanol series
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(70, 90 and 100%) for 6 h, and placed into xylene for 1 h. At each stage of fixation, the

solution was changed twice.

To begin the embedding process, samples were transferred to molten paraffin
wax at 60°C for 24 h to allow for sufficient wax infiltration. Samples were then
orientated longitudinally in wax moulds in order to isolate the epidermis, and left to cool
on ice for 30 min. Sections were cut at a thickness of 5 um using a microtome, and
placed into a warm water bath to allow expansion of the paraffin wax, before being
floated onto a BaF slide. Samples were dewaxed using xylene for 1 h, and hydrated
using an ethanol series (100, 90 and 70%) for 6 h. Fixed samples were stored at room

temperature (20 °C) until analysis.
2.4 Synchrotron radiation- based FTIR microspectroscopy

Spectra were obtained using a Bruker Vertex 80 V FTIR spectrometer coupled to a
Hyperion 3000 microscope (%36 objective and condenser), a LN2 cooled MCT detector,
and the SR IR source, at the Multimode IR Imaging and Microspectroscopy (MIRIAM)
beamline at Diamond Light Source, UK. An aperture size of 10 um x 10 um was used to
collect spectra at a spectral resolution of 4 cm™ with 256 co-additions across the mid-IR
region (4000 - 600 cm™*). Measurements were acquired in transmission mode as recent
literature has identified its advantages over reflection measurements [47]. On average,
10 spectra were obtained per sample each live and fixed sample. A background
measurement was taken from the substrate for every ten sample spectra to account for
atmospheric conditions. Spectra were converted to absorbance units using OPUS 8
software (Bruker, UK).

2.5  Globar-based FTIR microspectroscopy

A Thermo Nicolet 6700 FTIR spectrometer coupled to a Nicolet Continupim microscope
(Thermo Fisher Scientific, UK) and a LNz cooled mercury cadmium telluride (MCT)
detector was employed to acquire transmission IR measurements (4000 - 650 cm™).
Spectra were acquired using a 36x objective at a spectral resolution of 4 cm™, with 256
co-additions, whilst background spectra were taken after every ten sample spectra.
Spectra were converted to absorbance units using Omnic spectra software (Thermo
Fisher Scientific, UK).

2.6 Spectral pre-processing
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Spectral analysis was conducted using the IRootLab Matlab toolbox

(https://github.com/trevisanj/irootlab) unless otherwise stated [48]. Initially, spectra were

quality tested using in-house written scripts to identify spectra with low SNR and
potential outliers. The number of features within each spectrum was then reduced by
focusing on the fingerprint region (1800 - 900 cm?) as this is where biological molecules
are known to absorb IR [49]. Spectra were first order differentiated (1% order
polynomial) with Savitzy-Golay smoothing, and vector normalised to account for
confounding sample characteristics such as thickness. For biomarker extraction using
first derivative data, the point at which the spectra cross the zero line will represent the

peak maxima from the original spectra and thus these values are used throughout.
2.6 Multivariate analysis

Exploratory principal component analysis (PCA) was conducted on the mean centred
data in order to reduce the dataset down to factors that accounted for underlying variance
in the spectra. This output was then fed in linear discriminant analysis (LDA), to
minimize intra-class differences and maximises inter-class separation, and therefore give
optimum separation of the dataset classes. The number of principal components used
were optimized using the PCA pareto tool in IRootLab; this was determined as the
‘elbow’ point of the cumulative variance plot and always accounting for >95% of the
variance in the dataset [50]. This process was cross validated using 10 k-folds and a
leave-one-out approach, to prevent overfitting of the data. Classification of spectral
classes was conducted using a PCA-linear discriminant classifier (LDC) with the same

validation parameters.

2.7  Statistical Analysis
A Mann-Whitney ‘U’-test per wavenumber was conducted to compare spectral

differences in pre-processed data at a confidence interval of 0.01.
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3 Results & Discussion
3.1 Synchrotron radiation- versus globar-based FTIR microspectroscopy

Due to the high flux of photons in a synchrotron produced light beam, it is possible to
generate high quality spectra with a superior SNR and spatial resolution than in
comparison to traditional thermal based approaches [51]. Fig. 1 depicts raw mean data
from a SR and a globar-based FTIR system taken from unfixed abaxial epidermis of C.
communis, and compares the spectral information and quality between the two
instrument configurations. Whilst spectra derived from the conventional benchtop
system are far from featureless, it is evident that SR-FTIR data are acquired at a
substantially higher signal intensity, which consequently reveals further detail in the
spectrum. This can be seen consistently across the fingerprint region where subtle
shoulders of broader absorbance regions can be identified, particularly around the peak
at ~1335 cm™ corresponding to plant cell wall polysaccharides such as cellulose and
pectin [52]. As more information is derived using SR-FTIR at a cellular level, the
technique represents a powerful tool for plant research and can be exploited in a range of
stress determination studies, including biotic stresses such as pest and disease and abiotic

stresses such as nutrient deficiency [53].

Additional to the overall improvement in spectral quality and spatial resolution of
the data obtainable when employing SR radiation, there is also the benefit that samples
with a high water content can also be interrogated to a higher capability than with a
traditional benchtop FTIR. Water absorbs strongly at ~1650 cm™ and thus can result in a
loss of spectral information in this important spectral region, often associated with the
amide | of protein structure and composition. It is therefore possible to obtain good
quality spectra from live samples or samples in agueous environments, when employing
SR [54]. Figure 1 clearly shows that the interference of water is negligible when

investigating monolayers of plant cells, such as found in isolated epidermis.
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Figure 1. Unprocessed spectra from the fingerprint region (1800 - 900 cm™) derived from unfixed
abaxial epidermis of C. communis grown at optimal (200 ppm) Ca, using a benchtop FTIR
instrument with a globar source (Thermo Fisher, UK), in comparison to a FTIR with a synchrotron
radiation source (Bruker, UK; Diamond Light Source, UK). The superior signal to noise ratio can
be observed when employing synchrotron radiation whilst also uncovering more spectral
information from the sample.

3.2 Unfixed and fixed tissue

As it is possible to derive meaningful spectra from water containing samples, we look to
compare the reproducibility and suitability of both fixed and unfixed (ex vivo) plant
tissue samples for identifying Ca nutrient deficiency. Figure 2A presents representative
bright field image of freshly prepared isolated abaxial epidermal in which the stomatal
pores, surounded by a pair of guard cells (GCs; identified with an arrow), and subsidiary
and epidermal cells (ECs) are clearly visible. This contrasts markedly with the

representative sample from fixed leaf tissue shown in Figure 2B. In order to produce a
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sample appropriate for transmission FTIR measurements, paraffin embedded tissue must
be sectioned at a thickness no larger than 12 um [55]. During this process it is
challenging to construct a sample that contains both epidermal and guard cells. The GCs
surrounding the open stomatal pore are clearly visible in Figure 2B ; the surrounding
material is likely to be derived from the spongy mesophyll, which can be recognised by
the irregular cell architecture of this tissue that is necessary to allow the movement of
gas within the internal airspaces of the leaf. As a consequence of this, only stomatal GCs
are probed in fixed leaf tissue samples for the remainder of this study, whilst both guard

and epidermal cells are investigated in fixed tissue.

Figure 2. Brightfield images obtained from an unfixed abaxial epidermis (A), and a fixed sample
(B), of C. communis gown at optimal (200 ppm) Ca. Stomatal guard cells (GCs) can be identified
in both samples, although at a higher frequency in isolated epidermis, due to the simplicity of this
approach for their isolation.
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In regards to the biochemical alterations that occur due to chemical fixation, clear
differences can be observed between unfixed and fixed samples (Fig. 3, Table 1). It is
preferable to remove any paraffin wax from samples prior to spectral acquisition due to
the strong absorbance of the wax in the fingerprint. However, many dewaxing protocols
have been shown to have significant effects on the resultant spectra obtained,
particularly in regard to lipids [56]. This is evident when comparing fixed and unfixed
plant tissue, where a decrease in lipid absorbance at 1740 cm™ can be seen following
fixation and dewaxing. The absorbance profiles of key cell wall polysaccharides are also
stronger in live tissues, shown predominantly at 1416 and 1356 cm™. GC cell walls
characteristically contain more phenolic esters of pectins than the surrounding cells,
which is more effectively differentiated when using unfixed samples [57]. Fixed tissues
displayed an increased absorbance at the amide Il region, whilst live tissues depicted a
higher absorbance at 1533 cm, showing widespread protein alterations in the spectra.
This effect may be tentatively associated with protein cross-linkages as a consequence of
formalin fixation [58]. Overall, a slight reduction in signal strength can be observed in
live tissues, which may be due to underlying water interference and a lower

concentration of biological material compared to fixed samples which are dehydrated.
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Table 1. Discriminating spectral regions derived from Figure 3, 4 and 5 with tentative molecular

assignments, and description of the direction of change in regards to the data class.

Wavenumber Description
(cm™) Tentative Band Assignment Ref.

1740 v(C=0) polysaccharide, esterified pectin, lipids [59, 60] 1 Live

1 GC
1728 v(C=0) lipid, polysaccharide, esterfied pectin, cutin [29, 60] 1 Deficient*
1637 Amide | [60] 1 GC
1635 B-sheet of amide | [41, 60] | Deficient*
1630 v(C=0) and ring breathing, B-sheet of amide I [41, 61] | Deficient
1533 Amide II, C=N [62] | Live
1522 Amide II, C=N, C=C [60] | Deficient
1487 v(C=C), 5(C-H), Amide II [26,60] | Deficient
1416 8(NH), 6(CH), v(C-N) polysaccharides, unesterfied pectin [57,60] 1 Live
1356 &(C-OH) polysaccharide [63] 1 Live

| GC
1354 v(C-0), 6(C-H), 3(C-OH), pectin, cellulose [26, 63] 1 Deficient
1246 v(C-0) cellulose and hemicellulose, asymmetric v(POy), [40,60] 1 GC

| Deficient
1242 Asymmetric v(PO2’), Amide Il [60] 1 Live
1097 v(C-0O) carbohydrate, asymmetric v(PO>), [60, 64] 1 Deficient*
1049 v(C-0), 8(C-OH) carbohydrate [60,65] 1 GC
1020 v(C-0), v(C-C), 6(C-OH) polysaccharides, pectin, [26,60] | Deficient*

* in fixed tissue

191



3.3 Guard cells versus epidermal cells

GCs are crucial for the regulation of gas exchange (uptake of CO; for photosynthesis and
loss of water via transpiration) in plants [66]. This is mediated by rapid alterations in the
water content of the GC in response to external stimuli, driven by fluxes of osmotically
active anion and cations and controlled by a well characterised signalling network [67].
An increase in GC turgor pressure results in the opening of the stomatal pore, thus
promoting gas and water exchange, whilst a reduction in turgor pressure closes the
stomatal pore[68]. These cells are therefore key indicators of stress and have been
studied in response to a range of biotic and abiotic stresses [44, 69-71]. The surrounding
ECs act as a barrier to internal and external environments and thus have a relatively
simple function in comparison to GCs and consequently, the biochemical composition of
stomatal GCs are distinctly different from the surrounding ECs [57]. Here we investigate
the suitability of GCs as a target in plant monitoring studies using vibrational

spectroscopy by observing the effects of Ca deficiencies on these tissues.

When comparing derivative spectra obtained from GCs and ECs in unfixed
tissue, distinct difference in cell wall materials can be seen, particularly regarding
cellulosic polysaccharides (Fig. 4A). Increased absorbance at 1740, 1246, and 1049 cm*
corresponding to celluloses and lignins in GCs corresponding the differentially thickened
cell walls in these cells, up to 5 um across compared to the 1-2 um typical of ECs, that is
essential to GC function (Table 1) [68]. Increased absorbance at the amide I band at
1637 cm™, also indicates a markedly different protein structure in GCs compared to ECs
which may be due to the varying functions of each cell, with GCs responding
dynamically to changes environmental conditions, whereas epidermal cells require a
constant protein conformation to maintain overall leaf structure. Interestingly, the levels
of unesterified pectins, another crucial cell wall component, are considerably higher in
the epidermis, which has also been observed in other studies [57]. This could be
indicative of the ordered structure of epidermal tissues, which are maintained by Ca-

pectin cross-linking that provides structural support to the leaf.
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Figure 4. SR-FTIR spectral analysis of unfixed abaxial epidermis from C. communis. (A) Pre-
processed spectra from guard cells (GCs) that surround the stomatal pore are compared with
surrounding ECs to identify differences in biomolecular composition. Spectra were cut to the
fingerprint region (1800 - 900 cmY), first order differentiated, vector normalised and offset for
clarity, whilst dashed markers indicate the wavenumber regions that most discriminate between
the two classes. (B) A 2-dimension scores plot of cross validated PCA-LDA (leave-one-out) to
compare the suitability GCs (A e m) and ECs (A o O) as screening targets for detection of Ca
deficiencies. 200 ppm is defined as optimal conditions, whereas 0 ppm is defined as Ca deficient.

As a preliminary step to compare the suitability of GCs versus ECs as targets for
monitoring nutrient deficiencies, exploratory multivariate analysis was conducted on the
data (Fig. 4B). The 2D PCA-LDA scores plot examines the differences between the
three Ca treatments, and whether any effects are more apparent in GCs or ECs. It is clear
that Ca treatments effectively split the classes, showing that there is an observable
alteration in the spectra as a consequence of Ca depletion, which is further investigated
later in this study. With regards to the two target tissues, both GC and the epidermis tend
to separate almost identically with the Ca stress, indicating that both tissues are
potentially suitable targets for nutrient screening. An optimum level of Ca in this study is
defined as 200 ppm, and this class of data significantly (P <0.001) separates from
depleted treatments in LD1, whereas differences between depleted samples separate in
LD2. Within the control treatment cluster, there are some subtle differences between GC
and the epidermis although this separation is not visible in lower Ca treatments. This
may be due to fundamental alterations associated with Ca stress overhauling the

sensitive variance differences between guard and epidermal cells.
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3.4 Ca deficiency

The effects of Ca availability in the growth environment (optimal Ca, 200 ppm; low Ca,
100 ppm; Ca deficient, 0 ppm) on the SR-FTIR spectra obtained from living and fixed
tissues from C. communis was examined to determine the spectral alterations indicative
of nutrient deficiency, and whether this spectral information is sufficient to accurately

identify plants undergoing nutrient stress.

The processed spectra from each of the tissues exposed to three Ca environments,
depict clear absorbance alterations throughout the fingerprint region (Fig. 5; Table 1). In
both ex vivo tissues and fixed tissue samples, absorbance bands associated with proteins
are shown to decrease consistently in response to Ca deficiency, specifically around the
Amide | region (1635 and 1630 cm™) and Amide 11 (1522 and 1487 cm™) regionsg. This
observation is more apparent in spectra acquired from unfixed tissues (Fig. 5A and 5B),
in comparison to fixed tissue (Fig. 5C), which in this case is associated with the formalin
fixation process. As mentioned previously, this sample preparation step can result in
protein cross linkages and may therefore increase protein stability at the point of spectral
acquisition. An overall reduction in protein absorbance may be indicative of a

compromised structure, and possible be an earlier indicator of senescence [24].
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Figure 5. Pre-processed spectra comparing the effects of varying Ca availabilities in guard cells
(GCs) (A) and epidermal cells (ECs) (B) from unfixed epidermal peels; additional to fixed tissue
samples (C) samples. Spectra were cut to the fingerprint region (1800 - 900 cm™?), first order
differentiated, vector normalised and offset for clarity, whilst dashed markers indicate the
wavenumber regions that most discriminate between the two classes.
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Furthermore, widespread polysaccharide absorbance differences can be seen
across all samples as a consequence of Ca stress. Interestingly, in fixed samples, these
differences are limited to the lower wavenumber region between 1200 - 1050 cm™,
whereas in unfixed tissues, both GCs and the epidermis, these alterations manifest around
1550 - 1250 cm™. Many valuable plant substances have characteristic IR bond vibrations
across the whole spectrum and there are few regions specific to a given biomolecule,
showing that this unlikely to be due to a single molecule. However, this difference may
again infer details about the chemical fixation process on plant tissue prior to IR
spectroscopic analysis, as fixation has had a substantial impact on bond vibrations in the
lower wavenumber region, where simple bending vibrations are found [72]. It is evident
from Figure 5, that the absorbance of pectin-related IR bands (1728, 1354 and 1097 cm?)
increase due to Ca deficiency, and may indicate an increased production of structural
polymers to accommodate the reduction in structural Ca pectate. In contrast, absorbance
bands associated with cellulosic compounds (1246 and 1020 cm™) illustrate a clear decline
due to Ca deficit. Similar to protein absorbance, this may be symptomatic of a decrease in
tissue viability, as cell wall growth and expansion is hampered due to lack of Ca.
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Figure 6. Leave-one-out cross validated PCA-LDA analysis of both fixed and unfixed C.
communis samples. (A), (C) and (E) display the 2-dimensional scores plots from guard cells
(GCs), epidermal cells (ECs) and fixed tissue, whilst (B), (D) and (F) show the
corresponding first and second linear discriminant loadings from GCs, ECs and fixed tissue,
respectively. The most discriminating wavenumbers are indicated with a dashed line for each
individual loading.

<t o
ERE 8 S 2
0.5+———— y - —
1800 1650 1500 1350 1200 1050 900
Wavenumber (cm )
0.97—
25 A & =
e & .
07 |y
05l A A\ MWN\
SO W T
0.31
LD2
0.1
01{ ! i
i . |
1 1 i 1
sl | B |
2 a2 & s i
] 2 i =]
0,5+——— ——— ; T
1800 1650 1500 1350 1200 1050 900

-0.14 u
i
i LD2
-0.34 !
o IR v )
Qo< 1Y o vy
ot = I K “
-0.5 — T v T
1800 1650 1500 1350 1200 1050 900

196



Table 2. Discriminating biomarkers of Ca deficiency as derived from PCA-LDA analysis of SR-

FTIR spectra of unfixed and fixed C. communis samples exposed to low Ca availabilities.

Wavenumber (cm™) Tentative Band Assignment Ref
1740 v(C=0) polysaccharide, esterified pectin, lipids [59, 60]
1730 v(C=0) ester, lipid, lignin [41, 60]
1720 v(C=0) unsaturated ester, pectin [27]
1703 v(C=0) [73]
1697 v(C=0) [60]
1649 v(C=0), v(C=N) Amide I [40, 62, 74]
1645 Amide | [60]
1639 Amide | [60]
1599 v(COO-) pectin, carboxylic acids, v(C=C) lignin [41, 75, 76]
1525 Amide II, C=N, C=C [27, 60]
1497 8(C-H) Amide I [26]
1410 8(NH), 6(CH), v(C-N) polysaccharides [57, 60]
1355 &(C-OH) polysaccharide [63]
1345 Carbohydrate [77]
1335 &(CH) polysaccharides, pectin, cellulose [60]
1306 Amide 111 [60]
1161 v(C-OH), v(C-O-C) polysaccharide, cellulose [53, 64, 75]
1074 v(CO), v(CC) [60]
1070 v(CO), v(CC) cellulose [78]
1055 v(CO), v(CC), §(C-OH), pectin [78]
1040 v(CO), v(CC), cellulose [78]
1032 v(O-CHs) cellulose [29, 60]
1026 v(CO), v(CC) cellulose [76]
1011 v(CO), v(CC), 3(C-OH), pectin [26, 60]
933 Carotenoid, carbohydrate [60, 79]
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Cross-validated PCA-LDA, using a leave-one-out approach, was conducted on
the spectral data in order to maximise the interclass differences, and separate data based
upon the nutrient availability [80]. Fig. 6 depicts the 2D scores plots from this data
reduction step, and the consequent loadings plots transformed from this data, indicating
spectral regions where variance is apparent in the dataset, as described by Martin et al.
[81]. Tentative bond assignments for spectral peaks described as accountable for
variance in the dataset can be seen in Table 2. Initially, spectra obtained from GCs of
unfixed epidermal peels, separate strongly with regards to Ca depletion (Fig. 6A). The
control treatment of 200 ppm is almost entirely separated from low Ca treatments in
LD1, whist low Ca treatments are distinguishable in LD2. This may indicate that the
general response of the plant to Ca deficiency is readily observable compared to
optimum Ca conditions, whereas a subtle, yet still discernible, difference may be found
in the response to different levels of Ca deficiency. With regards to exact wavenumber
regions where variance can be found between Ca treatments, observations in the
loadings of LD1 and LD2 may shed light on these subtle differences. LD1 indicates
major differences around the polysaccharide region at 1055 cm™, likely to be correlated
to pectin absorbance (Fig. 6B). A decrease in Ca, would substantially affect the Ca
pectate levels in the plant tissues, and thus this response is as expected between the
optimal and Ca deficient treatments. Alterations in v(C=0) are also evident in the
loadings, which can be assigned to both lignin and protein contributions to the spectrum,
possibly highlighting a structural compensation as a consequence of integrity loss. The
same response can be seen in LD2; however, the most discriminatory spectral region in
this curve is attributed to polysaccharides. This could potentially infer that this region
may be used to discriminate between levels of Ca deficiency, in this targeted group of
cells. In order to determine the diagnostic potential of this study, a PCA-LDC was
conducted on the sample data, which was shown to positively classify Ca deficient, low
Ca and optimal Ca samples at a rate of 100, 93.75, and 96.15% respectively (Table 3).
This is promising in regards to future studies on large datasets taken from field data,
which will likely be highly variable in comparison to a laboratory based investigation. It
Is important to note that the use of SR-FTIR for studies in planta in the field would be
impossible, and so the use of a less powerful technique, such as standard globar-based

FTIR microspectroscopy, may not provide such high levels of accuracy. As such it is
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encouraging that near perfect classification is possible with the highly sensitive SR-FTIR
approach. Additionally, one difficulty with detection and consequent remediation of
nutrient deficiencies is that they are often co-dependent upon the availability of other
nutrients, yet such a high accuracy rate even for intermediate deficiency samples is
promising [82, 83]. As such, it may be possible to identify nutrient deficiencies in the

field and instigate a targeted nutrient remediation process.

Table. 3 Classification rates of each tissue sample and Ca treatment (%) as derived from principal
component analysis (PCA) fed linear discriminant classifiers, using a leave-one-out approach and 10
k-folds

Classification Rate (%) + SE

0 ppm 100 ppm 200 ppm
Unfixed Guard Cell 100.0 £ 0.0 93.75+ 4.49 96.15 + 3.92
Unfixed Epidermis 100.0+ 0.0 93.10 £ 4.96 95.83+4.26
Fixed Tissue 75.84 £6.30 91.49+4.30 99.43 £ 0.06

Spectra obtained from living epidermal tissues exhibit a similar degree of
separation within a 2D PCA-LDA scores plot, although it is the low (100 ppm) Ca
treatment that separates on LD1, and the optimal (200 ppm Ca) and deficient (0 ppm Ca)
treatments that separate effectively in LD2 (Fig. 6C & 6D). Loadings derived from this
dataset correlate with findings in analysis of live GCs, that depict that the low Ca
treatment is identifiable by protein differences, specifically at the Amide 111 region,
shown in LD1. Additionally, deficient and optimal Ca treatments can be primarily
isolated due to Amide | protein alterations. As shown earlier in this study, epidermal
tissue has distinctly less polysaccharide content, and thus spectral alterations as a
consequence of Ca depletion are less likely to be visible in the absorbance of these
molecules. Despite this, the rate of classification in this dataset remains high at 100,
93.10 and 95.83% for deficient, low and optimal Ca treatments (Table 3). This indicates
that epidermal tissue is marginally less efficient at identifying Ca deficiencies than GCs;

however, this is a minimal reduction in effiency and is likely insignificant.

In fixed tissue, 2D PCA-LDA scores plots indicate an almost identical separation

pattern to that seen in multivariate analysis of spectra from live GCs, with the optimal Ca
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treatment effectively separating in LD1 (Fig. 6E). There is a larger degree of overlap
between Ca treatment groups in fixed tissue, and may indicate enhanced difficulty at
detecting subtle biological changes as a consequence of Ca depletion. This is further
highlighted in looking at the classification accuracy within this dataset in Table 3, which
depicts reduced identification of samples grown in Ca deficient conditions, at a rate of
75.84%. This class is particularly spread in the scatterplot, indicating increased
variability in these samples which may suggest that the fixation process had a greater
detrimental effect upon the Ca deficient samples. The optimal Ca treatment groups
together relatively tightly in comparison, reflected by a high classification rate of
99.43%.

Interestingly, loading plots derived from this dataset exhibit a striking response in
LD1 and 2, with the former highlighting spectral alterations solely below 1200 cm™, and
the latter exclusively above 1300 cm™ (Fig. 6F). As a consequence, the optimal Ca
treatment that is clearly distinguishable in LD1, is primarily segregated due to variance
in polysaccharides, particularly cellulose. The differences between the Ca deficient and
low Ca treatments shown in LD2, can be correlated predominantly with protein
alterations, and also pectin and lignin molecules. The pattern displayed here in fixed
tissue correlates with the differences observable in spectra derived from in vivo
measurements of GCs, that show that the major differences in spectra explained by LD1,
are largely attributed to polysaccharide alterations. This is intuitive due to the known
effect of Ca deficiency on tissue structure; that as the Ca availability reduces, less Ca
pectate is found in tissues, which may be responsible for the large polysaccharide
changes we observe here. Also, alterations in cellulose and other cell wall carbohydrates
such as arabinose and galactose levels may be an indicator of increased production to

account for weaknesses in tissue structure as a consequence of Ca depletion [84].
4 Conclusions

The use of SR-FTIR for plant-based studies has, to date, been relatively underdeveloped
as the strong absorption of water in the fingerprint region can often conceal spectral
information, particularly in live tissue samples. In this study, we investigated the ability
of such an approach to identify Ca deficiencies in both living and fixed tissue, to
determine how accurately this can be determined prior to the appearance of nutrient
deficiency symptoms. Due to the high flux density of SR, the interference from water
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can be minimised, allowing sampling from isolated epidermal tissues. The ability to
sample from living tissues, is promising for further investigations using SR-FTIR in
planta, and also prevents the need to fix tissue samples, which is both time consuming
and detrimental to the spectral output, including the ability to detect Ca deficiencies.

Using this approach, it is possible to differentiate between specific cell types on
the abaxial leaf surface of leaves by observing increased levels of absorbance in
cellulosic compounds in GCs compared to ECs. In order to determine a standard
approach for crop screening in the field, it is first important to establish an ideal target
for spectroscopic analysis. Initially, leaves are an ideal focus as they are relatively
disposable, and readily exhibit symptoms of stress; however, the heterogeneity of such
tissues indicates the need to identify a sole target for screening. Using the highly specific
approach of SR-FTIR, both GCs and ECs performed equally well in detection of Ca
deficiency prior to symptom onset, and were able to identify both low Ca and Ca
deficient treatments at above 90% classification accuracy. As both cell types were
uniform in their suitabiity, it could indicate that the whole epidermis of a leaf could be
an ideal target for field trials observing nutrient deficiencies. As a prerequisite for such
trials, the proficiency at which a globar based FTIR study is able to accurately detect Ca

deficiencies is needed.

In this study, we show that SR-FTIR as a crop screening tool, is able to accurately
determine the Ca nutrient status of C. communis leaf samples grown at a range of Ca
availabilities. Such a technique would not only be highly beneficial for wider nutrient
screening applications, but also for identifying other abiotic stresses such as ozone
damage, and biotic stresses including pest infestations [30]. In doing so, the overall
efficiency of our agricultural practises can be improved with targeted remediation, that

will increase yield and contribute towards the global food security.
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Abstract

Precision farming relies upon the supply of required macro- and micro-nutrients only,
thus preventing excessive fertiliser application, nutrient specific deficiencies and
environmental impacts, whilst also improving crop efficiency, with increased produce
yield and quality. This requires the rapid determination of crop nutrient requirements to
allow targeted nutrient supplementation in agricultural environments, whilst avoiding
symptoms of nutrient deficiency, thereby contributing towards global food security. In
this study, Raman and Attenuated total reflectance Fourier-transform infrared
spectroscopy (ATR-FTIR) were used to detect calcium (Ca) deficiency in Solanum
lycopersicum prior to the onset of symptoms of ‘blossom-end rot’(BER) associated with
Ca deficiency. In vivo Raman microspectroscopy was able to detect severe Ca deficiency
following 4-week exposure to deficient environments, whilst ATR-FTIR spectroscopy of
dried plant material could distinguish even subtle deficiency in this time frame. The
effect of nutrient remediation was also discernible using these approaches, as well as
alterations to the overall Ca content (%) in the plant tissues as determined by flame
atomic absorption spectroscopy (FAAS). Analysis of differential expression of genes
between Ca deficient and Ca remediated plants revealed novel insights into the
transcriptional response to Ca deficiency in plants further increasing understanding crop-

nutrient relationships.

This study highlights Raman and ATR-FTIR spectroscopy as a system to pre-
symptomatically detect nutrient deficiencies, such as BER in tomato, allowing the crop
specific nutrient status to be determined, fuelling the drive towards targeted nutrient

supplementation and overall improvements in agricultural productivity.
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Introduction

Crops require a nutrient supply that delivers sufficient levels of essential macro- and
micro-nutrients for optimal growth, defined as nitrogen (N), Potassium (K), calcium
(Ca), sulphur (S), magnesium (Mg), and zinc (Z), copper (Cu), iron (Fe), manganese
(Mn), boron (B), chlorine (CI), molybdenum (Mo) and cobalt (Co) 1. Nutrient
deficiencies can arise when there is an inadequate supply of any of these key elements; a
frequent occurrence in agricultural environments, where intense farming practises and
inefficient fertiliser use are commonplace due to the limited availability of arable land 2.
The onset of nutrient deficiency is dependent upon the limiting nutrient, crop species,
genotype, co-dependence with other nutrients and light, as well as water and CO>
availability . Due to the diversity of deficiency symptoms between crop species, as well
as delayed, non-specific symptoms, the management of an efficient nutrient supply is
challenging. However, there is an increasing pressure to manage crop nutrient
availability efficiently in order to achieve the increases in agricultural productivity
necessary to meet the food demands of the growing global population, estimated to reach
9 billion people by 2050 *°.

Ca is a secondary macronutrient crucial for plant growth, development and
nutrition due to its function in a plethora of fundamental biological processes °. These
can be broadly divided into signalling and structural roles ’. Ca is also ubiquitous second
messenger in plant signal transduction, thought to be an evolutionary development
coupled to maintaining sub-toxic intracellular Ca levels, where it plays an essential role
in a variety of plant responses to environmental and developmental stimuli °. The
resting cytosolic Ca?* concentration within plants cells is 100 — 200 nM, which can be a
significant difference compared to the surrounding extracellular material ". Ca is also
an essential component of the plant cell wall where it forms complexes with pectin
polysaccharides, that provide structural stability to the cell and tissue °. Specifically, Ca
ions are able to cross-link the negatively charged carboxyl groups of pectins and
consequently provide increased rigidity of the cell wall at high Ca availabilities,
particularly in low-ester pectins 1. Conversely at low levels of Ca, the cell wall can

become weakened and permeable, due to insufficient Ca-pectate interactions °.

In newly formed tissues, the majority of deposited pectins are in low-ester form

and therefore require Ca more readily than highly esterified tissues. Symptoms of Ca
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deficiency can be often visible in these tissues, with ‘tip burn’ in lettuce a prime
example, where insufficient Ca results in a degradation of the cell wall shown by areas
of necrosis at the tip of leaf tissue 2. Ca deficiencies can also arise in tissues with low
rates of transpiration, often resulting in the necrosis of fruit, such as BER in
tomatoes'®!*, This essential nutrient is considered immobile in the phloem and thus
dependent upon the unidirectional flow of the transpiration stream in the xylem®.
Rapidly transpiring tissues such as mature leaves, can be found to accumulate high levels
of Ca, whereas tissues and fruits with low rates of transpiration, can develop Ca
gradients and thus display symptoms of deficiency®®. Furthermore, as transport is only
possible with the flow of transpiration, Ca cannot be translocated, resulting in
differential Ca concentrations throughout the plant °. In line with these fundamental
roles of Ca in plants, Ca deficiencies are significantly detrimental to crop yields and can

manifest in across a range of crop species *°.

One major issue with the prevention of Ca deficiency disorders in crops, is that
visual symptoms often do not become apparent until the deficiency has already had a
detrimental effect upon crop quality and yield 7. In the case of BER, the first truss does
not appear until around 6 weeks post-germination, dependent upon the cultivar and
environmental conditions, by which point a significant amount of time and resources
have been inputted?®. Additionally, visual symptoms are not always unique to deficiency
of a specific nutrient and therefore it is not always possible to determine the crop’s

nutrient requirements by visual inspection alone *°.

Analyses of soil and tissue nutrient content, and crop growth responses, provide
an alternative to the use of visual symptoms to diagnose nutrient deficiencies 2°. The soil,
or other growth medium, is the primary source of nutrients, therefore the elemental
content can be used infer the levels of nutrients available to the plant 2222, A number of
analytical techniques are available to identify the relative abundancies of key nutrients
from soil samples, such as flame atomic absorption photometry and spectroscopy, as
well as highly sensitive inductively coupled plasma (ICP) based approaches, like ICP —
mass spectrometry (ICP-MS) 2425, Whilst these provide vital information regarding the
nutrient status of the environment, this does not necessarily infer the nutrient status of
the crop, as uptake is also affected by additional environmental factors 2. Alternatively,
these approaches can be applied to plant tissues providing an insight into the specific

nutrient content of the crop 2227, Nutrient deficiencies can also be monitored through
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their impact on plant tissue structure using histochemical and microscopic methods 2. In
addition, biochemical methods can be used to determine crop nutrient status, based
largely around measuring enzymatic activity of key biological processes in both soil and
plant tissues 2°. Furthermore, whole genome transcriptome analysis can be employed to
study the molecular impacts of environmental factors, such as nutrient deficiency in
crops 301 3233 However, although highly informative, the RNA sequencing approaches
used require extensively sample preparation protocols, additional to a substantially high
cost-burden.

Despite the availability of the aforementioned approaches for determining plant
nutrient status, crop-specific nutritional information in not however routine in the field
due to technical limitations inherent in these approaches including their destructive
nature, substantial sample preparation time, and confinement to a laboratory setting,
which contributes to extended delays in analysis **. Therefore, non-destructive and high
throughput approaches are urgently required for the accurate and rapid determination of

plant nutrient status .

Light based methodologies are potential non-destructive alternatives to
traditional chemical analyses. In particular near infrared (NIR) and visible-NIR
reflectance spectroscopy has been widely implemented as a tool for plant composition
studies *. Although this technique has been used to elucidate the nutrient status of crops,
and also as a presymptomatic detection method *'-, the derived spectral data are limited
and do not provide high enough resolution to infer specific biochemical alterations %°. In
contrast, application of mid-IR based spectroscopies such as Fourier transform IR
(FTIR) and Raman spectroscopy may provide this additional detail, whist still delivering
non-destructive, rapid and in situ measurements to be obtained “**2, Both spectroscopic
approaches are based upon the principle that chemical bonds have discrete vibrational
modes which can be observed when biological samples are irradiated with IR light %3,
FTIR spectroscopy is dependent a change in the dipole moment of a chemical bond and
monitors the absorption of energy as electrons are elevated to vibrational energy modes
4445 This energy absorption is equivalent to the transition energy of the bond, allowing
specific bond identification via absorbance spectra “¢. In contrast, Raman spectroscopy is
based upon the principle of inelastic light scattering, where the molecule of interest is

excited to a virtual energy state via the incoming photon, but returns to a higher (Stokes)
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or a lower (Anti-Stokes) energy level #"#, Whereas FTIR is dependent upon the dipole
of a chemical bond, Raman spectroscopy is reliant upon the change in polarisability “°.
As such, some bonds that are considered IR inactive are often distinguishable using

Raman spectroscopy and vice versa, resulting in two complementary techniques *°.

Fourier transform infrared (FTIR) spectroscopy has been used previously to
observe plant cell structure and fruit quality, as well as to identify and quantify valuable
plant constituents, including polysaccharides and essential oils °1*°. Due to the dipole
moment of water, FTIR analysis of plant tissue has been largely restricted to fixed
sample analysis °%°. However, the development of attenuated total reflectance (ATR)-
FTIR has facilitated the interrogation of plant tissues without the interference of water,
thus allowing in vivo measurements to be acquired %2, In contrast to IR, water has a
relatively weak Raman scattering effect and consequently the analysis of in vivo plant
tissues that contain large amounts of water is possible 8. Nevertheless, the application of
Raman spectroscopy in plant research is limited by the issue of autofluorescence that is
prominent in plant tissues that contain intrinsic fluorophores ®. This issue has been
shown to be overcome by the use of NIR laser sources, but is also shown to be less
apparent in in vivo samples due to the fluorescence quenching effects of water 61:6566,
Consequently Raman spectroscopy has been a powerful technique for investigation of
plant cell walls and monitoring plant metabolites °7.

Here we describe a study employing ATR-FTIR and Raman spectroscopy to
presymptomatically detect Ca deficiency in Solanum lycopersicum, prior to the onset of
BER. Specifically, the use of Raman spectroscopy for in vivo spectroscopic analysis of
plant material is investigated, in comparison to the efficiency of ATR-FTIR for fixed
sample analysis of nutrient status. Complementary elemental analysis by flame atomic
absorption spectroscopy (FAAS) is used to compare to the exact Ca content of the tissue.
The effects of Ca deficiency, and subsequent Ca remediation, on gene expression has
also been investigated using RNA sequencing technology in order to understand the
transcriptional changes underpinning the growth and spectral responses to the differing

Ca nutrition of plants.
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Materials & Methods

Cultivation conditions

S. lycopersicum cv. Moneymaker (Moles Seeds, Essex, UK) were sown into rock wool
cubes and grown for 10 days with a distilled water supply. Once germinated, these
seedlings were transferred to purpose-built hydroponic systems, containing 16 L of four
modified Hoagland’s solutions ®8. Full-strength Hoagland’s solution provided a Ca
concentration of 200 ppm, determined as optimum for tomato growth, and sub-optimal
levels of 100, 50 and O ppm were also used. Dissolved oxygen levels were maintained at
5.5 + 0.5 mg/L using aquatic air pumps (Boyu, China) with an electrical conductivity at
2+0.1 mS; and pH 6.1 + 0.1. The solution was refreshed every 3-7 days, when the
levels of conductivity were reduced. Plants were grown at 25 + 2°C / 20 + 2°C, day /
night; 16 h photoperiod; 150 + 25 pmol m* s using 600W metal halide lamps (Osram
Ltd, UK).

The investigation was separated into two approaches; a 4-week full Ca depletion
study, and a 4-week remediation study. For the former, plants were exposed to the
different Ca conditions for the full 4-week period, with interrogation at both 2- and 4-
week time points with ATR-FTIR, Raman spectroscopy and FAAS to monitor the
progress of deficiency. For the latter, plants were exposed to Ca conditions for the initial
2-week period and then provided with optimum levels of Ca for the final 2-week time
period, to mimic the remediation process of fertiliser application. Plants were again

interrogated using the aforementioned techniques at the 2- and 4-week time points.

Each Ca treatment was replicated in 3 separate hydroponic systems, each
containing 4 seedlings, resulting in a total of 48 plants for the full depletion study, and a

further 48 plants for the remediation study.
In vivo Raman microspectroscopy

Raman spectroscopic measurements were obtained using a InVia Raman spectrometer
(Renishaw Plc, Gloucestershire, UK) with a 785 nm excitation laser and charge coupled
device (CCD) detector and a microscope attachment (Leica Microsystems,
Buckinghamshire, UK). A x 50 magnification (0.75 numerical aperture), 1200 mm
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grating, 50% laser power (13 mW at the sample) and a 15 second exposure time were
utilised for optimal spectral acquisition across the 2000 — 400 cm region. Wavenumber

spectral calibration was conducted using a silicon source prior to spectral acquisition.

S. lycopersicum plants were carefully positioned adjacent to the
microspectrometer and leaves were held in positon above a gold-coated glass slide; the
penetration depth of the laser was not expected to fully transmit through the leaflet and
therefore the use of a substrate was precautionary ®°. 10 spectra were acquired at both
the 2- and 4-week time point from newly expanded leaflets at the same developmental
stage in each live S. lycopersicum sample. Outliers were removed using in house
developed quality tests that detected insufficient spectral quality (signal-to-noise<10)
and any evidence of saturation. Cosmic rays were removed using the ‘Zap’ function in-

built into the Wire 4.0 software (Renishaw Plc, Gloucestershire, UK).
ATR-FTIR spectroscopy

Although proven to be a non-destructive technique in principle, the effects of ATR-FTIR
interrogation can be seen upon the surface of a living plant leaf, due to the pressure that
is required to bring the sample into contact with the internal reflection element (IRE),
which can cause localised necrosis . For this reason, ATR-FTIR was used only for
fixed measurements of fixed plant samples, and compared to the efficiency of in vivo
Raman spectroscopic measurements which have been shown to have no localised or

systemic effects 5L,

Prior to ATR-FTIR spectroscopic interrogation, the mass of fresh tissue was
measured using a calibrated balance, before being dried at 80 ° for 48 hours and the mass
was further measured to account for dry material weight. Leaf tissue was then isolated
and homogenised using a mortar and pestle until a homogenous powder was created.
This sample was then carefully deposited upon a low-E mirrIR reflective slide (Kevley
Technologies, OH, USA) before spectral analysis. A Bruker TENSOR 27 FTIR
spectrometer with Helios ATR attachment (Bruker Optics, Coventry, UK) containing a
diamond crystal with approximately a 250 x 250 pm sampling area was employed to
acquired IR spectra. Spectra were obtained at a spectral resolution of 8 cm™, and a zero-
filing option resulting in 3.84 cm™ data spacing, with 32 co-additions and a mirror
velocity of 2.2 kHz for optimum signal to noise ratio *°. A background spectra was

acquired prior to each sample measurement. Five spectra were obtained from separate
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locations of each sample with the diamond crystal cleaned using distilled water and dried

between each measurement.

As ATR-FTIR spectral acquisition was conducted upon dried samples, a number
of plant samples were required to be excluded from the remaining experiment at the 2-
week time point. As such, only one single plant was analysed from each hydroponic
system, resulting in 3 samples per treatment at this time point (rather than 9 at 4-weeks).

This did not affect Raman interrogation as this step did not require sample exclusion.
Spectral pre-processing

Spectral processing was conducted within the IRootLab Toolbox
(https://github.com/trevisanj/irootlab) developed for MATLAB (The Math Works, MA,

USA), unless otherwise stated °. For Raman data, spectra were cut to 1700 — 500 cm™?

wavenumbers to account for the scattering regions of known biological constituents of
plant material. A polynomial baseline correction (fifth order) was applied to remove any
baseline features associated with background fluorescence. This was followed by a
vector normalisation step to account for any technical variation between samples, and a

wavelet denoising step to smooth any residual noise in the spectra .

For IR data, spectra were cut to the 1800 — 900 cm™ fingerprint region where
biological bonds are known to vibrate 2. A second order differentiation step, with a
polynomial order of two and 9 filter coefficients, was applied to deconvolute spectral
regions from the numerous overlapping bands of this complex spectrum. This was then
followed by a vector normalisation step.

Multivariate Analysis

The complexity of IR and Raman spectra can often require additional processing steps in
order to extract discriminatory information, whilst simultaneously reducing the
computational burden associated with such large datasets. Principal component analysis
(PCA) was implemented technique to unearth underlying spectral variance between test
classes, by reducing each spectrum down to a defined number of principal components
(PCs), each of which accounting for a decreasing proportional of variance in the dataset
73, This unsupervised technique was coupled to a supervised technique called linear
discriminant analysis (LDA), that takes into account class information as well as spectral

covariance as derived from PCA 7, The result of this multi-stage analysis process is
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between-class (inter) differences are maximised, whilst within-class (intra) differences

are minimised, producing more efficient spectral classification.

In this approach, the optimum number of PCs was determined for each dataset
using a Pareto function to account for the point at which the percentage variance
explained reached a plateau. This was found to be between 12-13 PCs for each dataset
and accounted for 94 — 99% of the spectral variance in each dataset. A leave-one-out
cross validation step with 10 k-folds was then conducted using the optimum PC number
in conjunction with LDA ™. The output of this was visualised as a 1-dimensional (1D)
scores plot, to illustrate separation between Ca treatments solely down to variance within

the spectra.

To quantify the capabilities of both Raman and ATR-FTIR spectroscopy for
detection of nutrient status, a support vector machine (SVM) classification algorithm
was implemented. The ¢ and gamma values were optimised during this process, and a
leave-one-out cross validation system was used; the output of this was visualised as
sensitivity and specificity (%) between the Ca treatment class and the control. Binary
classifiers were chosen as the control treatment of 200 ppm, can be considered the
baseline prior to deficiency and consequently moderate to severe deficiency were

compared against this value.
Flame Atomic Absorption Spectroscopy

Around 500 mg of dried tissue from each Ca treatment and time point was initially
digested in 10 cm? of concentrated HNOs (Sigma-Aldrich Ltd, Dorset, UK) at 200°C on
a digital hot plate (Bibby Scientific Ltd, Staffordshire, UK; SD500). This was allowed to
reflux in the sealed volumetric flask for around 2 h, or until full digestion had been
completed, visualised by no coloured fumes. Once complete, the remaining HNO3 was
allowed to evaporate, and the residual material was re-dissolved in 24.5 cm? of 5%
HNO3 and 0.5 cm?® of 1% LaCls to ensure full Ca extraction, and filtered using a
Whatman® 541 hardened, ashless filter paper (Fisher Scientific, Leicestershire, UK). An
AAnalyst 200 flame atomic absorption spectrometer (Perkin Elmer, MA, USA) with
acetylene gas, compressed air and a Ca-Mg lamp (422.7 nm) was employed to determine
the Ca concentration in each digested sample. Samples were digested accordingly to

fulfil the linear range of the spectrometer. Three replicates were taken per sample, with a
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read delay of three seconds, and each absorbance value was converted to ppm using a

calibration curve, and subsequently % Ca values were derived.
RNA-sequencing

Whole transcriptome sequencing was conducted at the 4-week time point, upon 3 control
(200 ppm), 3 full-deficiency (0 ppm) and 3 remediated treatments (0 ppm for two weeks,
followed by 200 ppm for remaining two weeks) S. lycopersicum samples. Newly
expanded leaflets were excised and immediately freeze dried using liquid N and
homogenised into a powder. RNA was extracted using the RNeasy Plant Mini Kit
(Qiagen, Manchester, UK), following the Qiagen protocol with input from previous
literature '®. The RNA quantity per sample was determined using spectrophotometry,
with the absorbance at 260 nm (A2e0) used for quantification and the ratio between Azeo

and Aogo used to establish adequate RNA purity.

Samples were analysed at The Genome Analysis Centre (TGAC), Norwich, UK
for RNA-sequencing using the lllumina HiSeq 2000 (lllumina, CA, USA), with a 50
base pair (bp) single end read metric, with a minimum yield of 100 million reads.
Quality control was conducted using FastQC (Babraham Bioinformatics,
Cambridgeshire, UK) to check for the basic metric of quality control in the raw data, and
the TGAC in-house contamination screening ‘Kontaminant’ was run to identify any
adulterated samples. RNA samples were mapped to a reference sequence, provided by
The International Tomato Genome Sequencing Consortium, using TopHat (Centre for
Computational Biology, John Hopkin University, MD, USA) and differential expression
levels across the three experimental treatments were constructed using Cufflinks 2.2.1
(Trapnell Lab, University of Washington, WA, USA). The outputs of this was visualised
using the CummeRbund package (Bioconductor, USA).

The mapped sequence tool SeqMonk (Babraham Bioinformatics,
Cambridgeshire, UK) was also used to visualise gene expression between Ca treatments.
Initially data store trees were used to visualise the clustering of biological replicates as
an additional form of quality control. Hierarchical clustering was then used to generate
heat maps of differentially expressed genes based on the intensity differences. These
gene clusters were then annotated using the PANTHER Classification System to

determine specific gene function ’"78,
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Results & Discussion
Fresh and dry weight analysis

Determination of nutrient status of crops is currently reliant upon visual symptoms of
deficiency, or chemical analyses of crop or soil samples 1°22, Although visual symptoms
may take time to manifest, such as the rotting of fruit in BER, the effects of nutrient
deficiency may be observable in simple growth parameters which may indicate
underlying stress. Figure 1 shows the effects of Ca Treatments and Ca remediation on
plant fresh and dry weight. The effect of Ca deficiency should be most evident in plants
exposed to reduced Ca levels for 4 weeks (‘Full Treatment’), particularly by the week 4
and to a lesser extent at 2-weeks. It is clear that after 2 weeks of reduce Ca availability,
there is a distinct difference in weights between the 0 and 200 ppm Ca, representing fully
deficient and optimum Ca (control), respectively, although this is not statistically
significant. This pattern is almost identical for both fresh and dry weight, suggesting that

the water content in each sample was not affected by the reduced Ca level.
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Figure 1. Fresh and dry weights of S. lycopersicum plants grown in modified Hoagland’s
solution containing 0, 50, 100 and 200 ppm Ca for 4 weeks (Full Treatment) or for 2
weeks followed by a further 2 weeks growth at 200ppm Ca (Remediated Treatment).
Values are mean +/- with standard deviation. A one-way analysis of variance (ANOVA)
with Tukey’s post-hoc test were implemented to determined statistical difference between
treatment groups. *P<0.05, **P<0.01

219



A similar response is evident after 4-weeks exposure to reduced Ca levels, with
the fully deficient treatment (0 ppm) displaying much lower weights in comparison to
the other Ca treatments. Interestingly, the dry weight of this extreme deficiency is only
significantly different from the 50 and 100 ppm Ca treatments suggesting these
intermediate Ca treatments have increased growth compared to the control treatment.
Comparison between fresh and dried material indicates that this could be due to increase
water content in the tissues, as this effect is reduced following drying. This may be a
stress response due to Ca depletion, as the plant begins to increase rates of transpiration
to transport Ca from the nutrient solution. Again however, no statistical significance can
be extracted from the control and intermediate treatments, showing how inefficient this

approach is for detecting the onset of nutrient deficiencies.

It was envisaged that by exposing S. lycopersicum samples to reduced Ca
treatments for two weeks and subsequently resupplying the Ca supply for an additional
two weeks, plants may be able to recover from nutrient stress and return to a healthy
state. Although the growth of the 2-week Full Treatment and 2-week Remediated
Treatment should be comparable, there was a marked reduction in both the fresh and dry
weights in the remediation investigation in comparison to the full treatment
investigation, which depicts the highly variable growth rate due to the Ca depleted
environments despite identical growth environments. However, in the Remediated
Treatment after 4-weeks, both the fresh and dry weights of the O ppm treatment were
again significantly different from the reduced Ca treatments, but not from the 200 ppm
control treatment. Considering these samples had been supplemented with optimum
levels of Ca for 2 weeks, surprisingly the differences between the treatments were more
significant than in the Full Treatment plants after 4 weeks. This may be associated with
the fact that Ca depletion may be having a more complex effect on plant growth, that is

not simply observable by physiological measurements such as fresh and dry weight.
FAAS Analysis

In order to correlate the physiological effects observed on overall plant mass, in terms of
fresh and dry weights, and the subsequent spectral and sequencing data with a known
depletion in Ca at the tissue level, FAAS was conducted to derive exact Ca
concentrations from sample leaves (Figure 2). During the full deficiency investigation, it
is evident that at the 2-week time point the effects of Ca depletion are already reflected
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in the overall Ca content in the tissues, with a significant drop of around 2% between
control and extreme deficiency. This effect is further exaggerated at the 4-week time
point where all reduced Ca treatments display a highly significant diminution in overall
Ca content compared to the 200 ppm plants. FAAS is considered one of the most
sensitive measures available to determine overall crop nutrient status and this result

provides evidence for its sensitivity *°.
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Figure 2. Ca content (%) as determined by flame atomic absorption spectroscopy (FAAS)
from acid digested leaf samples of S. lycopersicum plants grown in modified Hoagland’s
solution containing 0, 50, 100 and 200 ppm Ca for 4 weeks (Full Treatment) or for 2
weeks followed by a further 2 weeks growth at 200ppm Ca (Remediated Treatment). A
one-way analysis of variance (ANOVA) with Tukey’s post-hoc tests were implemented to
determined statistical difference between 0, 50 and 100 ppm treatment groups with the
200 ppm control group. (*P<0.05, **P<0.01)
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In the remediation investigation, at the 2-week time point, an almost identical
response is seen in overall Ca content of leaf samples as in the full deficiency
experiment. The Ca content of plants exposed to extreme Ca deficiency (0 ppm) is
significantly different from the control (200 ppm) plants, and 50 ppm plants are also
discernible using this approach. Following remediation for the remaining 2-week period,
the overall Ca content between each treatment becomes equivalent, with no significant
differences identifiable. This indicates that remediation has effectively re-supplied Ca in
the plant tissues in over this time period.

It is clear from this approach that FAAS can effectively determine the overall Ca
content of a plant and observe when supplementation, such as by a nutrient fertiliser, has
been effective. However, when comparing to our measurements for fresh and dry
weights, there appears to be residual effects of Ca deficiency that are not sufficiently
addressed using this approach. Additionally, the sample preparation involved in this
analysis is time-consuming and not easily implemented by growers who would benefit

from such an approach.
Ca deficiency detection with Raman spectroscopy

Raman spectroscopy was applied as an in vivo screening tool to determine the nutrient
status of S. lycopersicum plants exposed to the aforementioned concentrations of Ca. The
effects of a 4-week exposure to deficient conditions are shown in Figure 3. The
processed mean spectra at both the 2- and 4-week time point all show very little
variation between the four treatments. At 2-weeks it is evident that there is a variable
region that can be seen at 876 and 852 cm™. These alterations do not follow a Ca

concentration dependent pattern, potentially indicating that they are not severity linked.

However, 852 cm™ is a characteristic Raman band identified in pectin studies,
and is noticeably lower in the 0 ppm treatment, compared to the 200 ppm treatment
which displays the highest level of scattering at this peak . Reduced scattering of a
pectin related Raman band, may be indicative of a reduction in Ca pectate levels in the
tissue, which would be expected in Ca deficient environments . At the end of the 4-
week treatment, the Raman spectra display less band specific differences, but do depict a
spectrum wide difference in scattering intensity, particularly between 0 and 50 ppm
treatments. As seen previously in the fresh weight measurements, it appears as though 50

ppm treatment may have accumulated water in the tissue which may begin to explain,
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the increased scattering intensity. Due to intrinsic fluorescence, it is challenging to
derive Raman spectra from dried tissue and it is thought that increased water content can
contribute to fluorescence quenching in these tissues #¢%1%6_With this is in mind,
increased water content could influence the spectra between Ca treatments.
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Figure 3. Processed Raman mean spectra (top panels) and corresponding 1D PCA-LDA
scatterplots (bottom panels) for S. lycopersicum samples exposed to Ca deficient
environments (0, 50, 100 and 200 ppm Ca) for 4-week time period. Left panels depict
the 2-week time point, and right panels show the 4-week time point. (a.u., arbitrary units;
LD, linear discriminant)

As no single spectral feature can be immediately identified by eye or by simple
univariate techniques, it is warranted to conduct multivariate analyses to try and extract
only the discriminatory variables in the dataset. PCA-LDA was conducted on each
dataset to observe separation of each Ca of the treatments as a consequence of their

inherent variance (Figure 3). In these 1D scatterplots, separation in the y-axis infers
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difference between the Ca treatments. At the 2-week time point, there is very little
difference discernible between 0, 50, 100 and 200 ppm Ca availabilities, demonstrating
that after a 2-week exposure, Raman spectroscopy is unable to effectively detect any
indicators of Ca deficiency. This is reflected in the sensitivity and specificity values
derived by a validated SVM classifier, which indicate highly variable classification

performances (Table 1 and 2).

Table 1. Sensitivity and specificity values of binary SVM classifiers, distinguishing Ca treatments from control
Solanum lycopersicum samples grown at 200 ppm.

Sensitivity (%) Specificity (%)

100 50 0 100 50 0

Full 2 64.81 92.59 100.00 60.42 54.17 0.00

Raman 4 57.38 63.93 68.85 67.12 66.67 72.00

Remediated 2 84.31 62.75 66.67 29.79 58.70 68.89

4 50.94 45.28 79.25 72.73 95.74 65.22

Full 2 75.00 80.00 90.00 36.25 83.33 93.33

ATR- 4 56.19 81.90 100.00 71.48 87.50 97.50

FTIR . 2 0.00 40.00 100.00 100.00 66.67 100.00
Remediated

4 44.44 44.44 48.89 40.00 40.00 57.92

Table 2. Standard deviation of sensitivity and specificity values of binary SVM classifiers, distinguishing Ca
treatments from control Solanum lycopersicum samples grown at 200 ppm.

Sensitivity (%) Specificity (%)
100 50 0 100 50 0
Full 2 48.20 26.44 0.00 49.42 50.35 0.00
Raman 4 49.86 48.42 46.69 47.30 47.45 45.20
Remediated 2 50.47 50.25 40.94 44.95 20.40 48.15
4 36.73 48.83 47.61 46.23 49.78 46.82
Full 2 46.31 15.82 0.00 20.49 23.75 7.07
ATR- 4 50.00 28.28 20.00 33.50 28.87 16.33
FTIR Remediated 2 0.00 28.28 0.00 0.00 30.55 0.00
4 26.03 26.03 38.87 41.40 41.40 34.87

Although a sensitivity of 100% is achieved between 0 and 200 ppm treatments,
the corresponding specificity is 0%, displaying that the classification was able to
consistently detect the extreme deficiency, but not the control, which is an unreliable
model. However, after the full 4-week Ca treatment, it is evident that the O ppm
treatment becomes significantly more separated in LD1, showing that it may be possible
to differentiate this data group as a consequence of the Ca treatment. The classification
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performance is markedly more stable in this instance, with a rate of 68.85% and 72%

sensitivity and specificity respectively between the control and 0 ppm treatments.

Moderate Ca depletion treatments, 50 and 100 ppm are also detected by this

classification process, although to lesser efficiencies dependent upon the severity of the

treatment.

The effects of the Remediation Treatment are shown in Figure 4, first comparing

processed spectra at week 2 and 4 and the corresponding PCA-LDA 1D scatterplots. In

this instance, spectra again display little variation by eye at each time point.

Interestingly, in the 4-week dataset, there is again alteration around the 876 and 852 cm™

bands, previously associated with pectic compound, and this observation does follow a

concentration dependent reduction in scattering from the 200 ppm Ca control. At this

time point, the plants have been re-supplied with optimum Ca levels and should thus

return to a healthy state, mirroring the normalised Ca content determined by FAAS.

These spectral alterations, although small, indicate that further biochemical changes may

have occurred due to deficiency and may represent residual effects of Ca depletion.
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Figure 4. Processed Raman mean spectra (top panels) and corresponding 1D PCA-LDA
scatterplots (bottom panels) for S. lycopersicum samples exposed to Ca deficient environments
(0, 50, 100 and 200 ppm Ca) for a 2-week time period, followed by 2-weeks in a remediated
environment. Left panels depict the 2-week time point, and right panels show the 4-week time
point. (a.u., arbitrary units; LD, linear discriminant)
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However, PCA-LDA scatterplots show no significant separation between Ca
treatments following nutrient remediation, illustrating that these spectral alterations, may
in fact be artefacts that do not contribute to the overall variance in the dataset. By
comparing the sensitivity and specificity of this dataset, it is evident that following
nutrient remediation SVM classifiers are able to distinguish between control and 2-week
deficient plants prior to remediation at levels as high as 68.89% for 0 ppm plants. Across
other Ca treatments the sensitivity and specificity vary markedly and are less consistent;
for example, an 84.31% sensitivity rate versus a 29.79% specificity rate for
distinguishing 100 and 200 ppm treatments. This may be indicative of the similarity
between these spectra, as likely the effects of Ca stress will be moderate at this time
point and between these two treatments. At week 4, this large variability across
sensitivity and specificity values is again visible, although larger values can be seen.
This infers that despite remediation, there are residual biochemical alterations present in

the plant tissues that are distinguishable between spectral classes.
Ca deficiency detection with ATR-FTIR spectroscopy

The effect of Ca stress on S. lycopersicum plants was also investigated using ATR-FTIR
spectroscopy on dried, fixed, leaf tissues. Due to the use of homogenised samples and
the larger sampling area provided by the ATR diamond crystal, larger macro
measurements are provided using this approach and an overall indicator of biochemical
changes can be derived. From looking at the processed IR spectra, a plethora of spectral
alterations can be see between all Ca treatment during the progression of deficiency,
from analysis at 2- to 4-weeks. (Figure 5). Between these two time points, the spectral
differences occur in the same absorbance band regions, although to a larger extent at the

4-week time point, associated with the increased exposure to deficient conditions.

Using the 4-week spectra, the majority of spectral alterations can be seen around
the Amide | region between 1600 — 1700 cm™, related to the absorption of protein
content. Previous literature suggests that protein differences can be identified in plant
leaves following Ca stress environments, specifically reduction in protein structure
pointing towards leaf senescence, but also through the increased expression of
pathogenesis-related proteins 6182, Control treatment samples display lower absorbance
values at the Amide I and Amide II peaks that are assigned to v(CN) and 6(NH), when
compared to the intermediate and extreme Ca deficient samples. This effect was also
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visible in in cadmium stress of clover leaves and may be associated with increased
protein production due to provide additional stability to the tissue, due to the reduction

on available Ca pectate 83,
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Figure 5. Processed ATR-FTIR mean spectra (top panels) and corresponding 1D PCA-LDA
scatterplots (bottom panels) for S. lycopersicum samples exposed to Ca deficient environments
(0, 50, 100 and 200 ppm Ca) for 4-week time period. Left panels depict the 2-week time point,
and right panels show the 4-week time point. (a.u., arbitrary units; LD, linear discriminant)

A reduction in Ca pectate is visible at the absorbance bands at 1609 and 1408 cm”
! which have been characterised in Ca pectate studies as vasy(COQO") and vs,(COQ")
stretches of phenolic compounds respectively 838 This shows a direct observation of
the known effects of Ca deficiency in tomato leaves, prior to the onset of visual
symptoms ©. Increased absorbance of singular pectin molecules at 1103 cm™ in samples
exposed to Ca stress, also complement this observation, as increased levels of non-Ca
associated pectin are present in the tissue %285, As the symptoms of BER manifest in the
fruit tissue because of the Ca gradient that is developed in the tissue, the detection of this
Ca stress effect in the leaves in useful as a potential presymptomatic screening

technique.
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Figure 5 presents the 1D PCA-LDA scatterplots of this dataset and also
illustrates the efficiency of the technique to identify the onset of Ca deficiency. After 2
weeks exposure to Ca deficient conditions, 0 and 50 ppm treatments are significantly
separated from the control treatment. After 4 weeks, this separation can also be extended
to the moderate deficiency treatment of 100 ppm. This performance is also represented
in the sensitivity and specificity values from binary SVM classifiers (Table 1). At the 2-
week time point, extreme (0 ppm Ca) deficiency can be diagnosed at rates of 90 — 93%
sensitivity and specificity, whilst the 50 ppm can be distinguished at levels of 80 — 83%.
This is further exemplified at the 4-week time point, where the full deficiency had a
prolonged effect on the samples and subsequently classification levels reached highs of
100%. Although values of this level should always be treated tentatively, the high
performance of all treatment shows the potential of this technique for crop nutrient

screening.
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Figure 6. Processed ATR-FTIR mean spectra (top panels) and corresponding 1D PCA-LDA
scatterplots (bottom panels) for S. lycopersicum samples exposed to Ca deficient environments
(0, 50, 100 and 200 ppm Ca) for a 2-week time period, followed by 2-weeks in a remediated
environment (200 ppm Ca). Left panels depict the 2-week time point, and right panels show the
4-week time point. (a.u., arbitrary units; LD, linear discriminant)
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Observing the effects of nutrient remediation with optimum Ca levels, also shows
the sensitivity of this approach. The effects of 2-week exposure to reduce Ca
availabilities, can be seen in the processed IR spectra from this study and mimic the
previously identified spectral differences of the full deficiency study (Figure 6). In
overview, this is a reduction in the absorbance of Ca pectate residues at 1609 cm™ as a
consequence of reduced Ca availability, and widespread variation in protein related
peaks. Following 2-weeks of remediation however, the effects of Ca deficiency become
undefinable in the IR spectra, with hardly any spectral differences noticeable by eye.
This is reflected in PCA-LDA scatterplots of this data, as no significant separation can
be identified. Furthermore, the performance of SVM classification between each
treatment falls away markedly, with sensitivity and specificity generally falling below
50% (Table 1).

Although, this approach required a drying step, and therefore had increased
sample preparation times, this is still a much simpler approach in comparison to
analytical techniques such as FAAS. Whilst the drying process in this instance was
conducted over a 48-hour period, this process is still less labour intensive than
approaches that require acid digestion of samples, that would require specialist users.
With the advancement towards hand-held and portable devices, the use of ATR-FTIR for
nutrient status screening is inexpensive and rapid, whilst the ease of use allows

widespread implementation 8°.
RNA-Sequencing analysis

Whole genome sequencing has provided insight into plant stress pathways in
crops in response to nutrient deficiency, including Ca 312%#"_ For this study, a
comparison was made between plants grown at optimum Ca (200 ppm Ca), extreme Ca
deficiency (0 ppm), and Ca remediated conditions (0 ppm for two weeks, 200 ppm
subsequently) for four weeks, in order to establish alterations in gene expression due to
Ca stress. Initially, the mapped genomic data was visualised as a data store tree in order
to cluster together known biological replicates (Figure 7A). In this example, the first
branch on this tree effectively separates deficient treatments apart from control and
remediated treatments, suggesting that the greatest gene differences can be identified by
these two groupings. Unfortunately, one deficient replicate was not differentiated in this
process, which has been related back to reduced RNA quality prior to sequencing
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analysis. Despite this, all control and remediated replicates separate at the next branch of

the decision tree, indicating a distinct difference in gene expression.

PCA analysis of differentially expressed genes between treatments reveals a
separation between the Ca treatments, with deficiency showing greatest variance
compared to the control and remediated treatments (Figure 7B). Again, the ‘Deficient 3’
sample does not follow this pattern and clusters more centrally in the plot with some
control replicates due to the aforementioned quality insufficiency. As one may expect,
there is overlap between control and remediated replicates which may represent a return
to normal gene expression as a consequence of returned Ca levels. In regards to
presymptomatic detection of deficiency, this approach appears to be highly sensitive to

the effects of nutrient stress, with a plethora of gene-specific changes observable.
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44 ficfe

DEFICIENT 2
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REMEDIATED 3 -44

Figure 7. Separation of replicate control, deficient and remediated Ca treatment replicates based
upon gene expression values derived from RNA-sequencing analysis. (A) Data store tree to
observe biological clustering of Ca treatments; (B) PCA plot displaying the expression of all
gene probes in the genome with sample distribution illustrated.

In order to compare differential expression between each Ca treatment,
hierarchical clustering was conducted on genes displaying intensity differences and was
visualised using a heat map. This approach clusters together genes that are expressed at
differing levels between treatments and often identifies genes with similar
functionalities, resulting in aided biological interpretation 8. The heat map portrayed in
Figure 8 depicts 6 distinct clusters of genes that are differentially expressed between
control, deficient and remediated. Clusters 1 and 4 are representative of genes that are up
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Control Deficient Remediated

Figure 8. Hierarchical cluster map of gene probes displaying intensity differences in expression
between Ca treatments at a P value > 0.05. Clusters have been numerically identified and relate
to Tables 3 and 4.
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and downregulated respectively between deficient and control samples sets, whereas
Clusters 3 and 6 highlight down and upregulation respectively as a consequence of
remediation. The two smallest clusters of genes, Cluster 2 and 5, are indicative of up-
and downregulation that is evident across both deficient and remediated treatments. This
suggests that alterations to the plant transcriptome as a consequence of deficiency and

remediation are distinctly processes, that results in separate genome responses.

A breakdown of gene functionality within each cluster can be seen in Table 3,
primarily indicating that catalytic pathways and binding proteins are targeted in response
to Ca deficiency. Each gene contained within each cluster and its respective protein
annotation is identified in the supplementary information (SI). An overview of the five
genes exhibiting the largest expression differences within each cluster is presented in
Table 4.

Table 3. Functional overview of genes identified within each cluster identified
using hierarchical cluster analysis of all genes presenting an intensity difference
between Ca treatments

Hierarchical Cluster % of Genes General Function
Cluster 1 63.2% Catalytic Activity
21.1% Binding
14.0% Transporter Activity
1.8% Receptor Activity
Cluster 2 100% Catalytic Activity
Cluster 3 77.1% Catalytic Activity
12.5% Transporter Activity
8.3% Binding
2.1% Antioxidant Activity
Cluster 4 48.8% Catalytic Activity
39.0% Binding
7.3% Transporter Activity
2.4% Receptor Activity
2.4% Structural Molecule Activity

Cluster 5 80.0% Catalytic Activity
20.0% Binding
Cluster 6 58.1% Binding

27.9% Catalytic Activity
9.3% Structural Molecule Activity
4.7% Transporter Activity
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Table 4. Top 5 differentially expressed genes with known gene function from each hierarchical cluster derived
from probes displaying intensity differences between control, deficient and remediated Ca treated S.
lycopersicum samples. Cluster 2 only yielded 3 genes with known protein functions and thus only contains 3

genes.

Cluster Expression Gene ID Gene Family Gene Function
I Solyc12g098540.1 NTPASE, ISOFORM F Transcription regulation®
[<B)
S
E Solyc04g007760.2 MLP-LIKE PROTEIN 165-RELATED Plant defence®
= Control of plasmodesmatal
1 - Solyc04g016470.2 BETA-1,3-GLUCANASE 4-RELATED %0 P
o transport
© _ . .
= TRANSCRIPTION FACTOR MYB48- Transcription factor involved in
>
> Solyc069005310.2 RELATED abiotic stress regulation 8
|
[
) Solyc03g005980.2 AQUAPORIN NIP1 RELATED Cell water uptake!®
I= Solyc02g094040-2 RiACYLGLYCEROL LIPASE 2 Lipid breakdown 101
o
[
E '8 = Solyc06g048410.2 SUPEROXIDE DISMUTASE 1 Antioxidant ¢
2 > © 3
? :,E, _‘55 Solve03a119540.2 CCT MOTIF FAMILY PROTEIN-
cs o yeveg : RELATED Transcription regulation %2
S £
O o o
(apald
Solyc11g022590.1  DR4 PROTEIN-RELATED Auxin sensitive transcription
factor in fruit development
c
3 S Solyc03g095650.2 MLO-LIKE PROTEIN 12-RELATED Plant defence 4
—
S s
3 > 9 Solyc129099780.1 RPMI-INTERACTING PROTEIN 4 Plant defence regulator %
g2 (RIN4)
cC o .
s Solyc11g021060.1  PROTEINASE INHIBITOR TYPE-2 TR  Liant defence due to wounding
()]
Solyc019096320.2 HOMEOBOX-LEUCINE ZIPPER Plant defence, symptom
PROTEIN ATHB-12-RELATED development 7
- Solyc03g005280.2 ASPARTYL PROTEASE Negative regulator of defence
S mechanisms %
S PECTINESTERASE/PECTINESTERASE :
= Solyc02g080210.2 Promotion of cell wall
8 INHIBITOR 18-RELATED degradation
c
— 3-KETOACYL-COA SYNTHASE 5-
4 3 Solyc05009270.2 RELATED Cuticular wax biosynthesis 109
—
©
= PROTEIN FLOWERING LOCUS T-
E” Solyc059053850.2 RELATED Promotion of flowering
c
= CHLOROPYLL A-B BINDING
o e s
a Solyc029071000.1  pROTEIN BINDING FAMILY ABA sensitivity 110
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2 Solyc07g064380.2 AMINOTRANSFERASE-LIKE Protein biosynthesis 11
[<B)
‘o s .
= g Solyc05g047680.2 CYTOCHROME P450-RELATED Involvement in biosynthetic and
A < detoxification pathways *?
c ©
o— () -
S £ Solyc08g074620.1 OSMOTIN-LIKE PROTEIN Abiotic stress response %
[«B] [¢B)
s
g’ -8 Solyc10g045240.1 BETA-GLUCOSIDASE 33 Cellulosic breakdown %
8 ©
o -
) Solyc09g008380.2 PECTATE LYASE 12-RELATED Pectate cleavage 113
g Solyc02g070180.1 BERBERINE BRIDGE ENZYME-LIKE Wound response 44
<
5
E Solyc01g109670.2 KINESIN-LIKE PROTEIN KIF15 Cell wall development *
[B]
@ POLLEN OLE E 1 ALLERGEN AND
= Solyc09g072770.1 EXTENSIN FAMILY Developmental regulators 1°
g
& GIBBERELLIN-REGULATED :
© Solyc01g107370.2 Hormone mediated stress
g’ GASA/GAST/SNAKIN FAMILY tolerance 116
[«B]
|-
s Solyc12g011030.1 | ycOSYL HYDROLASE FAMILY  Cell wall breakdown 17

Cluster 1 contains genes that are upregulated in deficient treatment and the

increased of expression of transcription factors specifically relating to plant defence and

stress mechanisms, portray the response of the plant to Ca stress. MYB transcription

factors have been shown to mediate plant responses to abiotic stresses, such as the Ca

deficiency presented here . Increased expression of plant defence proteins has been

isolated in Ca deficiency and here upregulation of MLP-like proteins mirrors this 82,

Furthermore, upregulation of proteins involved in plasmodesmatal transport and water

uptake reveal that plants in deficient conditions are actively attempting to increase Ca

transport, as Ca transport is predominantly through the transpiration stream ©. The

plasmodesmata span adjacent cells control symplastic transport through the plant and -

1-3-glucanase activity is known to increase permeability of this transport pathway . As

such, increased activity in this protein family indicate increase symplastic transport to

aid Ca transportation in deficient plants.
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Genes downregulated in the deficient treatment are encompassed in Cluster 3.
Cell wall degradation is reduced by under expression of pectinesterase inhibitors and is a
clear response to reduced Ca availability 1. As structural integrity is compromised due
to reduced Ca, and therefore Ca-pectate, the maintenance of the existing cell wall is
crucial to survival. Additionally, decreased expression of proteins that promote
flowering suggest that onset of flowering, and subsequently fruit set, is delayed as a
consequence of Ca deficiency . As Ca specifically manifests in tomato fruit, this
response prevents the immediate onset of BER.

Remediated Ca treatments exhibit increased expression of proteins largely
involved in cell wall development and maintenance as well as a continued expression of
stress response proteins (Cluster 6). Contrastingly, both hydrolase proteins that are
involved with cell wall breakdown, and kinesin-like proteins that are involved with cell
wall generation are over expressed in this treatment %%, However, this may be an
indicator of degradation of compromised tissues versus synthesis of healthy tissues, due
to the resumed availability of Ca. Cluster 3 depicts proteins related to plant defence
mechanisms are the principal targets of downregulation in this Ca treatment and
illustrates that the plant is no longer in a nutrient stressed state.

Fewer genes are shown to be upregulated in both deficient and remediated Ca
treatment, yet there is a distinct overlap in binding and catalytic activity genes (Cluster
4). Osmotin-like proteins are expressed in response to abiotic stress, specifically water
and pathogens, and their expression in both treatments here indicate that both immediate
and long-term Ca stress responses are regulated by this pathway %. Increased expression
of protein biosynthesis genes, such as aminotransferases, correlate to ATR-FTIR data
shown in this investigation, as Ca deficiency results in increased protein absorbance in
leaves. As there is reduced stability in the leaf tissue, this may be an attempt by the plant
to restore structural rigidity. In regards to downregulation between both Ca treatments,
only three genes could be isolated that exhibited the same response. Somewhat
surprisingly, superoxide dismutase is shown to be downregulated by both Ca treatments,
despite role in the breakdown of reactive oxygen species produced as consequence of Ca
stress %. However, a similar response was also observed by Schmitz-Eiberger et al.

although this may be due expression of difference splice isoforms .
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Conclusions

The purpose of this study was to determine if spectroscopic methodology was able to
presymptomatically detect Ca deficiency in S. lycopersicum prior to the onset of BER.
Specifically, Raman spectroscopy and ATR-FTIR spectroscopy were compared with
standard approaches of determining crop nutrient status. FAAS is one such example
where sensitive measures of single elemental content can be derived, however require

extensive sample preparation to yield univariate values of deficiency.

Raman spectroscopy is a potentially powerful tool for in vivo diagnostics in an
agricultural setting, as a novel method for nutrient status determination. Using this
approach, biochemical information can be derived without the need for extensive sample
preparation. In this study, we show that Ca deficiency can be identified in S.
lycopersicum leaf samples, prior to the production of fruit and thus providing
presymptomatic detection. For in vivo measurements, severe deficiency can be isolated
at reasonable levels between 72-69% sensitivity and specificity. However, there is
further development required to develop a sensitive classifier suitable for this
application, as variability between comparisons is high. Despite this, Raman
spectroscopy is able to not only differentiation between treatments, but also

simultaneously provides biochemical information.

ATR-FTIR spectroscopy provides a sensitive approach to nutrient screening that
is able to identify severe and moderate Ca stress after as little as two weeks’ exposure to
deficient conditions. Although a sample preparation step was used in this instance to
compare fixed tissue analysis to in vivo analysis with Raman spectroscopy, this
technique could potentially be employed as an in vivo monitoring tool 8962, It is
important to note that ATR-FTIR analysis of plant tissue can lead to localised damage of
tissue, which may not be preferably for fruit analysis, but may be acceptable for leaf

tissue 62,

The differential expression of genes involved in nutrient stress response
pathways are analysed and compared between deficient and remediated crops. This
approach was able to complement spectroscopic information, whilst also effectively
isolating deficient samples. In regards to a nutrient status screening tool, the precise

sample preparation and high-cost of such an approach may not be readily translatable.
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However, the wealth of information that is extracted using this approach is highly

beneficial in a research setting for further understanding crop-nutrient relationships.

In conclusion, vibrational spectroscopic measurements are able to detect nutrient
deficiencies rapidly, without extensive sample preparation steps and damage to the crop
under investigation. This approach could contribute to precision farming, where the only
the exact nutrient requirements of the crop are provided, reducing the environmental
impacts of excessive fertiliser use. Movement towards more efficient crop production
will increase agricultural productivity and help to tackle the threat of global food

security.
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8. General Discussion

Currently available methods to derive informative data on plant health and function are
limited to specialised approaches that require extensive sample preparation steps and are
thus not readily implemented in the field. Consequently, there is a need for a robust
analytical technique that is able to rapidly provide equivalent information. In this series
of studies, the viability of vibrational spectroscopy as a method to elucidate valuable

chemical information from plant samples is addressed.

Initially, the application of ATR-FTIR and Raman spectroscopy as non-
destructive methods to monitor plant health was investigated. In order to obtain
information that was specific to the physiological condition of the plant at a specific time
point, measurements were acquired from S. lycopersicum leaflets whilst still attached to
the whole plant. This is contrary to previous studies that have employed ATR-FTIR for
in situ analysis 3. Primarily, it was evident that Raman spectra could be obtained from
in vivo plant leaves, despite contributions from autofluorescence and Raman
background. This affect was attributed to the fluorescence quenching effect of water
contained within the leaves, and also the ability of water to facilitate light penetration
through the sample. Water content had no negative impacts on the signal obtained from

ATR-FTIR spectroscopy.

By monitoring the IR and Raman spectral signature of samples over time, the
non-destructive nature of these approaches was interrogated. Due to the necessity of the
IRE being placed in contact with the sample, localised damage can be seen when used
upon the adaxial leaf surface. Using chemometric feature extraction, this was shown to
have a detrimental effect on the leaf tissue over time, although had no effect upon
systemic tissues. No effect of Raman sampling could be observed both locally and
systemically to the area of analysis. To further investigate the validity of the data
obtained, spectral alterations indicative of healthy plant growth were inspected. These
changes were known to correlate with known biochemical changes that occur during
plant growth, including cell wall expansion and leaf senescence. This indicates that both

techniques could be employed for in vivo crop monitoring.
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With the capabilities of these methods for plant-based analysis established,
vibrational spectroscopy techniques were employed in several crop screening
investigations. Due to the negative impacts of traditional fertiliser use, the use of foliar
fertiliser sprays for nutrient supplementation was investigated as a novel system for crop
screening. Primarily, Raman microspectroscopy was employed to monitor the uptake of
Ca from the leaf surface, complementary to ion specific measurements. The uptake of Ca
solutions down to 15 mM concentrations could be monitored using this spectroscopic
approach, whist ion probe measurements yielded specific information regarding the rate
of uptake. A combination of these approaches thus could be used a method of
monitoring the effects of fertiliser composition on rate of uptake and may be of use in
the agrochemical and bio-enhancement industry . Furthermore, this approach could be
used to better understand the mechanisms of nutrient uptake and translocation, by

observing alterations in nutrient uptake in transgenic species >°.

An additional application of vibrational spectroscopy screening of crops is for the
determination of crop nutrient status. Nutrient deficiencies are a primary cause of
reduced crop yields, crop quality and shelf life; all of which are substantially the
efficiency of the food production line ’. The use of NIR reflectance technologies have
shown that a method of rapidly determining the nutrient requirements of a crop is useful
in agriculutral settings &. IR and Raman spectroscopy can similarly provide detection of
nutrient stress, whilst also exposing further spectral, and therefore biochemical, detail.
The result of this is the potential to presymptomatically detect nutrient deficiencies from
crops, by interrogation of the spectral fingerprint. Ca deficiency was employed as model
nutrient stress due to the element’s fundamental role in plant structure and function °.
The symptoms of Ca deficiency are analogous with other immobile plant nutrient

deficiencies and often do not manifest until fruit set in species such as BER in tomato °.

The effects of Ca deficiency were first typified in C. communis plants using SR-
FTIR microspectroscopy. The purpose of this was two pronged; firstly, to extract
information regarding the deficiency, but also to assess if SR could overcome the issues
of water interference in IR measurements. SR-FTIR microspectroscopy was also able to
distinguish between cell types in fresh tissue that had a significant water content,
showing that plant-based investigations should not always be confined to fixed samples,
where biochemical differences due to the fixation process can be seen. Using

chemometrics, Ca deficiency could be detected in freshly prepared, Ca stressed tissues at
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a classification accuracy above 90%, without the need of considerable sample
preparation steps. This showed that presymptomatic detection of Ca deficiencies could
be determined using FTIR microspectroscopy, albeit an extremely powerful SR-based
approach.

To further interrogate this finding, the use of benchtop ATR-FTIR spectroscopy
and spontaneous Raman microspectroscopy were employed to presymptomatic detect Ca
deficiency in the model system S. lycopersicum. In vivo measurements using Raman
microspectroscopy were able to distinguish extreme levels of deficiency without the
need for sample preparation, such as required for alternative elemental analyses 1.
Complementary ATR-FTIR of dried plant tissues was able to further distinguish these
biochemical symptoms at high rates of sensitivity and specificity. Both of these
approaches were also able to characterise the successful remediate of deficiency by the
addition of an optimum Ca level. The addition of RNA-sequencing analysis to this

biochemical information provides a compelling insight into plant stress mechanisms.

From these studies, it is evident that there is much potential for all of the
techniques discussed to have a significant role in the field of plant and agricultural
sciences. Whilst Raman microspectroscopy has been substantially limited in such plant
based samples, here it is shown that biological information can be extracted simply and
robustly, without the need for extensive preparation steps. The performance of the
Raman approach however, is observably lower than alternative techniques employed in
these studies, particularly in comparison to ATR-FTIR. Utilising powerful light sources
in a SR-FTIR approach, also showed the potential of overcoming water absorption in
aqueous samples. Despite this, a significant limitation of this technique in plant research
is the dependency on large facilities which often do not have plant growth amenities.
Furthermore, from an agriculutral and crop screening viewpoint, synchrotron facilities

are not readily accessible.

With all this is mind, this study shows that the most powerful technique, that is
readily available for plant investigations on the macroscale, is ATR-FTIR. This approach
is able to distinguish plant growth characteristics as well as sensitively and pre-
symptomatically detect nutrient deficiency, whilst having no systemic effects on the
crop. Although some local damage can be seen, due to the reliance upon crystal-to-

sample contact, this is often not significant in the field as leaves and even single fruit
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could be easily sacrificed for the purpose of crop screening. As the sampling area is
limited to 250 x 250 um, an overall spectrum from the leaf rather than from specific
tissues can be obtained, which may prove more useful in real-world analyses. FTIR and
Raman microspectroscopy would be suitable for when tissue specific information is

required, and also for the latter, when a greater penetration depth is needed.
8.1 Future Perspectives

The results of these investigations show promise towards implementation in the field,
where the efficiency of the techniques can be truly assessed on a real-world sample set.
Thanks to the collaboration between Lancaster University and Plant Impact Plc., this has
already begun, with fertiliser compositions being assessed based on the rate of uptake at
the leaf surface. However, for the applications of nutrient status screening, there are a

number of key considerations and studies required prior to this happening.

In a controlled environment such as in a research greenhouse, the effects of
humidity, temperature and nutrient availability can be readily manipulated, whereas this
IS not the case in the field. The relationship between Ca and other essential plant
nutrients must be considered before field trials could be conducted 23, Furthermore, for
use as a generic screening tool, there would be a requirement to investigate additional

crop species additional to S. lycopersicum, as well as the other nutrient deficiencies.

More widely, these investigations highlight the capabilities of vibrational
spectroscopies for plant-based research. Although sophisticated techniques have been
developed to overcome some of the well characterised issues with FTIR and Raman
spectroscopy for fresh plant tissue analysis, here it is shown that informative
biochemical data can be produced from simple, rapid and non-destructive approaches.
As such, it is hoped that further studies continue to apply these approaches for plant
biology and contribute towards our understanding of crop responses in the fight for food

security.
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Terrestrial plants are ideal sentinels of environmental pollution, due to their sedentary nature, abundance
and sensitivity to atmospheric changes. However, reliable and sensitive biomarkers of exposure have
hitherto been difficult to characterise. Biospectroscopy offers a novel approach to the derivation of bio-
markers in the form of discrete molecular alterations detectable within a biochemical fingerprint. We
investigaled the application of this approach for the identification of biomarkers for pollution exposure
using the common sycamore (Acer pseudoplatanus) as a sentinel species. Attenuated total reflection
Fourier-transform infrared (ATR-FTIR) spectroscopy was used to interrogate leaf tissue collected from
three siles exposed lo different levels of vehicle exhaust emissions. Following multivariate analysis of
acquired spectra, significant biochemical alterations were detected between comparable leaves from
different sites that may constitute putative biomarkers for pollution-induced stress. These included differ-
ences in carbohydrate and nucleic acid conformations, which may be indicative of sub-lethal exposure
alterations in both the leaves of
A. pseudoplatanus exposed to ozone pollution under controlled environmental conditions and in leaves

effects. We also observed several corresponding spectral
infected with the fungal pathogen Rhytisma acerinum, indicating that some stress-induced changes are
conserved between different stress signatures. These similarities may be indicative of stress-induced reac-
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live oxygen species (ROS) generalion, although further work is needed Lo verify lhe precise identity of
infrared biomarkers and to identify those that are specific to pollution exposure. Taken together, our data
clearly demonstrate that biospectroscopy presents an effective toolkit for the utilisation of higher plants,

www.rsc.org/analyst such as A. pseudoplatanus, as sentinels of environmental pollution.
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1. Introduction

Exposure to complex mixtures of anthropogenic emissions in
the environment is currently a major concern for human
health. Air pollution from industrial and vehicular sources has
been linked with respiratory illness, cardiovascular disease,
cancer, and mortality." Although gaseous pollutants (e.g., SO,)
have been of major concern throughout the last century,”
attention has since shifted to other potentially dangerous
pollutants, notably particulate matter (PM,, and PM, 5),” nano-
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particles,” and polycyclic aromatic hydrocarbons (PAHs).”
While the adverse effects of individual agents are well-studied,
the effects of exposure to mixtures may be difficult to predict,
and thus there is an urgent need to monitor environmental
exposures in sentinel organisms.®’

The advantages of using higher plants as sentinels for
environmental pollution are well known.®” Firstly, as seden-
tary organisms, they allow easy comparison between set geo-
graphical locations. Furthermore, plant biochemistry is
fundamentally similar to that of animals in aspects relevant to
toxic exposure, including DNA organisation and repair mecha-
nisms, and antioxidant activity."” Plant cells can be exposed to
air pollutants either directly via leaf stomata, or indirectly via
root uptake of pollutants deposited in the soil. Adverse effects
on plants can be induced by a variety of air pollutants, among
which ozone (0;) is considered to be the most damaging. O
causes oxidative damage to cell components viz the formation
of reactive oxygen species (ROS),'* which are also generated
by exposure to heavy metals."® Other adverse effects of air

I'nis journal is © The Royal Society of Chemistry 2016
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pollutants on plant cells may include acidification of the intra-
cellular space by SO,,'"" and genotoxicity of nanoparticles™
and PAHs."

For a plant species to be utilised as a sentinel requires that
it is present in areas of both high and low pollution exposure,
and that it also exhibits quantifiable biomarkers for the
adverse effects of pollution. The deciduous tree Acer pseudo-
platanus (common sycamore) represents an ideal sentinel
species, due to its widespread European distribution, and
frequent occurrence in urban and rural areas. Previous
attempts to utilise A. pseudoplatanus as a sentinel have relied
on the abundance of tar spot (Rhytisma acerinum) fungal
lesions (stromata) on leaf surfaces, as the fungus was perceived
to be sensitive to SO, exposure.15 However, this has since been
refuted, due to evidence that the prevalence of the fungus in
urban areas is reduced by leaf litter clearance.'®

A range of approaches have been used for the detection of
environmental stress biomarkers in higher plants, including
chlorophyll fluorescence measurement for effects on photo-
synthetic efficiency,"”” and gas chromatography for examining
changes in leaf fatty acid composition in response to metal
exposure.”® The Tradescantia micronucleus (Trad-MCN) assay,
which uses the appearance of micronuclei in tetrad phase
pollen cells of Tradescantia spp. as a biomarker of chromo-
somal anomalies, has also been widely used to study geno-
toxicity."” There are disadvantages inherent in many of the
existing biomarker systems used in plant toxicology: (i) they
rely on a single endpoint, and do not account for the wide
range of biochemical effects that may be exerted by pollutants;
and, (ii) they may require extensive sample preparation.'®
Hence, development of informative, non-destructive, and high-
throughput approaches for the identification of robust bio-
markers for environmental stress is essential.

Biospectroscopy refers to the application of vibrational
spectroscopy techniques to address biological questions.**>**
As such, it offers a novel approach to biomarker derivation
which is both sensitive and high-throughput, and which can
be used to deduce a wide range of effects within a biochemical
‘fingerprint’.** Infrared (IR) spectroscopy relies upon the
absorption of IR at different wavelengths by the principle func-
tional groups, which constitute molecular components of cells
depending on the vibrations generated by their chemical
bonds.” Attenuated total reflection Fourier-transform infrared
(ATR-FTIR) spectroscopy employs a diamond crystal, through
which an IR beam is transmitted and penetrates a few microns
into the sample. Consequently, the reflected beam delivers an
absorbance spectrum with distinct wavenumber peaks corres-
ponding to biological molecules present including amides,
nucleic acids, and polysaccharides.*® The resulting datasets
are complex, requiring computational analyses of the spectra
in order to determine the distinguishing features between
experimental treatments.”**®> Multivariate techniques such as
principal component analysis-linear discriminant analysis
(PCA-LDA) are typically performed to achieve this.

Biochemical fingerprints derived from ATR-FTIR have
strong potential to reflect changes induced by exposure to

This journal is © The Royal Society of Chemistry 2016
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xenobiotics and therefore biospectroscopy is increasingly
being utilised in ecotoxicology, with toxic effects having been
characterised in vitro,"*” and in sentinel organisms such as
birds,*® earthworms,*’ catfish, and water spinach.’” Given the
advantages of plants as sentinels, biospectroscopy offers the
potential of a convenient plant-based monitoring system for
pollution exposure over time and space. This technique is
ideal for analysing plant tissue, as it requires little-to-no
sample preparation, allowing specimens to be collected from
the field and analysed rapidly.*"*'

Plants are exposed to a range of environmental stresses,
both abiotic and biotic, that will act together to affect their bio-
chemical fingerprint and which may confound attempts to
study pollution-induced alterations. Most notably, plant patho-
gens represent a ubiquitous biotic stress in the environment.
Pathogens of A. pseudoplatanus include the tar spot leaf fungus
(Rhytisma acerinum),’® and leaf galls induced by the mite
Artacris macrorhynchus.®* The presence of these pathogens or
the plant’s defensive response may substantially alter leaf bio-
chemistry, and therefore it is essential to assess their impacts
on the biochemical fingerprint of A. pseudoplatanus if it is to
be considered as a candidate as a sentinel species for environ-
mental pollution monitoring.

Herein, the potential of A. pseudoplatanus as a sentinel for
environmental exposure was assessed using biospectroscopy.
Specifically, the effects of different pollution scenarios on the
biochemical fingerprints of field-derived leaf samples were
examined, with the aim of identifying spectral biomarkers
associated with pollution exposure. Additionally, we examined
the effects of O, fumigation on leaves of A. pseudoplatanus
under controlled environment conditions and R. acerinum
infection on the derived biochemical fingerprints. We show
that there are key spectral differences between of
A. pseudoplatanus leaves sampled from environments with
different pollution exposures, which are indicative of plant
stress and which, importantly, could not be detected using
changes in chlorophyll fluorescence (Fv/Fm). If these altera-
tions can be established to provide definitive and robust bio-
markers of pollution-induced stress this will confirm
A. pseudoplatanus as a sentinel plant system providing an
effective approach to environmental health monitoring.

2. Materials and methods
Field sites

Three field sites were selected, representing a range of
exposure [evels to environmental pollutants (Table 1). All three
sites featured an abundance of mature A. pseudoplatanus. Site
1 comprised an area of rural woodland within the Fairfield
Nature Reserve, Lancaster (UK). The site is 1.2 km from
the nearest busy road, and is further shielded from busy roads
by rows of trees and a canal. Site 2 is an area of mixed veg-
etation [ocated immediately adjacent to a busy 6-lane highway.
Site 3 is an urban site located on a busy city centre round-
about. In addition, a fourth site (Site 4) was used to study the
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Table 1 Descriptions of the three main study sites from which
A. pseudoplatanus samples were taken for the comparison of different
pollution scenarios

Pollution
Site exposure Site description
Site 1 Rural Awoodland area in the Fairfield Nature
(reference site)  Reserve, Lancaster. The site is not
immediately exposed to pollution sources
such as busy roads. The A. pseudoplatanus
trees at the site were planted in the 1830s.
Site 2 Highway A woodland area at the edge of Lancaster
University campus, and next to a busy 6-lane
highway. This was the most densely
vegetated site, featuring a very high
abundance of A. pseudoplatanus.
Site 3 Urban A busy roundabout near Lancaster’s urban

centre, frequently used by vehicles. Several
mature A. pseudoplatanus trees were
identified at the site, including three on the
roundabout itself.

effects of R acerinum infection. This was comprised of
abundant A. pseudoplatanus vegetation in hedges bordering
a rural road only infrequently used by light road vehicles.

Sample collection and storage

A pilot study was undertaken to determine the method for
sample storage. We compared the spectral signatures of [eaves
maintained in a moist condition®" and leaves fixed in 70%
ethanol (three immersion times: 10 min, 30 min, and 60 min)
after 24 h, with the spectral signature of moist leaves on the
day of collection. Ethanol fixation induced a significant shift
in LD1 scores, which increased with immersion time, whereas
there was no significant effect of the moist condition after
24 h [see ESI Fig. S1t].

Leaves (physiological age <3 months) were removed from
mature A. pseudoplatanus trees (age unknown) by cutting the
petiole no less than 1 em from the leaf and placing them in
zip-lock bags containing 3x damp cotton wool balls to prevent
desiccation.®" For Sites 1-3, three leaves were collected from
each of five trees (15 total leaves) from low in the canopy,
approximately 1-3 m from the ground. We selected young
[eaves which fell within 5-10 em in width, and did not display
any obvious signs of foliar disease (e.g:, herbivory, tar spots) or
senescence (e.¢g., chlorosis, desiccation). After transport to the
laboratory, leaves were rinsed in reverse osmosis water to
remove insects and mites, and placed on dry paper towels to
remove excess water. Spectral acquisition followed immedi-
ately, with five spectra taken per leaf sample. The entire study
was carried out over three days, one site per day.

Chlorophyll fluorescence measurements

In situ measurements of the ratio of variable to maximal
fluorescence of photosystem IT (Fv/Fm) were taken using a
Hansatech Pocket PEA Chlorophyll fluorometer (Hansatech
Instruments, Norfolk, UK); Fv/Fm values less than 0.83 are
indicative of stress.’” Three leaves on at least five trees at each
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site were dark acclimatised for 30-40 min before Fv/Fm values
were recorded.

0; fumigation

Six cuttings of A. pseudoplatanus approximately 20 cm in
length comprising of 3-4 healthy leaves were obtained from an
additional urban site. In contrast to Site 3, this was [ocated
away from busy roads and sheltered from any potential
sources of vehicle-derived pollution by high walls. Cuttings
were incubated in 500 ml plastic bottles wrapped in alu-
minium foil to exclude light containing 250 ml of 1:1 Hoag-
land's nutrient solution® for 2 days prior to fumigation
treatments. Two cuttings each were fumigated with either O;-
free air filtered through Purafil (control) or a modulated episo-
dic ozone treatment (150 ppb or 300 ppb O;) under the same
conditions for a period of three days to simulate a summer O,
‘episode’.*! In all experiments fumigations were performed at
midday although the duration of the fumigation treatment
(approximately 6 hours into the photoperiod) varied: day-1 -
2 h, day-2 - 3 h, day-3 - 2 h. Cuttings were then incubated for a
further 1-day under the same conditions following fumigation
before analysis with ATR-FT'IR spectroscopy.

Characterisation of R. acerinum infection levels

The severity of R. acerinum infection was assessed through the
occurrence of characteristic large black lesions, called stromata
or tar spots on the adaxial leaf surface. Leaves, 7-9 cm in
width, collected from Site 4 were categorised according to the
number of tar spots present: category 1 - leaves with no
obvious tar spots (control), category 2 - leaves displaying 1-5
obvious tar spots, and Category 3 - leaves displaying >10
obvious tar spots. For each category, five leaves were taken
from different plants. For each leaf, three spectra were taken
from areas of healthy-looking tissue in close proximity to the
afflicted area. A second biotic stress, galls induced by the mite,
Artacris macrorhynchus (protruding red lesions on the adaxial
leaf surface) was also examined. In this instance, five leaves
displaying prominent galls were collected from the rural Site 1,
and were compared with leaves displaying no obvious signs of
A. macrorhynchus-induced damage taken from the same site as
a control. Three spectra were acquired from each leaf, from
areas of healthy tissue in close proximity to the affected area
or from an equivalent area in the control [eaves.

ATR-FTIR spectroscopy

Spectra were acquired from adaxial leaf surfaces using a
Bruker Tensor 27 FTIR spectrometer with Helios ATR attach-
ment (Bruker Optics Ltd, Coventry, UK), controlled using the
software ‘OPUS’. Leaf samples were placed on Low-E slides on
the sampling platform, and 1 kg of force was applied for even
contact between the crystal and the sample. In between
sample spectra, the crystal was cleaned with dH,0, and back-
ground spectra were taken to compensate for atmospheric
changes.
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Pre-processing and computational analyses

Spectral datasets were classed in Microsoft Excel, and were pro-
cessed using the 1RootLab toolbox (http://irootlab.googlecode.
com) running on MATLAB r2013a (The Maths Works Inc.,
USA). Spectra were pre-processed by cutting to the bio-finger-
print region (1800-900 ecm™"), rubberband baseline-corrected,
and vector normalised. Pre-processed spectral datasets were
analysed by principal component analysis-linear discriminant
analysis (PCA-LDA). PCA-LDA is a composite technique
whereby PCA is applied to a dataset to reduce the number of
variables, then LDA derives orthogonal variables from which
between-class variance is maximised over within-class vari-
ance.”® The PCA-LDA models were then used to derive cluster
vector plots, derived by pointing from the mean of the control
class towards the mean of each treatments class, deriving a
separate vector or ‘pseudospectrum’ for each treatment class,
representing biochemical alterations in relation to the control
(expressed as coefficient).”> For more detailed overviews of the
computational methods applied in biospectroscopy, readers
are directed to the literature.****

Statistical analyses

All statistical tests were carried out in ‘R’ version 3.2.3 (R Foun-
dation for Statistical Computing, Austria). To derive values of
statistical significance between sites, the first two linear discri-
minant (LD) scores derived from PCA-LDA were compared
using a nested linear mixed effects model fit by REML
(Residual Maximum Likelihood) using the (nlme) package
(http://CRAN.R-project.org/package-nlme), with ‘Tree’ and
‘Leaf” included as nested random factors to account for vari-
ation between individual trees and leaves. Linear mixed effects
models with ‘Leaf’ as a random factor were carried out to
assess the significance of shifts in LD scores as a function of
O, concentration or tar spot number. One-way ANOVA with
type-1 sums of squares was used to compare Fv/Fm values
between sites. A P-value of <0.05 was considered statistically
significant.

3. Results and discussion

Site location has a marked impact on the spectral signature of
A. pseudoplatanus

Spectral datasets from A. pseudoplatanus leaves derived from
Sites 1-3 were compared using multivariate analyses in order
to derive biomarkers of inter-site differences. Following
PCA-LDA transformation of pre-processed datasets, the corres-
ponding 2-D LDA scores plot (Fig. 1a) showed a degree of seg-
regation of data from the sites into three clusters, although
complete segregation was not observed. A nested linear mixed
effects model fit by REML revealed an overall significant effect
of site on LD scores (P = 0.003), with a significant difference in
overall LD scores between the urban-located Site 3 and the
rural-located Site 1 (P = 0.015). There was no significant differ-
ence in overall LD scores between Site 1 and the highway-
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Fig.1 (A) PCA-LDA scores plot in two dimensions derived from

A. pseudoplatanus leaf tissue collected from three field sites (black, Site
1; blue, Site 2; red, Site 3) characteristic of different environmental
exposures. (B) Cluster vectors plot by PCA-LDA indicating wavenumber
basis for segregation between A. pseudoplatanus leaf tissue samples
collected from three field sites. The two sites exposed to vehicular pol-
lution (blue, Site 2; red, Site 3) were compared to the rural control site
(black, Site 1), with the magnitude of the cluster vector peak or trough
proportional to the extent of biochemical alteration compared to Site 1.

located Site 2 (P = 0.158), but a highly significant difference in
LD2 scores (1’ = ().()()6').

The pseudospectra shown in the cluster vectors plot
(Fig. 1b) displayed substantial changes between sites across
the biochemical fingerprint region. Site 2 and Site 3 leaves
exhibited several common areas of segregation from Site 1
leaves, suggesting pollution-associated alterations stemming
from their different exposures to vehicle exhaust emissions.
Several alterations were [inked with specific molecular features
(Table 2). Notably, alterations in the carbohydrate region (e.g.,
1107 em™" in Site 2, 1165 cm™" in Site 3) may imply alterations
to cell wall conformation, reduced photosynthetic capacity, or
increased energy expenditure. Alterations were also observed
in the DNA/RNA region (~950 em™) at both sites, which may
suggest exposure to genotoxic agents."™® In addition, peaks
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Table 2 ATR-FTIR spectroscopy distinguishing wavenumbers as shown
in cluster vectors plot for A. pseudoplatanus leaf tissue collected from
three field sites characteristic of different environmental exposures to
vehicular pollution. For Site 2 and Site 3 leaves, the most important
wavenumbers responsible for segregation from control (Site 1) leaves
are shown, along with their tentative chemical assignments

Wavenumber Reference
Site  (em™) Tentative assignment(s) (s)
Site2 1736 Lipid; fatty acid esters (1)

1647 Amide I; pectin (1), (3)

1574 Amide T

1516" Amide II (1)

1447° Protein; 5(CH,) of (1), (2)

sesquiterpenes
1412 Protein
1346 COO-symmetric stretching 1)
vibrations of fatty acids and
amino acid

1242¢ Asymmetric phosphate; amide (1)
111 (C-N stretching of a-helical
proteins)

11614 Carbohydrate; stretching (1), (3)

vibrations ol hydrogen-bonding
C-OH groups (found in serine,
threonine and tyrosine residues
of cellular proteins}); cellulose

1107¢ Symmetric phosphate; ¥(CO), (1)

¥(CC) ring (polysaccharides,
pectin)

10384 ¥(CC) skeletal cis conformation, (1), (2)

v(CH,0H); Galactany(CO)
stretching coupled with C-O
bending;

984 Protein phosphorylation; (1), (2)

®(CH,) of monoterpenes

949“ Protein phosphorylation (1), (3)
Site3 1771 Lipid; fatty acid esters (1)

732 Lipid; fatty acid esters; (1), (3)
hemicellulose

1701 Lipid; fatty acid esters (1)

1632 Amide T; pectin (1), (3)

1585 Amide I 1)

1516” Amide TT (1)

1454° Protein; 5(CH,) of tetraterpenes (1), (2)

14167 Protein (1)

1369 COO-symmetric stretching (1), (3)

vibrations of fatty acids and
amino acid; dgym(CH;)
sesquiterpenes

1308 Amide II1 (6}

1246° Amide TIT (C-N stretching of (1)

a-helical proteins)

1207 Asymmetric phosphate (1)

1165" Carbohydrate; cellulose (1), (3)

1103¢ Symmetric phosphate (1)

1042° Symmetric PO, stretching in (1)

RNA and DNA;
953 Protein phosphorylation 1)

v: stretching, &: deformation. “ Loose correlation with other polluted
site. ”Exact correlation with other polluted site. References: (1)
Movasaghi et al., 2008;*” (2) Schulz and Baranska, 2007;*® (3) Stuart,
2004.%

associated with terpenes’® were discovered at both sites
(1447 em™ in Site 2 leaves, 1369 and 1454 cm™" in Site 3
leaves). Several terpenes, particularly carotenoids are known to
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function as scavengers of ROS,” implying that leaves from pol-
luted sites may have been exposed to higher ROS levels, poss-
ibly as a result of increased pollution exposure. Segregation
from the rural control site (Site 1) was markedly greater for
Site 3 leaves, implying a stronger effect of the urban exposure
(Site 3) on leaf biochemistry than highway exposure (Site 2).
Interestingly, there was no significant difference using one-way
ANOVA (see ESI Table S17) between the average Fv/Fm values
from the three field sites (P = 0.287), indicating no discernible
differences in the levels of stress experienced by plants at the
different sites using this technique.

0; fumigation induces dose-dependent change in the spectral
signature

Spectral datasets from Os-free air- and O;-fumigated (150 ppb
and 300 ppb O;) A. pseudoplatanus leaves were compared using
multivariate analyses in order to derive biomarkers of con-
trolled O3 exposure. Following PCA-LDA transformation of pre-
processed datasets, the three treatments segregated completely
into distinct clusters (Fig. 2a). Segregation appeared to be pre-
dominantly in LD1, in concentration-dependent manner.
A linear mixed effects model fit by REML revealed a significant
effect of O; on LD1 values (P = 0.003). The cluster vectors plot
(Fig. 2b) revealed substantial spectral segregation between the
0, treatments and the control O;-free air treatment across the
biochemical fingerprint region. Similar changes were observed
in both O; treatments and were generally more substantial in
300 ppb Oz-fumigated leaves this being indicative of a concen-
tration-dependent response to O;. Alterations were detected
in several molecules (Table 3), and were highly prominent
in lipid, amides, and proteins (1701, 1520, and 1458 ecm™*,
respectively) suggesting possible damage to cell membranes
and protein structures resulting from the generation of ROS by
0. This is consistent with oxidative damage as the primary
mode of O; toxicity in plants.'*

Biotic stresses induce similar changes in the spectral signature
Spectral  datasets from healthy (control) leaves of
A.  pseudoplatanus and those exhibiting two levels of
R. acerinum infection (1-5 spots, and >10 spots) were com-
pared using multivariate analyses. Following PCA-LDA trans-
formation of pre-processed datasets, the three categories
segregated completely into distinct clusters (Fig. 3a). As with
0, treatment, segregation was predominantly in LD1, in a
dose-dependent manner. A linear mixed effects model fit by
REML revealed a significant effect of R. acerinum infection on
LD1 values (P < 0.001). The cluster vectors plot (Fig. 3b) reveals
substantial spectral segregation between the two infection
levels and the uninfected control leaves across the biochemical
fingerprint region. Strong alterations were detected in several
molecules (Table 3), including amides, lipids, and proteins.
Alterations to lipid may reflect ROS damage to cell mem-
branes, which are generated in defence against pathogens via
the oxidative burst mechanism.*® In this case, ROS may be
employed by the immune system as executioners of either the
pathogen or the host cell.’® Interestingly, leaf galls also
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Fig. 2 (A) Box plot of PCA-LDA scores plot in one dimension derived

from A. pseudoplatanus leaf tissue fumigated with either Oz-free air
(black) or O3z (blue, 150 ppb; red, 300 ppb) for seven hours over three
days at two treatment concentrations, in addition to a control. (B)
Cluster vectors plot by PCA-LDA indicating wavenumber basis for segre-
gation following fumigation of A. pseudoplatanus leaf tissue with Oz.
Each treatment (blue, 150 ppb; red, 300 ppb) was compared to the
control (black, Osz-free air). The magnitude of the cluster vector peak or
trough is proportional to the extent of biochemical alteration compared
to the air control.

induced a highly significant effect on LD1 values (Welch two-
sample 7-test, P < 0.001), and the signature of alterations was
almost identical to R. acerinum across the biochemical finger-
print region (see ESI Fig. S2, Table $27), implying that the pat-
terns observed are representative of a non-specific immune
response.

Conserved changes in spectral signature between sampling
sites, O, and biotic stresses

While it is important to note that our proposed mechanistic
explanations for spectral alterations are largely speculative,
conserved changes between different sites and stressors imply
similar modes of action. The pseudospectra of the leaves
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Table 3 ATR-FTIR spectroscopy distinguishing wavenumbers as shown
in cluster vectors plot for A. pseudoplatanus leaf tissue exposed to
abiotic (O3 fumigation) and biotic stressors (tar spot infection). The most
important wavenumbers responsible for segregation from the respective

control leaves are shown, along with their tentative chemical
assighments
Wavenumber
Stressor  (em ') Tentative assignment(s) Reference(s)
Ozone 1759 Lipid 1)
1755 Lipid (1)
701 Lipid; bases; fatty acid (1)
esters
1651 Amide T; pectin (1), (3)
1597 Amide I; C—N, NH, (1)
adenine
1589 Amide I; ring C-C stretch (1)
of phenyl
1558 Amide IT; ring base 1)
1520 Amide T1 (1)
1458 Proteins; 6,,CHz (1)
1373 COO-symmetric stretching (1)
vibrations of fatty acids and
amino acid
1366 COO-symmetric stretching (1)
vibrations of fatty acids and
amino acid
1281 Amide II1 (1)
1227 Asymmetric phosphale; 1), (2)
V,5(C-0-C) of geranyl
acetate (acyclic
monoterpene)
1099 Symmetric phosphate (1)
1169 Carbohydrate 1)
1096 Symmetric phosphate (1)
976 Protein phosphorylation (1)
Tar spot 1724 Lipid; fatty acid esters 1)
1701 Lipid; [alty acid esters 1)
1686 Amide I 1)
1632 Amide I; C—C uracil, C=0; (1), (3)
pectin
2 Amide T 1)
1597 Amide T; C=N, NI, of (1)
adenine
1593 Amide I 1)
1539 Amide 11 (1)
1458 Proteins; §,CH; (1)
1373 COO-symmetric stretching (1)
vibrations of fatty acids and
amino acid
1308 Amide 111 1)
1304 Amide I11 1)
1246 Amide I11; PO, asymmetric (1)
1107 Symmetric phosphate; (1)
y(CO), ¥(CC) ring
(polysaccharides, pectin)
1011 Glycogen; CHy o out-of- (1)
plane bending and C,—C,
torsion

v: stretching, §: deformation. References: (1) Movasaghi et al., 2008;*
(2) Schulz and Baranska, 2007;°¢ (3) Stuart, 2004.%

exposed to the model abiotic and biotic stresses (O3 and patho-
gen-infection, respectively) appear to be strikingly similar, par-
ticularly in the upper half of the spectrum (lipid, amide and
protein regions). Many of these common elements also appear
in the comparison between sites exposed to different vehicular
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Figure 51 (A) One-D PCA-LDA scores plot derived from 4. pseudoplatanus leaf tissue under
different fixation conditions. Leaves (5=) were fixed in 70% ethanol for 10, 30 or 60 min, left to dry

for 2 h and wrapped in aluminium foil. A further 5= leaves were not fixed and instead stored in zip-
lock bags containing damp cotton wool. Spectra were acquired from fixed leaves =24 h after
collection. Spectra were acquired from damp leaves on the day of collection, and =24 h after
collection. Spectra ( 3=) were acquired per leaf. The damp condition had no significant effect on LD1
after 24 h, but ethanol at all three immersion times had a highly significant effect on LDI as
determined by one-way ANOVA (P <0.001). (B) Cluster vectors plot by PCA-LDA indicating
wavenumber basis for segregation after fixation of 4. pseudoplatanus leaf tissue with 70% ethanol,
plus non-fixed leaves, 24 h after collection. Each class is compared with non-fixed leaves on the day

of collection. The magnitude of the cluster vector peak or trough is proportional to the extent of
biochemical alteration compared to non-fixed leaves on the day of collection.
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Table S1 Average Fv/Fm readings taken from the leaves of mature 4. pseudoplatanus
trees at the three main field sites. Student’s T-tests revealed no significant difference

between polluted sites and Reference.

Site Average Fv/Fm Number of readings Significance (vs.
ref. site)

Site 1 0.81 20

Site 2 0.82 25 N/S

Site 3 0.81 18 N/S

(N/S) No significance (p = 0.05)

53

290



A) 0 A"
A4

00 0o @O

-0.15 -0.14 -0.13 -0.12 -0.11 -0.1 -0.09

LDI
| 0 Background control © Galls
-3 Cluster Vectors
xlo T T T v T T T T

15t 1
_10¢
3
&
3 s
2
k)
K A

" ' WY

-5k

1800 1700 1600 1500 1400 1300 1200 1100 1000 900
Wavenumber (cm” l)
Figure S2 (A) One-D PCA-LDA scores plot of spectra derived from A. pseudoplatanus leaf tissue
afflicted by galls of the mite Artacris macrorhynchus, compared to the background control leaf
tissue (displaying no obvious affliction. Segregation in LD1 space was highly significant (P <0.001)
as determined by Student’s T-test. (B) Cluster vectors plot by PCA-LDA indicating wavenumber
basis for segregation in A. pseudoplatanus leaf tissue aftlicted by galls, compared with the
background control leaf tissue (origin).

Table S2 Top six discriminating wavenumbers (in descending order) identified by cluster vectors,
associated with differences in A. pseudoplatanus leaves afflicted by leaf galls of the mite Artacris
macrorhynchus, in relation to background control leaves. Tentative chemical assignments from
Movasaghi er al (2008), Schulz and Baranska (2006), and Stuart (2004).

Wavenumber (cm™)  Tentative assignment(s) Response
(relative B.C))
1701 Lipid; fatty acid esters Increase
1585 Amide | Decline
1520 Amude 11 Increase
1632 Amide I; Pectin Decline
1458 Protein; 8,,CH;s Increase
1169 Carbohydrate Decline
S4
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Gold nanoparticles as a substrate in bio-analytical
near-infrared surface-enhanced Raman
spectroscopy+t

Holly J. Butler,? Simon W. Fogarty,>® Jemma G. Kerns,© Pierre L. Martin-Hirsch,?
Nigel J. Fullwood*® and Francis L. Martin*2

As biospectroscopy techniques continue to be developed for screening or diagnosis within a point-of-
care setting, an important development for this field will be high-throughput optimization. For many of
these techniques, it is therefore necessary to adapt and develop paramelers o generate a robust yet
simple approach delivering high-quality spectra from biological samples. Specifically, this is important for
surface-enhanced Raman spectroscopy (SERS) wherein there are multiple variables that can be optimised
Lo achieve an enhancement of the Raman signal from a sample. One hypothesis is that “large” diameter
(>100 nm) gold nanoparticles provide a greater enhancement at near-infrared (NIR) and infrared (IR)
wavelengths than those <100 nm in diameter. Herein, we examine this notion using examples in which
SERS spectra were acquired from MCF-7 breast cancer cells incubated with 150 nm gold nanoparticles. It
was found that 150 nm gold nanoparticles are an excellent material for NIR/IR SERS. Larger gold nanopar-
ticles may better satisfy the theoretical restraints for SERS enhancement at NIR/IR wavelengths compared
to smaller nanoparticles. Also, larger nanoparticles or their aggregates are more readily observed via optical
microscopy (and especially electron microscopy) compared to smaller ones. This allows rapid and straight-
forward identification of target areas containing a high concentration of nanoparticles and facilitating SERS
spectral acquisition. To some extent, these observations appear to extend to biofluids such as blood plasma
or (especially) serum; SERS spectra of such biological samples often exhibit a low signal-to-noise ratio in
the absence of nanoparticles. With protein-rich biofluids such as serum, a dramatic SERS effect can be
observed; although this might facilitate improved spectral biomarker identification in the future, it may not
always improve classification between control vs. cancer. Thus, use of “large” gold nanoparticles are a good
starting point in order o derive informative NIR/IR SERS analysis of biological samples.

bioanalysis as biological molecules absorb radiation in these
regions, unlike many non-biological samples.

Biospectroscopy techniques are gaining more widespread
usage in the bio-analytical field due to their ability to interro-
gate samples across a wide range of biomolecules, providing
detailed and specific (sub-)cellular information. The specific
vibrational nature of chemical bonds facilitates the acquisition
of spectra in the “biochemical fingerprint” region. Near-infra-
red (NIR) and infrared (IR) spectroscopies are beneficial for

“Centre for Bioph ics, Lancaster Envir Centre, Lancaster University,
Bailrigg, Lancaster LA1 4YQ, UK. E-mail: f. martin@lancaster.ac.uk;

Tel: +44 (0)1524 510206

EDivision of Bi dical and Life Faculty of Health and Medicine, Lancaster
University, UK. E-mail: n.fullwood@lancaster.ac.uk; Tel: +44 (0)1524 593474
‘Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, UK
tElectronic supplementary information (ESI) available. See DOI: 10.1039/
c4an01899k

3090 | Analyst, 2015, 140, 3090-3097

Raman spectroscopy is a technique which has been
employed extensively in the analysis of a variety of different
biological samples,' including different tissue types,” individ-
ual cells,’ isolated cell components® and biofluids.” A key
advantage of Raman over other IR spectroscopy techniques,
such as Fourier-transform IR (FTIR), is the lack of inter-
ference from water. An absence of water interference is particu-
larly advantageous for live-cell studies® and for use in vivo.*
Raman spectroscopy measures inelastic scattering caused
by energy transfer between incident excitation photons
and chemical bonds in a sample, which result in a change
in the vibrational mode of the chemical bond and the
energy, and thus the wavelength, of the scattered photon.
This shift in wavelength is specific to particular molecular
bonds, and readily interpreted from the output Raman
spectrum.

This journal is © The Royal Society of Chemistry 2015
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However, there are significant limitations in the current
usage of Raman scattering for biological purposes. It is much
weaker than other scattering techniques, such as Rayleigh scat-
tering or fluorescence, and thus biological samples which are
typically weak Raman scatterers, may not give rise to an infor-
mation-rich spectrum. The influence of fluorescence on Raman
spectra is also problematic and can confound the biochemical
signature; this influence can be reduced by using lasers at IR
wavelengths. Additionally, cellular material is typically quite
fragile and thus samples can be easily damaged by higher laser
energies, introducing spectral artefacts into obtained data.

In order to overcome the limitations of conventional
Raman scattering, it is possible to use surface-enhanced
Raman spectroscopy (SERS). This is a phenomenon whereby
the Raman signal of a target sample is greatly enhanced when
placed into close proximity to a metal nanostructure.”* The
nanoscale roughness necessary for SERS is present in many
different types of metal nanostructures, including roughened
electrodes, metal films and nanoparticles. In recent years, with
the wide-scale production of metal nanoparticles, more novel
forms of nanostructures have been identified as capable of
generating a SERS effect. Nanostructure design for SERS experi-
ments is important as the enhancement varies. The level of
enhancement has been shown to reach up to 10" times allow-
ing the potential of SERS in single molecule detection.”"”

Nanoparticles potentially have a myriad of uses for SERS
being able to specifically label sub-cellular regions both on the
cell surface and within the intracellular environment.”” The
dimensions of nanoparticles allow high localization of the
SERS enhancement effect, permitting interrogation of a
sample at the specific sub-cellular regions labelled."* However,
the degree of enhancement is dependent upon the physical
parameters of the nanoparticles used and how they interact
with the chosen excitation wavelength. Therefore, not all nano-
particle types will facilitate a large enhancement effect from
the NIR or IR excitation wavelengths commonly used in bio-
analysis. This means that optimization of the nanoparticle
structure is required to gain sufficient enhancement from
samples at these specific wavelengths. There are many influen-
tial factors including size, shape and composition that need to
be considered for optimization of nanoparticle structure for
different experimental Raman parameters;*>'® these have
been elegantly represented previously.'”"**

Optimal experimental parameters are dependent upon the
sample, such as tissue type, individual cells or isolated cell
components, e.g., nuclei. Additionally, a particular analytical
target, such as a specific protein target, may require specific
labelling of metal nanoparticles to the target location, such as
antibody binding.'” However, there are many samples with
unknown targets for which the above labelling parameters are
not relevant, e.g., biofluids such as blood samples. Non-
specific labelling of metal nanoparticles has been demon-
strated using cationic gold labeling.”® Therefore, it is possible
to use nanoparticles without any type of targeting molecules
and to rely upon spontaneous associations of nanoparticles to
biomolecules within/on the sample.

This journal is © The Royal Society of Chemistry 2015
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Many studies have used gold and silver nanoparticles that
are 10 to 100 nm in diameter for SERS; however, theoretically
these small gold and silver nanoparticles may not be optimal
for use for NIR/IR SERS as their resonance wavelengths are
within the visible or ultraviolet regions.** It is important to
consider that different metals have distinct responses under
NIR/IR excitation. Gold and silver are good nanoparticle
materials because they are unreactive and stable in solution
compared to other metal nanoparticle types. Furthermore,
they are easy to acquire, either commercially or through chemi-
cal preparation.”*** There is a need to expand on SERS theory
in order to find optimized metal nanostructures as SERS sub-
strates for these excitation wavelengths. It is important to note
that small nanoparticles have been shown experimentally to
provide surface enhancement at IR wavelengths.**

An increase in the diameter of gold or silver nanostructures
leads to a red shift in the resonance excitation wavelength,
therefore moving the resonance wavelength towards the NIR/IR
region.”’ By increasing the size of the nanoparticles beyond
the electrostatic approximation (typically a diameter >100 nm),
more parameters become relevant, changing how the nanopar-
ticle reacts with the incident excitation light.**"*” This has led
to the theory that increasing the diameter of the metal nano-
particles used may be preferential for biological NIR SERS,
thus increasing its potential as a novel diagnostic tool.

Routine point-of-care bioanalysis requires a simple but
robust sample preparation procedure. In this study, we
examine whether SERS using 150 nm vs. 40 nm gold nanopar-
ticles could be applied robustly yet simply for bioanalysis. To
this end, we examine if large gold nanoparticles (150 nm in
diameter) give a strong SERS signal from MCF-7 cell samples.
Secondly, we investigate the potential of non-specific labelling
of nanoparticles (not attached to any targeting ligands) for the
development of a strong SERS signal in samples without
known or relevant targets for labelling, e.g., biofluids. Such a
protocol would be applicable for routine cancer screening or
diagnostics.

Experimental approach
Gold nanoparticles

Gold nanoparticles [150 (designated “large”) and 40 nm (desig-
nated “small”)] were obtained from British Biocell Inter-
national (UK) at a stock concentration containing 2.9 x 107"
moles of gold per litre.

MCEF-7 cell analysis

MCF-7 cells were cultured in Dulbecco’s Modified Eagle
Medium (DMEM) (Lonza) with added foetal bovine serum
(FBS) (Lonza) and penicillin/streptomycin mixture (10%). Cells
were seeded in T25 flasks and cultured at 37 °C in 5% CO, for
24 h. Once confluent, cells were disaggregated from each flask
using trypsinisation. They were then fixed with 70% ethanol
and 400 pl cell aliquots were placed on MIRR IR Low-E slides
(Kevley Technologies, USA) and allowed to air-dry overnight.

Analyst. 2015, 140, 3090- 3097 | 3091
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Fig. 1 Schematic detailing the NIR SERS of sample preparations; (A) cellular sample; and, (B) biofluid sample.

Nanoparticle solution (400 pl of 150 nm) was then applied to
the dried cells and slides were again left to air-dry, before
being placed in a desiccator (Fig. 1A).

Raman spectra were acquired using an InVia Raman micro-
scope (Renishaw ple, Gloucestershire, UK) equipped with a
100 mW 785 nm excitation laser, which was calibrated to
520.5 cm ™" using a silicon calibration source. Spectral maps of
MCF-7 cells were acquired in a step-wise manner from the
target area at 1 um step sizes (Fig. 2). Spectra were acquired at
0.1% laser power at 50x magnification for 1 second and 1
accumulation. Analysis of an MCF-7 cell clump was acquired
using StreamLine™ Raman analysis (Fig. 3) with an InVia
Raman microscope equipped with a 150 mW 785 nm exci-
tation [aser, an exposure time of 10 seconds and 1 accumu-
lation. Laser powers of 0.05% (0.075 mW) and 0.1% (0.15 mW)

at source were used.
n \

Fig. 2 Fixed MCF-7 cells on MIRR IR Low-E glass slides with 150 nm
gold nanoparticles subsequently added. A light micrograph image in (A)
shows labelling of MCF-7 cell with 150 nm nanoparticles (dark regions),
which co-localize with areas of high Raman signal intensity in (B) (red
areas). Scale bar = 10 pm.

Intensi

3092 | Analyst, 2015, 140, 5090-5097

Post-SERS analysis, slides on which cells were deposited
were processed for scanning electron microscopy (SEM)
(Fig. 4). This involved mounting the slides onto aluminium
stubs and gold-coating in a 150A Edwards sputter coater
before examination at 15 KV in a JEOL 5600 digital scanning
electron microscope.

X

w

=

=
Z
=
S

p-3 5

b

s

Fig. 3 The presence of large nanoparticles allows analysis of large
target areas rapidly using StreamLine™ Raman. A large cell clump seen
by light microscopy {(A) was analysed to quickly give false colour image
maps; (B + D) = intensity at 1295 cm * (CH, deformations); and, (C + E)
= signal to baseline at 1194-1228 cm * (Amide 111).3° Areas of high inten-
sity (red) appear to correspond to areas of high nanoparticle localisation.
Also, by increasing laser power, regions of relevant high SERS expression
become easier to determine (B + C = 0.05% laser power; D + E = 0.1%
laser power). Scale bar = 20 pm.

I'his journal is © The Royal Socety of Cnemistry 2015
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Fig. 4 Scanning electron micrographs of the gold nanoparticles on the
surface of the MCF-7 cells. (A) Shows an aggregated clump of 40 nm
nanoparticles (red arrows); (B) shows an aggregated clump of 40 nm
nanoparticles {red arrow) with a single 40 nm nanoparticle adjacent to it
(green arrow); (C) shows a single 150 nm nanoparticle on the cell
surface (green arrow); and, (D) shows at least two aggregated clumps of
nanoparticles (red arrows) as well as a single isolated 150 nm nanoparti-
cle (green arrow).

Blood plasma and serum analysis

Samples were obtained from the Genitourinary Tissue Biobank
at Lancashire Teaching Hospitals NHS Foundation Trust

A

View Article Online

Paper

(Preston, UK) with ethical approval [Research and Ethics Com-
mittee (REC) approval no.: 10/H0308/75]. From age-matched
cohorts of patients (n = 5 endometrial cancer, n = 5 non-cancer
control), plasma and serum samples were taken from storage
at —80 °C and thawed in a water bath at 37 °C for approxi-
mately 1 h. In order to compare the enhancement effect of
nanoparticles at two distinct sizes, 200 ul aliquots of blood
plasma or serum were mixed with 200 pl of stock 150 nm or
40 nm gold nanoparticle solution (Fig. 1B). The resultant
mixture (total volume 400 pl) was applied to MIRR IR Low-E
slides and left to air-dry. Control slides without nanoparticles
were also prepared using 200 pl of blood plasma or serum
sample and allowed to air-dry. Blood SERS spectra were taken
at 10% laser power (2.4 mW at sample) at 50x magnification
across the 500-2000 cm™" spectral range for 10 seconds and 1
accumulation; a minimum of 25 spectra per sample slide were
acquired. These air-dried samples could be examined under
optical brightfield microscopy to demonstrate the presence or
absence of nanoparticles (Fig. 5A). For transmission electron
microscopy (TEM), gold nanoparticles (40 or 150 nm) were
mixed 50:50 with blood serum and then 10 pl were pipetted
onto carbon-/formvar-coated electron microscope grids (Agar
Scientific, UK), blotted and allowed to dry before examination
with a 10-10 JEOL TEM.

Computational analysis was performed using MATLAB
{Mathworks, Natick, USA) with an in-house developed toolkit
(https:/code.google.com/p/irootlab/), unless stated otherwise.*®

The resultant Raman spectra were cut to 450-1700 cm™" wave-
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Influence of nanoparticles on SERS effect in blood plasma or serum samples. (A) Optical brightfield microscopy images of blood plasma

samples with or without large (150 nm) gold nanoparticles. (B) Raman spectra (class means) of blood plasma (A, C, E) or serum samples (B, D, F) with
or without gold nanoparticles following polynomial baseline correction to show raw enhancement (A, B), polynomial baseline correction followed
by vector normalisation (C, D) and 1% order differentiation followed by vector normalisation (E, F).
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Fig. 6 Classification of control vs. cancer Raman spectra following principal component analysis-linear discriminant analysis (PCA-LDA). Following
1% order differentiation followed by vector normalisation, each spectrum is reduced to a single point in a PCA-LDA scores plot. For each class, the

horizontal line represents the class mean.

Table 1 Classification (control vs. cancer) of blood plasma or serum
samples with or without SERS?

Class comparison P-value Significant
Plasma

Control vs. cancer <0.001 Yes
Control vs. cancer (40 nm) <0.001 Yes
Control vs. cancer (150 nm) >0.05 No

Serum

Conltrol vs. cancer >0.05 No
Conltrol vs. cancer (40 nm) <0.001 Yes
Control vs. cancer (150 nm) >0.05 No

“Following acquisition of Raman spectra, one-way analysis of variance
(ANOVA) with Bonferroni post-hoc tests were conducted on class means
per sample to determine P-values for separation between cancer vs.
non-cancer.

numbers inclusive of spectral peaks present in the sample and
wavelet de-noised. In order to display raw spectral enhance-
ment, spectra were polynomial baseline corrected maintaining
Raman intensity units (counts) (Fig. 5B-A, and B-B). For compu-
tational analysis, spectra were pre-processed using 1% order
differentiation followed by vector normalisation. Cross-validated
principal component analysis (PCA) with optimised principal
components (PC) factors followed by linear discriminant analy-
sis (LDA) was conducted in order to discriminate between
cancer vs. non-cancer patients (Fig. 6). Graphs were generated
in GraphPad Prism 4.0 software (GraphPad Software Inc, CA,
USA) and one-way analysis of variance (ANOVA) with Bonferroni
post-hoc tests was conducted to determine P-values for separ-
ation between cancer vs. non-cancer (Table 1).

Results and discussion

The potential for 150 nm gold nanoparticles to generate good
SERS enhancement is demonstrated; these larger nanoparti-
cles allow for ready visualisation using optical microscopy
(Fig. 2A). Fig. 2 shows an isolated MCF-7 cell labelled with

3094 | Analyst, 2015, 140, 30905097

150 nm nanoparticles, which clearly demonstrates that regions
of high Raman signal co-localize with the presence of the
nanoparticles. Also, in Fig. 2B the signal appears to be highly
localized to the regions surrounding the nanoparticles rather
than being spread across the whole of the cell surface, support-
ing theoretical explanations of the SERS effect. As the cells
were fixed prior to nanoparticles being added, one would
expect that they would be adhered to the outer cell surface
rather than having penetrated into the intracellular environ-
ment; therefore, the enhancement will be predominantly from
the cell membrane nearest the nanoparticles. Post-SERS analy-
sis using SEM (Fig. 4) shows that this is clearly the case. The
nanoparticles adhere to the surface either as single entities or
in aggregates. Compared to the smaller (40 nm) nanoparticles
(Fig. 4A and B), the larger (150 nm) nanoparticles are much
more readily detectable.

In Fig. 3, the application of rapid Raman scanning is tested
on similar MCF-7 cell samples to those analysed in Fig. 2. Here,
due to the capability of the StreamLine™ system to rapidly scan
across a sample, a large clump of cells with 150 nm nanoparticle
coverage was chosen for analysis. In the light microscope image
of the sample (Fig. 3A), aggregates of nanoparticles this time
appear as white spots across the cell surfaces. In false-colour
image maps (Fig. 3B and D), areas of high nanoparticle
expression show enhancement of the Raman signal. Also, Fig. 3C
and E show that the enhancement is not just an increase in
background signal but that relevant biological Raman signatures
are present, calculated from the high signal-to-baseline intensity.
These images show that, even despite the limiting factors of very
rapid acquisition time and low laser power, enhanced biological
spectra can be generated from large samples quickly using
“large” nanoparticles. This allows for the potential of rapid SERS
analysis of large tissue sections for diagnostics. Tissue sections
parallel to conventional H&E staining may be mapped using
SERS to facilitate high-throughput diagnosis.

The target area was analysed at two different laser powers,
0.05% (0.075 mW) and 0.1% (0.15 mW) in order to assess the
sample with different laser exposures. It is more desirable to
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have very low laser powers to demonstrate the effectiveness of
the SERS enhancement process. Previous studies have used
similar laser powers to generate large signal enhancements
from SERS samples.””*" As the laser power is increased, it
appears that areas of SERS expression became more
evident with greater spatial resolution, and can still be
clearly defined from those without SERS enhancement. Another
advantage of large nanoparticles is that they can be observed
optically (Fig. 24, 3A and 5A), where they appear as black or
white dots. The ability to see small aggregates of nanoparticles
or individual nanoparticles allows areas where they are abun-
dant to be manually targeted for analysis. This leads to highly-
enhanced spectra being acquired more easily from a sample.

Fig. 5B shows the analysis of blood plasma or serum
samples with or without SERS in order to investigate its poten-
tial to differentiate between control vs. endometrial cancer
samples. The search for blood-based cancer biomarkers is a
very important area for bioanalysis and a novel use for biospec-
troscopy. Previous studies have investigated the possibility of
biospectroscopy as a blood-based diagnostic tool.*
Fig. 5B-A and B-B show that either 40 nm or 150 nm nanoparti-
cles generate a SERS effect, with the larger nanoparticles
giving rise to the more pronounced enhancement in the
protein-rich serum biofluid. Marked variation in the level of
SERS effect even in the biofluids tested was noted (see ESI
Fig. $1-83%). As one would expect, when these spectra are nor-
malised the SERS effect is less apparent (Fig. 5B-C and B-D);
however, surprisingly many of the main peak intensities are
higher in control compared to cancer. The ready observation
of a SERS effect in such biofluids lends promise towards deriv-
ing and identifying novel spectrochemical biomarkers.
However, the immediate objective of biospectroscopy is likely
to be towards -classification and diagnosis/screening of
disease. To facilitate this, the Raman spectra were pre-
processed using 1% order differentiation followed by vector
normalization prior to classification using PCA-LDA. Interest-
ingly here, the use of smaller nanoparticles appears to give the
best classification in both blood plasma and serum whereas
the application of larger nanoparticles resulted in no between-
class significance (Fig. 6). One explanation could be that aggre-
gation of nanoparticles, even smaller ones, in a biofluid may
be sufficient to give rise to an optimal SERS effect. Following
TEM of 150 nm nanoparticles post-mixing with serum, it is
noted that they form clusters, dimers and singlets (Fig. 7A). In
this instance, the 150 nm nanoparticles in the clusters are in
contact with each other and there is some variation in their
shape; one is clearly pentagonal rather than spherical. In the
case of 40 nm nanoparticles after mixing with serum, it is also
observed that they form clusters with what are probably
protein clumps (Fig. 7C). There are instances of the nanoparti-
cles being in small groups of two to four, which are in contact.
After mixing with serum, TEM shows 150 nm nanoparticles
associated with what are probably serum proteins (Fig. 7B).
Likewise, TEM shows 40 nm nanoparticles after mixing with
serumy; again, they appear to be associated with what are prob-
ably proteins (Fig. 7D).
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Fig. 7 Transmission electron micrographs of the gold nanoparticles
following mixing with blood serum. (A) Shows 150 nm nanoparti-
cles mixed with serum; (B) shows 40 nm nanoparticles mixed with
serum; (C) shows 150 nm nanoparticles mixed with serum; and, (D)
shows 40 nm mixed with serum. Scale bar = 500 nm (A + C) or 200 nm
(B + D).

An important point to make for the use of nanoparticles for
larger studies, such as those for diagnostic development of
NIR-SERS, is that the preparation process can be made incred-
ibly rapid. Coupled with the rapid acquisition of SERS spectra, it
is possible to quickly analyse multiple samples to potentially
high sensitivity rates. The preparation is simple, allowing it to be
utilized without specialized expertise. Whilst nanoparticles are
suitable substrates, they do have some limitations for biological
NIR-SERS. They are not very amenable to live-cell imaging due to
the difficulty of cells to endocytose large nanoparticles through
simple incubation.*® Approaches such as electroporation may
facilitate this but this may lead to artefacts affecting any resul-
tant spectra, distorting their reflection of underlying cellular
biochemical structure. Through investigating differing nano-
structures,”>* other sensitive NIR or IR SERS nanostructures
can be elucidated for use in bioanalytical research.’® Gold nano-
particles appear to be an optimal substrate for use in NIR or IR
SERS. Ready enhancement of Raman spectra coupled with the
rapid sample preparation and analysis increase the utility of
large nanoparticles for biological NIR-SERS. This methodology
greatly enhances the applicability of SERS as a high-throughput
technology for disease diagnosis.
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The substantial cost of substrates is an enormous obstacle in the
successful translation of biospectroscopy (IR or Raman} into routine
clinical/laboratory practice (screening or diagnosis). As a cheap and
versatile substrate, we compared the performance of readily available
aluminium {Al} foil with low-E, Au-coated and glass slides for cyto-
logical and histological specimen analysis by attenuated total reflec-
tion Fourier-transform infrared {ATR-FTIR), transflection FTIR or
Raman spectroscopy. The low and almost featureless background
signal of Al foil enables the acquisition of IR or Raman spectra without
substrate interference or sacrificing important fingerprint biochemical
information of the specimen, even for very thin samples with thick-
nesses down to 2 um. Al foil is shown to perform as well as, if not
better than, low-E or Au-coated slide, irrespective of its relatively
rough surface. Although transmission FTIR is not possible on Al foil,
this work demonstrates Al foil is an inexpensive, readily available and
versatile substrate suitable for ATR-FTIR, transflection FTIR or Raman
spectrochemical measurements of diverse biological specimens. The
features of Al foil demonstrated here could promote a transition
towards accessible substrates that can be readily implemented in
either research or clinical settings.

Introduction

Vibrational spectroscopies including infrared (IR) or Raman
have become highly regarded techniques for biological/
biomedical applications through many proof-of-concept
studies. Due to their fingerprinting capability, they could play
a significant role in histopathology, cytology, targeting biopsies,
determining surgical margins, treatment, monitoring and drug
studies.*™* However, successful translation and implementa-
tion of such techniques into routine clinical or laboratory
practice has been slow, as recurrent costs of substrates repre-
sent a significant challenge.
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Many proof-of-concept studies have been conducted under
optimal experimental conditions, using spectral-optimized but
costly substrates to minimize substrate interference and maxi-
mize signal.*>*® In transmission Fourier-transform IR (FTIR)
measurements, IR transparent materials including CaF,, BaF,
and ZnSe slides are commonly used,"*" but have the disad-
vantages that they are both expensive and fragile, and thus
unsuitable for routine applications. Transflection FTIR and
attenuated total reflection (ATR)-FTIR configurations using
highly IR reflective low-E or Au (Ag)-coated slides may give
a relatively low-cost alternative, but these still greatly exceed the
current costs for glass slides alone.»**'*' For Raman
measurements, CaF, or Au (Al)-coated slide substrates without
obvious background fluorescence and Raman signal are
frequently used.”**2°

In the routine clinical/laboratory environment that requires
a high throughput procedure for enormous numbers of speci-
mens, such as cervical screening, standard glass microscope
slides are used as a substrate. However, glass slides are gener-
ally unsuitable for either IR or Raman spectral measurement,
since one then needs to sacrifice the most important fingerprint
region required for spectral discrimination and disease diag-
nosis, due to the strong IR absorption or fluorescence bands of
glass.” This means that access to a broader spectrum can only
be provided by more costly substrates. Additionally, the
requirement for sample archiving in clinical practice implies
that substrates are not reusable. Thus, for translation of bio-
spectroscopy techniques for routine screening and/or diag-
nosis, a substrate without background signal interference and
as inexpensive as glass is a major requirement.*

Ideally, spectroscopic diagnostic techniques should add in
technical/medical value without compromising cost and/or
efficiency. It is important to note that cost is not the single
limiting factor for -clinical/biological implementation, as
a technique proven to improve quality of biological interpreta-
tion may justify increased expenditure. However, any substan-
tial increase in running cost will not aid in the drive for clinical
translation. To promote the translation of biospectroscopy to
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practical clinical diagnosis, the search for a cheap, easily
available, and robust substrate suitable for both IR or Raman
measurement is an urgent consideration. In this regard,
aluminium (Al) foil could be a potential alternative. Similar to
other pure metals-based substrates such as Au (Ag, Al)-coated
slides, low spectral background and lack of spectral features can
be anticipated on Al foil. More importantly, Al foil has
substantially low cost. For instance, an annual cost of only
£4900 is estimated for cervical smear, biopsies and histology
specimens in UK, which is only 1/350 that of glass slides in
terms of cost (Table 1). To demonstrate the feasibility of Al foil,
its performance in ATR-FTIR, transflection FTIR or Raman
spectrochemical analysis of cytology and histology specimen
was compared with other well-recognized substrates, i.e., Au-
coated, low-E and glass slides.

Materials and methods
Substrates

Four types of substrates were used herein, including Al foil
(Kitchen quality, Terinex Limited, UK), Au-coated slides (Item
no. AU. 0500. ALSI, Platypus Technologies), low-E slides (Kevley
Technologies, USA) and glass slides (Thermo Scientific). Al foil
was placed onto glass slides and fixed by some tape to facilitate
ease of handling and archiving.

Cell culture

An amphibian (A6) cell line was grown in modified L-15 medium
supplemented with 70% Leibovitz's media (Gibco, Life Tech-
nologies Ltd, UK), 10% foetal bovine serum (Gibco), 1% peni-
cillin (100 U mL™") and streptomycin (100 pg mL™") (Cat no.
DE17-603 E, Lonza group Ltd., Belgium) and 19% autoclaved
MilliQ water in air at room temperature. A6 cells were routinely
cultured in T75 flasks and harvested when confluent by dis-
aggregating cells using 3 mL trypsin (170 UmL *)/EDTA (0.02%)
solution (Cat no. BE17-161E, Lonza group Ltd., Belgium) fol-
[owed by neutralization using 7 mL modified L-15 medium.

To prepare fixed cell pellets on substrates, harvested A6 cells
were centrifuged at 1000 rpm for 5 min to remove medium and
then fixed in 70% ethanol (EtOH) for 1 h. After centrifugation and
washing two more times using 70% EtOH, the final concentrated
cells were applied to different substrates and air-dried.

To grow cells directly on substrates, substrates were initially
sterilized by immersing in 70% EtOH and rinsed with auto-
claved MilliQ water; then 2 mL harvested cells were seeded in

Communication

six-well plates containing substrates and to each an additional 4
mL modified L-15 medium was added. After two days of culture
to allow cells to reach confluence, medium was removed and
70% EtOH was added for 1 h to fix, followed by washing in 70%
EtOH twice more, whereupon substrates were left to air-dry.

Tissue

A formalin-fixed, paraffin-embedded (FFPE) prostate tissue
block was obtained. All experimental protocols for the use of
archival tissue retrieved from the Royal Preston Hospital
Research Tissue Bank were approved by the UK National
Research Ethics Service (http://www.hra.nhs.uk/about-the-hra/
our-committees/nres/; Research Ethics Committee reference:
10/H0308/75). A ribbon of 20 um-thick sections was cut by
a microtome (Surgipath Medical Industries Inc), floated into
a heated water bath at 40-50 °C, and finally picked up on
substrates. After drying overnight, tissue slides were de-waxed
by immersing in fresh xylene (histological grade, Sigma-Aldrich)
for 2 min at room temperature; this process was repeated twice
more. Subsequently, tissue slides were immersed in 100% fresh
EtOH for 15 min twice and then to 70% fresh EtOH for 15 min
twice. Fresh EtOH was used each time. Finally, tissue slides
were allowed to air-dry prior to analysis.”

ATR-FTIR spectroscopy

ATR-FTIR spectral measurements were performed using a Bruker
TENSOR 27 FTIR spectrometer (Bruker Optics Ltd., Coventry, UK)
with Helios ATR attachment containing a diamond crystal
internal reflective element and a 45° incidence angle of IR beam.
The ATR crystal was cleaned using MilliQ water and a new
background spectrum was collected prior to analysis of a new
sample. The instrument was set up to perform a total of 32 scans
with 8 cm ' spectral resolution on both background and sample.
The sampling aperture of the system was 250 um x 250 pm, and
the mirror velocity was 2.2 kHz; it is a single signal bounce
instrument and uses a diamond waveguide.

Transflection FTIR spectroscopy

Transflection FTIR spectroscopy was conducted using a Nicolet
Continuum FTIR Microscope (Thermo Scientific) with IR beam
provided by a Nicolet 6700 FTIR spectrometer. A 15x infinity
reflachromat objective with numerical aperture of 0.58 was used
to illuminate sample and collect signal from a sample aperture

Table 1 Comparison of substrates price and estimated total annual cost of substrates in biomedical specimen screening in UK?’-3°

Price per  Annual cost of Annual cost of Annual cost of Total
Substrates piece (£) cervical smear (million £)  biopsies (million £)  histology (million £)  (million £)
CaF, [76.0 X 26.0 X 1.0 mm] 73.08 711.04 189.61 101.12 1001.78
Au-coated slide (75.0 x 25.0 x 0.7 mm) 42.08 409.46 109.19 58.23 576.88
Low-E (75.0 x 25.0 x 1.0 mm) 1.5, 14.71 3.92 2.09 20.72
Glass (76.0 x 26.0 x 1.0 mm) 0.12 1.22 0.32 0.17 1.73
Aluminum foil (76.0 x 26.0 mm) 0.0004 0.0035 0.0009 0.0005 0.0049
482 | Anal. Metriods, 2016, 8, 481 487 s © The Royal Society of Chemisty 2016
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of 100 x 100 pum. A total of 256 scans with spectral resolution of
8 cm " was setup for both background and sample collection.

Raman spectroscopy

Raman spectroscopy was acquired using a Renishaw InVia
confocal micro-Raman system (Renishaw, Gloucestershire, UK)
equipped with a 100 mW 785 nm laser and 1200 g mm™*
grating. A 100x objective with numerical aperture of 0.85 was
used to focus laser beam and collect Raman signal with an
acquisition time of 30 s.

Results and discussion

Three typical biological specimens were prepared, i.e., EtOH-
fixed cell pellet applied to substrates, cells grown directly on
substrates and de-waxed prostate tissue section floated on
substrates. Fig. 1 shows the optical images of different sample
preparations. Fixed-cell pellets were more spherical and smaller
than cells grown directly on substrates (Fig. 1a), which exhibited
a more expansive shape, thus looking bigger but being much
thinner than the fixed-cell pellet (Fig. 1b). In addition,
compared with the smooth surface of Au-coated, low-E or glass
slides, the shiny side of Al foil used herein is rougher. The non-
shiny side of foil was even rougher and thus not used, consid-
ering its low reflectivity. The thin layers of cells grown directly
on the rough foil were not as discernible as those on smooth Au-
coated or low-E substrates (Fig. 1b). However, after ATR-FTIR
diamond pressure, the foil became smoother due to its ductility
and cells can be clearly observed on it. This also indicates
a simple way to obtain a smooth foil, which may be needed for
some samples requiring an optimal focus and thus a better
signal. Tissue sections with a thickness of 20 um picked on
substrates required de-waxing before measurement. De-waxing
was performed by immersing and transferring tissue sections to
different organic solvents of xylene, 100% EtOH, and 70%
EtOH.” This process may cause tissue section detaching from
substrates. Fig. 1c indicates that the rough surface of foil can
hold and stick such tissue sections as well as on the smooth low-
E slide.

ATR-FTIR spectra were first obtained from four blank
substrates (Fig. 2). In the fingerprint region, from 900 to 1800

(a) Fixed cell pellet
applied to substrates

Au-coated slide
9 'C‘
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em™" that is often most important for spectral discrimination
and disease diagnosis, the Au-coated slide was cleanest without
any obvious characteristic IR absorption band, followed by Al
foil, which only showed a small band at 950 cm™". In compar-
ison, a low-E slide displayed a moderately intense IR band at
1120 em * whilst the glass slide spectrum exhibited multiple
strong IR bands at 960 cm ' and 1400 cm . From ATR-FTIR
spectra of a fixed-cell pellet, directly-grown cells and tissue
section, only directly-grown cells consisting of a very thin layer
exhibited spectral artefacts from the background signal of low-E
(1120 em™") and glass slides (960 ecm™") (Fig. 2c), while the
fixed-cell pellet and tissue section samples that were composed
of a relatively thick layer displayed the same spectral features on
all four substrates, indicating no interference from substrate
background (Fig. 2b and d). This can be explained by the
working principle of ATR-FTIR spectra. To generate ATR-FTIR
spectra, the IR beam is directed through an internal reflection
element (IRE) with a high refractive index (e.g., diamond used
here); the evanescent wave extending beyond the IRE surface
penetrates the sample in direct contact with the IRE. The
penetration depth of this wave typically ranges from 1 to 2 um
within the 1800-900 cm ! region but still with ~5% intensity at
a depth of 3 pm.* So substrate interference can be avoided for
samples thicker than 2-3 pum, but for those <2 pm, spectral
artefacts from the underlying low-E or glass slide may become
apparent, indicating that these substrates are unsuitable for
thin samples. Bassan et al. also confirmed the interference of
glass slide at sample thicknesses <2 um via both theoretical
calculations and experimental ATR-FTIR measurements.” In
comparison, the thin layer of cells grown directly on Al foil
displayed similar spectral features to that on Au-coated slide.
No obvious spectral artefacts were observed. This indicates the
suitability of Al foil for preparations of very thin samples (e.g.,
<2 pum) towards ATR-FTIR measurements; more importantly,
foil is available at a much-reduced cost compared to Au-coated
slides.

For the transflection FTIR sampling mode, measurements
were conducted with an IR beam passing through the sample
and reflecting back from the substrate (i.e., the reflective
surface) through the sample a second time.> Low-E slides are
typical substrates used in transflection mode due to their high

(c) Tissue on substrates

Low-E slide

Fig. 1 Optical images of (a) fixed cell pellet; (b) directly-grown cells; and, (c) prostate tissue section on substrates.
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Fig.2 ATR-FTIR spectra of (a) blank substrates; (b) fixed cell pellet; (c) cells directly grown on substrate; and, (d) prostate tissue section on substrate.

reflection towards IR beam combined with robustness and fixed-cell pellet or thin layer of cells grown on glass (Fig. 3b). In
relatively low cost."* Background spectra from low-E, Au-coated  contrast, spectra of fixed-cell pellets on low-E slides, Au-coated
slide and Al foil were similar (Fig. 3a), whereas glass displayed slides or Al foil displayed the same typical fingerprint features of
a very strong IR absorption from 800 to 1200 cm™" region due to ~ cells without substrate interference (Fig. 3c). For the thin layer
the penetration of IR beam into glass lacking an IR-reflective of cells grown on substrates, transflection FTIR spectra of cells
coating. The strong absorption of glass severely influenced the were also obtained, but with a markedly lower signal-to-noise
sample spectra irrespective of whether the sample was a thick ratio (SNR) than fixed-cell pellets due to the sample thinness

Class means Class means
(a) (b)
Glass
8 0.5
—Au coated
—Low-E - 0
3 6 —Foil z
s —Glass E:‘(
x -0.5
F
2z Cell grown
g g 4 et
2
-1.5
0
1800 1600 1400 1200 1000 800 1800 1600 1400 1220 1000
Wavenumber (cm™') Wavenumber (cm™)
(c) Class means (d) Class means
1 :
Fixed cell ! Cell grown on substrates
038 —Foil B —Foil
3 :';«ztfalw slide 3 —LoweE
; 0.6 a — Au-coated slide
3 z
':; 0.4 o
L g
0.2
0
1800 1600 1400 1200 1000 1800 1600 1400 1200 1000

Wavenumber (cm™’) Wavenumber (cm™")

Fig. 3 Transflection FTIR spectra of (a) blank substrates; (b) fixed cell pellet or cells grown directly on glass; (c) fixed cell pellets on other
substrates; and, (d) cells grown directly onto other substrates.
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(Fig. 3d). This SNR was also lower than ATR-FTIR analysis of the
same thin layer of cells grown on substrates (Fig. 2c), which
should be related to the working principle of transflection and
ATR mode.* These results indicate that IR beam reflection on Al
foil is enough to obtain similar-quality transflection FTIR spectra
as from low-E or Au-coated slides, despite the rougher surface
than the latter. Therefore, Al foil is applicable for transflection
FTIR mode with a lower cost than low-E slides. A comparison of
the relative reflectivity of these substrates will be interesting.

Many recent publications demonstrate a non-linear spectral
distortion in transflection FTIR spectroscopy caused by the
electric field standing wave (EFSW)."*'*?* 2> This may result in
spectral variation due to sample thickness rather than any
biochemical differences. EFSW is suggested to be present on
reflective metallic surfaces due to the interference of incident
and reflected light. Smooth IR reflective low-E slides have been
almost exclusively used to demonstrate the effect of EFSW;
however, there is as yet no report studying the effect of substrate
roughness on EFSW. On a rough surface like Al foil, reflected
light may be emitted in many various directions different from
the incident light. If this were the case, the probability of inci-
dent and reflected light interference, and how EFSW affects
transflection FTIR spectra for samples mounted on a rough Al
foil requires further study.

The performance of Al foil on Raman measurements was
also investigated. Fig. 4a shows the raw Raman spectra of four
blank substrates. Both low-E and glass display a strong and
broad fluorescence band at 1382 cm™".7?® In comparison, Al foil
and Au-coated slide yield a very low and featureless spectral
background. Raman spectra of three types of biomedical spec-
imen on these substrates were also obtained. Unlike ATR- and
transflection FTIR, all Raman spectra of the three biomedical
specimens on low-E or glass slides exhibited interference from

o0x10"
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~ — Low-E
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€ '
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the strong and broad glass band at 1382 cm ™", which severely
masked the important fingerprint bands at 1244, 1325, 1455
em !, and even 1650 em ™ " at the tail region of 1382 em . This
interference is more severe for the thin layer of cells grown
directly on substrates, where novisible cell Raman bands can be
observed over the strong background fluorescence of low-E or
glass slides (Fig. 4c). This severe interference also makes it
impossible to obtain biomedical specimen spectra by mathe-
matically subtracting the glass band. Meanwhile, Raman
spectra with all the well-defined bands constituting spectral
fingerprints of cells or tissue are clearly distinguishable on Al
foil or Au-coated slides, even for the thin layer of cells grown on
substrates (Fig. 4b-d). Although the spectra of cells on Al foil
were slightly tilting due to foil background compared with the
rather flat spectra on Au-coated slide (Fig. 4c), it can be easily
baseline subtracted without compromising any spectral
features of cells (see inset of baseline-subtracted Raman
spectra). Kamemoto et al. obtained high-quality near-IR Raman
spectroscopy of cervical cancer tissue mounted on an Al-coated
slides.” Athamneh et al. obtained Raman spectra of bacteria on
Al foil.** These studies further confirm the wide applicability of
Al substrate in various Raman analyses. In comparison, despite
the relatively rougher surface of Al foil compared to Au-coated
slides, advantages of low cost and minimal interference on
spectral acquisition could make it a first choice for high
throughput analyses.

Table 2 summaries the performance of Al foil and conven-
tional substrates. Al foil performs as well as Au-coated slides in
all ATR-FTIR, transflection FTIR or Raman spectrochemical
measurements of very thin (cells grown directly on substrates)
and thick specimens (fixed-cell pellet or tissue), but with a much
reduced cost. In comparison, low-E is more suitable for ATR-
FI'IR measurement of samples thicker than 3 pm, but not for

Fixed cell pellet

(b) Cell on Au-coated
ext{—— Cell on Foil
x
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Fig. 4 Raman spectra of (a) blank substrates; (b) fixed cell pellet on substrates; (c) cells grown directly on substrates (inset represents
baseline-subtracted Raman spectra on Au-coated slides or Al foil); and, (d) prostate tissue section on substrates.
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Table 2 Performance and cost comparison of different substrates

Communication

Substrate ATR-FTIR spectroscopy Transflection FTIR spectroscopy Raman spectroscopy Cosl
Au-coated slide 4 J J High
Low-E \ (except for sample thinner than 2-3 pm) N} x Medium
Glass x x x Lower
Aluminum foil i i i Lowest

thinner specimens. Glass is cheap but unsuitable for either IR
or Raman measurements because its strong background band
will sacrifice the most important fingerprint biochemical
information used for clinical diagnosis. Unfortunately, Al foil
cannot be used in transmission FT'IR because of its IR opacity.

Biocompatibility is an important consideration for future
applications. A careful comparison indicates that ATR-FTIR
spectral features of cells grown on Al foil are very close to other
substrates including glass, low-E and Au-coated slide (Fig. 2c).
Moreover, Raman spectra of cell grown on Al foil and Au-coated
slide after baseline subtraction were almost identical (inset of
Fig. 4c). These results may indicate that the biocompatibility of
Al foil is comparable with conventional substrates. However,
this will need to be assessed by conducting a comparison of
survival rates of cells grown on such substrates.

Conclusion

This study demonstrates that readily available and inexpensive Al
foil can be used as a versatile and suitable substrate for preparing
diverse cytology and histology specimens for ATR-FTIR, trans-
flection FTIR or Raman spectroscopic measurements. The low and
almost featureless background spectra of Al foil enable the acqui-
sition of high-quality IR and Raman spectra without substrate
interference or sacrificing important fingerprint biochemical
information of biomedical specimen. 1t is also suitable for diverse
specimens with a broader thickness ranging from less than 2 um to
above. These features together with its much lower cost and
availability make Al foil a potential substrate for the future appli-
cation of IR and Raman spectroscopy in biomedical diagnosis.
Although there are still many things to consider towards achieving
final implementation, such as clinical trials and adaptation to
current instruments, the use of Al foil makes this process a step
forward by providing an additional low-cost substrate option. With
little additional cost, a slightly thicker Al foil could replicate typical
slide dimensions to better allow for handling and archiving.
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IR and Raman spectroscopy to detect presymptomatic biomarkers of nutrient
deficiency during crop production.

Holly J. Butler'2, Martin R. McAinsh?, and Francis L. Martin?"

ICentre for Global Eco-Innovation, Lancaster University, Lancaster, LA1 4YQ UK
2 Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK

*f.martin@Ilancaster.ac.uk

With an increasing population, anticipated to reach 9 billion by 2050, it is estimated that
agricultural productivity will need to increase by 70% in order to meet food demands?.
Nutrient deficiencies can results in up to 50% loss of yield and significantly decreased
shelf life and therefore present a substantial threat to global food security. Foliar
applications of calcium (Ca?*) containing solutions upon crops have been shown to
prevent the incidence of Ca?* deficiencies such as ‘blossom end rot’ in fruiting
vegetables. Deficiencies such as this often do not manifest until fruit set and therefore
prevention methods are non-selective and can prove ineffective and costly to the grower.

The common tomato plant, Solanum lycopersicum, was used a model system to
presymptomatically detect Ca®* deficiency by using hydroponic systems with varying
levels of Ca?* availability. The plants were interrogated using IR and Raman
spectroscopy over a course of several weeks to monitor any structural or chemical
alterations due to the nutrient deficiency?. Coupled with multivariate analysis, subtle
biomarkers can be found that could potentially be used to discriminate between crops
advancing into a deficient state. This study aims to employ vibrational spectroscopy as a
non-destructive, high-throughput and cost effective tool for in vivo screening of crops in
agricultural environments.
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Pre-symptomatic detection of nutrient deficiencies in crop production using
vibrational spectroscopy.

Holly J Butler2?, Francis L Martin?, Martin R McAinsh¢

3Centre for Global Eco-Innovation, Centre for Biophotonics, ‘Lancaster Environment
Centre, Lancaster University, LA1 4YQ, UK

Nutrient deficiencies can results in up to 50% loss of yield and significantly decreased
shelf life and therefore present a substantial threat to global food security®. Deficiencies
such as this often do not manifest until fruit set and therefore prevention methods are
non-selective and can prove ineffective and costly to the grower. The common tomato
plant, Solanum lycopersicum, was used a model system to presymptomatically detect
Ca2+ deficiency by using hydroponic systems with varying levels of Ca2+ availability.
The plants were interrogated using IR and Raman spectroscopy over a course of several
weeks to monitor any structural or chemical alterations due to the nutrient deficiency?.
Coupled with multivariate analysis, subtle biomarkers can be found that could
potentially be used to discriminate between crops advancing into a deficient state. This
study aims to employ vibrational spectroscopy as a non-destructive®, high-throughput
and cost effective tool for in vivo screening of crops in agricultural environments.

!Godfray H.C.J. et al. (2010) Science, 372:812:818

2White P.J. and Broadley M.R. (2003) Annals of Botany, 92:487-511

3Butler H.J et al. (2015) Analytical Methods, 7:4059-4070
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Gold nanoparticles as a substrate in bio-analytical near-infrared surface-enhanced

Raman spectroscopy

HJ Butler!, SW Fogarty, AL Mitchell, FL Martin

1. Centre for Biophotonics, Lancaster University, Lancaster, LA1 4YT

As biospectroscopy techniques continue to be developed for screening or diagnosis within a
point-of care setting, an important development for this field will be high-throughput
optimization. For many of these techniques, it is therefore necessary to adapt and develop
parameters to generate a robust yet simple approach delivering high-quality spectra from
biological samples. Specifically, this is important for surface-enhanced Raman spectroscopy
(SERS) wherein there are multiple variables that can be optimised to achieve an enhancement of
the Raman signal from a sample. One hypothesis is that “large” diameter (>100 nm) gold
nanoparticles provide a greater enhancement at near-infrared (NIR) and infrared (IR)
wavelengths than those <100 nm in diameter. Larger gold nanoparticles may better satisfy the
theoretical restraints for SERS enhancement at NIR/IR wavelengths compared to smaller
nanoparticles. Also, larger nanoparticles or their aggregates are more readily observed via optical
microscopy (and especially electron microscopy) compared to smaller ones. This allows rapid
and straightforward identification of target areas containing a high concentration of nanoparticles
and facilitating SERS spectral acquisition. However, the potential nanotoxicity of metallic
nanoparticles may have a significant effect on the sample and consequently the derived SERS
spectra. Herein, we examine this notion using examples in which SERS spectra were acquired
from MCF-7 breast cancer cells incubated with 150 nm gold nanoparticles. It was found that 150
nm gold nanoparticles are an excellent material for NIR/IR SERS, with little evidence of toxic
effects. These observations appear to extend to biofluids such as blood plasma and serum; SERS
spectra of such biological samples often exhibit a low signal-to-noise ratio in the absence of
nanoparticles. With protein-rich biofluids such as serum, a dramatic SERS effect can be
observed; although this might facilitate improved spectral biomarker identification in the future,
it may not always improve classification between control vs. cancer. Thus, use of “large” gold
nanoparticles are a good starting point in order to derive informative NIR/IR SERS analysis of

biological samples
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Aluminium foil as a potential substrate for ATR-FTIR, transflection FTIR or
Raman spectrochemical analysis of biological specimens

Li Cui ®, Holly J. Butler b, Pierre L. Martin-Hirsch ®, and Francis L. Martin ™

2 Key Laboratory of Urban Pollutant Conve rsion, Institute of Urban Environment,
Chinese Academy of Sciences, Xiamen 361021, China

b Centre for Biophotonics, Lancaster Environment Centre, Lancaster University,
Lancaster LA1 4YQ, UK.

The substantial cost of substrates is an enormous obstacle in the successful translation of
biospectroscopy into routine clinical/laboratory practice (screening or diagnosis). As a
cheap and versatile substrate, we compared the performance of readily available
aluminium (Al) foil with low-E, calcium fluoride, barium fluoride, Au-coated and glass
slides for cytological and histological specimen analysis by attenuated total reflection
Fourier-transform infrared (ATR-FTIR), transflection FTIR and Raman spectroscopy.
The low and almost featureless background signal of Al foil enables the acquisition of IR
or Raman spectra without substrate interference or sacrificing important fingerprint
biochemical information of the specimen, even for particularly thin samples (<2 pum). Al
foil is shown to perform as well as, if not better than, low-E or Au-coated slide,
irrespective of its relatively rough surface. Although transmission FTIR is not possible
on Al foil, this work demonstrates Al foil is an inexpensive, readily available and
versatile substrate suitable for ATR-FTIR, transflection FTIR or Raman spectrochemical
measurements of diverse biological specimens. The features of Al foil demonstrated here
could promote a transition towards accessible substrates that can be readily implemented
in either research or clinical settings.
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Aluminium foil as a potential substrate for IR
and Raman analysis of biological samples
Holly J Butler*, Li Cui®, Francis L Martin®
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*Institute of Urban Emvironment, Chincec Academy of Sciences, Xiamen, 361021, China.
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Vibrational spectroscopy to detect presymptomatic
biomarkers of nutrient deficiency during crop production

Holly | Butler **, Francis L Martin ", Martin R McAinsh
for Global Feo-Iimavation, *Centr r ot L - i ERVironment Centre, Lancaster University, 1.A1 4¥0),

Introduction

o With an increasing population, anticipated to reach 9 hillion by 2050, it is estimated that agricultural productivity will need to increase by 70% in order to meet food demands’

# Nutrient deficiencies can results in up to 50% lass of yield and significantly decreased shelf life and therefore present a substantial threat to global food security.

- f ¥
« Deficiencies such as 'blossom end rat’ in tomataes due ta Ga®' deficiency, often do not manifest until fruit set and therefore prevention methads are non-selective and can prove ineffective % i
© The common tomato plant, Solanum fycopersicum, was used a model system to presymptomatically detect Ca’* by using e systemns with varying levels of Ca’ availability. -
@ This study aims to employ vibrational spectroscopy as a nen-destructive, high-throughput and cost effective tool for in vivo screening of crops in agricultural environments®. Ak
Methodology & Results
FI- 1. Plant Physiology 3. Flame Atomic Absorption Spectroscopy
Values of CO; assimilation were oblained o observe any Percentage Ca’ content was determined using Flame AA to R R

physiclogical effects of Ca™ depletion detect evidence of Cs* deficiency due to hydroponic

N treats ts.
The rate of photosynthesis appears to decrease with reatments. 24
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ion [pmel mt s

significant (P >0.05. the range of treatments, indicating effective calcium depletion. f a
i 3
5 , 2t
i This indicates the physiclogical effects of low  Ca’ Samples grown in 0 ppm nutrient solutions have significantly (P
d availabllity are not significantly manifesting in the plant <0.001) lower Ca™ comtent indicating a clear deficiency. |
population J a potential i Interestingly plants appear 1o maintain healthy nutritianal status
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Conclusions

@ Raman spectroscopy was applied to live plants leaves to monitor in vivo biochemical alterations due to Ca™

# ATRFTIR was emplayed 1o dried samples to analyze systemic biochemical alterations in homoganous samples.

depletion. # Cross validated PCA-LDA again unearths segregation of low Ca™ treatments prior to significant physical

# Few spectral differences are apparent from raw spectra (fig 2.} and so cross validated PCA-LDA was employed to evidence of deficiency.

unearth segregation due to Ca” treatment, @ Potential biomarkers, derived fram PCA-LDA loadings, are shown in figure 5. Key regions affected by Ca™

# Figure 3 shows that low Ca* treatments depict significantly altered spectra equivalent to biochemical depletion are cellulose, hemicellulose, and pectins including calcium pectate.

alterations duc to Ca”' availability despite having no significant physiological symptoms (P < 0.001) + Calcium pectate is an integral component of the cell wall and lack of this compound in deficient samples

I . 8 f
# Loading plats [data not shown] identified key wavenumbers responsible for variation in the data, which is shown causes the distinctive ‘rotfing” symptom of deficient tomate fruit °.
on figure 2. Alterations in carotencid and chlorophyll content appear to infer the greatest differences at the |eaf # This displays presymptomatic detection of calcium pectate depletion, which could potentially be employed a5
surface which is an accurate portrayal of the plant's inability to maintain a healthy phatasynthetic cell due to a biomarker for Ca*' deficiency

calciurn insufficiency. This pattem is also reflected in the rate of photosynthesis in low Ca*~ treatments,
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W -

Biofluids
such as blood plasma
and serum are non-invasively

obtained and are rich in biological

information and thus are

preferable tissue specimens for

disease diagnosis ".

Plasma

+40 and 150 nm Au Nanoparticles

S

“ae

Gold nanoparticles as a substrate in
bio-analytical surface-enhanced Raman spectroscopy

of biofluids

Hollv ]. Butler ? Simon W. Fogarty °, Nigel J. Fullwood ¢, Francis [.. Martin *

“Centre for Global Eco-Innovation, * Centre for Biophotonics, *Lancasier Environment Centre, Lancaster University, LAT 4Y(), (/K

spectroscopy of these
.. samples often exhibit a low
signal-to-noise ratio. SERS is an
approach that has been
shown to effectively increase
the Raman signal %

Normalised Intensity (au)

T
1 150 nm
1

Raman

——>

Nanoparticle size has
been shown to effect
the spectral properties of surface
plasmons . It is now essential to
generate a robust yet simple
approach, delivering high-quality
spectra from biofluids.

Blood samples from 10
endometral cancerand ..
control patients.

We examine the notion that
‘large’ diameter {(>100 nm)

this contributes to improved

disease classification.

Serum

+40 and 150 nm l Au Nanoparticles

Au nanoparticles provide greater
enhancement at (NIR) wavelengths
than those <100 nm and whether

Effect of nanoparticle size on spectral intensity

«—Plasma: 40 nm and 150 nm Au nanoparticles result
in a 10-fold increase in Raman intensity. Strong band shifts
are visible at protein and carbohydrate bands

Normalised Intensity (au)

LD1

—Serum: Greatest enhancement with 150 nm Au nanoparticles ( a I 1 40 nm
10-fold increase) compared to a 4-fold increase seen with 40 nm. MJW
1 | 1 |
1 [ 1 | {iore 11 ) 1 1 None
Less protein content in serum could contribute to a reduced incidence
1700 1500 1250 1000 7150 500 of 40 nm nanoparticle adherence, as seen in the TEM images. 150 nm 1700 1500 1250 1000 ZS" 500
Wavenumber (cm™) nanoparticles appear to not be affected by this due to consistent ‘Wavenumber (cm™)
enhancement.
o
Effect of nanoparticle size of disease classification
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!_ result in a significant separation between cancer and control
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Pre-symptomatic detection of nutrient deficiency during
crop production using vibrational spectroscopy

Holly | Butler®, Francis L Martin’, Martin R McAinsh¢ Lancaster o)
“Centre for Global Eco-Innovation, 'Centre for Biophotonics, ‘Lancaster Environment Centre, Lancaster University, IAI 4YQ, UK Ul’llver Slty

Nutrient deficiencies can These deficiencies often / The common tomato plant Thisstudy aims
result in loss of yield and ) 7 do not manifest until was used a model syste to employ vibrational
decreased shelf life and | fruit set and therefore ¥ to detect Ca® deficiency Spectroscopy as a

therefore present a [ prevention methods can : by using hydroponic non-destructive’ and

| substantial threat to prove ineffective ¢ systems with varying cost effective tool for in
food security". and costly to levels of Ca** vivo crop screening
the grower’, availability. in agriculture,

RESULTS

Ca* Treatment* Ca* Remediation™
Raman Microspectroscopy 2—
0.13 - A . *
o Carotenoid 200 ppm ] - ] =
100 ppm s & ’ o N H
Soppm | _ _Crissx_'allimid z 1 s § - ] ! ;
3 0 ppm PCA-LDA 3 I " _|_ I
0.0657 Chlorophyll e . . ! ]
E H Y .
& Pectin % o0 Ca conceatrution > = [ i
@ Deficient t is signi ly identified using ional analysis (p<c.00).
o Following remediation with Ca’, no treatment effect can be observed, indicating
0 T T T T T successful remediation.
5 5
L0000 ‘33?m,",j:?£m,., 200 0 300  Lower carotenoid and chlorophyll content in deficient samples indicative of senescence®.
Dried ATR-FTIR Spectroscopy -
0.2T Xwmide T
<%,

" «
b H . .
+% Caleium Pectate 5 s ¢ H s :
Cross validated >E 0 . ) ” :
N [ B
@
.
2

PCA-LDA
= 0
; P T
% ® Each treatment can be signifi ly identified in h i leaf samples (p <0.001).
Amide 111 o Again, the addition of Ca® fully r Jiates the defici

Cellulose

v y - .  Clear reduction in calcium pectate, a key component of cell walls, due to treatment is
1700 1500 1300 1100 900 seen, as well as ubiquitous protein alterations.

Wavenumber (cm”)

-0.2

Digested

ca”is transported via the transpiration stream’

. Atomic Absorption Spectroscopy
Conclusions v

® Raman microspectroscopy can successfully identify

extreme nutrient deficiencies in vivo.

@ ATR-FTIR spectroscopy can be used to distinguish subtle
chemical alterations indicative of nutrient deficiencies.

0.0

A’ concentration———— concentration———

g 2 2+
® This method provides a simple alternative to traditional © Flame AAS was employed as a simple methad to quantify Ca™ content.

o o . . © Ca” contentin 0 ppm and 50 ppm treatments is effectively reduced due to treatments.
methodologies such as AAS which require extensive

2 * Remediation using optimal Ca® concentrations returns the Ca’ content to healthy,
sample preparation.

control levels.
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