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Ultra-clean graphene sheets encapsulated between hexagonal boron nitride crystals host two-
dimensional electron systems in which low-temperature transport is solely limited by the sample
size. We revisit the theoretical problem of carrying out microscopic calculations of non-local ballistic
transport in such micron-scale devices. By employing the Landauer-Büttiker scattering theory, we
propose a novel scaling approach to tight-binding non-local transport in realistic graphene devices.
We test our numerical method against experimental data on transverse magnetic focusing (TMF),
a textbook example of non-local ballistic transport in the presence of a transverse magnetic field.
This comparison enables a clear physical interpretation of all the observed features of the TMF
signal, including its oscillating sign.

I. INTRODUCTION

The ability to fabricate ultra-clean graphene sheets by
encapsulation in hexagonal boron nitride crystals1–4 al-
lows the investigation of ballistic transport in a large
range of temperatures up to the hydrodynamic temper-
ature scale4,5 Thydro. At T & Thydro, the mean-free path
for electron-electron collisions `ee becomes shorter than
the mean free path ` for momentum non-conserving scat-
tering and inelastic electron-electron collisions need to be
taken into account in any theoretical description of trans-
port.

At temperatures T � Thydro, however, electrons in
encapsulated graphene sheets propagate over distances
of the order of several microns without experiencing
elastic or inelastic scattering events. In this situa-
tion, transport properties can be determined by utiliz-
ing exact single-particle quantum approaches, combining
e.g. tight-binding Hamiltonians with Kubo formulas6,7 or
Landauer-Büttiker scattering theory8,9.

Graphene Hall bars fabricated by van der Waals as-
sembly techniques and used in quantum transport experi-
ments have characteristic linear dimensions of tens of mi-
crons, rendering brute-force numerical calculations time
consuming or, simply, unfeasible. In Ref. 9 a convenient
scaling scheme for two-terminal numerical transport sim-
ulations within Landauer-Büttiker scattering theory has
been proposed. In such a scheme, the tight-binding pa-
rameters for real graphene10, namely the hopping energy
t0 and the lattice spacing a0, are replaced with rescaled
ones, t̃0 and ã0, such that the bulk band structure E(k)
remains invariant, i.e. E(k) = (3/2)t0a0k = (3/2)t̃0ã0k,
with k the magnitude of the momentum. This yields the
scaling condition ã0 = a0sf and t̃0 = t0/sf , which applies
only when the massless Dirac (linear) approximation is

valid, where sf is the scaling factor. Restrictions for the
validity of the scaling procedure, in terms of a maximum
scaling factor, are derived on the basis of the bulk band
structure. As an example, this scaling procedure has
been used9 to simulate the two-terminal conductance,
measured on a large crystal, using a scaling factor up
to 100.

In this Article we develop a scaling procedure suitable
for graphene micron-sized ribbons, which is valid also in
the presence of many electrodes (see Fig. 1) and there-
fore useful to describe non-local ballistic transport exper-
iments. This procedure is based on the exact band struc-
ture of graphene ribbons (rather than on the bulk mass-
less Dirac fermion band structure), and uses the Fermi
energy as key scaling parameter. In brief, a geometrical
downward scaling of the size of the structure, from the
realistic laboratory scale to the computationally feasible
scale, is accompanied by a upward scaling of the Fermi
energy in such a way that the number of electronic modes
responsible for transport is left unchanged.

As an application of the proposed scaling procedure,
we study in detail the case of transverse magnetic fo-
cusing (TMF), which has been extensively explored in
the past, in metals11 and in ultra-clean semiconductor
heterostructures12–17 fabricated by molecular beam epi-
taxy. Here, we focus on TMF in single-layer graphene3,18,
comparing our quantum mechanical numerical calcula-
tions with experimental results in ultra-clean encapsu-
lated monolayer samples.

Our paper is organized as following. In Sect. II we
present our scaling approach. In Sect. III we summa-
rize our main numerical results on TMF in single-layer
graphene, while Sect. IV is devoted to a detailed analysis
of the numerical results. In particular, Sect. IV includes
a study of the dependence of TMF on the carrier den-
sity, temperature, presence of non-ideal edges, as well as
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FIG. 1. (Color online) Pictorial representation of the five
and four-terminal graphene Hall bar setups considered in this
work. Leads are labeled by numbers. Here, W is the width
of the horizontal zig-zag leads, w is the width of the verti-
cal armchair leads, d is the center-to-center distance between
them, L1 is the distance between lead 1 and the center of lead
2, and L2 is the distance between the center of lead 3 and lead
4, for panel (b) and (d), or the distance between the center
of lead 4 and lead 3, for panel (f). The red dotted line (red
cross) in panel (d) (panel (f)) indicates the axis (center) of
symmetry of the setup. In this Article, all leads have been
taken to be semi-infinite.

a comparison with experimental data. A brief summary
and our main conclusions are reported in Sect. V.

II. THEORETICAL FRAMEWORK AND
SCALING PROCEDURE

The systems under investigation are multi-terminal
graphene Hall bars similar to the ones sketched in Fig. 1.
A rectangular graphene zig-zag strip, of width W , is at-
tached either to 5 [Figs. 1(a)-(b)] or 4 [Figs. 1(c)-(d)
and 1(e)-(f)] electrodes and exposed to a perpendicular
magnetic field B. The horizontal leads [labeled 1 and
4 in Figs. 1(a)-(d), and 1 and 3 in Figs. 1(e)-(f)] have
the same width W of the ribbon, while the vertical ones
have width w � W . In our calculations below, all leads
have been taken to be semi-infinite. Moreover, the verti-
cal terminals are separated by a center-to-center distance
d, while the distance between the left (right) horizontal
electrode and the leftmost (rightmost) vertical electrode

is L1 (L2) [see Figs. 1(b), (d) and (f)]. The total length
of the ribbon is therefore L = L1 + d+ L2.

In all setups a non-local resistance R21,34 is measured
by applying a current bias between lead 1 and 2 and
measuring the voltage that develops between lead 3 and
4. We therefore define

R21,34 =
V3 − V4
I2

, (1)

where Ii is the current flowing in lead i and Vi is the
voltage relative to lead i. As we mentioned in the Intro-
duction, in high-quality encapsulated graphene we can
safely assume that low-temperature transport is coher-
ent and neglect inelastic scattering sources. For the sake
of simplicity, we also neglect elastic scattering sources:
our work does not therefore deal with carrier density in-
homogeneities near the charge neutrality point.

The single-particle tight-binding Hamiltonian reads

H = εF
∑
i

c†i ci − t0
∑
〈i,j〉

c†i cj , (2)

where εF is the Fermi energy, measured with respect to
the Dirac point (εF = 0), and t0 ' 2.8 eV is the nearest
neighbor hopping energy (the symbol 〈i, j〉 denotes, as
usual, nearest-neighbor sites i and j). We remind the
reader that electron-electron interactions, which are not
included in our model Hamiltonian (2), enhance the value
of the Fermi velocity19 vF with respect to the bare non-
interacting tight-binding value vF,0 = (3/2)t0a0 ' 0.9 ×
106 m/s.

The non-local resistance R21,34 can be calculated start-
ing from the linear-response current-voltage relation ob-
tained within the Landauer-Büttiker scattering approach
and given by20,21

Ii =
2e2

h

(Ni − Tii)Vi −
∑
j 6=i

TijVj

 , (3)

at zero temperature. R21,34 is obtained by imposing that
I1 = I2, I3 = I4 = I5 = 0, and solving Eq. (3) for V3
and V4. In Eq. (3) Tij is the transmission coefficient at
the Fermi energy for electrons injected from lead j to be
transmitted into lead i, satisfying the identity

Ni =
∑
j

Tij =
∑
j

Tji , (4)

Ni being the number of open channels in lead i.
The transmission coefficients Tij will be numerically

calculated using KWANT8, a toolkit which implements
a wave-function matching technique. We assume that no
magnetic field is present in the leads.

Since the computation time scales roughly with the
third power of the linear size of the system8, a one-to-
one simulation of a large-size sample, of the order of a
few micrometers, is prohibitively time consuming. For
this reason, the development of scaling procedures, which
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FIG. 2. (Color online) (a) Two examples of band structures
of armchair leads. Energies are measured in eV, while ky is
measured in units of a = a0

√
3. On the left, w = 24.4 nm and

εF = 1.01 eV; on the right, w̃ = 10.8 nm and ε̃F = 2.05 eV.
(b) Schematic representation of the scaling procedure. In the
input box we have the parameters characterizing the real sam-
ple: W , L, w, d, B, εF, and T (where T is temperature). Noc

is the number of open channels in a reference lead of the real
sample. Quantities denoted by a tilde refer to the rescaled
system. The parameters s and s′ are the geometric and en-
ergy scaling factors, respectively. The rescaled parameters are
used to calculate non-local resistances. In this work we focus
on the quantity R21,34 defined in Eq. (1).

allow to calculate accurately the transmission coefficients
on a much smaller sized system, is of great interest.

Here we develop a procedure which is based on the ob-
servation that the band structure of a graphene nanorib-
bon varies little if its width is decreased by a scaling
factor s and, at the same time, the Fermi energy is in-
creased by a suitable and, in principle, different factor
s′. This is graphically exemplified in Fig. 2(a) where the
band structures22,23 of two armchair nanoribbons of dif-
ferent width (scaled by a factor s ' 2.26) are plotted side
by side. The two plots resemble each other as long as the

Fermi energy of the narrower nanoribbon is increased by
a suitable factor s′. The notion of “suitability” will be
clarified below. Note that this works as long as the Fermi
energy in the right panel of Fig. 2(a) satisfies the inequal-
ity ε̃F < t0. Given a certain Fermi energy εF relative to
the actual sample, this sets a limitation on the maximum
scaling factor s applicable.

The scaling procedure is schematized in Fig. 2(b). The
“input” block contains all the parameters characterizing
the actual sample one is interested in simulating. The
scaling algorithm proceeds as following. i) One starts by
choosing the size w̃ of the vertical leads of the rescaled
system used in the calculations; ii) one then defines the
geometric scaling factor s (blue arrow), i.e. the original
width w of the vertical leads in units of w̃; the procedure
of geometric scaling, although applied to all the sample,
is based on the vertical leads in Fig. 1 since those are the
narrowest ones; iii) by knowing w and εF, one proceeds
by calculating the number of open channels in the actual
sample (red arrow), which we denote byNoc; iv) one then
determines the energy scaling factor s′ by imposing that
the number of open channels Ñoc in the rescaled system
equals Noc (white arrows); v) the rescaled parameters
(denoted by a tilde) are used to determine the transmis-
sion coefficients of the rescaled system and therefore the
non-local resistance R21,34.

Note that the rescaled magnetic field B̃ is given by
B̃ = s2B to make sure that the flux is invariant under
geometric scaling.

III. NUMERICAL RESULTS FOR TMF

In this Section we present numerical results based on
the scaling procedure described above. We have decided
to focus our attention on TMF.

We consider the 5-terminal setup in Fig. 1(a) and (b).
For an armchair lead of width w = 0.37 µm and a Fermi
energy εF = 66.86 meV, we find a number Noc of open
channels given by Noc = 27. This should be compared
with the approximate formula

Noc ' int

[
(2w + a0)

2εF
hvF

]
, (5)

which was derived by using the Dirac equation with ap-
propriate boundary conditions24. For the parameters re-
ported above, Eq. (5) yields Noc = 26. The difference
is due to residual finite-size effects that are not captured
by Eq. (5).

To prove the effectiveness of the scaling procedure, we
have compared the transmission T32 and the non-local re-
sistance R21,34 at zero temperature for increasing values
of the scaling parameter s in Fig. 3. The transmission
T32, plotted in Fig. 3(a) as a function of the magnetic
field B, relative to electrons injected from lead 2 and ar-
riving in lead 3, is the most relevant since it determines
the main peak in the non-local resistance (see Sect. IV).
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First, we notice that all curves in Fig. 3(a) do not show
important quantitative differences up to s . 34, at least
for fields as large as 0.3 Tesla. Similarly, Fig. 3(b) shows
that the non-local resistance R21,34 is only weakly sen-
sitive to the scaling factor s. We also checked that the
scaling procedure works well when the graphene Hall bar
is an armchair ribbon, so that the vertical leads have zig-
zag edges. In Fig. 3(c) we compare the non-local resis-
tances R21,34 of armchair (solid line) and zig-zag (dashed
line) ribbons using approximatively the same geometric
scaling factor s ' 29.5. Note that the two curves have
the same behavior, the main focusing peak being virtu-
ally identical.

In Fig. (4) we also present how the energy scaling factor
s′ depends on s for different values of the Fermi energy
εF. As expected, the plot shows that s′ tends to deviate
from s for large values of s and more rapidly for large
values of εF. We note that the functional dependence
of s′ on s is crucial. It makes sure that the position of
the focusing peaks in the non-local resistance R21,34—see
Section IV—is insensitive to the geometric scaling factor
s. Imposing that the rescaled system and the original one
have the same number of open channels in the injection
lead—Ñoc = Noc through the parameter s′—guarantees
that the rescaled-system band structure faithfully reflects
the original one.

IV. DETAILED ANALYSIS OF THE
NUMERICAL RESULTS

In this Section we analyze the origin of the different
peaks exhibited by the non-local resistance as a function
of B and the origin of the sign of R21,34 at zero magnetic
field.

For the sake of simplicity, we consider the 4-terminal
setup in Figs. 1(c) and (d), where the zero-temperature
non-local resistance is given by the following analytical
expression20,21:

R21,34 =
h

2e2
T32T41 − T42T31

D
, (6)

where

D ≡ (α11α22 − α12α21)S , (7)

S ≡ T13 + T14 + T23 + T24 = T31 + T41 + T32 + T42 , (8)

α11 =
2e2

h

[
T1 −

(T13 + T14)(T41 + T31)

S

]
(9)

α12 = −2e2

h

T14T23 − T13T24
S

(10)

α21 = −2e2

h

T32T41 − T42T31
S

(11)

α22 =
2e2

h

[
T4 −

(T14 + T24)(T41 + T42)

S

]
, (12)
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FIG. 3. (Color online) (a) and (b) Numerical results for
the transmission T32—panel (a)—and the non-local resistance
R21,34—panel (b)—are plotted versus the applied magnetic
field B (in Tesla). Different curves refer to different values of
the geometric scaling factor s in the 5-terminal setup sketched
in Figs. 1(a) and (b). The scaling procedure works well for
s . 34. Numerical data presented in this figure were obtained
for the following choice of parameters: W = 2 µm, L1 =
L2 = 1.5 µm, w = 0.37 µm, d = 1 µm, εF = 66.86 meV
and Noc = 27. (c) Non-local resistance R21,34 versus B for
an armchair (solid line, scaling factor s = 29.50, number of
open channels in lead 2: Noc = 25) and a zig-zag (dashed line,
scaling factor s = 29.49, number of open channels in lead 2:
Noc = 27) ribbon. The energy scaling factor is s′ = 21.06 in
both cases.

and

Ti =
∑
j 6=i

Tij . (13)
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FIG. 4. (Color online) Trend of the ratio s′/s versus the geo-
metric scale factor s for three different values of the unscaled
Fermi energy εF. For the largest Fermi energy (εF = 100
meV), s = 36.68 is the maximum value for which the scaling
procedure can be applied (i.e. the number of channels in the
vertical leads can be kept fixed).

We start by discussing the behavior of the different
transmission coefficients Tij as functions of the applied
magnetic field in terms of a semiclassical picture and then
see how they combine to give rise to the non-local resis-
tance R21,34 with the aid of Eq. (6).

Within a simple classical picture15,25, which will be
corroborated below in Sect. IV A, electrons entering the
Hall bar from a given electrode undergo a cyclotron mo-
tion with radius rc = m∗vF/(eB) and specular reflections
at the boundaries of the Hall bar. In graphene, the cy-
clotron radius for weak magnetic fields can be written
as

rc =
εF
eBvF

, (14)

where m∗ = ~kF/vF is the effective electron mass in
doped graphene26,27.

We denote by B
(2N)
32 the field values for which the

center-to-center distance d between contacts 2 and 3 is
an integer multiple of 2rc, i.e.

d = 2N
εF

eB
(2N)
32 vF

(15)

with N = 1, 2 corresponding to the trajectories shown in
Fig. 5(a). The transmission coefficients T41 (solid curve),
T32 (dotted curve) and T42 (dashed curve) are plotted,
as function of B, in Fig. 5(b).

Regarding the transmission probability T32, Fig. 5(b)

shows that for B ' B(2)
32 (marked by a blue vertical line)

T32 exhibits a relative maximum, which stems from the
“direct” trajectory with no bounces between leads 2 and
3 [blue line in Fig. 5(a)]. On the other hand, for mag-

netic fields larger than B = B
(4)
32 (marked by a green
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FIG. 5. (Color online) (a) Classical electron trajectories

for two values, B
(2)
32 and B

(4)
32 , of the perpendicular magnetic

field. (b) Numerical results for the transmission coefficients
T41 (solid line), T32 (dotted line), and T42 (dashed-dotted line)
are plotted versus the applied magnetic field B (in Tesla) for
the 4-terminal setup in Figs. 1(c) and (d), with s = 10.23.
We have plotted only three transmission coefficients since
T31(B) = T42(B). This is because the system depicted in
Fig. 1(d) is symmetric under reflection about the dotted red
line in Fig. 1(d). (c) Numerical results for the transmission
coefficient T32 are plotted versus B for the 4-terminal setup
in Figs. 1(c) and (d), with s = 20.05. In the inset, T32 is
plotted for B ≥ 0.4 Tesla, clearly showing the transition to
the integer quantum Hall regime (for the largest values of B
considered, T32 = 1). Parameters as in Fig. 3.

vertical line), T32 exhibits a series of downward jumps—
see Fig. 5(c)—preluding the eventual onset of the integer
quantum Hall effect. Within the semiclassical interpreta-
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FIG. 6. (Color online) Numerically calculated non-local re-
sistance R21,34 (solid line) versus magnetic field B (in Tesla)
for the 4-terminal setup in Figs. 1(c) and (d). The dotted
and dash-dotted lines represent, respectively, the two terms
T32T41/D and T42T31/D entering the mathematical expres-
sion of the non-local resistance R21,34—see Eq. (6). Parame-
ters as in Fig. 3.

tion, one expects that electrons exiting lead 2 can either
reach lead 3 or be reflected back to lead 2. Therefore,
T32 slowly decreases from its maximum value according
to T32 ' Noc − T22, where Noc is the number of open
channels in lead 2. Indeed, for a fixed value of εF, the
reflection coefficient T22 for lead 2 increases with increas-
ing B (not shown). The slow power-law decay of T32 for

B > B
(4)
32 is due to trajectories with one or more bounces

(skipping orbits) between leads 2 and 3. The trajectory
with one bounce is depicted by a green line in Fig. 5(a).
T32 decreases in steps till its lowest value, T32 = 1, which
is reached at fields above 4 Tesla. In this case, leads 2
and 3 are connected by a single quantum Hall edge state.
Note, finally, that T32 goes to zero for large enough nega-
tive B, since all electrons injected from lead 2 are in this
case diverted by the Lorentz force towards lead 1.

The transmission coefficient T42 is characterized by a

dip occurring at B = B
(2)
32 , stemming from the fact that

electrons injected from lead 2 tend to be collected mostly
by lead 3 at the value of B that corresponds to the cy-
clotron orbit connecting leads 2 and 3. We note that T42
goes to zero at negative values of B—the corresponding
trajectories being deflected towards lead 1—and at large
positive values of B—such that the small radius of the
skipping orbits forces electrons injected from lead 2 to
end up in the same lead. This fact together with the dip

occurring at B = B
(2)
32 gives rise to two broad peaks in

T42 that we denote by B
(1)
42 and B

(3)
42 .

Notice furthermore that T31(B) = T42(B) since the
system sketched in Fig. 1(d) is symmetric under reflec-
tion about the dotted red line in Fig. 1(d) and that T41
is mainly characterized by a single large peak around

B = 0, since electrons injected from lead 1 have higher
probability to reach lead 4 for small fields. The slight
deviation of the maximum of T41 from B = 0 towards a
negative value can be attributed to the fact that leads
2 and 3, positioned on the bottom of the Hall bar, take
away electrons at small and positive values of B at the
expense of T41.

As a result of Eq. (6), which expresses the non-local
resistance R21,34 in terms of the transmission probabil-
ities, the two peaks in Fig. 6 (where R21,34 is plotted

as a function of the magnetic field) at B ' B
(2)
32 and

B ' B
(4)
32 stem from the two features in T32 discussed

above and are therefore genuine focusing peaks of the
non-local resistance R21,34. On the contrary, the origin
of the two deep negative minima in R21,34 is related to
the two broad peaks in T42.

We finally stress that the positivity of R21,34 at B ≈ 0
is due to the large value—see Fig. 5(b)—of T41 for small
(positive and negative) values of B, which originates from
the fact that leads 1 and 4 are much wider than leads 2
and 3. Note, however, that an additional contact—such
as terminal 5 in Fig. 1(a) and (b)—present on the upper
side of the Hall bar can serve as an electron drain. This
may significantly affect the discussed picture at B ≈ 0 as-
suming that W is much smaller than the mean free path
`, so that even negative values of R21,34 can be found,
depending on the relative size and position of the extra
contact. However, if W is larger than `, negative values of
the non-local resistance R21,34 (termed “vicinity” resis-
tance in Ref. 4) in zero magnetic field cannot be explained
within a single-particle ballistic approach4. As we will see
below in Sect. IV E, elastic disorder at the edges is not
able to change the clean-limit picture. Negative values
of R21,34 (which occur only at sufficiently large temper-
atures) have been attributed to hydrodynamic viscous
flow4,5.

To further emphasize the relation between transmis-
sion coefficients and non-local resistance, in Fig. 6 we plot
separately the two terms appearing in Eq. (6) along with
R21,34. The plot makes clear that the term T32T41/D
determines the occurrence of the positive peaks, while
the term T42T31/D is responsible for the appearance of
the two negative dips. This interpretation of the nega-
tive dips is in agreement with earlier theoretical work25,
based on a semiclassical billiard model, where TMF in
a geometry identical to that in Figs. 1(c) and (d) was
discussed.

We now turn to an analysis of non-local ballistic
magneto-transport in the 4-terminal setup sketched in
Fig. 1(e) and (f), with the two vertical leads placed on
opposite sides of the Hall bar. The relevant transmis-
sion coefficients are plotted in Fig. 7(a) as functions of
the magnetic field. Note that T31 (dash-dotted line)
and T42 (dashed line) respect the following symmetry:
T31(B) = T31(−B) and T42(B) = T42(−B). Also, we
note that T32(B) = T41(−B). This is because the system
depicted in Fig. 1(f) has an inversion symmetry center,
marked by a red cross in Fig. 1(f). The transmission
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coefficient between the two widest electrodes of the sys-
tem, T31, is however much larger than T42 and shows a
smooth bell-like shape, which decreases slowly with in-
creasing magnitude of B. On the contrary, T42 shows
spiky features (not visible on the scale of the plot), pos-
sibly arising from quantum interference effects, and goes
rapidly to zero at a value of the field (|B| ' B(0)) that
yields a cyclotron radius equal to W/2, i.e.

B(0) =
2εF
eWvF

. (16)

This is due to the fact that electrons injected from lead
2 cannot reach lead 4 for B ' ±B(0), being deflected
towards lead 3 (lead 1). This is confirmed by the behav-
ior of T32 (dotted line), which increases for increasing B,
reaching a constant value for B ≥ B(0), close to the num-
ber of open channels in lead 2 (Noc = 27). Notice also
that T32 is negligible only when B ≤ −B(0). The non-
local resistance R21,34 can be calculated using Eq. (6).
Numerical results are reported in Fig. 7(b) as a function
of B. It turns out that R21,34 resembles very closely the
shape of T42, but with a negative sign since R21,34 is
dominated by the term T42T31/D at all values of B. It
is worthwhile noticing that in our simulations R21,34 is

never positive since for B ≤ −B(0), when T42 becomes
negligible, T32 gets negligible too.

A. Classical trajectory model

To further investigate the classical nature of the main
features in the non-local resistance R21,34, we have devel-
oped a model based on fully classical trajectories, which
allows us to calculate the transmission probabilities be-
tween electrodes.

The model is detailed as follows:

• We assume that electrons move in the Hall bar ac-
cording to the classical equations of a charged par-
ticle in a transverse magnetic field;

• In a given electrode, electrons are emitted from Mp

equidistant points;

• From each such point, Me electrons are emitted
with an isotropic distribution of angles with a fixed
magnitude of velocity (equal to the Fermi velocity
vF);

• The number of electrons Mij (with i, j = 1, 2, 3, 4)
arriving in electrode i when emitted from electrode
j is determined by the classical equations (notice
that Mij ≤MpMe);

• The transmission probabilities T ij are defined by
normalizing the coefficients Mij as follows:

T ij = αiβjMij , (17)

−0.2 −0.1 0.0 0.1 0.2

B [Tesla]

0

20

40

60

80

100

120

140

T
ij

−B(0) B(0)

T31

T32

T41

T42

(a)

−0.2 −0.1 0.0 0.1 0.2

B [Tesla]

−60

−50

−40

−30

−20

−10

0

R
2
1
,3

4
[Ω

]

(b)

FIG. 7. (a) Numerically calculated transmission coefficients
T41 (solid line), T32 (dotted line), T42 (dashed line), and T31

(dashed-dotted line) are plotted versus the applied magnetic
field B (in Tesla) for the 4-terminal setup in Fig. 1(e) and
(f), with s = 10.23. Note that T41(−B) = T32(B) because
the system depicted in Fig. 1(f) has an inversion symmetry
center, marked by a red cross in Fig. 1(f). (b) Non-local
resistance R21,34 relative to the transmissions in panel (a).
Parameters as in Fig. 3.

where αi and βj are numerical coefficients deter-
mined by imposing the following conditions∑

i

T ij = Nj (18)

and ∑
j

T ij = Ni . (19)

Here, Ni is the number of open channel in lead i
as defined in the tight-binding quantum model, see
Sec. II;

• The non-local resistance R21,34 is finally calculated
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FIG. 8. (Color online) Numerically calculated non-local
resistance R21,34 for the 4-terminal setup in Fig. 1(c) and (d)
as a function of B calculated using the classical trajectory
model (CTM, red dashed line). The black line is the result
obtained with the quantum tight-binding model (same curve
plotted in Fig. 6). We take the following parameters: Me =
100 and Mp = 500. Sample parameters are the same as in
Fig. 3.

substituting the transmission probabilities T ij in
Eq. (6).

Notice that the conditions (18) and (19) express parti-
cle current conservation within the scattering approach
used in the quantum model of Sect. II. In Fig. 8 we plot
the non-local resistance obtained with this method as a
function of B (red dashed line), along with the result ob-
tained with the quantum model of Sect. II (black solid
line). Fig. 8 shows that the main features of R21,34, in
particular the two peaks for B > 0 and the two negative
minima, are well reproduced by the classical trajectory
model. This result confirms the classical nature of the
main features of R21,34, phase coherence playing a little
role.

B. Carrier density dependence

So far we have seen that the main features of the non-
local resistance can be explained on a classical level. This
is due to the fact that the value of the Fermi energy used
for the plot in Fig. 6, εF = 66.86 meV, corresponds to
the relatively highly doped graphene sheet used in the
measurements (see below). One expects, however, that
quantum effects become more important by decreasing
the carrier density (i.e. the Fermi energy), thus moving
to a regime where a few electronic modes are involved in
transport. Upon decreasing density, however, also disor-
der becomes important, which we here have decided to
neglect.

Fig. 9 shows the evolution of the non-local resistance
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FIG. 9. Numerically calculated non-local resistance R21,34

versus applied magnetic field B at different values of the Fermi
energy [(a) εF = 66.86 meV, (b) εF = 27.74 meV, (c) εF =
13.37 meV, and (d) εF = 2.97 meV] for the 4-terminal setup in
Fig. 1(c) and (d). The scaling factor used for the calculations
is s = 10.23, while the sample parameters are the same as
in Fig. 3. The number of open channels in the leads depend
on εF. In leads 2 and 3 the number of open channels is: (a)
Noc = 27, (b) Noc = 11, (c) Noc = 5, and (d) Noc = 1.
Notice that the scales (in both the resistance and field axes)
are different in the various panels. The focusing peaks remain
located where predicted by the classical analysis in panel (a),
(b) and (c).

versus magnetic field, at zero temperature, as the Fermi
energy is decreased. Starting from Fig. 9(a), relative
to εF = 66.86 meV, one observes that the value of the
resistance increases while the focusing peaks “degrade”,
but still persist for εF = 27.74 meV [Fig. 9(b)] and for
εF = 13.37 meV [Fig. 9(c)], with peak positions shift-
ing in agreement with Eq. (14). By further lowering εF,
Fig. 9(d) shows that for εF = 2.97 meV the non-local re-
sistance presents a completely different structure which
cannot be understood in classical terms. Notice, in par-
ticular, that in this latter case the number of open chan-
nels in leads 2 and 3 (N2 and N3), the narrowest in the
system, is equal to 1. Since focusing peaks are still dis-
tinguishable when N2 = N3 = 5—εF = 13.37 meV as in
Fig. 9(c)—we can conclude that the quantum regime sets
in when the number of open channels is close to 1. A com-
plete analysis of the quantum regime and the interplay
between electron-hole puddles and quantum interference,
though, is beyond the scope of the present Article.

C. Thermal smearing of the Fermi surface

In this Section we analize the impact of the smearing
of the Fermi surface due to finite-temperature effects on
TMF.

Within the scattering approach in the linear-response
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regime, the effect of a finite temperature T is taken into
account by replacing in Eqs. (6-12) the transmissions
probabilities Tij , evaluated at the Fermi energy, with the
following energy integrals

〈T 〉ij =

∫ ∞
−∞

Tij(E)

(
−∂f(E)

∂E

)
dE , (20)

where f(E) = [exp(E/(kBT )) + 1]−1 is the Fermi distri-
bution function at temperature T .

Plots of the non-local resistance R21,34 as a function
of the magnetic field B and for different values of T are
reported in Fig. 10. As expected, the non-local resis-
tance becomes smoother for increasing values of T and
the height of the focusing peaks decreases as T increases.
Notice, however, that the first peak for positive values
of B, which is not related to focusing, is hardly affected
by temperature. This behavior can be understood on
classical terms from the fact that, at finite tempera-
tures, electrons contributing to 〈T 〉ij are emitted at dif-
ferent energies, according to Eq. (20), and thus move at
different cyclotron radii. More precisely, the values of
the cyclotron radii will be distributed around the zero-
temperature value [Eq. (14)] with a width proportional
to temperature and given by

δrc =
kBT

eBvF
. (21)

In other words, with increasing temperature a larger
range of values for the cyclotron radius contributes to
all transmissions 〈T 〉ij so that they get non-vanishing on
a larger interval of values of B. As a result, the focusing
effect is blurred. The non-local resistance diminishes in
magnitude at all fields with increasing temperature and
remains finite for larger values of B.

Note that in Fig. 10 the peaks occurring at B = B
(1)
42

and B = B
(2)
32 remain distinguishable at all temperatures,

although the decrease of their height is nearly exponential

with T . The peaks occurring at B = B
(3)
42 and B = B

(4)
32 ,

however, are more strongly affected, eventually disap-
pearing for the largest temperatures considered.

In this Section we have analyzed only Fermi-surface
smearing effects induced by a finite temperature. In
reality, also inelastic collisions between electrons and
agents external to the 2D electron system (e.g. acous-
tic phonons) play a role in determining the magnitude of
the non-local signal in a TMF experiment. Our results
in Fig. 10 clearly show that Fermi-surface smearing ef-
fects play a non-negligible role and must be taken into
account in any serious comparison between microscopic
theoretical predictions and experiments.

D. Experimental data versus numerical
calculations

We have carried out transport experiments on Hall bar
devices with two current and four potential probes (two
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FIG. 10. (Color online) Numerically calculated non-local
resistance R21,34 versus applied magnetic field B at different
temperatures T = 0, 25, 50, 75, 100, 125, 150 K for the sys-
tem depicted in Fig. 1(c) and (d). The scaling factor used for
the simulations is s = 20.05 and all other parameters are the
same as for Fig. 3. Note that the temperature needs to be
rescaled with the energy scaling factor s′. Data in this plot
are just meant to give the reader an idea of the magnitude of
Fermi-surface smearing effects on TMF signals. As shown in
Ref. 4, non-local electrical signals at temperatures T & Thydro,
defined in Sect. I, are sensitive to electron-electron interac-
tions, which are not included in the numerical calculations
presented in this work.

potential probes on each side). To achieve mean-free
paths ` larger than the sample size, graphene was encap-
sulated in hexagonal boron nitride1. Fabrication details
can be found in the Supplementary Material of Ref. 4.

The characteristic geometrical details of our devices
(Hall bar width W , distance d between current and po-
tential probes, and width w of the probes) are the same
as in the numerical calculations discussed in Sect. III. A
standard low-frequency AC technique was employed for
measurements of the B-field dependence of the 4-probe
resistance in a commercial cryostat with a superconduct-
ing magnet.

Typical TMF experimental traces are shown in Fig. 11.
It compares the measurements with our Landauer-
Büttiker calculations. In order to do so, we use the pa-
rameters reported in the caption of Fig. 11. As for the
scaling factor, we use s = 20.05, while the value of the
rescaled Fermi energy has been slightly adjusted, with re-
spect to the value ε̃F dictated by the scaling procedure, in
order to fit the position of the main peak in the non-local
resistance. The value used for the numerical calculations
is ε̃′F = 1.37 eV, whereas the value obtained from the scal-
ing procedure is ε̃F = 1.31 eV, thus differing only by less
than 5%. This adjustment is justified by the fact that the
value of the Fermi energy εF—see input box in Fig. 2—is
inferred from the experimental value of the carrier den-
sity n, assuming the usual massless Dirac fermion rela-
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tion εF = ~vF
√
π|n|, which is only approximately valid

for the vertical lead of width w = 0.37 µm that is used in
our algorithm to calculate the number of open channels
Noc. Such small discrepancies, . 5 %, may stem from a
variety of reasons including the nature of edges (zig-zag,
armchair, or a combination), electron-hole aysmmetry28,
quantum confinement, etc. Note, moreover, that we al-
low only ε̃F as a “fit” parameter, while taking as the
hopping energy value (see discussion in Sect. II) its bare
non-interacting tight-binding value t0.

In Fig. 11 the measured non-local resistance R21,34

(empty circles) as a function of B is plotted along with
the numerical result (solid line) for the 4-terminal se-
tups in Fig. 1(c) and (d), panel (a), and in Fig. 1(e) and
(f), panel (b). The comparison reveals good agreement
such that the main features of R21,34 are reproduced as
well as its absolute value. In particular, the main peak
in Fig. 11(a) is nearly perfectly reproduced, while the
right peak is in the correct position, although exhibiting
a smaller height. The position and shape of the left dip
is also well captured, but not its amplitude. Regarding
Fig. 11(b), our calculations reproduce the presence of a
single minimum at zero field, but with a larger amplitude
and with no additional oscillations. These discrepancies
may be imputed to the actual detailed structure of the
sample, disorder, and other non-idealities.

E. The role of non-ideal edges

In this Section we discuss the consequences of possible
imperfections present at the edges of the Hall bar. We
focus on their impact on the non-local resistance R21,34

at B = 0. Our aim here is to show that the conclusions
drawn above in Sect. IV on the positivity of R21,34 at
B = 0 are robust against structural disorder at the edges.

Edge imperfections are implemented by carving in-
dependently the two horizontal edges using an algo-
rithm which, at random, adds or removes two rows of
atoms from each sublattice (taking care of avoiding dan-
gling bonds) of length corresponding to a number of
sites MR, which is also randomly chosen in the range
[MR,min,MR,max]. An example of the resulting nanorib-
bon is presented in Fig. 12(a). A constraint is imposed
on the maximum nanoribbon width, which is set by W .
The histogram in Fig. 12(b) shows the values obtained
for the non-local resistance of 100 different random con-
figurations for MR,min = 2 and MR,max = 6. The mean

value turns out to be R21,34 = 18.50 Ω with standard
deviation equal to ∆R21,34 = 4.65 Ω (for comparison,
recall that for the corresponding ideal nanoribbon one
finds R21,34 = 20.69 Ω, well within a standard devia-
tion). Fig. 12(c), on the other hand, shows the evolu-
tion of the mean value and standard deviation of non-
local resistance with increasing number of random con-
figurations, proving that convergence is obtained already
with 60 configurations. We additionally mention that
mean value and standard deviation of R21,34 do not sig-
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FIG. 11. Comparison between experimental results (empty
circles) and results from numerical calculations (solid line) for
the non-local resistance R21,34 at T = 25 K. Panel (a) refers
to the setup in Fig. 1(c) while panel (b) refers to the setup in
Fig. 1(e). Sample parameters are W = 2 µm, L1 = 1.5 µm,
L2 = 3.5 µm, w = 0.37 µm, d = 1 µm, and a carrier density
n = 0.4× 1012 cm−2.

nificantly change if MR varies in a larger range of val-
ues. Namely, for MR,min = 4 and MR,max = 10 we find

R21,34 = 19.72 Ω and ∆R21,34 = 6.49 Ω.

V. CONCLUSIONS

In this report we have proposed a scaling proce-
dure, based on the tight-binding approach and Landauer-
Büttiker theory, for transport calculations in ultra-clean
graphene devices of realistic size.

The procedure is based on the exact band structure of
graphene ribbons, and uses the Fermi energy as key scal-
ing parameter. We have demonstrated the effectiveness
of the procedure by calculating the non-local resistance
of a realistic 5-terminal setup in the presence of a mag-
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FIG. 12. (Color online) Numerical results for the non-local
resistance in zero magnetic field and for non-ideal edges. (a)
Example of a graphene ribbon with non-ideal edges, with
MR,min = 2 and MR,max = 6. (b) Histogram of the non-
local resistances at zero magnetic field (B = 0) obtained
for 100 different random configurations. The relative mean
value is R21,34 = 18.50 Ω with standard deviation equal to
∆R21,34 = 4.65 Ω. (c) Mean value and standard deviation as
a function of the number of random configurations. The scal-
ing factor used for the simulations is s = 20.05, MR,min = 2
and MR,max = 6, and all other parameters are the same as in
Fig. 3.

netic field. In such a transverse magnetic focusing setup,
we have compared the non-local resistance as a function
of magnetic field for increasing values of the scaling fac-
tor, proving that this approach is particularly suitable for
micron-sized ribbons and in the presence of many elec-
trodes.

The case of transverse magnetic focusing has been fur-
ther analysed in realistic 4-terminal setups, where the
structure of the non-local resistance as a function of mag-
netic field has been explained in terms of classical cy-
clotron orbits. Moreover, we have addressed the depen-
dence of the non-local resistance on the carrier density
and temperature and studied the impact of disorder at
the edges of the ribbon.

Finally, we have compared the results of our scaling
approach with experimental data in high-quality encap-
sulated samples finding good agreement. The main fea-
tures, as well as the absolute value of the non-local resis-
tance, are well reproduced using the actual experimental
parameters.
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